自动控制系统的频域分析92页PPT
合集下载
自动控制原理第5章频域分析法
确定方法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
自动控制原理第五章 频域分析
第5章
5-1 5-2 5-3 5-4 5-5 5-6
频域分析法
频率特性的概念 频率特性的极坐标图(乃氏图) 奈奎斯特稳定判据及稳定裕度 频率特性的对数坐标图(伯德图) 开环频率特性分析系统的性能 闭环频率特性分析系统的性能
基本思想:
通过开环频率特性的图形对系统进行分析。
数学模型——频率特性。
主要优点:
频率特性的极坐标图
基本概念
• 如图5.1(a)中 G( j1 )曲线所示。由这条曲线形成的图 像就是频率特性的极坐标图,又称为G( j1 ) 的幅相 频率特性。 • 如果G(jω1)以直角坐标形式表示,即 G( j1 ) R(1 ) jI (1 ) • 因此,习惯上把图5.1(b)的G(jω)曲线也叫做G(jω) 的极坐标图。
该电路的频率特性
频率特性的定义:
基于频率 的系统输入和输出之间的关系。
与传递函数的关系:G(j ) G( s) s j
设传递函数G(s)可表示成极点形式
Y ( s) b0 s m b1s m1 bm1s bm G( s) n U ( s) s a1s n 1 an 1s an
2
图5.3
积分环节频率特性极坐标图
(3)微分环节 纯微分环节的传递函数: G(s)=s 频率特性: G( j ) j e
j
2
幅频特性: A( )
相频特性: ( )
2
极坐标图如下图所示。
图5.4
微分环节频率特性极坐标图
(4)一阶惯性环节
1 Ts 1 1 T 频率特性: ( j ) 1 G j 2 2 1 jT 1 T 1 2T 2 1 幅频特性: ( ) M 1 2T 2
5-1 5-2 5-3 5-4 5-5 5-6
频域分析法
频率特性的概念 频率特性的极坐标图(乃氏图) 奈奎斯特稳定判据及稳定裕度 频率特性的对数坐标图(伯德图) 开环频率特性分析系统的性能 闭环频率特性分析系统的性能
基本思想:
通过开环频率特性的图形对系统进行分析。
数学模型——频率特性。
主要优点:
频率特性的极坐标图
基本概念
• 如图5.1(a)中 G( j1 )曲线所示。由这条曲线形成的图 像就是频率特性的极坐标图,又称为G( j1 ) 的幅相 频率特性。 • 如果G(jω1)以直角坐标形式表示,即 G( j1 ) R(1 ) jI (1 ) • 因此,习惯上把图5.1(b)的G(jω)曲线也叫做G(jω) 的极坐标图。
该电路的频率特性
频率特性的定义:
基于频率 的系统输入和输出之间的关系。
与传递函数的关系:G(j ) G( s) s j
设传递函数G(s)可表示成极点形式
Y ( s) b0 s m b1s m1 bm1s bm G( s) n U ( s) s a1s n 1 an 1s an
2
图5.3
积分环节频率特性极坐标图
(3)微分环节 纯微分环节的传递函数: G(s)=s 频率特性: G( j ) j e
j
2
幅频特性: A( )
相频特性: ( )
2
极坐标图如下图所示。
图5.4
微分环节频率特性极坐标图
(4)一阶惯性环节
1 Ts 1 1 T 频率特性: ( j ) 1 G j 2 2 1 jT 1 T 1 2T 2 1 幅频特性: ( ) M 1 2T 2
自控原理课件第5章自动控制系统的频率分析
频率响应曲线和Bode图
频率响应曲线是频率分析中常用的图形表示方式之一。它展示了系统在不同频率下的响应强度,并且能够反映系统 的稳定性和增益特性。
Bode图是一种常见的频率响应曲线图,它将系统的增益和相位响应分别绘制在对数纵坐标和对数横坐标上。通过观 察Bode图,我们可以更好地理解系统的频率特性。
在频率分析中,我们关注系统的频率响应和相位响应。频率响应描述了系统对不同频率输入信号的响应强度,而相 位响应描述了系统对不同频率输入信号的相对时间延迟。
频率范围和单位
频率分析涉及到频率的范围和单位。在自动控制系统中,我们通常使用赫兹 (Hz)作为频率的单位。频率范围可以涵盖从几兹到几千赫兹的频段,具 体范围会根据不同的应用而有所不同。
自控原理课件第5章自动 控制系统的频率分析
频率分析是自动控制系统中的重要概念,它帮助我们理解系统如何对不同频 率的输入信号做出响应。本章将介绍频率分析的定义、概念以及应用,以便 更好地理解自动控制系统的特性。
频率分析的定义和概念
频率分析是通过对自动控制系统的输入和输出信号进行频谱分析,来了解系统对不同频率的信号做出响应的过程。 它是研究自动控制系统动态特性的重要工具。
总结和要点
频率分析是理解自动控制系统频率特性的重要方法。它通过频率响应和相位响应来描述系统对不同频率信号的响应。 频率范围和单位、频率响应曲线和Bode图、应用领域以及限制和局限是频率分析中的关键概念。
频率分析的应用
频率分析在许多领域中都有广泛的应用。在音频领域,它可以帮助我们设计 音响系统和调整音乐的音质。在电子通信中,它可以用于信号处理和滤波器 设计。在控制系统中,它可以帮助我们优化系统的性能和稳定性。
频率分析的限制和局限
频率分析虽然是一种有用的工具,但也有其限制和局限性。它通常假设系统是线性时不变(LTI)的,而在实际应用 中,系统可能存在非线性和时变特性。此外,频率分析还需要对系统的输入进行特定频率的激励,这在某些情况下 可能会有一定的困难。
自动控制原理课件:线性系统的频域分析
曲线顺时针方向移动一周时,在 平面上的映射曲线按逆时针方向
包围坐标原点 − 周。
m
F (s)
K1 ( s z j )
j 1
n
i 1
( s pi )
24
• 02
基本概念
m
1 G ( s) H ( s) F ( s)
K1 ( s z j )
j 1
在 平面上的映射曲线 F 1 G ( j ) H ( j )将按逆时针方向
围绕坐标原点旋转 = − 周。
如果在s平面上,s沿着奈奎斯特回线顺时针方向移动一周时,
在 平面上的映射曲线围绕坐标原点按逆时针方向旋转 =
周,则系统为稳定的。
26
根据
( 1, j 0)
L( ) 20 lg K 20 lg 1 12 2 20 lg 1 22 2
( ) arctg 1 arctg 2
τ2
20dB / dec 1
2
L3 ( )
L2 ( )
40dB / dec
( )
0
L( )
90
A( ) 1, ( )
L ( ) 20 lg A( ) 0
L( )
jQ( )
L( ) 0
0
( )
1
0
1
P( )
1
0
30
60
16
5.3
系统开环频率特性图
设开环系统由n个典型环节串联组成
G(s ) G 1(s )G 2(s ) G n(s )
这意味着 的映射曲线 F 围绕原点运动的情况,相当于
包围坐标原点 − 周。
m
F (s)
K1 ( s z j )
j 1
n
i 1
( s pi )
24
• 02
基本概念
m
1 G ( s) H ( s) F ( s)
K1 ( s z j )
j 1
在 平面上的映射曲线 F 1 G ( j ) H ( j )将按逆时针方向
围绕坐标原点旋转 = − 周。
如果在s平面上,s沿着奈奎斯特回线顺时针方向移动一周时,
在 平面上的映射曲线围绕坐标原点按逆时针方向旋转 =
周,则系统为稳定的。
26
根据
( 1, j 0)
L( ) 20 lg K 20 lg 1 12 2 20 lg 1 22 2
( ) arctg 1 arctg 2
τ2
20dB / dec 1
2
L3 ( )
L2 ( )
40dB / dec
( )
0
L( )
90
A( ) 1, ( )
L ( ) 20 lg A( ) 0
L( )
jQ( )
L( ) 0
0
( )
1
0
1
P( )
1
0
30
60
16
5.3
系统开环频率特性图
设开环系统由n个典型环节串联组成
G(s ) G 1(s )G 2(s ) G n(s )
这意味着 的映射曲线 F 围绕原点运动的情况,相当于
自动控制原理第5章-频域分析
(4)频率特性主要适用于线性定常系统,也可以有条件 地推广应用到非线性系统中。
第5章 控制系统的频域分析
§5.1 频 率 特 性
一、频率特性概述
1、 RC网络的频率特性
T
du0 (t) dt
u0 (t)
ui (t)
其传递函数为:
G(s) U0(s) 1 Ui (s) Ts 1
在复数域内讨论RC网络,并求输出电压
(T)2 1
——RC网络的频率特性
G( j)
1
(T)2 1 —幅频特性
() arctan T —相频特性
第5章 控制系统的频域分析
比较
G( j)
1
jT 1
和
G(s) 1 Ts 1
可见,只要用jω代替该网络的传递函数G(s)中的复变 量S,便可得其频率特性G(jω)。结论具有一般性。
2、线性定常系统的频率特性
设 ui (t) Um sin t
U U e •
j00 复阻抗 Z R 1 jRC 1
i
m
第5章 控制系统的频域分析
jC
jC
•
•
•
U0
1
•
I
jC
1 Ui
jC Z
1
jC
jCUi jCR 1
1
jT
•
U 1
i
于是有:
•
U0
•
Ui
1
jT 1
•
(T RC)
G( j)
U0
•
Ui
1
e j () G( j) e j ()
第5章 控制系统的频域分析
5.2.2 典型环节的频率特性
1、积分环节
传递函数: G(s) 1
第5章 控制系统的频域分析
§5.1 频 率 特 性
一、频率特性概述
1、 RC网络的频率特性
T
du0 (t) dt
u0 (t)
ui (t)
其传递函数为:
G(s) U0(s) 1 Ui (s) Ts 1
在复数域内讨论RC网络,并求输出电压
(T)2 1
——RC网络的频率特性
G( j)
1
(T)2 1 —幅频特性
() arctan T —相频特性
第5章 控制系统的频域分析
比较
G( j)
1
jT 1
和
G(s) 1 Ts 1
可见,只要用jω代替该网络的传递函数G(s)中的复变 量S,便可得其频率特性G(jω)。结论具有一般性。
2、线性定常系统的频率特性
设 ui (t) Um sin t
U U e •
j00 复阻抗 Z R 1 jRC 1
i
m
第5章 控制系统的频域分析
jC
jC
•
•
•
U0
1
•
I
jC
1 Ui
jC Z
1
jC
jCUi jCR 1
1
jT
•
U 1
i
于是有:
•
U0
•
Ui
1
jT 1
•
(T RC)
G( j)
U0
•
Ui
1
e j () G( j) e j ()
第5章 控制系统的频域分析
5.2.2 典型环节的频率特性
1、积分环节
传递函数: G(s) 1
第5章控制系统的频域资料
一. 对数频率特性图
对数频率特性图的优点: 1、横坐标采用对数分度使低频展宽,高频压缩。对 频率和幅值取对数后既能够清晰展现重要的低频特性,又 兼顾到频率和幅值宽广的变化范围。 2、对数频率特性曲线的形状简单,绘制方便。 3、将幅频特性的幅值乘除运算转化为对数幅频特性 的加减运算,容易绘制对数幅频渐近特性,并易于修正获 得准确曲线,从而使频率特性的绘制大为简化。 4、当系统或环节的参数K或T值改变时,不会改变图 形形状,只需对原有的对数频率特性图加以移动即可,给 绘图带来极大方便。
频率特性 G( j) A()ej() 幅频特性 A() | G( j) | 相频特性 () G( j) 对数幅频特性表达式为20lgA(),用L()表示
L() 20lg A() 20lg | G(j) |
对数相频特性表达式为 () G( j)
9
一. 对数频率特性图
对数频率特性图由对数幅频特性曲线和对数相频特性曲
相频特性: ()
5
一、频域特性的基本概念
➢ 幅频特性A()和相频特性 ()共同表征了系统(或环节) G(s)在正弦输入作用下的稳态响应与输入信号角频率的
关系特性,称为系统(或环节)的频率特性G(j) 。
线性系统的频率特性可以由传递函数G(s)得到。
G( j) G(s) |s j | G( j) | ejG( j) A()e j()
Add Your Company Slogan
机械工业出版社
第5章 控制系统的频域分析
第5章 控制系统的频域分析
➢ 频域分析法是一种图解方法,它是根据系统的频域数学 模型(即频率特性)对系统的性能进行研究的。
➢ 频域分析法的特点是不必直接求解系统微分方程,主要 是用系统开环频率特性去判断、分析闭环系统的性能, 并能较方便地分析系统中的参量对系统动态性能的影响, 从而进一步指出改善系统性能的途径。
自动控制原理第五章频域分析法
一 由传递函数求系统的频率响应
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89
第4章 控制系统的频域分析 《物联网控制基础》课件-PPT课件
第四章 控制系统的频域分析
设系统的开环传递函数为:
G0 s H s G1 sG2 s Gn s
开环频率特性为:
G j H j G 1 j G2 j Gn j
G0 j H j e j
幅频特性为:
G0 j H j G1 j G2 j
相频特性为:
Gn j
第四章 控制系统的频域分析
开环频率特性随 变化
第四章 控制系统的频域分析
相位裕量和增益裕量 〔a〕极坐标图 〔b〕对数坐标图
在开环对数相频特性图上,满足 180 时,相频特性曲
线穿越线-180° ,此时对应的频率称为相位穿越频率ωs ,与 此频率相对应的开环频率特性距 0dB线的距离即为幅值的增
1 2 n
第四章 控制系统的频域分析
4.4.1 开环频率特性的极坐标图 绘制开环频率特性的极坐标图,必须计算出某一频率下的幅值
和幅角,从而给出开环频率特性曲线。用计算机通过专用的 程序绘制开环频率特性曲线的极坐标图十分方便。 不同频率下的幅值和相角如下:
开环频率特性图
第四章 控制系统的频域分析
第四章 控制系统的频域分析
4.3.5 振荡环节
振荡环节的传递函数为
Gs T 2s2
1 2Ts 1
s jw
1
1 w2T 2
j2 wT
1
w wn
1 2
j2
w wn
式中
n
1 T
,为系统无阻尼自振频率。
振荡环节的频率特性曲线与 ζ有关。图是振荡环节频率特性 的极坐标图。
第四章 控制系统的频域分析
Gs s
微分环节的频率特性为:
G j j
微分环节的极坐标图 微分环节的伯德图 积分环节的对数频率特性图相比较,我们会发现二者的对数频率
自控原理课件 第5章-自动控制系统的频率分析
52
γ和kg可以用来作为控制系统的开环频域性能指标。 在分析设计一个控制系统时,系统的性能常用γ与kg 的定量值来描述。 在使用时,γ和kg通常是成对使用的,但有时也 使用一个裕量指标,如用相角裕量γ来分析控制系统 的性能指标。这时对于系统的绝对稳定性的分析没 有什么影响,但是在γ较大,而kg较小的情况下。对 于系统动态性能的影响是很大的。
5
6
综上所述,求解系统频率特性主要有三种方法: (1)根据系统的微分方程求解稳态解。通过求解正 弦输入信号的稳态输出分量与输人情号的复数比得 到系统的频率特性。 (2)由于系统的频率特性是传递函数的特殊情况, 以s=jω代人传递函数,即得系统的 频率特性。 (3)通过实验方法测定。对于线性稳定系统,当输 入正弦信号的频率不断变化时,记录相应的输出, 绘出系统的幅频特性与相频特性,即得到系统的频 率特性。 注意:频率特性同传递函数一样,也是一种数学 模型,它也包含了系统的结构与参数,反映了系统 的结构性能。 7
49
50
51
2. 相角裕量 设幅频特性过零分贝时的频率为ωc,(幅值穿越频率),则定 义相角裕量γ为 γ=180º +φ(ωc) (5.34) 相角裕量γ指明了如果系统是不稳定系统,那么系统的 开环相频特性还需要改善多少量就成为稳定的了。如果系统 是不稳定的,与上述描述相反。 对于某一控制系统,若相角裕量γ大于零,幅值裕量kg大于1, 则系统稳定,并且γ和kg的值越大,系统稳定程度越好;苦γ 小于零,kg小于1,则系统不稳定。 一阶、二阶系统的γ总是大于零,而kg无穷大。因此, 理论上讲系统不会不稳定。但是,某些一阶和二阶系统的数 学模型是在忽略了一些次要因素后建立的,实际系统常常是 高阶的,其幅值裕度不可能无穷大。因此,开环增益太大, 系统仍可能不稳定。
γ和kg可以用来作为控制系统的开环频域性能指标。 在分析设计一个控制系统时,系统的性能常用γ与kg 的定量值来描述。 在使用时,γ和kg通常是成对使用的,但有时也 使用一个裕量指标,如用相角裕量γ来分析控制系统 的性能指标。这时对于系统的绝对稳定性的分析没 有什么影响,但是在γ较大,而kg较小的情况下。对 于系统动态性能的影响是很大的。
5
6
综上所述,求解系统频率特性主要有三种方法: (1)根据系统的微分方程求解稳态解。通过求解正 弦输入信号的稳态输出分量与输人情号的复数比得 到系统的频率特性。 (2)由于系统的频率特性是传递函数的特殊情况, 以s=jω代人传递函数,即得系统的 频率特性。 (3)通过实验方法测定。对于线性稳定系统,当输 入正弦信号的频率不断变化时,记录相应的输出, 绘出系统的幅频特性与相频特性,即得到系统的频 率特性。 注意:频率特性同传递函数一样,也是一种数学 模型,它也包含了系统的结构与参数,反映了系统 的结构性能。 7
49
50
51
2. 相角裕量 设幅频特性过零分贝时的频率为ωc,(幅值穿越频率),则定 义相角裕量γ为 γ=180º +φ(ωc) (5.34) 相角裕量γ指明了如果系统是不稳定系统,那么系统的 开环相频特性还需要改善多少量就成为稳定的了。如果系统 是不稳定的,与上述描述相反。 对于某一控制系统,若相角裕量γ大于零,幅值裕量kg大于1, 则系统稳定,并且γ和kg的值越大,系统稳定程度越好;苦γ 小于零,kg小于1,则系统不稳定。 一阶、二阶系统的γ总是大于零,而kg无穷大。因此, 理论上讲系统不会不稳定。但是,某些一阶和二阶系统的数 学模型是在忽略了一些次要因素后建立的,实际系统常常是 高阶的,其幅值裕度不可能无穷大。因此,开环增益太大, 系统仍可能不稳定。
2019《自动控制理论教学课件》第五章 控制系统的频域分析.ppt
暂态分量
稳态分量
响应的稳态分量为: 1 uos U m sin t ( ) U m A( ) sin t ( ) 2 2 1 1 1 式中: A( ) 2 2 1 j 1
( ) arctan
1 s j 1 G (s ) G (j ) G (s ) s j e arctan 1 s 1 2 2 可见, A( )、 ( ) 分别为 G (j ) 的幅值 G (j )
和相角 G (j ) 。 设线性定常系统的传递函数为:
G (s ) C (s ) N (s ) N (s) R(s ) D(s ) (s p1 )(s p2 ) (s pn )
§5-8 根据闭环频率特性分析系统的时域响应
§5-1 频率特性及其与时域响应的关系
一、频率特性的基本概念
频率响应:在正弦输入信号的作用下,系统输出的稳态 分量。 频率特性:系统频率响应与正弦输入信号之间的关系。 频域分析法:应用频率特性研究线性系统的经典方法。其 特点是根据系统的开环频率特性去判断闭环系统的性能。
第五章
线性系统的频域分析法
§5-1 频率特性及其与时域响应的关系 §5-2 典型环节的频率特性 §5-3 系统开环频率特性的极坐标图
§5-4 系统开环对数频率特性的绘制 §5-5 乃奎斯特稳定判据和系统的相对稳定性 §5-6 控制系统对数坐标图与稳态误差及瞬态 响应的关系
*§5-7 系统的闭环频率特性
L( ) dB
( )
L( )
0 20
40
( )
0.01 0.1
1
0 30 60 90 10 100
1 ,1 用描点法绘制出 ( ) 曲线如图,图中令:
【精品】自动控制原理-第五章-频域分析法幻灯片
系统开环传函的频率特性称为开环频率特性。
控制系统一般总是由若干环节组成的, 设其开环 传递函数为 :
G(s)=G1(s)G2(s)…Gn(s)
系统的开环频率特性为:
G ( j) G 1 ( j) G 2 ( j) G n ( j)
或
A ( ) e j( ) A 1 ( ) e j 1 ( ) A 2 ( ) e j2 ( ) A n ( ) e jn ( )
在图中 T=0.5, 1/T=2 (rad/sec)
La() 0 2l0o gT
1/T 1/T
惯性环节的对数幅频特性曲线近似为两段直线。两直线 相交,交点处频率 1/T ,称为转折频率。
两直线实际上是对数幅频特性曲线的渐近线,故又称为 对数幅频特性渐近线。
用渐近线代替对数幅频特性曲线,最大误差发生在转折 频率处,即 1/T 处。
➢为了说明对数幅频特性的特点,引进斜率的概念, 即横坐标每变化十倍频程(即变化)所对应的纵坐 标分贝数的变化量。
☆对数幅相频率曲线(尼柯尔斯图)
以角频率为参变量,横坐标是相位,单位采用角度;纵坐 标为幅值,单位采用分贝。
Bode图的优点
幅值的乘除简化为加减; 可以用叠加方法绘制Bode图; 可以用简便方法近似绘制Bode图; 扩大研究问题的范围; 便于用实验方法确定频率特性对应的传递函数。
对数幅频特性:
L ( ) 2 0 lg A ( )~ (lg )
对数相频特性:
()~(lg)
对数幅频特性曲线:横坐标 采用对数分度,取
10为底的对数 lo g 10 ,纵坐标采用线性分度用分贝数
(dB)表示。
对数相频特性曲线:横坐标为角频率仍采用对数分 度,纵坐标采用线性分度用角度表示。
控制系统一般总是由若干环节组成的, 设其开环 传递函数为 :
G(s)=G1(s)G2(s)…Gn(s)
系统的开环频率特性为:
G ( j) G 1 ( j) G 2 ( j) G n ( j)
或
A ( ) e j( ) A 1 ( ) e j 1 ( ) A 2 ( ) e j2 ( ) A n ( ) e jn ( )
在图中 T=0.5, 1/T=2 (rad/sec)
La() 0 2l0o gT
1/T 1/T
惯性环节的对数幅频特性曲线近似为两段直线。两直线 相交,交点处频率 1/T ,称为转折频率。
两直线实际上是对数幅频特性曲线的渐近线,故又称为 对数幅频特性渐近线。
用渐近线代替对数幅频特性曲线,最大误差发生在转折 频率处,即 1/T 处。
➢为了说明对数幅频特性的特点,引进斜率的概念, 即横坐标每变化十倍频程(即变化)所对应的纵坐 标分贝数的变化量。
☆对数幅相频率曲线(尼柯尔斯图)
以角频率为参变量,横坐标是相位,单位采用角度;纵坐 标为幅值,单位采用分贝。
Bode图的优点
幅值的乘除简化为加减; 可以用叠加方法绘制Bode图; 可以用简便方法近似绘制Bode图; 扩大研究问题的范围; 便于用实验方法确定频率特性对应的传递函数。
对数幅频特性:
L ( ) 2 0 lg A ( )~ (lg )
对数相频特性:
()~(lg)
对数幅频特性曲线:横坐标 采用对数分度,取
10为底的对数 lo g 10 ,纵坐标采用线性分度用分贝数
(dB)表示。
对数相频特性曲线:横坐标为角频率仍采用对数分 度,纵坐标采用线性分度用角度表示。
5第五章控制系统的频域分析法PPT课件
的全部结构和参数。 ④频率特性和微分方程及传递函数一样,也是系统或元件的动 态数学模型。 ⑤利用频率特性法可以根据系统的开环频率特性分析闭环系统 的性能。
上一页 下一页 返7 回
5.1 频率特性的概念
5.1.4 频率特性的图形表示方法
1.幅相频率特性曲线
幅相频率特性曲线又称为极坐标或奈奎斯特(Nyquist)曲线。
它是根据频率特性的表达式,G (j) |G (j)|e j G (j ) A () e j ( ) 计算
出当 从 0 变化时,对应于每一个 值的幅值 A ( ) 和
相位 ( ) ,将 A ( ) 和 ( ) 同时表示在复平面上所得到的图形。
2.对数频率特性曲线
对数频率特性曲线又称为伯德(Bode)图,包括对数幅频特性
为分贝(dB),其值为 20lgA()。 对数幅频特征曲线的横轴标为 ,但实际表示的是 l g 。
上一页 下一页 返9 回
5.1 频率特性的概念
l g 和 间存在如下关系: l g 每变化一个单位长度, 将
变化10倍(称为10倍频程,记为dec)。横轴对 l g 是 等分的,对
是对 数的(不均匀的),两者的对应关系见图5.5的横轴对照表。
()=-2 90
上一页 下一页 1返2 回
5.2 典型环节的伯德图
由对数频率特性可知,积分环节的对数幅频特性 L ( ) 为斜率
是 20dB/dec的斜直线;对数相频特性 ( ) 为一条-90°的水
平直线。其伯德图如图5.8所示。
比例环节的幅相频率特性为
G(j)1 j11ej2 j
前(滞后)了 角 。响应曲线如图5.2(b)所示。
这些特性表明,当线性系统输入信号为正弦量时,其稳态输出
上一页 下一页 返7 回
5.1 频率特性的概念
5.1.4 频率特性的图形表示方法
1.幅相频率特性曲线
幅相频率特性曲线又称为极坐标或奈奎斯特(Nyquist)曲线。
它是根据频率特性的表达式,G (j) |G (j)|e j G (j ) A () e j ( ) 计算
出当 从 0 变化时,对应于每一个 值的幅值 A ( ) 和
相位 ( ) ,将 A ( ) 和 ( ) 同时表示在复平面上所得到的图形。
2.对数频率特性曲线
对数频率特性曲线又称为伯德(Bode)图,包括对数幅频特性
为分贝(dB),其值为 20lgA()。 对数幅频特征曲线的横轴标为 ,但实际表示的是 l g 。
上一页 下一页 返9 回
5.1 频率特性的概念
l g 和 间存在如下关系: l g 每变化一个单位长度, 将
变化10倍(称为10倍频程,记为dec)。横轴对 l g 是 等分的,对
是对 数的(不均匀的),两者的对应关系见图5.5的横轴对照表。
()=-2 90
上一页 下一页 1返2 回
5.2 典型环节的伯德图
由对数频率特性可知,积分环节的对数幅频特性 L ( ) 为斜率
是 20dB/dec的斜直线;对数相频特性 ( ) 为一条-90°的水
平直线。其伯德图如图5.8所示。
比例环节的幅相频率特性为
G(j)1 j11ej2 j
前(滞后)了 角 。响应曲线如图5.2(b)所示。
这些特性表明,当线性系统输入信号为正弦量时,其稳态输出
自动控制原理 第五章 控制系统的频域分析法
则
uos (t) = A ⋅ A(ω)sin[ω t + ϕ(ω)]
(5.2)
结论:
(1) 稳态解与输入信号为同一频率的正弦量;
(2) 当ω 从 0 向∞变化时,其幅值之比 A(ω) 和相位差ϕ(ω) 也将随之变化,其变化规
律由系统的固有参数 RC 决定; (3) 系统稳态解的幅值之比 A(ω) 是ω 的函数,其比值为
三角函数形式: G( jω) = A(ω)[cosϕ(ω) + jsinϕ(ω)] 。
式中 A(ω) = G( jω) 是幅值比,为ω 的函数,称为幅频特性;
ϕ(ω) = ∠G( jω) 是相位差,为ω 的函数,称为相频特性; U (ω) 是 G( jω) 的实部,为ω 的函数,称为实频特性; V (ω) 是 G( jω) 的虚部,为ω 的函数,称为虚频特性。
s + p1 s + p2
s + pn s + jω s − jω
∑n
=
Ci
+
B
+
D
i=1 s + pi s + jω s − jω
(5.4)
式中 Ci , B , D 均为待定系数。
将(5.4)式进行拉氏反变换,得系统的输出响应为
n
∑ c(t) = Cie− pi t + (Be− jω t + Dejω t ) = ct (t) + cs (t) i =1
C( jω) = G( jω)R( jω)
因而,得
G( jω) = C( jω) R( jω)
(5.11)
事实上,当ω 从 0 向∞变化时, G( jω) 将对不同的ω 作出反映,这种反映是由系统自
第5章 控制系统的频域分析
曲线为每十倍频程衰减20dB的一条斜线,此线通过ω=1、 L(ω)=0dB的点。
积分环节的对数相频特性表达式为
积分环 节 的 伯 德 图 如 图 5-12 所 示。
第5章 控制系统的频域分析
图5-12 积分环节的伯德图
第5章 控制系统的频域分析 3.微分环节
第5章 控制系统的频域分析
图5-13 微分环节的极坐标图
第5章 控制系统的频域分析
图5-9 比例环节的极坐标图
第5章 控制系统的频域分析 2)伯德图 比例环节的对数幅频特性表达式为
其对数相频特性表达式为
比例环节的对数频率特性曲线(即伯德图)如图5-10所示。
第5章 控制系统的频域分析
图5-10 比例环节的伯德图
第5章 控制系统的频域分析 2.积分环节 积分环节的传递函数为
第5章 控制系统的频域分析
图5-21 二阶比例微分环节的伯德图
第5章 控制系统的频域分析 8.延迟环节
第5章 控制系统的频域分析
图5-22 延迟环节的极坐标图和伯德图
第5章 控制系统的频域分析 5.3 系统的开环频率特性
第5章 控制系统的频域分析
5.3.1 最小相位系统和非最小相位系统 若控制系统开环传递函数的所有零、极点都位于虚轴以
图5-1 典型一阶系统
第5章 控制系统的频域分析
第5章 控制系统的频域分析 对于图5-2所示的一般线性定常系统,可列出描述输出量
c(t)和输入量r(t)关系的微分方程:
图5-2 一般线性定常系统
第5章 控制系统的频域分析 与其对应的传递函数为
如果在系统输入端加一个正弦信号,即 式中,R0是幅值,ω 是角频率。由于 所以
第5章 控制系统的频域分析
积分环节的对数相频特性表达式为
积分环 节 的 伯 德 图 如 图 5-12 所 示。
第5章 控制系统的频域分析
图5-12 积分环节的伯德图
第5章 控制系统的频域分析 3.微分环节
第5章 控制系统的频域分析
图5-13 微分环节的极坐标图
第5章 控制系统的频域分析
图5-9 比例环节的极坐标图
第5章 控制系统的频域分析 2)伯德图 比例环节的对数幅频特性表达式为
其对数相频特性表达式为
比例环节的对数频率特性曲线(即伯德图)如图5-10所示。
第5章 控制系统的频域分析
图5-10 比例环节的伯德图
第5章 控制系统的频域分析 2.积分环节 积分环节的传递函数为
第5章 控制系统的频域分析
图5-21 二阶比例微分环节的伯德图
第5章 控制系统的频域分析 8.延迟环节
第5章 控制系统的频域分析
图5-22 延迟环节的极坐标图和伯德图
第5章 控制系统的频域分析 5.3 系统的开环频率特性
第5章 控制系统的频域分析
5.3.1 最小相位系统和非最小相位系统 若控制系统开环传递函数的所有零、极点都位于虚轴以
图5-1 典型一阶系统
第5章 控制系统的频域分析
第5章 控制系统的频域分析 对于图5-2所示的一般线性定常系统,可列出描述输出量
c(t)和输入量r(t)关系的微分方程:
图5-2 一般线性定常系统
第5章 控制系统的频域分析 与其对应的传递函数为
如果在系统输入端加一个正弦信号,即 式中,R0是幅值,ω 是角频率。由于 所以
第5章 控制系统的频域分析
第五章自动控制系统的频域分析法
s
频率特性: G ( j ) j 对数幅频特性为:20lg |
j | 20lg dB
0
对数相频特性为: ( ) 90
其幅相曲线图和对数频率特性图分别如下图所示:
一阶微分环节(Ts 1, T 0 )
频率特性:G( j) jT 1
2
对数幅频特性: L() 20lg | G( j) | 10lg(1 (T) )
( )
( n m)
20lg K
0
2
2
( n m)
2
3 2
( n m)
2
( n m)
2
2
2
( n m)
带二阶零阻尼系统开环传递函数幅相曲线的绘制 不失一般性,现设二阶系统的开环传递函数如下:
G( j) G(s) |s j R() jX ()
其中:R( ) Re[G( j )], X ( ) Im[G( j )] 系统频率特性也可通过幅值 | G( j ) | 和相角 ( ) 表示成 如下形式:
G( j) | G( j) | e j ( j ) | G() | [()]
j 1 l
k
m
2 (1 jTi ) (1 2 ) k i 1 k 1
幅频特性为:
2 | G( j ) H ( j ) | K [1 ( j ) 2 ]1 / 2 [1 (Ti ) 2 ] (1 2 ) k j 1 i 1 k 1 m n2l 1 2 l
2 n 对数相频特性: ( ) arctan 2 1 2 n