2015年中考数学复习培优第2讲
2015年中考数学复习培优第5讲
2015年中考数学复习培优第五讲:相似三角形一、相似三角形知识点总结1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质:①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c d d =⇒=③等比性质:……≠……a b c d m n b d n a c m b d n ab ===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EF DF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
4. 相似三角形的判定:①两角对应相等,两个三角形相似;②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似;④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 5. 相似三角形的性质①相似三角形的对应角相等;②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比; ⑤相似三角形面积的比等于相似比的平方6.相似基本图形:平行,不平行;变换对应关系作出正确的分类:(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。
2015年中考数学复习培优第1讲
2015年中考数学复习培优第一讲:一元二次方程及应用【知识回顾】1.灵活运用四种解法解一元二次方程:一元二次方程的一般形式:20(0)ax bx c a ++=≠四种解法:直接开平方法,配方法,公式法, 因式分解法,公式法:12,x x = (24b ac -≥0)注意:(1)一定要注意0a ≠,填空题和选择题中很多情况下是在此处设陷进;(2)掌握一元二次方程求根公式的推导;(3)主要数学方法有:配方法,换元法,“消元”与“降次”.2.根的判别式及应用(24b ac ∆=-):(1)一元二次方程20(0)ax bx c a ++=≠根的情况:①当0∆>时,方程有两个不相等的实数根;②当0∆=时,方程有两个相等的实数根;③当0∆<时,方程无实数根.(2)判定一元二次方程根的情况;(3)确定字母的值或取值范围。
3.根与系数的关系(韦达定理)的应用:韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12bx x a +=-,12cx x a ⋅=适用题型:(1)已知一根求另一根及未知系数; (2)求与方程的根有关的代数式的值;(3)已知两根求作方程; (4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)222121212()2x x x x x x +=+-⋅(2)22121212()()4x x x x x x -=+-⋅;12x x -= (3)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩; ②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则1200x x ∆>⎧⎨⋅<⎩;④方程一根大于1,另一根小于 ,则120(1)(1)0x x ∆>⎧⎨--<⎩(4)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。
2015年北京市中考数学复习试题第二讲
2015年北京市中考数学复习试题第二讲【知识提要】平移、旋转、轴对称合称图形变换。
【作用】添加辅助线。
课堂讲解一、平移性质——平移前后图形全等,对应点连线平行且相等。
1、直线的平移1、如图,直线43y x =与双曲线k y x =(0x >)交于点A .将直线43y x =向右平移92个单位后,与双曲线k y x =(0x >)交于点B ,与x 轴交于点C ,若2=BC AO ,则k = .2、某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中AB =2米,BC =1米;上部CDG 是等边三角形,固定点E 为AB 的中点.△EMN 是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆.(1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积;(2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数; (3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.提示:第(2)问,按MN 分别在三角形、矩形区域内滑动分类讨论;第(3)问,对(2)问中两种情况分别求最值,再比较得最值。
O xyABC EA B GN D MC(第3题图)AE D Q P B FC3、如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题:(1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.提示:第(2)问,t=5时,点P 、Q 相遇;若没有05t <<,则按P 、Q 相遇时间分段分类,分别画出图形,再根据图形性质写出面积函数关系式,此时,第(3)问要对第(2)问中分类情形,分别解方程求解。
最新2015年 《南方新中考》 数学 第二部分 专题七 函数与图象[配套课件]
图 Z7-1
中考考前冲刺 南方新中考
解析:设点 B 的坐标为 B(x0,y0),
则 x0=OC+DB,y0=AC-AD=OC-DB.
于是,k=x0· y0=(OC+DB)· (OC-DB)
1 2 1 2 =OC -DB =2OA -2AB =6.
2 2
答案:6 名师点评:本题是反比例函数与等腰直角三角形综合题. 解题时,利用了函数图象上点的坐标特征,结合等腰直角三角 形的性质,勾股定理,反比例函数的几何含义,平方差等知识
图 Z7-4
中考考前冲刺 南方新中考
解:(1)∵以E(3,0)为圆心,以5 为半径的⊙E 与x 轴交于A,
B 两点,∴A(-2,0),B(8,0).
如图 Z7-5,连接 CE. 在 Rt△OCE 中,OE=3,CE=5,
(3)已知 M 为抛物线上一动点(不与 C 点重合),试探究:
①使得以 A,B,M 为顶点的三角形面积与△ABC 的面积 相等,求所有符合条件的点 M 的坐标;
中考考前冲刺 南方新中考
②若探究①中的点 M 位于第四象限,连接点 M 与抛物线
顶点 F,试判断直线 MF 与⊙E 的位置关系,并说明理由.
函数与图象常用的数学思想有数形结合思想、分类讨论思 想、函数与方程思想等.中考时常见的题型有图象信息题、代 数几何综合题、函数探索开放题、函数创新应用题等.应用以 上数学思想解决函数问题的题目是中考压轴题的首选.
中考考前冲刺 南方新中考
图象信息题 例 1:(2014 年山东济南)如图 Z7-1,△OAC 和△BAD 都是 k 等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在 x 第一象限的图象经过点 B,若 OA2 - AB2 = 12 , 则 k 的 值 为 ________.
中考数学专题复习 第五章 方程与不等式 第2讲 不等式(组)课件
变式运用►3.[2017·常州中考]某校计划购买一批篮球和足球(zúqiú) ,已知购买2个篮球和1个足球(zúqiú)共需320元,购买3个篮球和2个 足球(zúqiú)共需540元.
(1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么 最多可购买多少个足球?
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲,乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多 少万件?
【思路分析】(1)可设甲种商品的销售单价(dānjià)为x元,乙种商品 的销售单价(dānjià)为y元,根据等量关系:①2件甲种商品与3件乙种 商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多 1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲 、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
2021/12/9
第十九页,共二十四页。
4.[2012·泰安,6,3分]将不等式组
的解集在数轴上表示(biǎoshì)出来,正确的是( C )
得分(dé fēn)要领►求不等式组的解集要遵循以下原则:同大取大, 同小取小,小大大小中间找,大大小小解不了.
2021/12/9
第二十页,共二十四页。
命题点2 确定不等式组中字母(zìmǔ)的取值范围
2021/12/9
第十一页,共二十四页。
类型(lèixíng)3 不等式的应用
【例3】[2017·宁波中考]2017年5月14日至15日,“一带一路”国际合作 (hézuò)高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作 (hézuò)协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国 家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比 2件乙种商品的销售收入多1500元.
2015年河北省地区中考数学总复习课件 第2讲 整式及其运算
1.(1)(2014· 威海)下列运算正确的是(
2 2
C )
1 2 3 1 6 3 A.2x ÷x = 2x B.(- a b) =- a b 2 6 C. 3x2+ 2x2=5x2 D .(x- 3)3=x3-9 1 (2)化简 (-4x+8) -3(4- 5x), 可得下列哪一个结果( 4 D )
6.整式乘法 单项式与单项式相乘,把系数、同底数幂分别相乘作为积的因式,只 在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式:m(a+b)=__ma+mb__; 多项式乘多项式:(a+b)(c+d)=__ac+ad+bc+bd__. 7.乘法公式 (1)平方差公式:__(a+b)(a-b)=a2-b2__; (2)完全平方公式:__(a±b)2=a2±2ab+b2__. 8.整式除法: 单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式, 对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多 项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后 把所得的商相加.
5.幂的运算法则 (1)同底数幂相乘: + __am· an= am n( m, n 都是整数, a≠0)__; (2)幂的乘方: __(am)n=amn( m, n 都是整数, a≠0)__; (3)积的乘方: __(ab)n= an·bn(n 是整数 ,a≠0,b≠0)__; (4)同底数幂相除: - __am÷ an= am n( m, n 都是整数, a≠0)__.
1 n- 2m 4 2.(1)(2012· 毕节)已知 x y 与-x3y2n 是同类项, 则(mn)2010 2 的值为( C ) A.2010 B .- 2010 C. 1 D.-1
n-=3, 解析:由题意得 2n=4,
2015年中考数学复习培优第3讲
2、已知二次函数 y=x2﹣2mx+m2+3(m 是常数) . (1)求证:不论 m 为何值,该函数的图象与 x 轴没有公共点; (2)把该函数的图象沿 y 轴向下平移多少个单位长度后,得到的函数的图象与 x 轴只有一个公共点?
3、阅读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标
2
论:
,
. (对称轴方程,图象与 x 正半轴、y 轴交点坐标例外)
2
3、 从地面垂直向上抛出一小球, 小球的高度 h (米) 与小球运动时间 (秒) t 的函数关系式是 h 9.8t 4.9t , 那么小球运动中的最大高度为米. 4、如图,两条抛物线 y1
1 2 1 x 1 、 y 2 x 2 1 与分别经过点 2,0 , 2,0 且平行于 y 轴的 2 2
2 也将发生变化.例如:由抛物线 y x 2mx m 2m 1 ①,有 y= ( x m) 2m 1②,所以抛物
2
2
③ x m 线的顶点坐标为(m,2m-1) ,即 当 m 的值变化时,x、y 的值随之变化,因而 y 值也随 x y 2m 1 ④
2015 年中考复习培优系列
2015 年中考数学复习培优第三讲:一元二次方程与二次函数
一、选择题 1、下列哪一个函数,其图形与 x 轴有两个交点( )
A.y=17(x83)22274B.y=17(x83)22274 C.y= 17(x83)22274D.y= 17(x83)22274。 2、 (2012 年台州市)已知二次函数 y ax2 bx c 的 y 与 x 的部分对应值如下表:
金额 w(元) 批发单价(元)
80 5 4
2015年中考数学总复习解题指导课件含2概率共118张PPT73
图
第29讲┃数据的收集与整理
经典示例
例 3 [2014·莱芜] 在某市开展的“读中华经典,做书香少
年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学
生进行随机抽样调查.如图 29-2 是根据调查结果绘制成的统计图
(不完整),请你根据图中提供的信息解答下列问题:
第29讲┃数据的收集与整理
【教你读题】 1.初步读题 知道本题是统计类的问题,培养解题时的模型意识. 2.再读题 ①明确调查对象:某市初二学生日人均阅读时间; ②明确调查方式:抽样调查; ③从统计图中读信息时通常需要关注统计图的名称、文 字标注(轴标注和项目标注)、有关数据等; ④明确问题(增强解题时的目标意识).
第29讲┃数据的收集与整理
7.[2014·岳阳] 为了响应岳阳市政府“低碳交通,绿色出行” 的号召,某中学数学兴趣小组在全校 2000 名学生中就上学方式随机抽
取了 400 名学生进行抽样调查,经统计整理绘制出图(a)、图(b)两幅
不完整的统计图: A:步行; B:骑自行车; C:乘公共交通工具; D:乘私家车; E:其他.
数的加权平均数,其中f1,f2,…,fk叫做各数据的权
第30讲┃数据分析
中位 数
将一组数据按照大小顺序排列后位于正中间的一个数据(当数据的个 数是奇数时)或正中间两个数据的平均数(当数据的个数是偶数时)叫 做这组数据的中位数
众数 一组数据中出现次数___最__多_______的数据叫做这组数据的众数
第29讲┃数据的收集与整理
核心练习
3.为了了解某校九年级 400 名学生的身高情况,从中抽取了 50
名学生的身高进行统计分析,在这个问题中,样本是指( D )
2015年中考数学总复习解题指导课件含2几何共210张PPT77
∴∠BOM=180°-∠AOM=180°-38°=142°.故选 C.
第15讲┃图形的初步认识
5.[2014·邵阳] 已知∠α=13°,则∠α的余角的大 小是___7_7_°___.
6.若∠α的补角为76°28′,则∠α=__1_0_3_°__3_2.′
第15讲┃图形的初步认识
核心考点二 相交线
第15讲┃图形的初步认识
图15-7 第15讲┃图形的初步认识平面内,过一点有且只有一条直线垂直于已知直
垂直的 基本性
质
线. (2)在连接直线外一点与直线上各点的线段中,___垂_线__段__最 短
直线外一点到这条直线的__垂__线_段___的长度叫做点到直线的
距离
线段的 垂直平
第15讲┃图形的初步认识
4.角的平分线
(1)如图 15-2,若 OC 是∠AOB 的平分线,则__∠__A_O_C__= __∠__B_O_C__=12∠AOB.
图 15-2 第15讲┃图形的初步认识
(2) 定 理 : 角 平 分 线 上 的 点 到 这 个 角 两 边 的 距 离 __相__等____.
第15讲┃图形的初步认识
[解析] ∵OB 是∠AOC 的平分线, ∴∠BOC=∠AOB. 又∵∠AOB=40°, ∴∠BOC=40°. ∵∠COE=60°,OD 是∠COE 的平分线, ∴∠COD=30°, ∴∠BOD=40°+30°=70°.
第15讲┃图形的初步认识
核心练习
1.经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且
图 15-9
A.对顶角 B.同位角 C.内错角 D.同旁内角 第15讲┃图形的初步认识
9.[2014·厦门] 已知直线 AB,CB,l 在同一平面内,若 AB⊥l,
【南方新中考】(南粤专用)2015中考数学+第一部分+第五章+第2讲+图形的相似复习课件
)
图 5-2-9
1 A.6
1 B.3
1 C.2
2 D.3
解析:∵O′是正方形 ABCD 的对角线 AC 的中点,AC= 3 2,∴A(0,3),O′(1.5,1.5). 2 ∵A′(1,2),∴O′A= 2 ,AA′= 2,O′A′= 2 . O′A′ 1 ∴k= =3.故选 B. O′A
答案:B
∴∠DAC =∠ECA.∴CE∥AD.
(3)∵CE∥AD,∴∠DAF =∠ECF,∠ADF =∠CEF.
AD AF ∴△AFD∽△CFE.∴ = . CE CF
1 ∵CE=2AB=3,AD=4, 4 AF AF 4 AC 7 得3=CF.∴AC=7.∴AF =4.
名师点评:(1)相似的判定方法可类比全等三角形的判定方
=36°,AB=AC,当点 P 在 AC 的垂直平分线上时,过点 P 的
△ABC 的相似线最多有______ 3 条.
图 5-2-2
4.高 6 m 的旗杆在水平地面上的影子长为 4 m,同一时刻 30 附近有一建筑物的影子长为 20 m,则该建筑物的高为______m. 5.在△ABC 中,D,E 分别是边AB 与AC 的中点,BC=4, 下列四个结论:①DE=2;②△ADE∽△ABC;③△ADE 的面 积与△ABC 的面积之比为 1∶4;④△ADE 的周长与△ABC 的
法,找对应边(角)时应遵循一定的对应原则,如长(大)对长(大),
短(小)对短(小),或找相等的角(边)帮助确定. (2)证明等积式的方法是:先把等积式化成等比式,再利用 对应线段找相似三角形,应用相似三角形的对应边成比例;若 边不全在两个三角形中,则要通过线段相等转化,达到证明线 段成比例的目的.
相似三角形的性质及综合应用
中考数学 第一部分 数代数 第三章 第2讲 一次函数检测复习
第2讲一次函数1.(2013年广东广州)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是____________.2.(2013年广东珠海)已知函数y=3x的图象经过点A(-1,y1),B(-2,y2),则y1______y2(填“>”“<”或“=”).3.(2014年广东深圳)已知函数y=ax+b经过点(1,3),(0,-2),求a-b=( ) A.-1 B.-3 C.3 D.74.(2014年广东广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0 B.y1+y2<0 C.y1-y2>0 D.y1-y2<05.(2013年广东湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图325是他们离家的路程y(单位:千米)与小明离家时间x(单位:时)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD 所在直线的函数解析式.图325A级基础题1.(2013年江苏徐州)下列函数中,y随x的增大而减小的函数是( )A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x2.(2014年陕西)若点A(-2,m)在正比例函数y=-12x的图象上,则m的值是( )A.14B.-14C.1 D.-13.一次函数y=2x+3的图象交y轴于点A,则点A的坐标为( )A.(0,3) B.(3,0) C.(1,5) D.(-1.5,0)4.(2014年广西南宁)“黄金1号”玉米种子的价格为5元/千克,如果一次购买种子2千克以上,超过2千克部分的种子的价格打6折,设购买种子数量为x千克,付款金额为y 元,则y与x的函数关系的图象大致是( )A B C D5.(2013年湖南益阳)已知一次函数y =x -2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的是( )A B C D6.(2013年广东深圳育才二中一模)若一次函数y =kx +b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <07.(2014年昆明市)如图326是反比例函数y =k x(k 为常数,k ≠0)的图象,则一次函数y =kx -k 的图象大致是( )图326A B C D8.(2014年湖南张家界)已知一次函数y =(1-m )x +m -2,当m ________时,y 随x 的增大而增大.9.(2014年广州模拟)已知一次函数y =kx -4,当x =2时,y =-3. (1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x 轴交点的坐标.10.(2013年浙江绍兴)某市出租车计费方法如图327,x (单位:km)表示行驶里程,y (单位:元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x >3时,求y 关于x 的函数关系式; (2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.图327B级中等题11.(2014年湖北武汉)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(单位:米)与时间t(单位:秒)之间的函数关系如图328,则这次越野跑的全程为________米.图328图32912.(2013年福建福州)A,B两点在一次函数图象上的位置如图329,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是( )A.a>0 B.a<0 C.b=0 D.ab<013.(2013年湖南衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,某市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”.分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如图3210所示的折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时,电费是__________元;(2)第二档的用电量范围是__________千瓦时;(3)“基本电价”是__________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?图3210C级拔尖题14.(2014年广东中山君里模拟)若点(a,b)在一次函数y=2x-3图象上,则代数式3b -6a+1的值是______.15.(2013年湖北荆门)为了节约资源,科学指导居民改善居住条件,小王向房管部门(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.第2讲 一次函数【真题·南粤专练】1.m >-2 2.> 3.D 4.C5.解:(1)由图象知,小明1小时骑车20千米,所以小明骑车的速度为:201=20 (千米/时).图象中线段AB 表明小明游玩的时间段,所以小明在南亚所游玩的时间为2-1=1(时).(2)由题意和图象,得小明从南亚所出发到湖光岩门口所用的时间为:15060+2560-2=14(时),所以从南亚所出发到湖光岩门口的路程为20×14=5(千米).于是从家到湖光岩门口的路程为:20+5=25(千米).故妈妈驾车的速度为25÷2560=60(千米/时).设CD 所在直线的函数解析式为y =kx +b ,由题意知,点C ⎝ ⎛⎭⎪⎫94,25,D ⎝ ⎛⎭⎪⎫116,0, 则⎩⎪⎨⎪⎧94k +b =25,116k +b =0.解得 ⎩⎪⎨⎪⎧k =60,b =-110.则CD 所在直线的函数解析式为y =60x -110.【演练·巩固提升】1.C 2.C 3.A 4.B 5.B 6.D 7.B 8.<19.解:(1)由已知,得-3=2k -4,解得k =12.∴一次函数的解析式为y =12x -4.(2)将直线y =12x -4向上平移6个单位后得到的直线是y =12x +2.∵当y =0时,x =-4,∴平移后的图象与x 轴交点的坐标是(-4,0).10.解:(1)由图象,得出租车的起步价是8元. 设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b ,12=5k +b .解得⎩⎪⎨⎪⎧k =2,b =2.故y 与x 的函数关系式为y =2x +2.(2)当y =32时,32=2x +2,x =15. 答:这位乘客乘车的里程是15 km.11.2200 解析:根据图象分别设两函数解析式为y 1=k 1x +1400,y 2=k 2x +1600.再由图知,当x =100时,y 1=y 2,当x 1=200,x 2=300时,y 1=y 2.于是,可得到⎩⎪⎨⎪⎧ 100k 1+1400=100 k 2+1600,①200k 1+1400=300 k 2+1600.②从而求出⎩⎪⎨⎪⎧k 1=4,k 2=2,即得到两函数解析式为y 1=4x +1400,y 2=2x +1600.最后,把x =200代入y 1=4x +1400或x =300代入y 2=2x +1600得到答案.12.B13.解:(1)108 (2)180<x ≤450 (3)0.6(4)由图可知,小明家的用电量在450~540千瓦时之间,故设直线BC 的解析式为y =kx +b ,由图象,得⎩⎪⎨⎪⎧364.5=540k +b ,283.5=450k +b .解得⎩⎪⎨⎪⎧k =0.9,b =-121.5.∴y =0.9x -121.5.当y =328.5时,x =500.答:这个月他家用电500千瓦时.14.-8 解析:把(a ,b )代入函数式中,即b =2a -3,则b -2a =-3.∴3b -6a +1=3(b -2a )+1=-8.15.解:(1)由题意,得三口之家的人均住房面积为:1203=40(平方米),三口之家应缴购房款为:0.3×3×30+0.5×3×10=42(万元). (2)由题意,得①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.3×3×30+0.5×3×(x -30)=1.5x -18;③当x >m 时,y =0.3×3×30+0.5×3(m -30)+0.7×3×(x -m )=2.1x -0.6m -18.∴y =⎩⎪⎨⎪⎧0.9x 0≤x ≤30,1.5x -1830<x ≤m ,45≤m ≤60,2.1x -0.6m -18x >m .(3)由题意,得①当50≤m ≤60时,y =1.5×50-18=57(舍);②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m . ∵57<y ≤60,∴57<87-0.6m ≤60.∴45≤m <50. 综上所述,得45≤m <50.。
中考数学 第2讲 实数的运算及大小比较
第2讲实数的运算及大小比较考点1平方根、算术平方根、立方根名称定义性质平方根如果x2=a(a≥0),那么这个数x就叫做a的平方根.记作±a.正数的平方根有两个,它们互为①;③没有平方根;0的平方根是② .算术平方根如果x2=a(x>0),那么这个正数x就叫做a的算术平方根.记作a.0的算术平方根是④ .立方根若x3=a,则x叫做a的立方根,记作3a.正数有一个⑤立方根;0的立方根是0;负数有一个⑥立方根.考点2实数的大小比较代数比较规则正数⑦,负数⑧,正数大于一切负数;两个正数,绝对值大的较大;两个负数,绝对值大的反而⑨ .几何比较规则在数轴上表示的两个数,左边的数总是⑩右边的数.考点3实数的运算内容运算法则加法法则、减法法则、乘法法则、除法法则、乘方与开方等.特别地,a0=⑪ (其中a≠0),a-p=⑫ (其中p为正整数,a≠0).运算律交换律、结合律、分配律.运算性质有理数一切运算性质和运算律都适应于实数运算.运算顺序先算乘方、开方,再算⑬,最后算⑭,有括号的要先算⑮的,若没有括号,在同一级运算中,要从左到右进行运算.1.比较实数的大小可直接利用法则进行比较,还可以采用作差法、倒数法及估算法,也可借助数轴进行比较.2.实数混合运算时,根据每个算式的结构特征,选择适当的方法,灵活运用运算律,就会收到事半功倍的效果.命题点1 平方根、算术平方根、立方根例1 (2014·东营) 81的平方根是( )A.±3B.3C.±9D.9方法归纳:解此类题需要先将原数化简,再根据平方根与算术平方根的概念、关系及符号的表示,并在此基础上正确运算.1.(2014·陕西)4的算术平方根是( )A.-2B.2C.-12D.122.(2013·资阳)16的平方根是( )A.4B.±4C.8D.±83.(2014·威海)若a3=-8,则a的绝对值是( )A.2B.-2C.12D.-124.(2013·宁波)实数-8的立方根是 .5.(2014·河南)计算:327-|-2|= . 命题点2 实数的大小比较例2 (2014·南昌模拟)51212.(填“>”“<”或“=”)方法归纳:比较实数的大小除了基本的“正数负数”原则和方法外,还可采用作差法,倒数法,估算法,也可借助数轴进行比较.1.(2014·菏泽)比-1大的数是( )A.-3B.-109C.0D.-12.(2014·益阳)四个实数-2,0,-2,1中,最大的实数是( )A.-2B.0C.-2D.13.(2015·苏州模拟)如图所示,是数a,b在数轴上的位置,下列判断正确的是( )A.a<0B.a>1C.b<-1D.b>-14.(2014·重庆A卷)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4 ℃、5 ℃、6 ℃、-8 ℃,当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏命题点3 实数的运算例3 (2014·泸州)计算:12-4sin60°+(π+2)0+(12)-2.【思路点拨】先将代数式中的各部分化简,再进行有理数的加减. 【解答】方法归纳:解答本题的关键是掌握零指数幂a0=1(a≠0)、负整数指数幂a-n=1na(a≠0,n是正整数)、算术平方根和乘方的意义.正确运用整数指数幂的运算法则进行计算,不要出现(12)-2= - (12)2这样的错误.1.(2014·荆门)若( )×(-2)=1,则括号内填一个实数应该是( )A.12B.2C.-2D.-122.(2014·菏泽)下列计算中,正确的是( ) A.a 3·a 2=a6B.(π-3.14)0=1 C.(13)-1=-3 D.9=±3 3.(2014·十堰)计算4+(π-2)0-(12)-1= . 4.(2014·重庆A 卷)计算4+(-3)2-2 0140×|-4|+(16)-1.5.(2014·长沙)计算:(-1)2 014+38-(13)-1+2sin45°.1.(2014·江西)下列四个数中,最小的数是( ) A.-12B.0C.-2D.2 2.(2014·枣庄)2的算术平方根是( )A.±2B.2C.±4D.4 3.(2014·潍坊)()321-的立方根是( )A.-1B.0C.1D.±1 4.(2014·德州)下列计算正确的是( )A.(-3)2=-9B.327=3C.-(-2)0=1 D.|-3|= -35.(2014·绍兴)比较-3,1,-2的大小,正确的是( )A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-26.(2014·重庆B 卷)某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是(A ) A.-1℃ B.0℃ C.1℃ D.2℃7.(2014·宁波)杨梅开始采摘了!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A.19.7千克B.19.9千克C.20.1千克D.20.3千克 8.(2013·宜昌)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A.a+b =0B.b <aC.ab >0D.|b|<|a|9.(2014·徐州)点A 、B 、C 在同一条数轴上,其中A 、B 表示的数分别为-3、1.若BC=2,则AC 等于( )A.3B.2C.3或5D.2或610.(2014·梅州)4的平方根是 .11.(2014·陕西)计算(-13)-2= .12.(2014·滨州)计算:-3×2+(-2)2-5= .13.(2014·资阳)计算:38+(2-1)0= .14.(2013·西双版纳)若a=-78,b=-58,则a、b的大小关系是a b(填“>”“<”或“=”).15.(2013·杭州)把7的平方根和立方根按从小到大的顺序排列为 .16.(2014·梅州)计算:(π-1)0+|2-2|-(13)-1+8.17.(2014·南充)计算:(2014-1)0-(3-2)+3tan30°+(13)-1.18.(2014·内江)计算:2tan60°-|3-2|-27+(13)-1.19.(2015·南充模拟)如图一只蚂蚁从A点沿数轴向右直爬2个单位到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+2 014)0的值.20.如图所示,数轴上表示2,5的对应点分别为C、B,点C是AB的中点,则点A表示的数是( )555521.(2013·泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,….解答下列问题:3+32+33+34+…+32 013的末尾数字是( )A.0B.1C.3D.722.(2013·常德)小明在做数学题时,发现下面有趣的结果:3-2=18+7-6-5=415+14+13-12-11-10=924+23+22+21-20-19-18-17=16……根据以上规律可知第100行左起第一个数是 .23.(2013·黄石)在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制0 1 2 3 4 5 6 …二进制0 1 10 11 100 101 110 …请将二进位制10101010(二)写成十进位制数为 .参考答案考点解读①相反数②负数③0 ④0 ⑤正的⑥负的⑦大于⑧小于⑨小⑩小于⑪1 ⑫1pa⑬乘除⑭加减⑮括号内各个击破例1A题组训练 1.B 2.B 3.A 4.-2 5.1例2 >题组训练 1.C 2.D 3.C 4.D例3 原式=23-4×3+1+(2-1)-2=23-23+1+22=1+4=5.题组训练 1.D 2.B 3.14.原式=2+9-1×4+6=13.5.原式=1+2-3+2×22=1.整合集训1.C2.B3.C4.B5.A6.A7.C8.D9.D10.±211.912.-713.314.<15.7377 16.原式22217.原式3+2+3×3333+3=6.18.原式=+3=1.19.(1)∵蚂蚁从点A向右爬2个单位到达点B,∴点B所表示的数比点A所表示的数大2.∵点A表示B所表示的数为m,∴(2)原式020.C 21.C22.10 200提示:第n行第一个数为:(n+1)2-1.23.170提示:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×2=128+32+8+2=170.。
【南方新中考】(南粤专用)2015中考数学+第一部分+第四章+第3讲+第2课时+特殊的平行四边形复习课件
1 1 解析:∵四边形 ABCD 是菱形,∴AO=2AC,BO=2BD, AC⊥BD.∴AO∶BO=AC∶BD=1∶2.∵菱形 ABCD 的周长为 8 5,∴AB=2 5k=2 5.设 AO=k,BO=2k,则 AB= k2+2k2=
5.∴k=2.∴AO=2,BO=4.∴菱形 ABCD 的面积 S=
又∵EF⊥AD,∴平行四边形 AEDF 为菱形.
名师点评:菱形的性质可以用于证明线段相等、角相等、
直线平行、垂直等,常与三角形全等、勾股定理、方程相结合
进行相关问题的计算与证明.
矩形的性质与判定 3.(2014 年福建厦门翔安)如图 4-3-28,在 Rt△ABC 中, ∠C=90°,AC=3,BC=4,P 为 AB 边上(不与 A,B 重合)的
为半径画弧,两弧相交于点 D,连接 DE,DF.
(1)请你判断所画四边形的形状,并说明理由; (2)连接 EF,若 AE=8,∠A=60°,求线段 EF 的长.
图 4-3-25
解:(1) 四边形 AEDF 为菱形. 理由:由尺规作图的过程可知,AE=AF=ED=DF. (2)连接 EF.∵AE=AF,∠A=60°,
A.对角线相等
B.对角线互相平分
C.对角线平分一组对角
D.对角线互相垂直
2.如图 4-3-22,在矩形 ABCD 中,对角线 AC,BD 相交于
点 O.若∠AOB=60°,AB=4 cm,则 AC 的长为( B )
图 4-3-22 A.4 cm B.8 cm C.12 cm D. 4 5 cm
3.如图 4-3-23,两个完全相同的三角尺 ABC 和 DEF 在直
考点 2 特殊平行四边形之间的关系及相互转化 如图 4-3-21.
图 4-3-21
2015年中考冲刺拓展提优复习讲义
13.在如图所示的正方形网格中,A、B、C 都是小正方形的顶点,经过点 A 作射线 CD, 则 sin∠DAB 的值等于 . 14.如图,在平面直角坐标系中,A(1,1) 、B(﹣1,1) 、C(﹣1,﹣2) 、D(1,﹣2) .把 一条长为 2013 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点 A 处,并按 A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形 ABCD 的边上,则细线另一端所在 位置的点的坐标是 ▲ .
2
4.已知一个二次函数的关系式为 y=x -2bx+c. (1)若该二次函数的图象与 x 轴只有一个交点, ①则 b、c 应满足关系为 ▲ ;
2
②若该二次函数的图象经过 A(m,n) 、B(m +6,n)两点,求 n 的值; (2)若该二次函数的图象与 x 轴有两个交点 C(6,0) 、D(k,0) ,线段 CD(含端点)上 有若干个横坐标为整数的点,且这些点的横坐标之和为 21,求 b 的取值范围.
(2)预设方案 2:王老师骑摩托车行驶 ah 后,将乙放下,让乙步行去车站,与此同时,王 老师回去接甲并将甲送到车站,王老师骑摩托车一共行驶 h.图②中折线 A﹣B﹣C﹣D、 线段 AC、线段 BE 分别表示王老师、甲、乙在上述过程中,离车站的路程 y(km)与王老 师所用时间 x(h)之间的函数关系.求 a 的值. 优化方案 (3)请设计一种方案,使甲、乙两位学生在出发 50min 内(不含 50min)全部到达车站. (要求:1.不需用文字写出方案,在图③中画出图象即可;2.写出你所画的图象中 y 与 x 的含义;3.不需算出甲、乙两位学生到达车站的具体时间! )
7.在平面直角坐标系中,已知点 A(- 5,0) ,B( 5,0) ,点 C 在 x 轴上,且 AC+BC =6,写出满足条件的所有点 C 的坐标 8.计算: ▲ . .
2015年中考数学总复习解题指导课件含共92张PPT93
图27-4
C.20 cm D.22 cm 第27讲┃平移与轴对称
[解析] 根据题意,将周长为16 cm的△ABC沿BC向右平移 2 cm得到△DEF,
∴AD=2 cm,BF=BC+CF=BC+2,DF=AC. 又∵AB+BC+AC=16 cm,
∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2
第26讲┃投影与视图
核心练习
4.[2013·淄博] 下面关于正六棱柱的视图(主视图、左视图、
俯视图),画法错误的是( A )
图26-6
第26讲┃投影与视图
图26-7 第26讲┃投影与视图
5.[2013·莱芜] 下面四个几何体中,左视图是四边形的几何体
有( B )
A.1个 B.2个 C.3个 D.4个
1.图26-18是常用的一种圆顶螺杆,它的俯视图正确的是
(B )
图26-18
第26讲┃投影与视图
图26-19 第26讲┃投影与视图
2.图26-20是一个正方体的表面展开图,则原正方体中与
“建”字所在的面相对的面上标的字是( D )
图26-20
A.美 B.丽 C.安 D.徽
第26讲┃投影与视图
[解析] 易得“设”相对的面是“丽”,“美”相对的面是“安”,
第27讲┃平移与轴对称
核心练习
5.[2013·成都] 如图27-6,将矩形ABCD沿对角线BD折叠,使
点C与点C′重合.若AB=2,则C′D的长为( B ) A.1 B.2 C.3 D.4
图27-6
第27讲┃平移与轴对称
6.[2013·淄博] 如图27-7,菱形纸片ABCD中,∠A=60°, 折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到
2015年中考数学复习培优第6讲
2015年中考数学复习培优第五讲:解直角三角形一、解直角三角形中几何模型:二、解直角三角形应用题:1.如图1,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( A. B. C. D.2.如图5,在平地上种植树木时,要求株距(相邻两树间的水平距离) 为4m .如果在坡度为i =0.75的山坡上种树,也要求株距为4m , 那么相邻两树间的坡面距离为( )A .5mB .6mC .7mD .8mααcos 5αcos 5αsin 5αsin 5BA3.如图,把两块相同的含30°角的三角尺按如图所示放置, 若AD=,则三角尺的斜边的长为( )A 、6B 、C 、10D 、124.在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A 、C 两地的距离为( ) A.B. C. D. 5.如图,在▱ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC =a ,BD =b ,则▱ABCD 的面积是( ) . absin αB . abcos α6.在数学活动课上,小敏,小颖分别画了△ABC 和△DEF ,AB=DE , 数据如图,如果把小敏画的三角形面积记作S △ABC ′小颖画的 三角形面积记作S △DEF ,那么你认为小敏和小颖画的两个三 角形面积的大小关系是S △ABC S △DEF .(填“>,<,或=”)7.在如图一段长56米的路段开辟停车位,每个车位是长5米 宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路 段最多可以划出_____个这样的停车位.(≈1.4)8.如图,∠AOB=30°,OP 平分∠AOB ,PC ⊥OB 于点C .若OC=2, 则PC 的长是 . 9. 当锐角α _________ 时,有意义.计算:=10.如图,将的∠AOB 按图摆放在一把刻度尺上,顶点O 与 尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在 尺上的读数为2cm ,若按相同的方式将的∠AOC 放置在该尺上, 则OC 与尺上沿的交点C 在尺上的读数约为 cm(结果精确到0.1 cm ,参考数据:,,)km 3310km 335km 25km 3545︒37︒sin 370.60︒≈cos370.80︒≈tan 370.75︒≈第4题图11. 如图,某公园入口处原有三级台阶,每级台阶高为18cm , 深为30cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的 起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度, 则AC 的长度是 cm .12.小明是一位善于思考的学生,在一次数学活动课上,他将一 副直角三角板如图位置摆放,A 、B 、C 在同一直线上,EF∥AD, ∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,则BD= 13.如图,矩形ABCD 是供一辆机动车停放的车位示意图,已知BC=2m , CD=5.4m ,∠DCF=30°,计算车位所占的宽度EF 约为 米 (,结果保留两位有效数字.)14.丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作 的风筝的一个翅膀.则CD 的长度为 .≈1.7).15.如图,根据图中数据完成填空,再按要求答题:sin 2A 1+sin 2B 1= ;sin 2A 2+sin 2B 2= ;sin 2A 3+sin 2B 3= .(1)观察上述等式,猜想:在Rt △ABC 中,∠C =90°,都有sin 2A +sin 2B = . (2)如图④,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA + sinB = 1713,求sinA ·sinB 得值.1:5i =1.73≈16.观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c .过A 作AD ⊥BC 于D(如图),则sinB=,sinC=,即AD=csinB ,AD=bsinC ,于是csinB=bsinC ,即.同理有,.所以,即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B=450,∠C=750,BC=60, 则∠A= ;AC= ;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB.17.(2014•三明)如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB 是6米,要求相邻两棵树间的水平距离AC 在5.3~5.7米范围内,小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)c AD b AD CcB b sin sin =A aC c sin sin =Bb A a sin sin =C cB b A a sin sin sin ==CB18.(2014•巴中)如图,一水库大坝的横断面为梯形ABCD ,坝顶BC 宽6米,坝高20米,斜坡AB 的坡度i=1:2.5,斜坡CD 的坡角为30°,求坝底AD 的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比).19.(2014•漳州)将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P 时停止倒入.图2是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到0.1cm ).(参考数据:≈1.73,≈1.41)20. 小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果精确到1mm )FE21. 如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据).⑴若修建的斜坡BE的坡角(即∠BAC)不大于45°,则平台DE的长最多为米;⑵一座建筑物GH距离坡脚A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面上,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?22.一天晚上,李明和张龙利用灯光下影子的长来测量一路灯D高度,如图,当李明走到点A处时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m.求路灯的高CD的长.(结果精确到0.1m)E。
第1章第2讲第1课时整式-中考数学一轮考点复习课件(共42张)
式
另一个多项式的每一项,再把所得的积相加,即(a
多项式乘
的
+b)(p+q)= ap+aq+bp+bq
多项式
乘
平方差公式:(a+b)(a-b)= a2-b2
法
完全平方公式:(a±b)2= a2±2ab+b2
单项式除 整式的 以单项式 除法 多项式除
以单项式
把系数和同底数幂分别相除作为商的因式,对于只在被除 式里含有的字母,则连同它的指数作为商的一个因式 先把这个多项式的每一项除以这个单项式,再把所得的商 相加
能进行简单的整式乘法运算(其中多项式相乘仅 北师:七上第三章P78~P104;
指一次式之间以及一次式与二次式相乘). 七下第一章P2~P36;
(3)能推导乘法公式:(a+b)(a-b)=a2-b2; 八下第四章P92~P106;
(a±b)2=a2±2ab+b2,了解公式的几何背景,并 华师:七上第3章P82~P118;八上第12章
(3)原式=26+6×25×-12+15×24×-122+ 20×23×-123+15×22×-124+6×2×-125+-126-2--126 =2-126--126-2 =326-126-2 =323-123323+123-2 =32-12×94+34+14×32+12×
94-34+14-2 =143×2×74-2 =2×131×6 7-1 =785.
第一章 数与式
第2讲 整式和因式分解
第1课时 整 式
忆知识·奇妙导引 过考点·夯实基础 破重难·讲透练活 练好题·课堂达标
课标要求
版本导航
(1)了解整数指数幂的意义和基本性质.
(2)理解整式的概念,掌握合并同类项和去括号 人教:七上第二章P53~P76;
中考数学总复习 第2讲 整式及因式分解二次函数(基础讲
第2讲整式及因式分解考标要求考查角度1.明确字母表示数的真实内涵及其规范的书写格式,能用代数式探索有关的规律.2.会用语言文字叙述代数式的意义,同时掌握求代数式的值的方法.3.理解同类项的概念,掌握合并同类项的法则和去括号的法则以及乘法公式,能准确地进行整式的加、减、乘、除、乘方等混合运算.4.能对多项式进行因式分解.整式作为初中数学的基础内容之一,在中考试题中多以填空题和选择题的形式命题,重点考查其基本概念及运算法则,同时也会设计一些新颖的探索与数、式有关的规律性问题.知识梳理一、整式的有关概念1.整式整式是单项式与__________的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的________因数叫做单项式的系数;单项式中所有字母指数的____叫做单项式的次数.3.多项式几个单项式的______叫做多项式;多项式中,每一个________叫做多项式的项,其中不含字母的项叫做常数项;多项式中__________项的次数就是这个多项式的次数.二、整数指数幂的运算正整数指数幂的运算法则:a m·a n=______,(a m)n=______,(ab)n=a n b n,a ma n=a m-n(m,n是正整数).三、同类项与合并同类项1.同类项所含字母相同,并且相同字母的______也分别相同的项叫做同类项.2.合并同类项把多项式中的同类项合并成一项叫做____________,合并的法则是系数相加,所得的结果作为合并后的______,字母和字母的指数不变.四、求代数式的值1.代数式的值一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要______.2.整式的乘除(1)整式的乘法.①单项式与单项式相乘:把______、__________分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m (a +b +c )=ma +mb +mc .③多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nB . (2)整式的除法.①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.②多项式除以单项式:(a +b )÷m =a ÷m +b ÷m . 3.乘法公式(1)平方差公式:(a +b )(a -b )=a 2-b 2;(2)完全平方公式:(a ±b )2=a 2±2ab +b 2. 六、因式分解1.因式分解的概念把一个多项式化成几个整式的____的形式,叫做多项式的因式分解. 2.因式分解的方法 (1)提公因式法.公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法.①运用平方差公式:a 2-b 2=__________.②运用完全平方公式:a 2±2ab +b 2=________. 3.因式分解的一般步骤一提(提取公因式法);二套(套公式法).一直分解到不能分解为止. 自主测试1.(2012福建福州)下列计算正确的是( )A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 72.下列各式中,与x 2y 是同类项的是( )A .xy 2B .2xyC .-x 2yD .3x 2y 23.(2012四川绵阳)图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空白部分的面积是( )A .2mnB .(m +n )2C .(m -n )2D .m 2-n 24.(2012四川宜宾)分解因式:3m 2-6mn +3n 2=__________.5.单项式-3π5m 2n 的系数是______,次数是______.考点一、整数指数幂的运算【例1】 (2012湖南郴州)下列计算正确的是( )A .a 2·a 3=a 6B .a +a =a 2C .(a 2)3=a 6D .a 8÷a 2=a 4解析:A 项是同底数幂的乘法,a 2·a 3=a 2+3=a 5,故A 项错误;B 项是整式的加减运算,a +a =2a ,故B 项错误;C 项是幂的乘方,(a 2)3=a 2×3=a 6,故C 项正确;D 项是同底数幂的除法,a 8÷a 2=a 8-2=a 6,故D 项错误.答案:C方法总结 幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.触类旁通1下列运算中,正确的是( )A .x 3·x 2=x 5B .x +x 2=x3C .2x 3÷x 2=xD .⎝ ⎛⎭⎪⎫x 23=x 32考点二、同类项与合并同类项【例2】 单项式-13x a +b y a -1与3x 2y 是同类项,则a -b 的值为( )A .2B .0C .-2D .1解析:本题主要考查了同类项的概念及方程组的解法,由-13x a +b y a -1与3x 2y 是同类项,得⎩⎪⎨⎪⎧a +b =2,a -1=1,解得⎩⎪⎨⎪⎧a =2,b =0.所以a -b =2-0=2. 答案:A方法总结 1.同类项必须具备以下两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.二者必须同时具备,缺一不可;2.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项. 3.根据同类项概念,相同字母的指数相同,列方程(组)是解此类题的一般方法.触类旁通2如果3x 2n -1y m 与-5x m y 3是同类项,则m 和n 的取值是( ) A .3和-2 B .-3和2 C .3和2 D .-3和-2 考点三、整式的运算【例3】 先化简,再求值:(a +b )(a -b )+(a +b )2-2a 2,其中a =3,b =-13.解:(a +b )(a -b )+(a +b )2-2a 2=a 2-b 2+a 2+2ab +b 2-2a 2=2ab ,当a =3,b =-13时,2ab =2×3×⎝ ⎛⎭⎪⎫-13=-2. 方法总结 整式的乘法法则和除法法则是整式运算的依据,必须在理解的基础上加强记忆,并在运算时灵活运用法则进行计算.使用乘法公式时,要认清公式中a ,b 所表示的两个数及公式的结构特征,注意套用公式.触类旁通3 已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值. 考点四、因式分解【例4】 (2012湖南常德)分解因式:m 2-n 2=__________. 答案:(m +n )(m -n )方法总结 (1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他方法继续分解.(2)提取公因式时,若括号内合并的项有公因式,应再次提取;注意符号的变换y -x =-(x -y ),(y -x )2=(x -y )2.(3)应用公式法因式分解时,要牢记平方差公式和完全平方公式及其特点. (4)因式分解要分解到每一个多项式不能分解为止.1.(2012湖南常德)下列运算中,结果正确的是( )A .a 3·a 4=a 12B .a 10÷a 2=a 5C .a 2+a 3=a 5D .4a -a =3a 2.(2012湖南益阳)下列计算正确的是( )A .2a +3b =5abB .(x +2)2=x 2+4C .(ab 3)2=ab 6D .(-1)0=13.(2012湖南湘潭)因式分解:m 2-mn =__________.4.(2012湖南益阳)写出一个在实数范围内能用平方差公式分解因式的多项式:__________.5.(2012湖南怀化)当x =1,y =15时,3x (2x +y )-2x (x -y )=__________.6.(2012湖南株洲)一组数据为:x ,-2x 2,4x 3,-8x 4,…观察其规律,推断第n 个数据应为__________.1.将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+42.如图所示,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a ±b )2=a 2±2ab +b 23.多项式__________与m 2+m -2的和是m 2-2m .4.若3x m +5y 2与x 3y n 的和是单项式,则n m=__________.5.若m -n =2,m +n =5,则m 2-n 2的值为__________.6.若2x =3,4y =5,则2x -2y的值为__________.7.给出3个整式:x 2,2x +1,x 2-2x .(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?参考答案 【知识梳理】一、1.多项式 2.数字 和 3.和 单项式 次数最高二、a m +n a mn三、1.指数 2.合并同类项 系数 五、1.(2)变号2.(1)①系数 同底数幂 (2)①指数 六、1.积2.(2)①(a +b )(a -b ) ②(a ±b )2导学必备知识 自主测试1.A a +a =2a ,A 项正确;b 3·b 3=b 6,B 项错误;a 3÷a =a 2,C 项错误;(a 5)2=a 10,D 项错误.2.C 只有C 选项中相同字母的指数与x 2y 分别相同.3.C 因为长方形的长为2m ,宽为2n (m >n ),则小长方形的长为m ,宽为n ,小正方形的边长为(m -n ),所以面积是(m -n )2.4.3(m -n )2 原式=3(m 2-2mn +n 2)=3(m -n )2.5.-3π53探究考点方法触类旁通1.A A 项是同底数幂相乘,x 3·x 2=x3+2=x 5,B 项中的两项不是同类项,不能合并,C 项是单项式相除,2x 3÷x 2=(2÷1)x 3-2=2x ,D 项⎝ ⎛⎭⎪⎫x 23=x 323=x38.触类旁通 2.C 此题考查同类项概念和二元一次方程组的解法,由题意得⎩⎪⎨⎪⎧ 2n -1=m ,m =3,解得⎩⎪⎨⎪⎧m =3,n =2. 触类旁通3.分析:本题需先把2x -1=3进行整理,得出x 的值,把代数式进行化简,再把x 的值代入即可求出结果.解:由2x -1=3得x =2,又(x -3)2+2x (3+x )-7=x 2-6x +9+6x +2x 2-7=3x 2+2,∴当x =2时,原式=14.品鉴经典考题1.D a 3·a 4=a 7,所以A 项不正确;a 10÷a 2=a 8,所以B 项不正确;a 2与a 3不是同类项,不能合并,所以C 项不正确;4a -a =3a ,D 项正确.2.D 2a 与3b 不能合并,A 项不正确;(x +2)2=x 2+4x +4,B 项不正确;(ab 3)2=a 2b 6,C 项不正确;由任何一个不等于零的数的零次幂等于1,知D 项正确.3.m (m -n ) m 2-mn =m (m -n ).4.答案不唯一,如x 2-1.5.5 3x (2x +y )-2x (x -y )=6x 2+3xy -2x 2+2xy =4x 2+5xy .当x =1,y =15时,原式=4×12+5×1×15=4+1=5.6.(-2)n -1x n x 的系数为1=(-2)1-1,次数为1;-2x 2的系数为-2=(-2)2-1,次数为2;4x 3的系数为4=(-2)3-1,次数为3;-8x 4的系数为-8=(-2)4-1,次数为4;….所以第n 个数据的系数为(-2)n -1,次数为n ,即(-2)n -1x n.研习预测试题1.C x 2+4x -1=(x 2+4x +4)-4-1=(x +2)2-5.2.C 因为第一个图是一个大的正方形挖去了一个小的正方形,其面积表达式为a 2-b 2.第二个图是一个梯形,下底为2a ,上底为2b ,高为(a -b ),其面积为12(2a +2b )(a -b )=(a+b )(a -b ),所以两个图验证了公式:a 2-b 2=(a +b )(a -b ).3.2-3m 由题意得此多项式为(m 2-2m )-(m 2+m -2)=m 2-2m -m 2-m +2=2-3m . 4.14 由题意得m +5=3,n =2,所以m =-2,所以n m =2-2=122=14. 5.10 m 2-n 2=(m +n )(m -n )=5×2=10. 6.35 2x -2y =2x ÷22y =2x ÷4y =3÷5=35. 7.解:(1)x 2+(2x +1)=x 2+2x +1=(x +1)2或x 2+(x 2-2x )=2x 2-2x =2x (x -1)或(2x+1)+(x 2-2x )=2x +1+x 2-2x =x 2+1.(2)由(1)可知,概率为23.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年中考数学复习培优第二讲:二次函数性质及应用
★考点一:二次函数的有关概念
二次函数的概念:一般地,我们把形如c bx ax y ++=2(其中c b a ,,是常数,0≠a )的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数,c 为常数项。
x 称为自变量,y 称为因变量。
★考点二:二次函数的基本性质 1、二次函数的图像:抛物线。
2、二次函数的常见的几种表达式
①、一般式:c bx ax y ++=2
②、顶点式:()k h x a y +-=2
(a b h 2-=,a
b a
c k 442-=)
③、交点式:12()()y a x x x x =--
3、抛物线的三要素:开口方向(与a 有关系)、对称轴(与a 、b 有关系)、顶点()k h ,。
4、二次函数的基本性质
5、二次函数c bx ax y ++=2
与()k h x a y +-=2
之间的转化
6、二次函数的平移
7、二次函数c bx ax y ++=2中a 、b 、c 正负的判定
a :看开口方向 0>a 开口向上;0<a 开口向下。
b :看对称轴 对称轴在y 轴左边,则与a 正负相同,对称轴在y 轴右边,则与a 正负相反。
c :看于y 轴的交点 0>c 于y 轴交于正半轴; 0<c 于y 轴交于负半轴。
★考点三:二次函数解析式的求法 1、设一般式:c bx ax y ++=2
一般题目提供已知三个点坐标,则设所求抛物线解析式一般式,将已知条件带入解析式,得到关于a 、b 、
c 的三元一次方程组,解方程组求出a 、b 、c 的值即可得到解析式。
2、设顶点式:()k h x a y +-=2
一般题目提供已知一个点和顶点坐标,则设所求抛物线解析式顶点式,将已知条件带入解析式,得到一个关于a 的一元一次方程,求出a 即可得到解析式。
3、设交点式:12()()y a x x x x =--
一般题目提供函数图像与x 轴交点坐标,则设所求抛物线解析式交点式,将已知条件带入解析式,得到一个关于a 的一元一次方程,求出a 即可得到解析式。
★考点四:二次函数的实际问题
★考点五:二次函数与一元二次方程的关系
抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=0
24b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;
24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
★考点六:二次函数与不等式的关系
①、使得二次函数c bx ax y ++=2的函数值0<y 的自变量x 的取值范围,即求02<++c bx ax 的解集;反之,求02<++c bx ax 的解集,即求二次函数c bx ax y ++=2的函数值0<y 的自变量x 的取值范围。
(此处常用图解法求一元二次不等式的解集)
②、用图像法求一元二次不等式02<++c bx ax ()
04,02>->ac b a (例子)的解集步骤:
a 、设:设c bx ax y ++=2,则求02<++c bx ax ,即求二次函数c bx ax y ++=2的函数值0<y 的自
变量x 的取值范围。
b 、作:根据五点作图法,作出一次函数
c bx ax y ++=2的图像
c 、求:求出二次函数与x 轴的交点坐标
d 、解:根据直角坐标系特点,x 轴上方,0>y 恒成立;反之,x 轴下方,0<y 恒成立,
故求02<++c bx ax ,即看图像在x 轴下方部分时,x 的取值范围即可。
★典型例题:
例1:若函数y =(m -3)2213
m m x
+-是二次函数,则m =______.
例2:将抛物线y =3x 2
向左平移2个单位,再向下平移1个单位,所得抛物线为( )
A .y =3(x -2)2
-1 B .y =3(x -2)2
+1 C .y =3(x +2)2
-1 D .y =3(x +2)2
+1 例3:二次函数y =ax 2+bx +c (a ≠0)的图象如图11-1,给出下列四个结论:①4ac ﹣b 2<0; ②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的个数是( )
A . 4个
B .3个
C .2个
D .1个
例4:二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:
下列结论:
(1)ac <0; (2)当x >1时,y 的值随x 值的增大而减小.
(3)3是方程ax 2+(b ﹣1)x +c =0的一个根; (4)当﹣1<x <3时,ax 2+(b ﹣1)x +c >0. 其中正确的个数为( ) A .4个 B . 3个
C . 2个
D . 1个
例5:当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( )
A.
B.
或
C.2或
D.2或﹣
或
例6:如图11-2是二次函数2y x 2x 4=-++的图象,使y 1≤成立的x 的取值范围是( ) A.1x 3-≤≤ B .x 1≤- C .x 1≥ D .x 1≤-或x 3≥
例7:已知函数y =(x ﹣m )(x ﹣n )(其中m <n )的图象如图11-3所示,则一次函数y =mx +n 与反比例函数y =的图象可能是( )
例8:二次函数图象的顶点在原点O ,经过点A (1,1
4
);点F (0,1)在y 轴上.直线y =﹣1与y 轴交于点H .
(1)求二次函数的解析式;
(2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线y =﹣1交于点M ,求证:FM 平分∠OFP ; (3)当△FPM 是等边三角形时,求P 点的坐标.
例9:某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.
例10:如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为;抛物线的解析式为.
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?。