有色金属光谱分析方法【精品PPT】共17页

合集下载

有色金属材料的光谱仪检测分析

有色金属材料的光谱仪检测分析

有色金属材料的光谱仪检测分析【摘要】:为了准确分析有色金属材料的性能,明确有色金属材料存在的问题,必须对有色金属材料的检测方法进行科学合理的选择。

而在有色金属材料检测方法的帮助下,有色金属材料在工业生产中的实际应用价值将得到真正发挥。

作为有色金属材料较为常见的检测方法之一,光谱仪检测的应用已相对成熟。

基于此,文章详细探讨了有色金属材料光谱仪检测的具体流程以及其注意事项,以期为相关单位提供参考。

关键词:红色金属材料;光谱仪检测;检测分析引言随着社会经济的不断发展,工业生产水平进一步提升,工业生产对有色金属的需求也更加迫切。

而现阶段,我国在进行有色金属材料检测时,最为主流的检测方法为重量分析法,而光谱检测法则是当前市面上较为普遍和常见的检测方式之一,该方法能较为准确的分析出有色金属材料的基本性能。

在光谱仪检测分析方法的帮助下,检测人员能进一步明确有色金属材料的化学成分构成,进而将其合理应用到工业生产活动中。

因此,对有色金属材料的光谱仪检测法进行全面分析,也具有极强的现实和理论意义1.光谱仪检测的具体流程1.1做好光谱仪的预定设置在正式进行有色金属材料检测分析之前,操作人员需做好前期的光谱仪设置准备。

以ARC-MET930型号的光谱仪为例,在使用该型号光谱仪进行有色金属材料检测时,检测人员首先要对仪器进行相应调节,在实践过程中需打开光谱仪的控制面板,并点击设置选项,明确所检测的有色金属材料的具体颜色,颜色设定结束之后,需打开用户设置界面,并根据环境数据有效设定环境指标。

而系统设置完成后,光谱仪会依据实际的数据情况完成预估,并根据运算获取相应结果。

在此期间还要落实输入和输出的指标设置,并通过光标确认打印机,选择设置选项,确保无误后对其进行保存并退出。

接下来便可对有色金属材料检测时间进行合理设置,所有设置内容结束之后,便可选择 Probe model按钮,科学选择光谱仪的分析模式。

而在进行中听什么指示,相关人员必须根据实际情况完善仪器设置,防止因设置问题所导致的分析结果不准确。

有色金属光谱分析方法

有色金属光谱分析方法

• 摄谱仪:中型水晶棱镜摄谱仪,三透镜照明系统,附三阶梯减
光板.
• 光源:WPF-2型交流电弧发生器.
• 电极:光谱纯石墨电极,上电极加工成圆锥体,顶端截面直径
3毫米;下电极小孔孔径3毫米,深4毫米,壁厚0.8毫米.
• 曝光时间:不预烧,曝光90秒. • 感光板:紫外Ⅱ型. • 显影:显影液按感光板配方,200C,4分钟.
1.元素的特征谱线:每种元素的原子只能发射某些具有 一定波长的光谱线,这些光谱线叫做这种元素的特征谱线. . 2 . 亮线和吸收光谱中的暗线是明线光谱和吸收光 谱都属于特征谱线,同种元素的明线光谱中一一对应.
3.光谱分析:利用原子的特征谱线来鉴别物质和 确定 物质的化学组成的方法叫做光谱分析.
4.特点:非常灵敏而且迅速.
镍合金的光谱分析 (合金)
• 氧气暗箱摄入法:将样品在钢制压模内压成团块,在氧气

暗箱中通入样氧气的条件下,边氧化边摄谱. 标样的熔制:在真空中频电炉中熔化,真空度为10-2毫米 水银柱,坩埚用镁砂炉衬. 将金属镍铜铁及金属总量的0.04%的木炭及语录中熔化。 金属熔化后什温至15500C,在撤除真空的同时,将氩气充 满炉体,加入锌,铋,锑,砷,和镁德镍二元合金及金属 铅,锡,锰及纯硅等,依靠炉内电磁力搅拌并摇动炉体搅 拌三分钟,最后加入同镉二元合金。待一分钟后,在炉内 浇铸成块,浇铸温度1520~15600C。已煤油:烟灰=7:1 为模子,模温100~1500C. 用专用钻头,将试样去皮,钻取厚度为0.2~0.3毫米的小 片屑,称取0.5克,放到钢制压模内以200~300 公斤/厘米2的压力压成团块.
5、光谱分析的应用:发现新元素和研究天体化学
组成。
一、各种光谱的特点及成因:

光谱分析法概论定稿资料课件

光谱分析法概论定稿资料课件
光谱分析法的原理是建立在物质与电磁辐射相互作用的物理基础上的。当物质受到电磁辐射的激发时,会产生一 系列的光谱,如吸收光谱、发射光谱和散射光谱等。这些光谱的波长、强度和形状等特征与物质的结构和组成密 切相关。通过测量这些光谱的特征参数,可以推断出物质的成分和性质等信息。
光谱分析法的应用领域
• 总结词:光谱分析法的应用领域广泛,包括化学、物理、地质、环境科学、医学和生物学等领域,可用于研究 物质的组成、结构和性质等。
光谱分析法分类
原子光谱法
原子吸收光谱法(AAS)
利用原子吸收特定波长的光辐射,测量吸收线位置和强度,确定 元素种类和浓度。
原子发射光谱法(AES)
通过测量原子发射的特定波长的光辐射,确定元素种类和浓度。
原子荧光光谱法(AFS)
利用原子吸收特定波长的光辐射后,通过测量荧光辐射的波长和强 度,确定元素种类和浓度。
结合光学显微镜技术,实现对微观结 构和成分的高分辨率光谱分析。
人工智能与机器学习
利用人工智能和机器学习技术,实现 光谱数据的自动解析和模式识别。
提高光谱分析的精度和灵敏度
高精度光谱仪器的研制
研发更高精度的光谱仪器,提高光谱分析的分辨率和准确性。
化学计量学方法
利用化学计量学方法,优化光谱数据处理和分析过程,提高光谱分 析的灵敏度和可靠性。
品的完整性。
多元素同时分析
光谱分析法可以同时检测样品 中的多种元素,提高分析效率。
应用广泛
光谱分析法可以应用于各种领 域,如化学、生物学、医学、
环境监测等。
缺点
样品准备要求高
光谱分析法对样品的准备要求 较高,需要将样品进行均匀混
合、研磨等处理。
仪器成本高
光谱分析法需要使用高精度的 仪器,因此仪器成本较高。

有色金属材料的光谱仪检测分析

有色金属材料的光谱仪检测分析

有色金属材料的光谱仪检测分析作者:姜岩来源:《科学与财富》2017年第33期摘要:光谱仪检测分析的方法能够将有色金属材料的性能更加完美地显示出来,并且能够发现有色金属材料中存在的一些缺陷,可以据此来改进有色金属材料的不足,为实际的生产应用做出贡献。

因此,本研究对有色金属的光谱仪检测分析方法做出了详细的介绍,从检测有色金属前的一系列准备工作开始,到具体的检测过程、检测结果分析最后介绍了在进行有色金属光谱检测时的注意事项,分析了有色金属的光谱仪检测法的效率,保证该方法在应用的实践过程中能够更好地发挥作用。

关键词:有色金属材料;光谱仪检测;分析方法前言:有色金属的检测方法有很多种,所依据的各种物理化学性质也各有不同,普通的光学分析有时很难区分出类似的有色金属,所以更加细致的分析方法有滴定分析法、重量分析法、光谱仪检测分析法、分光光度法等,根据以上这些方法对有色金属进行分析,能够更加准确地分析出有色金属的物质组成。

本研究主要介绍的是光谱仪检测分析法,使用的光谱仪是进口光谱仪ARC-ME930检测铜合金这一型号,监测的有色金属样品是铜合金。

1.光谱仪检测法分析前的各项准备1.1打开光谱仪及其准备工作在打开光谱仪之前,要确保仪器连接的电压是否符合仪器的需要,光谱仪的额定电压为220V,因此,连接的电压不能超过220V,否则会将仪器烧毁。

另外要注意的是,打开光谱仪之前,要保证氩气瓶的状态是打开中的状态,进行检测分析工作时,铜合金的气流要符合实际需要,采用低气流。

在使用氩气时,要控制氩气的气流量,使气体的流速在0.8左右,在这一流速下,对铜合金的分析更加容易进行。

除此之外,光谱仪开机前还要对水泵的运行情况进行检测,确保水泵不存在任何故障,能够正常运转。

之后可以打开光谱仪,在进行检测之前,要使其预热15分钟左右,当检测区的温度达到稳定以后,方能进行检测。

1.2样品的准备工作在确保了光谱仪的状态良好,能够进行检测之后,可以进行样品的准备工作。

有色金属光谱分析方法

有色金属光谱分析方法
5、光谱分析的应用:发现新元素和研究天体化学
组成。
一、各种光谱的特点及成因:
发 射 光 定义:由发光体直接产生的光谱 产生条件:炽热的固体、液体和高压气体发 谱 连续光谱 光形成的 光谱的形式:连续分布,一切波长的光都有 线状光谱 产生条件:稀薄气体发光形成的光谱 (原子光谱) 光谱形式:一些不连续的明线组成,不同 元素的明线光谱不同(又叫特征光谱)
纯铅中微量杂质元素的分析(纯金属) 纯铅中微量杂质元素的分析(纯金属)
• 硫酸铅粉全燃烧法 • 将金属铅转化为硫酸铅,然后再测定铅中铜. 将金属铅转化为硫酸铅,然后再测定铅中铜.铁. • •
锡.钙.镁等杂质元素,测定的灵敏度可达10-3%. 镁等杂质元素,测定的灵敏度可达10 试样的配置:金属铅先用1:3的硝酸溶解掉表面污 试样的配置:金属铅先用1:3的硝酸溶解掉表面污 物,洗净后,用1:3的硝酸在电炉上加热,加硫酸沉淀, 洗净后, 1:3的硝酸在电炉上加热,加硫酸沉淀, 过虑,烘干作为基体,加入杂质元素的氧化物混合. 过虑,烘干作为基体,加入杂质元素的氧化物混合. 试样的处理:取试样1克于烧杯中, 1:3的硝酸溶解, 试样的处理:取试样1克于烧杯中,加1:3的硝酸溶解, 再加1:1的硫酸至沉淀为止.加热至白烟冒尽, 再加1:1的硫酸至沉淀为止.加热至白烟冒尽,将干 涸物在600 的高温炉中则加热30分钟,冷后按1:1 涸物在6000C的高温炉中则加热30分钟,冷后按1:1 与炭粉混合,研磨均匀. 与炭粉混合,研磨均匀.
金属熔化后什温至金属熔化后什温至1550155000cc在撤除真空的同时将氩气充在撤除真空的同时将氩气充满炉体加入锌铋锑砷和镁德镍二元合金及金属满炉体加入锌铋锑砷和镁德镍二元合金及金属铅锡锰及纯硅等依靠炉内电磁力搅拌并摇动炉体搅铅锡锰及纯硅等依靠炉内电磁力搅拌并摇动炉体搅拌三分钟最后加入同镉二元合金

《光谱学分析方法》PPT课件

《光谱学分析方法》PPT课件
根据磷光强度进行分析的方法成为磷
光分析法。它主要用于环境分析、药物研究 等方面的有机化合物的测定。
❖7. 化学发光分析法
由化学反应 提供足够的能量,使其中一
种反应的分子的电子被激发,形成激发态分 子。激发态分子跃回基态时,就发出一定波 长的光。其发光强度随时间变化,并可得到 较强的发光(峰值)。
分子光谱法是由 分子中电子能 级、振动和转动能级 的变化产生的, 表现形式为带光谱。
属于这类分析方法的有紫外-可 见分光光度法(UV-Vis),红外光 谱法(IR),分子荧光光谱法(MFS) 和分子磷光光谱法(MPS)等。
非光谱法是基于物质与辐射相互作用 时,测量辐射的某些性质,如折射、散射、 干涉、衍射、偏振等变化的分析方法。
❖3. 原子发射光谱分析法
用火焰、电弧、等离子炬等作为激
发源,使气态原子或离子的外层电子 受
激发发射特征光学光谱,利用这种光谱 进行分析的方法叫做原子发射光谱分析 法。波长范围在190 - 900nm,可用于定 性和定量分析。
❖ 4. 原子荧光分析法
气态自由原子吸收特征波长的辐射后,
原子的外层电子从基态或低能态跃迁到较高
移项得:
d /d = dn /d • 2 sin ( /2) / {1- n2sin2 ( /2)}1/2
M* M + hv
通过测量物质的发射光谱的波长和强 度来进行定性和定量分析的方法叫做发射 光谱分析法。
发射光谱的类型:
1.线光谱 当辐射物质是单个的气态原子时,产
生紫外、可见光区的线光谱。 通过内层电子的跃迁可以产生X射线线
光谱。
2.带光谱 带光谱是由许多量子化的振动能级叠加
在分子的基态电子能级上而形成的。 3.连续光谱

光谱分析技术(好资料)PPT课件

光谱分析技术(好资料)PPT课件

朗伯-比尔定律——定量分析的基础
当强度为I0的一定波长的单色入射 光束通过装有均匀待测物的溶液介质
时,该光束将被部分吸收Ia,部分反 射Ir ,余下的则通过待测物的溶液It ,
即有:
I0=Ia + It + Ir
ppt精选版
26
朗伯-比尔定律
如果吸收介质是溶液(测定中一般 是溶液),式中反射光强度主要与器 皿的性质及溶液的性质有关,在相同 的测定条件下,这些因素是固定不变 的,并且反射光强度一般很小。所以 可忽略不记,这样:
类 脂 H 3C
维生素A
C H 3
C H 3
C H 3 C H 3
番茄红素
326 nm于乙醇
C H 3
H 3C H 3C
C H 3
C H 3
番茄红素在溶剂正己烷中的谱图
番茄红素在溶剂石油醚中的谱图
ppt精选版
41
生物分子的紫外-可见吸收光谱
蛋白质
Proteins in solution absorb ultraviolet light with
摩尔吸光系数: 当溶液浓度c的单位为mol/L,液层厚度b
的单位为cm时,K叫“摩尔吸光系数”, 用ε表示,其单位为L·mol-1·cm-1
ε= aMppt精选版 (M为吸光物质的分子量) 31
紫外-可见分光光度计
工作原理基仪器结构框图

光源


单色器
氘 灯光
电 倍 增 管
光源 单色器
参比池 样品池
I0=Ia+ It
ppt精选版
27
朗伯-比尔定律
透光率——透光率表示透过光强度 与入射光强度的比值,用T来表示,计 算式为:T = It/I0

金属材料常用分析方法课件

金属材料常用分析方法课件
详细描述
冲击试验是通过在试样上施加冲击载荷,观察其断裂时的吸收能量和断裂口形貌来评估金属材料的冲击韧性。该方法对于评估金属材料在承受冲击载荷时的安全性和可靠性具有重要意义。
金属材料分析方法应用实例
总结词:钢铁材料的化学分析是确定其化学成分的有效手段。详细描述:通过化学分析,可以精确测定钢铁材料中的碳、硫、磷、硅、锰等元素含量,从而评估其机械性能和加工性能。总结词:钢铁材料的化学分析通常采用光谱分析法、质谱分析法和色谱分析法等。详细描述:光谱分析法利用光谱学的原理,通过测定材料对不同波长光的吸收和发射特性,确定其化学成分;质谱分析法利用质谱仪测定材料中元素的离子流强度,从而确定其含量;色谱分析法则利用不同物质在色谱柱上的吸附或溶解性能差异,分离和测定材料中的化合物。
利用物理原理和性质对金属材料进行分析的方法。
总结词
利用X射线在晶体中的衍射现象,分析金属材料的晶体结构和相组成。
X射线衍射法
通过电子显微镜观察金属材料的微观形貌、晶体结构和缺陷等。
电子显微镜法
通过测量金属材料在不同温度下的物理性质变化,研究其热稳定性和热物性参数。
热分析技术
对金属材料进行力学性能测试,评估其机械性能的方法。
详细描述
总结词
质谱分析法是一种通过测量物质粒子的质量来分析物质组成的方法。
详细描述
质谱分析法通过离子化样品中的粒子,然后测量这些粒子的质量,从而确定其组成。该方法具有高灵敏度、高分辨率和高准确性等优点,广泛应用于化学、生物、医学等领域。
物理分析法
VS
利用原子光谱的特性和变化规律,分析金属材料的元素组成和含量。
详细描述
滴定分析法基于化学反应的定量关系,通过滴定实验中加入的滴定剂与被测组分之间的化学反应,测定出被测组分的含量。该方法具有操作简便、准确度高、适用范围广等优点,是化学分析中常用的一种方法。

光谱分析ppt

光谱分析ppt

第二节 紫外-可见分光光度计
➢ 分光光度计:能从含有各种波长的混合光中将每 一单色光分离出来并测量其强度的仪器。
分析精密度高 测量范围广 分析速度快 样品用量少
➢根据使用的波长范围不同分为紫外光区、可见光区、 红外光区以及万用(全波段)分光光度计等。
10-2 nm 10 nm 102 nm 104 nm 0.1 cm 10cm 103 cm 105 cm
☺ 发射光谱分析方法就是根 据每种元素特有的线光谱 来识别或检查各种元素。
线状光谱 由原子或 离子被激 发而发射
发 射 光 谱
带状光谱 由分子被 激发而发

连续光谱 由炙热的 固体或液 体所发射
二、光谱分析技术的分类
分子光谱 光谱技术
原子光谱
分子吸收法: 可见与紫外分光光度法、红外光谱法 分子发射法: 分子荧光光度法 原子吸收法:原子吸收法 原子发射法:发射光谱分析法、原子荧光法等
(五)其它因素的影响
吸光度读数刻度误差、仪器安装环境(如振动、温度 变化)、化学因素(如荧光、溶剂效应等)等也可影 响捡测结果的准确度。
三、紫外-可见分光光度计的类型
☺ 按其光学系统分可分为 单波长分光光度计 单光束单波长分光光度计 双光束单波长分光光度计 双波长分光光度计
➢ 单波长单光束分光光度计特点
①单光束光路,从光源到试样至接收器只有一个光通道; ②仪器只有一个色散元件,工作波长范围较窄; ③通常采用直接接收放大显示的简单电子系统,用电表或 数字显示; ④结构简单、附件少、功能范围小,不能做特殊试样如浑 浊样品、不透明样品等的测定。
检测准确性不够稳定,不能用于精密分析。
单波长单光束分光光度计
光深入到物体内部,将物体内部原子中的一部分束缚电 子激发成自由电子,但这些电子并不逸出物体,而是留 在物体内部从而使物体导电性增强,称为内光电效应。 利用内光电效应可制成光敏电阻、光敏二极管以及光电 池。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档