伺服电机的选型和计算

合集下载

伺服电机选型和编码器选型计算

伺服电机选型和编码器选型计算

伺服电机选型和编码器选型计算
摘要
本文介绍了如何进行伺服电机和编码器的选型计算。

通过以下步骤,您可以选择适合您应用需求的伺服电机和编码器组合。

1. 确定应用需求
首先,您需要确定您的应用的一些关键需求,例如输出动力、扭矩要求、速度要求等。

2. 计算负载参数
根据您的应用需求,计算系统的负载参数,例如惯性矩、负载扭矩等。

这些参数将帮助您选择合适的伺服电机。

3. 伺服电机选型计算
使用所得到的负载参数,结合电机性能曲线和应用需求,计算所需的伺服电机的额定功率和最大扭矩。

同时,考虑电机的尺寸和重量限制来选择合适的型号。

4. 编码器选型计算
对于伺服电机,选择适当的编码器也是重要的。

根据应用需求和所选电机的分辨率,计算编码器的分辨率、线数和精度等参数。

5. 选择合适的组合
最后,在满足应用需求的前提下,根据电机和编码器的参数进行选择,以确保系统性能达到预期。

6. 总结
选型计算是有效选择适合应用需求的伺服电机和编码器的重要步骤。

通过明确应用需求、计算负载参数、进行选型计算和选择合适的组合,您可以确保您的系统能够高效稳定地工作。

以上是关于伺服电机选型和编码器选型计算的简要指南。

希望对您有所帮助!。

伺服电机和丝杆选型计算

伺服电机和丝杆选型计算

伺服电机和丝杆选型计算1.伺服电机选型计算:伺服电机是一种将电能转化为机械能的装置,它通过电机驱动系统的精确控制,实现对机械位置、转速和力矩的精确控制。

在选型时,需要考虑以下几个方面:1.1额定输出功率:根据机械系统的工作要求和负载要求,确定伺服电机的额定输出功率。

通常,额定输出功率应略大于所需的最大功率。

1.2额定转速:根据工作要求和负载要求,确定伺服电机的额定转速。

通常,额定转速应略大于所需的最大转速。

1.3额定转矩:根据负载的特性和工作要求,确定伺服电机的额定转矩。

通常,额定转矩应略大于所需的最大转矩。

1.4动态响应速度:根据控制系统的要求,确定伺服电机的动态响应速度。

通常,要求动态响应速度能够满足系统的响应时间要求。

1.5额定电压:根据工作环境和电源供应的要求,确定伺服电机的额定电压。

通常,额定电压应与电源供应的电压相匹配。

2.丝杆选型计算:丝杆是一种将旋转运动转化为直线运动的装置,它通常由丝杆和螺母组成。

在选型时,需要考虑以下几个方面:2.1螺距:根据工作要求,确定丝杆的螺距。

螺距是丝杆每转一周所移动的距离,通常用毫米/转表示。

2.2进给速度:根据机械系统的工作要求,确定丝杆的进给速度。

进给速度是丝杆上点的线速度,通常用毫米/秒表示。

2.3进给力:根据工作负载和系统要求,确定丝杆的进给力。

进给力是丝杆在工作过程中所受的力,通常用牛顿表示。

2.4精度等级:根据工作要求,确定丝杆的精度等级。

精度等级决定了丝杆的运动精度,通常用C级、T级等表示。

2.5长度:根据机械系统的工作空间和要求,确定丝杆的长度。

丝杆的长度应能够满足系统的工作范围要求。

伺服电机选型计算实例

伺服电机选型计算实例

伺服电机选型计算实例伺服电机是一种控制器控制的电机,具有高精度和高速度的特点,广泛应用于机械设备中。

在选型伺服电机时,需要考虑多个参数来满足具体的应用要求。

下面以一个选型计算实例来详细介绍伺服电机的选型过程。

假设我们需要选型一台伺服电机用于驱动一个线传动机构,具体要求如下:1.最大负载力为2000N,工作速度范围为0-10m/s。

2. 线传动机构的负载惯量为500kg·m²。

3. 需要保证驱动精度在±0.2mm范围内。

4.工作环境温度范围为0-40℃。

首先,我们需要计算所需的转矩。

根据公式:转矩=负载力×工作半径,其中工作半径等于线传动机构的负载惯量÷2、由于我们没有具体的线传动机构参数,假设负载惯量为500kg·m²,即工作半径为0.25m。

则最大转矩=2000N×0.25m=500N·m。

考虑到一般情况下,峰值转矩为最大转矩的2倍,即1000N·m。

接下来,我们需要计算伺服电机的速度要求。

根据给定的工作速度范围0-10m/s,我们可以选择合适的额定转速。

假设我们选择的额定转速为2000rpm,则转速范围为0-2000rpm。

考虑到加速度和减速度的要求,一般额定转速的选择会略高于平均线速度,假设为2200rpm。

接下来,我们需要选择合适的伺服电机型号。

在选型之前,我们还需要考虑工作环境的温度范围。

根据给定的工作环境温度范围为0-40℃,我们需要选择具备合适温度范围的伺服电机。

一般伺服电机的温度范围为0-50℃,因此我们可以选择标准型号的伺服电机。

在选择伺服电机型号时,我们需要参考厂家提供的电机性能参数。

主要包括额定转矩、额定转速、额定电压、额定电流、额定功率等。

根据我们的要求,我们可以对比不同型号的伺服电机并选择合适的型号。

最后,我们需要根据具体应用需求考虑伺服电机的控制方式、接口类型以及其他附件等。

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算伺服电机选型及负载转矩计算惯量转矩计算机械制造商在选购电机时担心切削力不够,往往选择较大规格的马达,这不但会增加机床的制造成本,而且使之体积增大,结构布局不够紧凑。

本文以实例应用阐明了如何选择最佳规格电机的方法,以控制制造成本。

一、进给驱动伺服电机的选择1.原则上应该根据负载条件来选择伺服电机。

在电机轴上所有的负载有两种,即阻尼转矩和惯量负载。

这两种负载都要正确地计算,其值应满足下列条件: 1)当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机连续额定转矩范围内,即应在转矩速度特性曲线的连续工作区。

2)最大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。

3)电机在加速/减速过程中的转矩应在加减速区(或间断工作区)之内。

4)对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。

并应小于电机的连续额定转矩。

5)加在电机轴上的负载惯量大小对电机的灵敏度和整个伺服系统的精度将产生影响。

通常,当负载小于电机转子惯量时,上述影响不大。

但当负载惯量达到甚至超过转子惯量的5倍时,会使灵敏度和响应时间受到很大的影响。

甚至会使伺服放大器不能在正常调节范围内工作。

所以对这类惯量应避免使用。

推荐对伺服电机惯量Jm和负载惯量Jl之间的关系如下:Jl<5×Jm1、负载转矩的计算负载转矩的计算方法加到伺服电机轴上的负载转矩计算公式,因机械而异。

但不论何种机械,都应计算出折算到电机轴上的负载转矩。

通常,折算到伺服电机轴上的负载转矩可由下列公式计算:Tl=(F*L/2πμ)+T0式中:Tl折算到电机轴上的负载转矩(N.M);F:轴向移动工作台时所需要的力;L:电机轴每转的机械位移量(M);To:滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值(N.M);Μ:驱动系统的效率F:取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂直轴)。

伺服电机选型计算

伺服电机选型计算

伺服电机选型计算
1.负载惯量计算
负载惯量是指负载的转动惯量,计算方式为质量乘以质心距离平方。

负载惯性大会对电机的加速度和精度要求产生一定的影响。

伺服电机需要
具备足够的能力来加速和控制负载。

负载惯量的计算公式为:
J=m*r^2
其中,J表示负载的转动惯量,m表示负载的质量,r表示负载的质
心距离。

根据实际情况确定负载的质量和质心距离,可以估算负载的转动惯量。

2.加速度计算
加速度是指负载达到一定速度所需的时间。

加速度较大可以提高生产
效率,但可能会引起震动和噪音。

确定合适的加速度需要根据应用需要进
行权衡。

加速度的计算公式为:
a=(ωf-ωi)/t
其中,a表示加速度,ωf表示最终速度,ωi表示初始速度,t表示
加速时间。

3.扭矩计算
扭矩是伺服电机提供的力矩,其大小决定了电机的最大负载能力。

根据应用需求可以计算出负载所需的最大扭矩。

扭矩的计算公式为:
T=J*α
其中,T表示所需的最大扭矩,J表示负载的转动惯量,α表示加速度。

4.功率计算
功率是指电机输出的机械功率,也是伺服电机选型的一个重要参数。

根据应用需求可以计算出对应负载的最大功率。

功率的计算公式为:
P=M*ω
其中,P表示功率,M表示扭矩,ω表示角速度。

5.速度计算
速度是指电机的转速,根据应用需求可以计算出所需的最大速度。

速度的计算公式为:
V=ω*r
其中,V表示速度,ω表示角速度,r表示负载的质心距离。

伺服电机选型计算公式

伺服电机选型计算公式

伺服电机选型计算公式伺服电机选型计算公式是指通过一系列的计算公式来确定伺服电机的合适参数,以满足特定需求。

伺服电机选型的主要目标是确定伺服电机的额定转矩、额定电流、额定功率等参数,以及选择合适的伺服驱动器。

下面将介绍一些常用的伺服电机选型计算公式。

1.负载的转矩计算公式:负载的转矩是伺服电机选型的基础,通过计算负载的转矩,可以确定伺服电机的额定转矩。

负载的转矩可以通过以下公式计算:负载转矩=(负载力*负载半径)/(传动效率*减速比)2.伺服电机的额定转矩计算公式:伺服电机的额定转矩是指在额定转速下,电机能够提供的最大转矩。

额定转矩可以通过以下公式计算:额定转矩=(负载转矩+加速扭矩)/传动效率3.伺服电机的额定电流计算公式:伺服电机的额定电流是指在额定转矩下,电机所需的额定电流。

额定电流可以通过以下公式计算:额定电流=额定转矩*电流系数/额定转速4.伺服电机的额定功率计算公式:伺服电机的额定功率是指在额定转矩和额定转速下,电机所提供的对外功率。

额定功率可以通过以下公式计算:额定功率=额定转矩*额定转速/9.555.伺服驱动器的额定功率计算公式:伺服驱动器的额定功率是指驱动器所能提供的最大功率。

额定功率可以通过以下公式计算:额定功率=伺服电机的额定功率/驱动器的效率除了上述几个常用的伺服电机选型计算公式外,还需要考虑一些其他因素,例如:负载的加速时间、负载的惯性矩、伺服系统的控制精度等,这些因素都会对伺服电机的选型产生影响,需要综合考虑。

同时,还需要根据具体的应用环境和需求,选择合适的伺服电机和驱动器型号,以确保系统的性能和可靠性。

需要注意的是,伺服电机选型计算公式只是一个参考,实际选型过程中还需要考虑一系列的工程参数和实际情况,同时也需要借助一些专业的伺服电机选型软件,以更准确地确定伺服电机的参数。

伺服电机及选型完整版

伺服电机及选型完整版

伺服电机及选型HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】伺服电机伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机。

伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,可把所收到的转换成电动机轴上的角位移或输出。

“伺服”一词源于希腊语“奴隶”的意思,“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动,当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。

因此伺服电机指的是随时跟随命令进行动作的一种电机,是以其工作性质命名的。

伺服主要靠脉冲来定位,伺服电机接收到一个脉冲就会旋转一个脉冲对应的角度,从而实现位移。

伺服本身带有编码器,具备发出脉冲的功能,所以伺服电机每旋转一个角度,就会发出对应数量的脉冲。

等于是把电机旋转的详细信息反馈回去,形成闭环。

这样的话,系统就会知道发了多少脉冲给电机,同时又收了多少脉冲回来,这样就能很精准的控制电机的转动,实现非常精准的定位。

一、伺服电机分类1、直流伺服结构简单控制容易。

但从实际运行考虑,直流伺服电动机引入了机械换向装置,成本高,故障多,维护困难,经常因碳刷产生的火花影响生产,会产生电磁干扰。

而且碳刷需要维护更换。

机械换向器的换向能力,也限制了电动机的容量和速度。

2、交流伺服分为永磁同步伺服电机和异步伺服电机。

目前运动控制基本都用同步电机。

永磁同步伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电机的精度决定于编码器的精度(线数)。

特点如下:1、控制速度非常快,从启动到额定转速只需几毫秒;而相同情况下异步电机却需要几秒钟。

伺服电机的选型及计算教程【老师附干货】

伺服电机的选型及计算教程【老师附干货】

以下为伺服电机的选型及计算教程,一起来看看吧!一、伺服电机的选型步骤:每种型号伺服电机的规格项内均有额定转矩、最大转矩及伺服电机惯量等参数各参数与负载转矩及负载惯量间必定有相关联系存在,选用伺服电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、机构的重量;机构的运动方式(水平、垂直旋转)等;运动条件与伺服电机输出功率无直接关系,但是一般伺服电机输出功率越高,相对输出转矩也会越高。

因此不但机构重量会影响伺服电机的选用,运动条件也会改变伺服电机的选用。

惯量越大时,需要越大的加速及减速转矩,加速及减速时间越短时,也需要越大的伺服电机输出转矩。

选用伺服电机规格时,依下列步骤进行。

(1)明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。

(2)依据运行条件要求选用合适的负载惯量计算公式计算出机构的负载惯量。

(3)依据负载惯量与伺服电机惯量选出适当的假选定伺服电机规格。

(4)结合初选的伺服电机惯量与负载惯量,计算出加速转矩及减速转矩。

(5)依据负载重量、配置方式、摩擦系数、运行效效率计算出负载转矩。

(6)初选伺服电机的最大输出转矩必须大于加速转矩+负载转矩;如不符合条件,必须选用其他型号计算验证直至符符合要求。

(7)依据负载转矩、加速转矩、减速转矩及保持转矩计算出连续瞬时转矩。

(8)初选伺服电机的额定转矩必须大于连续瞬时转矩,如,如果不符合条件,必须选用其他型号计算验证直至符合要求。

(9)完成选定。

二、最简单伺服电机选型计算方式:伺服电机选择的时候,首先一个要考虑的就是功率的选择。

一般应注意以下两点:1、如果电机功率选得过小。

就会出现“小马拉大车”现象,造成电机长期过载,使其绝缘因发热而损坏,甚至电机被烧毁。

2、如果电机功率选得过大。

就会出现“大马拉小车“现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。

而且还会造成电能浪费。

也就是说,电机功率既不能太大,也不能太小,要正确选择电机的功率,必须经过以下计算或比较:P=:F*V/100(其中P是计算功率,单位是KW,F是所需拉力,单位是N,V是工作机线速度m/s)此外。

伺服电机及减速机选型计算

伺服电机及减速机选型计算

伺服电机及减速机选型计算1)关于负载条件①基本负载2000kg(⼯件+夹具+回转变位器+配重)②负载重⼼位置0.1m(假定为0.1m,设计时务必⼩于这个值)③负载系数×1.2Motor减速机 减速⽐=1712)电机规格(a12/3000i)项⽬额定输出额定转数最⾼转数3)减速机RV320E-1714) 【关于电机扭矩】负载扭矩[N?m] ……⽤于回转的扭矩选择电机规格时,乘以负载系数。

T L=∑mgr×Z TL=∑mgr×Z=2000×1.2×9.8×0.1×1/342≒6.877 <12 电机的额定扭矩(Z:确认减速⽐、输出轴的转数有⽆问题。

)(重⼒平均负载扭矩=最⼤负载扭矩/2^0.5/综合减速⽐=2000×1.2×9.8×0.1/2^0.5/342=4.86) ?慣性⼒矩[kg?m2] :向电机轴(输⼊轴)的换算。

I=∑mr2×Z2I=mr2×Z 2=2000×1.2×0.12×(1/342)2≒0.36×10-4I=m(D 2+d 2)÷8×Z 2=I=∑mr2×Z 2⾓加速度 [rad/s^2] :最⼤加速时的负载 dω/dt=(2π/60) N/⊿tdω/dt=(2π/60) N/⊿t=(2π/60)×3000/0.2≒1570.8(N:电机额定转数rpm、⊿t:加速时间sec) ?加速扭矩[kg ?m^2/s^2=N ?m] ……⽤于加速的扭矩 Ta=I ?dω/dt Ta=I ?dω/dt=74×10-4×1570.8≒11.62瞬时最⼤扭矩[kg ?m^2/s^2=N ?m] Tmax=TL+ Ta <电机的最⼤扭矩Tmax=TL+ Ta=6.877+11.62=18.5 <35 电机的最⼤扭矩 变位器最⾼⾓速度ωpmax=额定转数÷综合减速⽐×360°÷60sec=3000÷342×360÷60 ≒52.63°/sec 加減速时间tA=t1=设计值=0.2sec⾓加速度dωp/dt=ωpmax/tA =263.15°/sec2停⽌时间t4=1.0sec以内。

伺服电机选型设计计算

伺服电机选型设计计算

伺服电机选型设计计算一、引言伺服电机是一种能够进行位置、速度和力控制的电机,广泛应用于机械设备、自动化设备、机器人等领域。

在进行伺服电机选型设计时,需要考虑的参数包括负载惯量、所需转矩、速度要求等。

本文将以其中一种机械设备为例,介绍伺服电机选型设计的计算方法。

二、负载惯量计算负载惯量是指转动物体的重心与转动轴心之间的惯量,可以通过以下公式计算:J=m*r²其中,J为负载惯量,m为负载的质量,r为负载的半径。

在计算时需要考虑到实际系统中传动装置的参数。

三、转矩计算转矩是指伺服电机输出的力矩,可以通过以下公式计算:T=J*α其中,T为转矩,J为负载惯量,α为加速度。

在计算转矩时,需要根据具体应用的加速度要求进行确定。

四、最大转矩计算为了保证正常运行,伺服电机的转矩应大于或等于最大转矩,可以通过以下公式计算:T_max = T + F * r其中,T_max为最大转矩,T为转矩,F为负载的水平力,r为负载的半径。

五、速度计算速度是指伺服电机的转动速度,可以通过以下公式计算:ω=2*π*n/60其中,ω为速度,n为转速。

在计算速度时,需要根据具体应用的速度要求进行确定。

六、转动惯量计算转动惯量是指伺服电机本身的惯量,可以通过以下公式计算:J_m=m_m*r_m²+J_r其中,J_m为转动惯量,m_m为伺服电机本身的质量,r_m为伺服电机本身的半径,J_r为转动装置的惯量。

根据具体应用的转动装置进行确定。

七、功率计算功率是伺服电机输出的功率,可以通过以下公式计算:P=T*ω/1000其中,P为功率,T为转矩,ω为速度。

在计算功率时,需要考虑到实际应用中的效率,通常取效率值为0.8左右。

八、综合考虑在进行伺服电机选型设计时,需要综合考虑转矩、速度和功率等参数。

一般来说,转矩需大于或等于最大转矩,速度需大于或等于所需速度,功率需大于或等于所需功率。

同时,还需要考虑价格、体积和可靠性等因素。

伺服电机的选型和转动惯量的计算

伺服电机的选型和转动惯量的计算

伺服电机的选型和转动惯量的计算引言:伺服电机是一种能够实现精确定位和速度控制的电动机。

在自动化控制系统中,伺服电机广泛应用于机械装置的定位与运动控制,如机床、工业机械手臂、机器人等。

为了确保控制系统的性能和稳定性,正确选型和计算转动惯量是非常重要的。

一、伺服电机选型1.负载特性分析:首先需要对负载特性进行分析,包括负载的质量、摩擦系数、惯性矩等。

这些参数影响到伺服电机的选择,如电机的额定转矩等。

在分析负载特性时需要考虑静态特性和动态特性。

2.运行速度要求:根据系统的运行速度要求,选择电机的额定转速。

如果要求快速响应,需要选择具有较高转速的电机;如果要求大转矩输出,需要选择具有较大额定转矩的电机。

3.控制方式:根据系统的控制方式,选择合适的伺服电机。

常见的控制方式有位置控制、速度控制和力控制。

不同的控制方式对电机的性能要求也不同。

4.转矩和转速曲线:了解电机的转矩和转速曲线,可以帮助选择合适的伺服电机。

转矩曲线决定了电机能够产生的最大转矩,转速曲线决定了电机能够输出的最大转速。

5.电机功率:根据负载特性和运行速度要求,计算出所需的电机功率。

一般情况下,应选择稍大于所需功率的电机,以保证系统的可靠性和安全性。

6.品牌和价格:最后根据伺服电机的品牌和价格进行选择。

国际知名品牌的产品质量较高,但价格也较高。

可以根据实际需求和预算进行选择。

转动惯量是描述物体抗拒改变转动状态的特性。

在伺服电机的选型和控制系统设计中,转动惯量是一个重要的参数。

计算转动惯量的一般公式为:J=m*r^2其中,J是转动惯量,m是物体的质量,r是物体相对转轴的距离。

如果物体是一个均匀的圆盘或圆柱体,根据其几何形状可以通过以下公式计算转动惯量:J=1/2*m*r^2其中,m是物体的质量,r是物体的半径。

如果物体是由多个部分组成,可以通过将各部分的转动惯量相加得到整体的转动惯量。

在实际应用中,还需要考虑其他因素对转动惯量的影响,如内部零件的分布、负载的摩擦系数等。

伺服电机如何进行选型

伺服电机如何进行选型

伺服电机选型技术指南1、机电领域中伺服电机的选择原则现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。

伺服驱 动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。

首先要选出满足给 定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。

述度自廿比 ioa% 各种电机的T-3曲线 (1)传统的选择方法这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表 示,对于旋转运动用角速度3 (t),角加速度a (t)和所需扭矩T(t)表示,它们均可以表示为时 间的函数,与其他因素无关。

很显然。

电机的最大功被电机最大应大于工作负载所需的峰值 功率P 峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的 传动机构中它们是受限制的。

用3峰值,T 峰值表示最大值或者峰值。

电机的最大速度决定了 减速器减速比的上限,n 上限二3峰值最大/3峰值,同样,电机的最大扭矩决定了减速比的下限, n 下P 「T 峰值/T 电机,最大,如果n 下限大于n 上限,选择的电机是不合适的。

反之,则可以通过对每 种电机的广泛类比来确定上下限之间可行的传动比范围。

只用峰值功率作为选择电机的原则 是不充分的,而且传动比的准确计算非常繁琐。

(2)新的选择方法一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方 法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可 能范围。

这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的 各个参数均可用图解的形式表示并且适用于各种电机。

因此,不再需要用大量的类比来检查 电机是否能够驱动某个特定的负载。

在电机和负载之间的传动比会改变电机提供的动力荷载参数。

比如,一个大的传动比会 减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转, 产生较大的加速度,因此电机需要较大的惯量扭矩。

伺服电机选型计算公式

伺服电机选型计算公式

最简单伺服电机选型计算方式:伺服电机选择的时候,首先一个要考虑的就是功率的选择。

一般应注意以下两点:1、如果电机功率选得过小。

就会出现“小马拉大车”现象,造成电机长期过载,使其绝缘因发热而损坏,甚至电机被烧毁。

2、如果电机功率选得过大。

就会出现“大马拉小车“现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。

而且还会造成电能浪费。

也就是说,电机功率既不能太大,也不能太小,要正确选择电机的功率,必须经过以下计算或比较:P=:F*V/100(其中P是计算功率,单位是KW,F是所需拉力,单位是N,V是工作机线速度m/s)此外。

最常用的是采用类比法来选择电机的功率。

所谓类比法,就是与类似生产机械所用电机的功率进行对比。

具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电机,然后选用相近功率的电机进行试车。

试车的目的是验证所选电机与生产机械是否匹配。

验证的方法是:使电机带动生产机械运转,用钳形电流表测量电机的工作电流,将测得的电流与该电机铭牌上标出的额定电流进行对比。

如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大,则表明所选电机的功率合适。

如果电机的实际工作电流比铭牌上标出的额定电流低70%左右。

则表明电机的功率选得过大,应调换功率较小的电机。

如果测得的电机工作电流比铭牌上标出的额定电流大40%以上。

则表明电机的功率选得过小,应调换功率较大的电机。

实际上应该是考虑扭矩(转矩),电机功率和转矩计算公式。

即T=9550P/n式中:P一功率,kW;n一电机的额定转速,r/min;T一转矩,Nm。

电机的输出转矩一定要大于工作机械所需要的转矩,一般需要一个安全系数。

机械功率公式:P=T*N/97500P:功率单位W;T:转矩,单位克/cm;N:转速,单位r/min。

伺服电机的选型计算及应用案例介绍

伺服电机的选型计算及应用案例介绍
加速时转矩 Ta=(JL+JM)*2πN/加速时间+移动转矩
=0.231N.M
第27页,共30页。
减速时转矩
Td=(JL+JM)*2πN/加速时间-移动转矩 =0.161N.M
7.确认最大转矩 加速时转矩=Ta=0.231N.M<1.91N.M(电机最大转矩)
8.确认有效转矩=0.067<0.64(电机额定转矩)
第4页,共30页。
4.电机转速和扭矩(转矩)公式
扭矩公式:T=9550P/n
T是扭矩,单位N·m; P是输出功率,单位KW; n是电机转速,单位r/min
扭矩公式:T=973P/n
T是扭矩,单位kg·m; P是输出功率,单位KW; n是电机转速,单位r/min
第5页,共30页。
5.扭矩计算
电机转矩T (N.m) 滑轮半径r (m)
二.转动惯量
1.定义:是刚体绕轴转动时惯性的量度。通常以 字母I或J来表示。单位为kg·m² 2.与转动惯量有关的因素:
1.刚体的总质量
2.质量分布 3.转轴的位置
第8页,共30页。
3.转动惯量的计算: (1)单个质点的转动惯量: J=mr2
(2)质量离散分布刚体的转动惯量:
J m jrj2 m1r12 m2r22 j
J与质量大小、质量分布、转轴位置有关 演示程序: 影响刚体转动惯量的因素
常见刚体的转动惯量
J mr 2 J mr 2 / 2 J mr 2 / 2 J m(r12 r22) / 2
J ml 2 /12 J mr2 / 2 J 2mr 2 / 5 J 2mr 2 / 3
第10页,共30页。
六.实例应用讲解
案例1
已知:负载重量WA=10kg,螺杆螺距BP=20mm,螺杆直径BD=20mm,

伺服电机功率计算选型例子

伺服电机功率计算选型例子
= 50 * 9.8 * 0.6 * 0.06 / 2 / 10 = 0.882 N.m 加速时所需转矩Ta = M * a * (D / 2) / R2 / R1 = 50 * (30 / 60 / 0.2) * 0.06 / 2 / 10 = 0.375 N.m 伺服电机额定转矩 > Tf ,最大扭矩 > Tf + Ta
微信公众号:ACE萦梦工作室
举例计算3
3. 计算电机驱动负载所需要的扭矩 克服摩擦力所需转矩Tf = M * g * µ * PB / 2π / η
= 200 * 9.8 * 0.2 * 0.02 / 2π / 0.9 = 1.387 N.m 重物加速时所需转矩TA1 = M * a * PB / 2π / η
JL=1/2*M1*r12 + 1/2*M2*r12 + M3*r12
M3 M1 r1
r2 M2
微信公众号:ACE萦梦工作室
伺服选型原则
连续工作扭矩 < 伺服电机额定扭矩
瞬时最大扭矩 < 伺服电机最大扭矩 (加速时)
负载惯量
< 3倍电机转子惯量
连续工作速度 < 电机额定转速
微信公众号:ACE萦梦工作室
按照负载惯量 < 3倍电机转子惯量JM的原则
如果选择400W电机,JM = 0.277kg.cm2,则 15625 / R2 < 3*0.277,R2 > 18803,R > 137 输出转速=3000/137=22 rpm,不能满足要求。
如果选择500W电机,JM = 8.17kg.cm2,则 15625 / R2 < 3*8.17,R2 > 637,R > 25 输出转速=2000/25=80 rpm,满足要求。 这微种信公传众号动:AC方E萦式梦工阻作室力很小,忽略扭矩计算。

伺服电机配丝杆选型计算

伺服电机配丝杆选型计算

伺服电机配丝杆选型计算一、伺服电机的选择在进行伺服电机的选择时,需要考虑以下几个方面的因素:1.动态性能:伺服电机的动态性能是指其响应速度和加速度等指标,直接影响到系统的定位精度和稳定性。

一般来说,选择具有较高转速、较大加速度和较低转子惯量的伺服电机,能够提高系统的动态性能。

2.扭矩输出:扭矩输出是指伺服电机能够提供的最大扭矩值,也称为额定扭矩。

根据所需的载荷要求,选择具有合适额定扭矩输出的伺服电机,保证系统的工作负荷能够得到稳定的驱动。

3.形式结构:伺服电机有多种不同的形式结构,例如直线电机、旋转电机等。

根据实际应用场景和要求,选择最适合的形式结构,能够提高系统的机械结构布局和性能。

二、丝杆参数的选择在进行丝杆参数的选择时,主要考虑以下几个因素:1.传动效率:丝杆的传动效率是指输入功率和输出功率之间的比值,直接影响到整个传动系统的效率。

一般来说,选择传动效率较高的丝杆,能够减少能量损失和系统的热量产生。

2.传动精度:丝杆的传动精度是指其转动一周所产生的位移误差,也称为回程误差。

根据系统的定位要求,选择具有较小传动精度误差的丝杆,确保系统实现高精度的位置控制。

3.负载能力:丝杆的负载能力是指其能够承受的最大负载力。

根据系统的负载要求,选择具有合适负载能力的丝杆,能够确保系统的安全运行和寿命。

三、计算方法1.动态性能计算:根据系统的负载惯量和加速度要求,可以通过以下公式计算伺服电机的最小转矩和加速度:最小转矩=负载惯量×加速度最小转矩+负载惯量×加速度/1000=伺服电机的额定转矩2.丝杆传动效率计算:丝杆传动效率的计算方法根据具体的丝杆类型和结构有所不同,一般可以参考丝杆制造商提供的效率曲线或表格进行计算。

3.丝杆传动精度计算:丝杆传动精度的计算方法是根据丝杆的每圈螺纹数和丝杆每圈的螺距进行计算。

计算公式如下:传动精度=360°/(螺纹数×螺距)4.丝杆负载能力计算:丝杆负载能力的计算方法主要取决于丝杆的材料和几何形状,一般需要参考丝杆制造商提供的相关数据进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机的选择:
(1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达: FL M =π2
式中 M-----电动机轴转距;
F------使机械部件沿直线方向移动所需的力;
L------电动机转一圈(2πrad )时,机械移动的距离
2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。

实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算:
z z M h h F M B sp
SP
ao P K 2
11122⎪
⎪⎭⎫ ⎝⎛++=ηππ M 1-----等速运动时的驱动力矩(N.mm)
π
2h
F sp
ao K
---双螺母滚珠丝杠的预紧力矩(N.mm) F
ao
------预紧力(N),通常预紧力取最大轴向工作载荷
F
m ax
的1/3,即
F ao =
3
1
F m ax
当F m ax 难于计算时,可采用F ao =(0.1~0.12))(N C a ; C a -----滚珠丝杠副的额定载荷,产品样本中可查:
h
sp
-----丝杠导程(mm);
K--------滚珠丝杠预紧力矩系数,取0.1~0.2;
P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=;
W 1-----移动部件重力(N),包括最大承载重力;
P 1
-------有夹板夹持时(如主轴箱)的夹板夹持力;
μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ;
η
1
-------滚珠丝杠的效率,取0.90~0.95;
M
B
----支撑轴承的摩擦力矩,即叫启动力矩(N.m),可以从滚珠丝杠专用轴
承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题)
z 1--------齿轮1的齿数 z
2
--------齿轮2的齿数
最后按满足下式的条件选择伺服电机
M M s ≤1
M
s
-----伺服电机的额定转距
(2)惯量匹配计算 为使伺服进给系统的进给执行部件具有快速相应能力,必须选用加速能力大的电动机,亦即能够快速响应的电机(如采用大惯量伺服电机),但又不能盲目追求大惯量,否则由于不能从分发挥其加速能力,会不经济的。

因此必须使电机惯量与进给负载惯量有个合理的匹配。

通常在电机惯量J M 与负载惯量J L (折算至电动机轴)或总惯量J r 之间,推荐下列匹配关系:
14
1≤≤J
J M L 或 8.05.0≤≤J
J r M
或 5.02.0≤≤J
J r
L
1. 回转的惯量:
回转体:L g J D
4
32⨯=
πγ
(kg.m 2

γ
----回转体材料的密度 D-----回转体直径 L-----回转体长度 g-----重力加速度
有台阶的回转体,按每段计算后相加 ......)(3224
1141++=
L D L D g
J πγ
2. 直线运动物体的惯量
⎪⎭


⎛=
π
22
L g W J
W-------直线运动物体的重力
L------电机转一圈时物体移动的距离,如电机与丝杠直联,h sp L 丝杠导程= 推倒过程:根据能量守恒定律
ω222
1)(21J v m m W T T W +=+ 丝杠转一圈时:
⎪⎭


⎛∆∆+=+t
J t
h m m T W T
W sp π22
2
21
2)(21
于是得:

⎪⎭

⎝⎛+=+π22
)(h m m J
sp T
W
T
W
齿轮传动惯量转换:
n J n J 2
2
22112121=
J i J 221=
负载折算到电机轴上的转动惯量:
)(2
J J J J i J G W T sp C G ext +++=+
J C -----丝杠上联轴器的转动惯量
J sp
-----丝杠转动惯量
J T
W +-----工作台和工件折算到丝杠上的转动惯量 J G
------齿轮减速机构的转动惯量 i G
-------齿轮减速器传动比
电机轴上的驱动系统总惯量:
J J
J
M L
gen
+=
(3)定位加速时的最大转距计算 定位加速时最大转距M:
M J J t n L
L M a m
M +
+=)(602π n m
----快速移动时的电机转速 t a -----加速减速时间,按K t s a
/3≈,取150~200ms
K s
---系统的开环增益,通常8s
1
-~25s 1
-,加工中心一般取s K s 1
20-=左
右;
J M ---电机惯量,可从样本查得;
J L ----负载惯量 M L
---负载转距
若是M 小于伺服电机的最大转距M max ,则电机能以所取的时间常数进行加速和减速。

相关文档
最新文档