2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·重庆(理科数学)

合集下载

2014年高考真题精校精析纯word可编辑·2014高考真题解析 全国新课标卷Ⅰ化学

2014年高考真题精校精析纯word可编辑·2014高考真题解析 全国新课标卷Ⅰ化学

2014·新课标全国卷Ⅰ(课标化学)7.[2014·新课标全国卷Ⅰ] 下列化合物中同分异构体数目最少的是(A.戊烷B.戊醇C.戊烯D.乙酸乙酯7.A[解析] A项戊烷有3种同分异构体,即正戊烷、异戊烷和新戊烷;B项可看成是戊烷的3种同分异构体中有1个H被—OH取代得到的产物,有8种同分异构体;C项有5种同分异构体,即CH2===CHCH2CH2CH3、CH3CH===CHCH2CH3、CH2===C(CH3) CH2CH3、(CH3)2C===CH2CH3和(CH3)2CHCH===CH2;D项有6种同分异构体,即甲酸丙酯、甲酸异丙酯、乙酸乙酯、丙酸甲酯、丁酸、2-甲基丙酸。

8.[2014·新课标全国卷Ⅰ] 化学与社会、生活密切相关。

对下列现象或事实的解释正确的是()8.C[解析] 在加热、碱性环境下,油污能够彻底水解,A项错误;Ca(ClO)2与空气中的CO2和水蒸气反应生成CaCO3和HClO,导致漂白粉变质,而CaCl2与CO2不反应,B项错误;K2CO3与NH4Cl混合施用,发生双水解反应释放出NH3,降低肥效,C项正确;FeCl3与Cu的反应为2FeCl3+Cu===2FeCl2+CuCl2,但FeCl3溶液不能将Cu2+还原为Cu,D项错误。

9.[2014·新课标全国卷Ⅰ] 已知分解1 mol H2O2放出热量98 kJ。

在含少量I-的溶液中,H2O2分解的机理为H2O2+I-―→H2O+IO-慢H2O2+IO-―→H2O+O2+I-快下列有关该反应的说法正确的是()A.反应速率与I-浓度有关B.IO-也是该反应的催化剂C.反应活化能等于98 kJ·mol-1D.v(H2O2)=v(H2O)=v(O2)9.A[解析] H2O2的分解反应主要由慢反应决定,且I-浓度越大反应速率越快,A项正确;合并题中两反应,可知I-为催化剂,而IO-为中间产物,B项错误;1 mol H2O2分解时反应热为-98 kJ·mol-1,并不是活化能,C项错误;根据化学计量数关系可确定v(H2O2)=v(H2O)=2v(O2),D项错误。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·四川(理科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·四川(理科数学)

2014·四川卷(理科数学)1.[2014·四川卷] 已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B =( ) A .{-1,0,1,2}B .{-2,-1,0,1} C .{0,1}D .{-1,0} 1.A [解析]由题意可知,集合A ={x |-1≤x ≤2},其中的整数有-1,0,1,2,故A ∩B ={-1,0,1,2},故选A.2.[2014·四川卷] 在x (1+x )6的展开式中,含x 3项的系数为( ) A .30B .20C .15D .102.C [解析]x (1+x )6的展开式中x 3项的系数与(1+x )6的展开式中x 2项的系数相同,故其系数为C 26=15.3.[2014·四川卷] 为了得到函数y =sin(2x +1)的图像,只需把函数y =sin2x 的图像上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度3.A [解析]因为y =sin(2x +1)=sin2⎝⎛⎭⎫x +12,所以为得到函数y =sin(2x +1)的图像,只需要将y =sin2x 的图像向左平行移动12个单位长度.4.[2014·四川卷] 若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c4.D [解析]因为c <d <0,所以1d <1c <0,即-1d >-1c >0,与a >b >0对应相乘得,-a d >-bc >0,所以ad <bc.故选D. 5.,[2014·四川卷] 执行如图1-1所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图1-1A .0B .1C .2D .35.C [解析]题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.6.[2014·四川卷] 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种6.B [解析]当甲在最左端时,有A 55=120(种)排法;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有A 11A 14A 44=4×24=96(种)排法,共计120+96=216(种)排法.故选B.7.[2014·四川卷] 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .27.2 [解析]c =m a +b =(m +4,2m +2),由题意知a ·c |a |·|c |=b ·c |b |·|c |,即(1,2)·(m +4,2m +2)12+22=(4,2)·(m +4,2m +2)42+22,即5m +8=8m +202,解得m =2.图1-28.[2014·四川卷] 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点,设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.⎣⎡⎦⎤33,1B.⎣⎡⎦⎤63,1C.⎣⎡⎦⎤63,223 D.⎣⎡⎦⎤223,18.B [解析]连接A 1O ,OP 和P A 1,不难知∠POA 1就是直线OP 与平面A 1BD 所成的角(或其补角)设正方体棱长为2,则A 1O = 6.(1)当P 点与C 点重合时,PO =2,A 1P =23,且cos α=6+2-122×6×2=-33,此时α=∠A 1OP 为钝角,sin α=1-cos 2α=63; (2)当P 点与C 1点重合时,PO =A 1O =6,A 1P =22,且cos α=6+6-82×6×6=13,此时α=∠A 1OP 为锐角,sin α=1-cos 2α=223; (3)在α从钝角到锐角逐渐变化的过程中,CC 1上一定存在一点P ,使得α=∠A 1OP =90°.又因为63<223,故sin α的取值范围是⎣⎡⎦⎤63,1,故选B. 9.[2014·四川卷] 已知f (x )=ln(1+x )-ln(1-x ),x ∈(-1,1).现有下列命题: ①f (-x )=-f (x );②f ⎝⎛⎭⎫2x1+x 2=2f (x );③|f (x )|≥2|x |.其中的所有正确命题的序号是( ) A .①②③B .②③C .①③D .①② 9.A [解析]f (-x )=ln(1-x )-ln(1+x ) =ln1-x 1+x =-ln 1+x1-x=-[]ln (1+x )-ln (1-x ) =-f (x ),故①正确;当x ∈(-1,1)时,2x 1+x 2∈(-1,1),且f ⎝⎛⎭⎫2x 1+x 2=ln ⎝⎛⎭⎫1+2x 1+x 2-ln ⎝⎛⎭⎫1-2x 1+x 2=ln 1+2x1+x 21-2x 1+x 2=ln 1+x 2+2x 1+x 2-2x =ln ⎝ ⎛⎭⎪⎫1+x 1-x 2=2ln 1+x 1-x =2[ln(1+x )-ln(1-x )]=2f (x ),故②正确;由①知,f (x )为奇函数,所以|f (x )|为偶函数,则只需判断当x ∈[0,1)时,f (x )与2x 的大小关系即可.记g (x )=f (x )-2x ,0≤x <1,即g (x )=ln(1+x )-ln(1-x )-2x ,0≤x <1,g ′(x )=11+x +11-x -2=2x 21-x 2,0≤x <1.当0≤x <1时,g ′(x )≥0,即g (x )在[0,1)上为增函数,且g (0)=0,所以g (x )≥0, 即f (x )-2x ≥0,x ∈[0,1),于是|f (x )|≥2|x |正确. 综上可知,①②③都为真命题,故选A. 10.,[2014·四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3C.1728D.1010.B [解析]由题意可知,F ⎝⎛⎭⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2,解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)=1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y 1|+12×2|y 2|+12×14|y 1|=18(9|y 1|+8|y 2|)≥18×29|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B. 11.[2014·四川卷] 复数2-2i1+i =________.11.-2i [解析]2-2i 1+i =2(1-i )2(1+i )(1-i )=-2i.12.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 12.1 [解析]由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12=f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1. 13.,[2014·四川卷] 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高度是46m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,3≈1.73)图1-313.60 [解析]过A 点向地面作垂线,记垂足为D ,则在Rt △ADB 中,∠ABD =67°,AD =46m ,∴AB =AD sin67°=460.92=50(m),在△ABC 中,∠ACB =30°,∠BAC =67°-30°=37°,AB =50m , 由正弦定理得,BC =AB sin37°sin30°=60 (m),故河流的宽度BC 约为60m. 14.,[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.14.5 [解析]由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10.∴|P A ||PB |≤|P A |2+|PB |22=5,当且仅当|P A |=|PB |时等号成立. 15.,[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号) 15.①③④ [解析]若f (x )∈A ,则f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (a 0)=b -g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确. 16.,,,[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos2α,求cos α-sin α的值.16.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 得α=3π4+2k π,k ∈Z ,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 17.,,,[2014·四川卷] 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.17.解:(1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为:(2)设“第i i P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负.因此,多次游戏之后分数减少的可能性更大. 18.,,,[2014·四川卷] 三棱锥A -BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点; (2)求二面角A -NP -M 的余弦值.图1-418.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A -NP -M 的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.故二面角A -NP -M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). 设二面角A -NP -M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105. 故二面角A -NP -M 的余弦值是105. 19.,[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln2)(x -a 2), 其在x 轴上的截距为a 2-1ln2.由题意有a 2-1ln2=2-1ln2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.20.,,[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点);②当|TF ||PQ |最小时,求点T 的坐标.20.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ), 则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m .直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.设M 为PQ 的中点,则M 点的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3.所以直线OM 的斜率k OM =-m3,又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上,因此OT 平分线段PQ .②由①可得,|TF |=m 2+1,|PQ |=(x 1-x 2)2+(y 1-y 2)2=(m 2+1)[(y 1+y 2)2-4y 1y 2]=(m 2+1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫4m m 2+32-4·-2m 2+3 =24(m 2+1)m 2+3. 所以|TF ||PQ |=124·(m 2+3)2m 2+1= 124⎝⎛⎭⎫m 2+1+4m 2+1+4≥124(4+4)=33. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值. 故当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1). 21.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ; 当12<a <e 2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b . (2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负.故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点; 当a ≥e 2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意. 所以12<a <e 2. 此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )).若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0,故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).。

2014年高考真题精校精析纯word可编辑·2014高考真题解析 重庆卷生物

2014年高考真题精校精析纯word可编辑·2014高考真题解析 重庆卷生物

2014·重庆卷(课标生物)1.A3、C5、D1[2014·重庆卷] 下列与实验有关的叙述,正确的是()A.人的口腔上皮细胞经处理后被甲基绿染色,其细胞核呈绿色B.剪取大蒜根尖分生区,经染色在光镜下可见有丝分裂各时期C.叶绿体色素在层析液中的溶解度越高,在滤纸上扩散就越慢D.在光镜的高倍镜下观察新鲜菠菜叶装片,可见叶绿体的结构1.A[解析] 人体口腔上皮细胞DNA主要分布在细胞核,DNA被甲基绿染成绿色,A项正确。

在观察大蒜根尖细胞有丝分裂实验中,需经过解离、漂洗、染色、制片等过程才能对细胞进行观察,B项错误。

叶绿体色素在层析液中的溶解度越高,在滤纸上扩散的速度越快,C项错误。

在光镜下观察新鲜菠菜叶装片,可以看到呈球形或椭球形的叶绿体,但其亚显微结构需在电子显微镜下才能观察到,D项错误。

2.L10[2014·重庆卷] 生物技术安全性和伦理问题是社会关注的热点。

下列叙述,错误的是()A.应严格选择转基因植物的目的基因,避免产生对人类有害的物质B.当今社会的普遍观点是禁止克隆人的实验,但不反对治疗性克隆C.反对设计试管婴儿的原因之一是有人滥用此技术选择性设计婴儿D.生物武器是用微生物、毒素、干扰素及重组致病菌等来形成杀伤力2.D[解析] 在应用基因工程技术培育转基因植物时,应避免选择可能产生对人类有害物质的目的基因,A项正确。

在对克隆技术引发的伦理问题的争论中,普遍的观点是禁止克隆人的实验,但不反对治疗性克隆,B项正确。

在对胚胎工程技术引发的伦理问题的争论中,反对设计试管婴儿的原因之一是可能有人滥用此技术选择性设计婴儿,C项正确。

生物武器种类包括致病菌、病毒、基因重组的致病菌、生化毒剂等,不包括干扰素,干扰素是动物细胞在受到某些病毒感染后分泌的具有抗病毒功能的宿主特异性糖蛋白,D项错误。

3.H5[2014·重庆卷] 驻渝某高校研发的重组幽门螺杆菌疫苗,对该菌引发的胃炎等疾病具有较好的预防效果。

2014年高考真题精校精析纯word可编辑·2014高考真题解析 英语重庆卷

2014年高考真题精校精析纯word可编辑·2014高考真题解析 英语重庆卷

-2014·重庆卷一、单项填空(共15小题;每小题1分,满分15分)请从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。

1. [2014·重庆卷] A smile costs ________,but gives much.A. anythingB. somethingC. nothingD. everything1.C考查代词的用法。

句意:微笑什么都不会花费,但却带来很多。

but表示转折,nothing与much形成语义上的对比。

故选C。

2. [2014·重庆卷] —Why not stay here a little longer?—________,but I really have to go.A. Never mindB. I'd love toC. Pleased to meet youD. I can't find any reason2.B考查情景交际。

I'd love to…或I'd like to…是一种委婉的推辞,答语意思是“我本来想留下来,但我不得不离开”。

never mind意为“不要紧,没关系,别紧张”,常用来安慰他人;pleased to meet you用于见面开始时的寒暄;而I can't find any reason则是不礼貌的表达。

3. [2014·重庆卷] I've ordered some pizza, so we ________ worry about cooking when we get home tired.A. can'tB. dare notC. needn'tD. may not3.C考查情态动词的用法。

句意:我已经订了披萨,因此当我们很累地回到家时没有必要担心做饭的事情。

need表示必要性;can多表能力或推测;dare表示胆量;may则表示准许或可能。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·湖北(理科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·湖北(理科数学)

2014²湖北卷(理科数学)1.[2014·湖北卷] i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( )A .-1B .1C .-iD .i1.A [解析]⎝ ⎛⎭⎪⎫1-i 1+i 2=-2i 2i =-1.故选A. 2.[2014·湖北卷] 若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2B.54C .1D.242.C [解析]展开式中含1x 3的项是T 6=C 57(2x )2⎝⎛⎭⎫a x 5=C 5722a 5x -3,故含1x3的项的系数是C 5722a 5=84,解得a =1.故选C.3.[2014·湖北卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.C [解析]若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由维思图可知,一定存在C =A ,满足A ⊆C ,B ⊆∁U C ,故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.故选C.4.[2014·得到的回归方程为y =bx +a ,则( ) A .a >0,b >0B .a >0,b <0 C .a <0,b >0D .a <0,b <04.B [解析]观察图象可知,回归直线y =bx +a 的斜率b <0,截距a >0.故a >0,b <0.故选B. 5.[2014·湖北卷] 在如图1-1所示的空间直角坐标系O ­xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B5.D [解析]由三视图及空间直角坐标系可知,该几何体的正视图显然是一个直角三角形且内有一条虚线(一锐角顶点与其所对直角边中点的连线),故正视图是④;俯视图是一个钝角三角形,故俯视图是②.故选D.6.[2014·湖北卷] 若函数f (x ),g (x )满足⎠⎛-11f(x)g(x)d x =0,则称f(x),g(x)为区间[-1,1]上的一组正交函数,给出三组函数:①f(x)=sin 12x ,g(x)=cos 12x ;②f(x)=x +1,g(x)=x -1;③f(x)=x ,g(x)=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A .0B .1C .2D .36.C [解析]由题意,要满足f(x),g(x)是区间[-1,1]上的正交函数,即需满足⎠⎛-11f(x)g(x)d x =0.①⎠⎛-11f(x)g(x)d x =⎠⎛-11sin 12x cos 12x d x =12⎠⎛-11sin x d x =⎝⎛⎭⎫-12cos x 1-1=0,故第①组是区间[-1,1]上的正交函数; ②⎠⎛-11f(x)g(x)d x =⎠⎛-11(x +1)(x -1)d x =⎝⎛⎭⎫x 33-x 1-1=-43≠0,故第②组不是区间[-1,1]上的正交函数;③⎠⎛-11f(x)g(x)d x =⎠⎛-11x ²x 2d x =x 4411=0,故第③组是区间[-1,1]上的正交函数.综上,是区间[-1,1]上的正交函数的组数是2.故选C . 7.[2014·湖北卷] 由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.787.D [解析]作出Ω1,Ω2表示的平面区域如图所示,S Ω1=S △AOB =12³2³2=2,S △BCE =12³1³12=14,则S 四边形AOEC =S Ω1-S △BCE =2-14=74.故由几何概型得,所求的概率P =S 四边形AOEC S Ω1=742=78.故选D.8.[2014·湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L 2h 相当于将圆锥体积公式中的π近似取为( ) A.227B.258C.15750D.3551138.B [解析]设圆锥的底面圆半径为r ,底面积为S ,则L =2πr ,由题意得136L 2h ≈13Sh ,代入S =πr 2化简得π≈3;类比推理,若V =275L 2h ,则π≈258.故选B.9.、[2014·湖北卷] 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233C .3D .29.A [解析]设|PF 1|=r 1,|PF 2|=r 2,r 1>r 2,椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2.则由椭圆、双曲线的定义,得r 1+r 2=2a 1,r 1-r 2=2a 2,平方得4a 21=r 21+r 22+2r 1r 2,4a 22=r 21-2r 1r 2+r 22.又由余弦定理得4c 2=r 21+r 22-r 1r 2,消去r 1r 2,得a 21+3a 22=4c 2,即1e 21+3e 22=4.所以由柯西不等式得⎝⎛⎭⎫1e 1+1e 22=⎝ ⎛⎭⎪⎫1e 1+13³3e 22≤⎝⎛⎭⎫1e 21+3e 22⎝⎛⎭⎫1+13=163.所以1e 1+1e 2≤433.故选A.10.[2014·湖北卷] 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,33 10.B [解析]因为当x ≥0时,f (x )=12()||x -a 2+||x -2a 2-3a 2,所以当0≤x ≤a 2时,f (x )=12()a 2-x +2a 2-x -3a 2=-x ; 当a 2<x <2a 2时,f (x )=12()x -a 2+2a 2-x -3a 2=-a 2;当x ≥2a 2时,f (x )=12()x -a 2+x -2a 2-3a 2=x -3a 2.综上,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66.故选B. 11.[2014·湖北卷] 设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.11.±3 [解析]因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )·(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.12.[2014·湖北卷] 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.12.2 [解析]依题意得,圆心O 到两直线l 1:y =x +a ,l 2:y =x +b 的距离相等,且每段弧长等于圆周的14,即|a |2=|b |2=1³sin45°,得|a |=|b |=1.故a 2+b 2=2.13.[2014·湖北卷] 设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =815,则I (a )=158,D (a )=851).阅读如图1-2所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.13.495 [解析]取a 1=815⇒b 1=851-158=693≠815⇒a 2=693; 由a 2=693⇒b 2=963-369=594≠693⇒a 3=594; 由a 3=594⇒b 3=954-459=495≠594⇒a 4=495; 由a 4=495⇒b 4=954-459=495=a 4⇒b =495.14.、[2014·湖北卷] 设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ),例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b2,即M f (a ,b )为a ,b 的算术平均数.(1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数;(2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2aba +b.(以上两空各只需写出一个符合要求的函数即可)14.(1)x (2)x (或填(1)k 1x ;(2)k 2x ,其中k 1,k 2为正常数) [解析]设A (a ,f (a )),B (b ,-f (b )),C (c ,0),则此三点共线:(1)依题意,c =ab ,则0-f (a )c -a =0+f (b )c -b,即0-f (a )ab -a =0+f (b )ab -b.因为a >0,b >0,所以化简得f (a )a =f (b )b,故可以选择f (x )=x (x >0);(2)依题意,c =2aba +b,则0-f (a )2ab a +b -a =0+f (b )2ab a +b-b ,因为a >0,b >0,所以化简得f (a )a =f (b )b,故可以选择f (x )=x (x >0). 15.[2014·湖北卷] (选修4-1:几何证明选讲) 如图1-3,P 为⊙O 外一点,过P 点作⊙O 的两条切线,切点分别为A ,B ,过P A 的中点Q 作割线交⊙O 于C ,D ________.15.4 [解析]由切线长定理得QA 2=QC ·QD =1³(1+3)=4,解得QA =2.故PB =P A =2QA =4.16.[2014·湖北卷] (选修4-4:坐标系与参数方程)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________. 16.()3,1 [解析]由⎩⎪⎨⎪⎧x =t ,y =3t 3,消去t 得y =33x (x ≥0),即曲线C 1的普通方程是y =33x (x ≥0);由ρ=2,得ρ2=4,得x 2+y 2=4,即曲线C 2的直角坐标方程是x 2+y 2=4.联立⎩⎪⎨⎪⎧y =33x (x ≥0),x 2+y 2=4,解得⎩⎨⎧x =3,y =1.故曲线C 1与C 2的交点坐标为()3,1. 17.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?17.解:(1)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得的最大值是12,最小值是8.故实验室这一天的最高温度为12℃,最低温度为8℃,最大温差为4℃. (2)依题意,当f (t )>11时,实验室需要降温.由(1)得f (t )=10-2sin ⎝⎛⎭⎫π12t +π3,故有10-2sin ⎝⎛⎭⎫π12t +π3>11,即sin ⎝⎛⎭⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温. 18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 19.、、、[2014·湖北卷] 如图1-4,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ .(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.19.解:方法一(几何方法):(1)证明:如图①,连接AD 1,由ABCD ­A 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1,所以BC 1∥FP . 而FP ⊂平面EFPQ .(2)如图②,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且EF =12BD .又DP =BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD ,从而EF ∥PQ ,且EF =12PQ .在Rt △EBQ 和Rt △FDP 中,因为BQ =DP =λ,BE =DF =1, 于是EQ =FP =1+λ2,所以四边形EFPQ 也是等腰梯形. 同理可证四边形PQMN 也是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连接EM ,FN ,则由EF ∥MN ,且EF =MN 知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点, 所以GH =ME =2.在△GOH 中,GH 2=4,OH 2=1+λ2-⎝⎛⎭⎫222=λ2+12,OG 2=1+(2-λ)2-⎝⎛⎫222=(2-λ)2+12,由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±22,故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.方法二(向量方法):以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图③所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1→=(-2,0,2),FP =(-1,0,λ),FE =(1,1,0). (1)证明:当λ=1时,FP =(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →²n =0,FP →·n =0可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1). 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角, 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.20.、、、、[2014·湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量....X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多..有1年的年入流量超过120的概率. (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?20.解:(1)依题意,p 1=P (40<X <80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p =C 04(1-p 3)4+C 14(1-p 3)3p 3=0.94+4³0.93³0.1=0.9477. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5000,E (Y )=5000³1=5000.②安装2台发电机的情形. 依题意,当40<X <80时,一台发电机运行,此时Y =5000-800=4200,因此P (Y =4200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5000³2=10000,因此P (Y =10000)=P (X ≥80)=p 2+p 3所以,E (Y )=4200³0.2+③安装3台发电机的情形. 依题意,当40<X <80时,一台发电机运行,此时Y =5000-1600=3400,因此P (Y =3400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5000³2-800=9200,因此P (Y =9200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5000³3=15000,因此P (Y =所以,E (Y )=3400³综上,欲使水电站年总利润的均值达到最大,应安装发电机2台. 21.、、[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.21.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1, 化简整理得y 2=2(|x |+x ).故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1. 当k ≠0时,方程①的判别式Δ=-16(2k 2+k -1).②设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(i)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点.故此时直线l 与轨迹C 恰好有一个公共点.(ii)若⎩⎪⎨⎪⎧Δ=0,x 0<0,或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-1,12或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点.当k ∈⎣⎡⎭⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点. 故当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点.(iii)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由②③解得-1<k <-12或0<k <12.即当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与C 1有两个公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点.综上可知,当k ∈()-∞,-1∪⎝⎛⎭⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与轨迹C 恰好有三个公共点.22.[2014·湖北卷] π为圆周率,e =2.71828…为自然对数的底数.(1)求函数f (x )=ln xx 的单调区间;(2)求e 3,3e,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.22.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln3<eln π,πlne<πln3,即ln3e <ln πe ,lne π<ln3π. 于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π.故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中.由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln33<lnee .由ln ππ<ln33,得ln π3<ln3π,所以3π>π3;由ln33<lnee,得ln3e <lne 3,所以3e <e 3. 综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3.又由(2)知,ln ππ<lne e ,得πe <e π.故只需比较e 3与πe 和e π与π3的大小.由(1)知,当0<x <e 时,f (x )<f (e)=1e,即ln x x <1e. 在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-eπ.①由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7³⎝⎛⎭⎫2-2.723.1>2.7³(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >lne 3,所以e 3<πe .又由①得,3ln π>6-3eπ>6-e>π,即3ln π>π,所以e π<π3.综上可得,3e <e 3<πe <e π<π3<3π,即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π.第11 页共11 页。

2014年高考真题精校精析纯word可编辑·2014高考真题解析 政治全国卷Ⅱ

2014年高考真题精校精析纯word可编辑·2014高考真题解析 政治全国卷Ⅱ

2014·新课标全国卷Ⅱ(课标政治)12.A1[2014·新课标全国卷Ⅱ]劳动价值论认为,货币是从商品中分离出来固定地充当一般等价物的商品。

在货币产生以后,下列关于价格的说法正确的是()①流通中商品价格的高低是由流通中货币的多少决定的②价格是通过一定数量的货币表现出来的商品价值③价格是商品使用价值在量上的反映,使用价值越大价格越高④价格是一种使用价值与另一种使用价值相交换的量的比例A.①③B.①④C.②③D.②④12.D[解析]本题考查价格的知识。

②是价格的含义,正确。

1件商品的价格可以表示为一定数量的货币,而货币是从商品中分离出来固定地充当一般等价物的商品,从这个角度看,商品的价格是一种使用价值与另一种使用价值相交换的量的比例,④说法正确。

商品的价格是由价值决定的,①说法错误。

价格是商品价值在量上的反映,价值越大价格越高,使用价值不能决定价值,③说法错误。

故选D项。

13.C2[2014·新课标全国卷Ⅱ]2013年12月,财政部公布了《2014年关税实施方案》,宣布对760多种进口商品实施低于最惠国税率的年度进口暂定税率。

作为世界最大的外汇储备国,在其他条件不变的情况下,我国降低进口关税能()①改善国际收支结构②鼓励企业海外投资③刺激居民消费需求④缩小居民收入差距A.①③B.①④C.②③D.②④13.A[解析]本题考查税收的作用。

作为世界最大的外汇储备国,在其他条件不变的情况下,我国降低进口关税会增加进口,外汇储备则减少,这有利于改善国际收支结构,①符合题意。

降低关税,进口商品的价格会下降,人们对进口商品的购买力增加,有利于刺激居民消费需求,③符合题意。

②④与材料不符。

14.D1[2014·新课标全国卷Ⅱ]近年来,我国多地多次出现了空气严重污染的雾霾天气,PM2.5(细颗粒物)是导致雾霾的重要因素。

下图为某市PM2.5主要污染物来源的构成图。

为治理空气污染,该市政府可采取的经济措施是()A.提高燃煤企业排污标准B.加强环境保护执法力度C.增加财政投入扶持清洁能源技术研发与推广D.限制企业和居民对机动车的购买和使用14.C[解析]本题考查宏观调控的知识。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·全国新课标卷Ⅰ(文科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·全国新课标卷Ⅰ(文科数学)

2014·全国新课标卷Ⅰ(文科数学)1.[2014·全国新课标卷Ⅰ] 已知集合M ={x |-1<x <3},N ={-2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)1.B [解析]利用数轴可知M ∩N ={x |-1<x <1}. 2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0B .cos α>0 C .sin2α>0D .cos2α>0 2.C [解析]因为sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C.3.[2014·全国新课标卷Ⅰ] 设z =11+i+i ,则|z |=( ) A.12B.22C.32D .2 3.B [解析]z =11+i+i =1-i 2+i =12+12i ,则|z |=22.4.[2014·全国新课标卷Ⅰ] 已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2B.62C.52D .1 4.D [解析]因为c 2=a 2+3,所以e =ca=a 2+3a2=2,得a 2=1,所以a =1. 5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数5.C [解析]因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )·g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;f (-x )|g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确; |f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错. 6.[2014·全国新课标卷Ⅰ] 设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD →C.12BC →D.BC → 6.A [解析] EB +FC =EC +CB +FB +BC =12AC +12AB =AD .7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析]函数y =cos|2x |=cos2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.8.[2014·全国新课标卷Ⅰ] 如图1-1,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱8.B [解析]从俯视图为矩形可以看出,此几何体不可能是三棱锥或四棱锥,其直观图如图,是一个三棱柱.9.[2014·全国新课标卷Ⅰ] 执行如图1-1的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )图1-1A.203B.72C.165D.1589.D [解析]第一次循环后,M =32,a =2,b =32,n =2;第二次循环后,M =83,a =32,b =83,n =3;第三次循环后,M =158,a =83,b =158,n =4,此时n >k (n =4,k =3),结束循环,输出M =158.10.[2014·全国新课标卷Ⅰ] 已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .810.A [解析]由抛物线方程y 2=x ,知p =12,又因为|AF |=x 0+p 2=x 0+14=54x 0,所以得x 0=1.11.[2014·全国新课标卷Ⅰ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-311.B [解析]当a <0时,作出相应的可行域,可知目标函数z =x +ay 不存在最小值.当a ≥0时,作出可行域如图,易知当-1a >-1,即a >1时,目标函数在A 点取得最小值.由A ⎝⎛⎭⎫a -12,a +12,知z min =a -12+a 2+a 2=7,解得a =3或-5(舍去).图2-2-512.[2014·全国新课标卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)12.C [解析]显然a =0时,函数有两个不同的零点,不符合.当a ≠0时,由f ′(x )=3ax 2-6x =0,得x 1=0,x 2=2a .当a >0时,函数f (x )在(-∞,0),⎝⎛⎭⎫2a ,+∞上单调递增,在⎝⎛⎭⎫0,2a 上单调递减,又f (0)=1,所以函数f (x )存在小于0的零点,不符合题意;当a <0时,函数f (x )在⎝⎛⎭⎫-∞,2a ,(0,+∞)上单调递减,在⎝⎛⎭⎫2a ,0上单调递增,所以只需f ⎝⎛⎭⎫2a >0,解得a <-2,所以选C. 13.[2014·全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.13.23 [解析]2本数学书记为数1,数2,3本书共有(数1数2语),(数1语数2),(数2数1语),(数2语数1),(语数1数2),(语数2数1)6种不同的排法,其中2本数学书相邻的排法有4种,对应的概率为P =46=23.14.[2014·全国新课标卷Ⅰ] 甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市.乙说:我没去过C 城市.丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.14.A [解析]由甲没去过B 城市,乙没去过C 城市,而三人去过同一城市,可知三人去过城市A ,又由甲最多去过两个城市,且去过的城市比乙多,故乙只去过A 城市.15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] [解析]当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.16.[2014·全国新课标卷Ⅰ] 如图1-3,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100m ,则山高MN =________m.图1-316.150 [解析]在Rt △ABC 中,BC =100,∠CAB =45°,所以AC =100 2.在△MAC中,∠MAC =75°,∠MCA =60°,所以∠AMC =45°,由正弦定理有AM sin ∠MCA =ACsin ∠AMC,即AM =sin60°sin45°×1002=1003,于是在Rt △AMN 中,有MN =sin60°×1003=150.17.、[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.17.解:(1)方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而得a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2, 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2,所以S n =2-n +42n +1. 18.[2014·全国新课标卷Ⅰ] 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在答题卡上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均值及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?18.解:(1)频率分布直方图如下:(2)质量指标值的样本平均数为x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 质量指标值的样本方差为s 2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.8=0.68. 由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.19.[2014·全国新课标卷Ⅰ] 如图1-4,三棱柱ABC ­A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C .图1-4(1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABC -A 1B 1C 1的高.19.解:(1)证明:连接BC 1,则O 为B 1C 与BC 1的交点. 因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1. 又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO , 由于BC 1∩AO =O ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H . 由于BC ⊥AO ,BC ⊥OD ,且AO ∩OD =O , 故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,且AD ∩BC =D , 所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又BC =1,可得OD =34. 因为AC ⊥AB 1,所以OA =12B 1C =12.由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114. 又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217.故三棱柱ABC -A 1B 1C 1的高为217.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x +y -8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=22,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.21.、[2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围. 21.解:(1)f ′(x )=ax +(1-a )x -b .由题设知f ′(1)=0,解得b =1, (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=ax +(1-a )x -1=1-a x ⎝⎛⎭⎫x -a 1-a (x -1).(i)若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<a 1-a 的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.(ii)若12<a <1,则a 1-a>1,故当x ∈⎝⎛⎭⎫1,a1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a1-a ,+∞时,f ′(x )>0.f (x )在⎝⎛⎭⎫1,a 1-a 上单调递减,在⎝⎛⎭⎫a1-a ,+∞上单调递增.所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝⎛⎭⎫a 1-a <aa -1. 而f ⎝⎛⎭⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>aa -1,所以不合题意.(iii)若a >1, 则f (1)=1-a 2-1=-a -12<a a -1,符合题意.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).22.[2014·全国新课标卷Ⅰ] 选修4-1:几何证明选讲 如图1-5,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE .图1-5(1)证明:∠D =∠E ;(2)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形. 22.证明:(1)由题设知A ,B ,C ,D 四点共圆, 所以∠D =∠CBE .由已知得∠CBE =∠E ,故∠D =∠E .(2)设BC 的中点为N ,连接MN ,则由MB =MC 知MN ⊥BC ,故点O 在直线MN 上. 又AD 不是⊙O 的直径,M 为AD 的中点, 故OM ⊥AD ,即MN ⊥AD , 所以AD ∥BC ,故∠A =∠CBE . 又∠CBE =∠E ,故∠A =∠E .由(1)知,∠D =∠E ,所以△ADE 为等边三角形.23.[2014·全国新课标卷Ⅰ] 选修4-4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到直线l 的距离d =55|4cos θ+3sin θ-6|, 则|P A |=d sin30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值, 最大值为2255.当sin(θ+α)=1时,|P A |取得最小值, 最小值为255.24.[2014·全国新课标卷Ⅰ] 选修4-5:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?请说明理由.24.解:(1)由ab =1a +1b ≥2ab ,得ab ≥2,当且仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,当且仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使2a +3b =6.。

2014年高考真题精校精析纯word可编辑·2014高考真题解析 英语大纲卷

2014年高考真题精校精析纯word可编辑·2014高考真题解析 英语大纲卷

2014·全国大纲卷第Ⅰ卷第二部分英语知识运用(共两节,满分45分)第一节单项填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。

21. [2014·全国大纲卷] —I'm sorry for breaking the cup.—Oh, ________—I've got plenty.A. forget itB. my pleasureC. help yourselfD. pardon me21.A考查情景交际。

句意:“对不起,打坏了你的杯子。

”“噢,没关系。

我还有很多呢。

”此处forget it意为“得了吧,算了吧,没关系”。

根据句意选A。

22. [2014·全国大纲卷] Unless some extra money ________,the theatre will close.A. was foundB. findsC. is foundD. found22.C考查动词的时态和语态。

句意:除非找到一些额外的钱,否则剧院将会倒闭。

根据主句的将来时态可知,状语从句用一般现在时代替一般将来时,因为find和money之间是被动关系,所以用一般现在时的被动语态。

故选C。

23. [2014·全国大纲卷] Today there are more airplanes ________ more people than ever before in the skies.A. carryB. carryingC. carriedD. to be carrying23.B考查非谓语动词。

句意:现在天空中比以前有更多的飞机运送更多的乘客。

此处airplane和carrying之间是主动关系,故用现在分词作定语。

故选B。

24. [2014·全国大纲卷] Exactly ________ the potato was introduced into Europe is uncertain, but it was probably around 1565.A. whetherB. whyC. whenD. how24.C考查主语从句的连接词。

2014年高考真题精校精析纯word可编辑·2014高考真题解析 重庆卷化学

2014年高考真题精校精析纯word可编辑·2014高考真题解析 重庆卷化学

2014·重庆卷(课标化学)1.[2014·重庆卷] 下列物质的使用不涉及化学变化的是()A.明矾作净水剂B.液氨用作制冷剂C.氢氟酸刻蚀玻璃D.生石灰作干燥剂1.B[解析] 明矾中的铝离子水解生成的氢氧化铝胶体具有强吸附性,可以净水,铝离子的水解是化学变化,A项错误;液氨汽化时吸热而使周围环境温度降低,故可用作制冷剂,发生的是物理变化,B项正确;氢氟酸能与玻璃中的二氧化硅反应生成四氟化硅气体和水,发生的是化学变化,C项错误;生石灰极易吸水生成氢氧化钙,故生石灰作干燥剂发生的是化学变化,D项错误。

2.[2014·重庆卷] 下列实验可实现鉴别目的的是()A.用KOH溶液鉴别SO3(g)和SO2B.用湿润碘化钾淀粉试纸鉴别Br2(g)和NO2C.用CO2鉴别NaAlO2溶液和CH3COONa溶液D.用BaCl2溶液鉴别AgNO3溶液和K2SO4溶液2.C[解析] SO2、SO3均能与KOH反应,都没有明显现象,A项错误;Br2(g)、NO2都是红棕色气体且有强氧化性,都能氧化KI而生成I2,使淀粉显蓝色,B项错误;偏铝酸的酸性弱于碳酸,CO2通入偏铝酸钠溶液中生成氢氧化铝沉淀,醋酸酸性强于碳酸,CO2通入醋酸钠溶液无现象,C项正确;氯化钡和硝酸银反应生成氯化银沉淀,与硫酸钾反应生成硫酸钡沉淀,现象相同不能鉴别,D项错误。

3.[2014·重庆卷] 下列叙述正确的是()A.浓氨水中滴加FeCl3饱和溶液可制得Fe(OH)3胶体B.CH3COONa溶液中滴加少量浓盐酸后c(CH3COO-)增大C.Ca(HCO3)2溶液与过量NaOH溶液反应可得到Ca(OH)2D.25 ℃时Cu(OH)2在水中的溶解度大于其在Cu(NO3)2溶液中的溶解度3.D[解析] 浓氨水中滴加氯化铁饱和溶液产生氢氧化铁沉淀,A项错误;醋酸钠溶液中滴加浓盐酸后促使醋酸根离子的水解平衡向右移动,使醋酸根离子浓度减小,B项错误;碳酸氢钙与过量的氢氧化钠反应生成碳酸钙、水、碳酸钠,得不到氢氧化钙,C项错误;Cu(NO3)2溶液中的Cu2+能抑制Cu(OH)2的溶解,D项正确。

2014年高考真题精校精析纯word可编辑·2014高考真题解析 历史重庆卷

2014年高考真题精校精析纯word可编辑·2014高考真题解析 历史重庆卷

2014·重庆卷(课标历史)1.[2014·重庆卷] 中国古代的一部作品,以神游天地、上下求索的幻想境界表达了作者对理想的执着追求,大量运用“美人芳草”的比兴手法和瑰丽的语言,闪耀着南方楚文化的奇丽色彩。

该作品是()A.《诗经》B.《老子》C.《庄子》D.《离骚》1.D[解析] 本题以中国古代文学作品为切入点,旨在考查学生提取材料信息和运用知识的能力。

《诗经》分为风、雅、颂三部分,主要反映北方人民的生产生活和思想感情,与题干“幻想境界”“南方”等信息不符,故排除A项;《老子》具有深沉的情感、丰富的想象和抽象的哲理,含有朴素的辩证法思想,与题干“比兴手法”“瑰丽的语言”等信息不符,故排除B项;《庄子》宣传天道与自然无为,具有消极避世的思想,与题干“对理想的执着追求”等信息不符,故排除C项;《离骚》是屈原的政治抒情诗,具有浓郁的楚国地方特色和神话色彩,反映了他的政治理想。

根据以上分析,答案为D项。

2.[2014·重庆卷] 汉武帝时张骞出使西域,远至今中亚阿姆河流域,受到渴望与汉通使往来的大宛等国的欢迎。

其间,汉设置河西四郡,打通了与西域的直接交通。

张骞在出使过程中所获得的信息对打开丝绸之路和建立中国与西方的联系起到了关键作用。

据此可知,张骞出使西域的功绩是()A.开辟了沟通中西的丝绸之路B.建立了汉朝与西方的联系C.确立了汉朝对西域的管辖权D.开启了中国与中亚的交往2.D[解析] 本题以张骞出使西域为切入点,旨在考查学生解读历史信息和调动知识的能力。

A、B两项与题干“对打开丝绸之路和建立中国与西方的联系起到了关键作用”的信息不符,故排除;确立西汉对西域的管辖权的标志是公元前60年西域都护的设置,故排除C项;D项与题干“远至今中亚阿姆河流域”等信息相符。

答案为D项。

3.[2014·重庆卷] 战国秦汉时期,北方一直是全国的经济重心,但是到了魏晋南北朝时期,中原经济区独占鳌头的局面不复存在了,原本落后的江南经济区获得了显著发展,使长期以来的南北经济发展不平衡性与悬殊性缩小了。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·福建卷(理科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·福建卷(理科数学)

2014·福建卷(理科数学)1.[2014·福建卷] 复数z =(3-2i)i 的共轭复数z 等于( )A .-2-3iB .-2+3iC .2-3iD .2+3i1.C [解析]由复数z =(3-2i)i =2+3i ,得复数z 的共轭复数z =2-3i. 2.[2014·福建卷] 某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱B .圆锥C .四面体D .三棱柱2.A [解析]由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形.3.[2014·福建卷] 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8B .10C .12D .143.C [解析]设等差数列{a n }的公差为d ,由等差数列的前n 项和公式,得S 3=3×2+3×22d =12,解得d =2,则a 6=a 1+(6-1)d =2+5×2=12. 4.、、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D 图1-24.B [解析]由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.5.[2014·福建卷] 阅读如图1-3所示的程序框图,运行相应的程序,输出的S 的值等于( )A .18B .20C .21D .405.B [解析]输入S =0,n =1,第一次循环,S =0+2+1=3,n =2; 第二次循环,S =3+22+2=9,n =3;第三次循环,S =9+23+3=20,n =4,满足S ≥15,结束循环,输出S =20. 6.、[2014·福建卷] 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件6.A [解析]由直线l 与圆O 相交,得圆心O 到直线l 的距离d =1k 2+1<1,解得k ≠0. 当k =1时,d =12,|AB |=2r 2-d 2=2,则△OAB 的面积为12×2×12=12;当k =-1时,同理可得△OAB 的面积为12,则“k =1”是“△OAB 的面积为12”的充分不必要条件.7.、、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.D [解析]由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞). 8.[2014·福建卷] 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)8.B [解析]由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B.9.、[2014·福建卷] 设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .52B.46+ 2 C .7+2D .6 29.D [解析]设圆心为点C ,则圆x 2+(y -6)2=2的圆心为C (0,6),半径r = 2.设点Q (x 0,y 0)是椭圆上任意一点,则x 2010+y 20=1,即x 20=10-10y 20, ∴|CQ |=10-10y 20+(y 0-6)2=-9y 20-12y 0+46=-9⎝⎛⎭⎫y 0+232+50, 当y 0=-23时,|CQ |有最大值52,则P ,Q 两点间的最大距离为5 2+r =6 2. 10.、[2014·福建卷] 用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)10.A [解析]从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a +a 2+a 3+a 4+a 5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b 5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+C 15c +C 25c 2+C 35c 3+C 45c 4+C 55c 5=(1+c )5,根据分步乘法计数原理得,适合要求的所有取法是(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5.11.[2014·福建卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.11.1 [解析]作出不等式组表示的平面区域(如图所示),把z =3x +y 变形为y =-3x +z ,则当直线y =3x +z 经过点(0,1)时,z 最小,将点(0,1)代入z =3x +y ,得z min =1,即z =3x +y 的最小值为1. 12.[2014·福建卷] 在△ABC 中,A =60°,AC =4,BC =2 3,则△ABC 的面积等于________.12.2 3 [解析]由BC sin A =ACsin B ,得sin B =4sin60°23=1,∴B =90°,C =180°-(A +B )=30°,则S △ABC =12·AC ·BC sin C =12×4×23sin30°=23,即△ABC 的面积等于2 3.13.[2014·福建卷] 要制作一个容积为4m 3,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).13.160 [解析]设底面矩形的一边长为x ,由容器的容积为4m 3,高为1m 得,另一边长为4xm.记容器的总造价为y 元,则 y =4×20+2⎝⎛⎭⎫x +4x ×1×10 =80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160(元),当且仅当x =4x ,即x =2时,等号成立.因此,当x =2时,y 取得最小值160元, 即容器的最低总造价为160元.图1-414.、[2014·福建卷] 如图1-4,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.14.2e 2 [解析]因为函数y =ln x 的图像与函数y =e x 的图像关于正方形的对角线所在直线y =x 对称,则图中的两块阴影部分的面积为S =2⎠⎛1eln x d x =2(x ln x -x)|e1=2[(elne -e )-(ln 1-1)]=2,故根据几何概型的概率公式得,该粒黄豆落到阴影部分的概率P =2e2.15.、[2014·福建卷] 若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.15.6 [解析]若①正确,则②③④不正确,可得b ≠1不正确,即b =1,与a =1矛盾,故①不正确;若②正确,则①③④不正确,由④不正确,得d =4;由a ≠1,b ≠1,c ≠2,得满足条件的有序数组为a =3,b =2,c =1,d =4或a =2,b =3,c =1,d =4.若③正确,则①②④不正确,由④不正确,得d =4;由②不正确,得b =1,则满足条件的有序数组为a =3,b =1,c =2,d =4;若④正确,则①②③不正确,由②不正确,得b =1,由a ≠1,c ≠2,d ≠4,得满足条件的有序数组为a =2,b =1,c =4,d =3或a =3,b =1,c =4,d =2或a =4,b =1,c =3,d =2;综上所述,满足条件的有序数组的个数为6.16.、、[2014·福建卷] 已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.16.解:方法一:(1)因为0<α<π2,sin α=22,所以cos α=22.所以f (α)=22×⎝⎛⎭⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 =12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4, 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 =12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4. (1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .17.、、[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-517.解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD . 以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝⎛⎭⎫0,12,12. 则BC →=(1,1,0),BM →=⎝⎛⎭⎫0,12,12,AD →=(0,1,-1). 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ, 则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63.即直线AD 与平面MBC 所成角的正弦值为63. 18.、、[2014·福建卷] 为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: (i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望. (2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.18.解:(1)设顾客所获的奖励额为X .(i)依题意,得P (X =60)=C 11C 13C 24=12.即顾客所获的奖励额为60元的概率为12,(ii)依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=16003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.19.、[2014·福建卷] 已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率. (2)如图1-6,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.图1-619.解:方法一:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x , 所以ba =2,所以c 2-a 2a =2,故c =5a ,从而双曲线E 的离心率 e =ca= 5. (2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB 的面积为8,所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝⎛⎭⎫-mk ,0.记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x得y 1=2m 2-k ,同理得y 2=2m2+k .由S △OAB =12|OC |·|y 1-y 2|,得12⎪⎪⎪⎪-m k ·⎪⎪⎪⎪2m 2-k -2m 2+k =8,即m 2=4||4-k 2=4(k 2-4).由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 216=1得(4-k 2)x 2-2kmx -m 2-16=0. 因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16). 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法二:(1)同方法一.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2). 依题意得-12<m <12.由⎩⎪⎨⎪⎧x =my +t ,y =2x 得y 1=2t1-2m ,同理得y 2=-2t 1+2m .设直线l 与x 轴相交于点C ,则C (t ,0).由S △OAB =12|OC |·|y 1-y 2|=8,得12|t |·⎪⎪⎪⎪2t 1-2m +2t 1+2m =8.所以t 2=4|1-4m 2|=4(1-4m 2).由⎩⎪⎨⎪⎧x =my +t ,x 2a 2-y 24a 2=1得(4m 2-1)y 2+8mty +4(t 2-a 2)=0. 因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0,即4m 2a 2+t 2-a 2=0, 即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0,所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法三:(1)同方法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).依题意得k >2或k <-2.由⎩⎪⎨⎪⎧y =kx +m ,4x 2-y 2=0得(4-k 2)x 2-2kmx -m 2=0, 因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k 2, 又因为△OAB 的面积为8,所以12|OA |·|OB |·sin ∠AOB =8,又易知sin ∠AOB =45, 所以25x 21+y 21·x 22+y 22=8,化简得x 1x 2=4. 所以-m 24-k2=4,即m 2=4(k 2-4). 由(1)得双曲线E 的方程为x 2a 2-y 24a2=1, 由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2-y 24a 2=1得(4-k 2)x 2-2kmx -m 2-4a 2=0. 因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0,即(k 2-4)(a 2-4)=0,所以a 2=4,所以双曲线E 的方程为x 24-y 216=1. 当l ⊥x 轴时,由△OAB 的面积等于8可得l :x =2,又易知l :x =2与双曲线E :x 24-y 216=1有且只有一个公共点.综上所述,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1. 20.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln2.当x <ln2时,f ′(x )<0,f (x )单调递减;当x >ln2时,f ′(x )>0,f (x )单调递增.所以当x =ln2时,f (x )取得极小值,且极小值为f (ln2)=e ln2-2ln2=2-ln4,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln2)=2-ln4>0,故g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x .故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c>1,要使不等式x 2<c e x 成立,只要e x >kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立.令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x. 所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln2)+3(k -ln k )+5k ,易知k >ln k ,k >ln2,5k >0,所以h (x 0)>0.即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x . 综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法二:(1)同方法一.(2)同方法一.(3)对任意给定的正数c ,取x 0=4c, 由(2)知,当x >0时,e x >x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22, 当x >x 0时,e x >⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2, 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法三:(1)同方法一.(2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x . 证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=-1<0,即13x 3<e x . 取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x . 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .21.、、[2014·福建卷] (Ⅰ)选修4-2:矩阵与变换已知矩阵A 的逆矩阵A -1=错误!).(1)求矩阵A ;(2)求矩阵A -1的特征值以及属于每个特征值的一个特征向量.(Ⅰ)解:(1)因为矩阵A 是矩阵A -1的逆矩阵,且||A -1=2×2-1×1=3≠0,所以A =13⎝ ⎛⎭⎪⎫ 2 -1-1 2=错误!)). (2)矩阵A -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2-1-1λ-2=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A -1的特征值为λ1=1或λ2=3,所以ξ1=⎝ ⎛⎭⎪⎫1-1)是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=⎝ ⎛⎭⎪⎫11)是矩阵A -1的属于特征值λ2=3的一个特征向量. (Ⅱ)选修4-4:坐标系与参数方程已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.(Ⅱ)解:(1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16.(2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =错误!≤4,解得-25≤a ≤2 5.(Ⅲ)选修4-5:不等式选讲已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.(Ⅲ)解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)由(1)知p +q +r =3,又p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·湖南(理科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·湖南(理科数学)

2014·湖南卷(理科数学)1.[2014·湖南卷] 满足z +iz=i(i 为虚数单位)的复数z =( )A.12+12iB.12-12i C .-12+12iD .-12-12i1.B [解析]因为z +i z =i ,则z +i =z i ,所以z =ii -1=i (-1-i )(i -1)(-1-i )=1-i 2.2.[2014·湖南卷] 对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 32.D [解析]不管是简单随机抽样、系统抽样还是分层抽样,它们都是等概率抽样,每个个体被抽中的概率均为nN.3.[2014·湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .33.C [解析]因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.4.[2014·湖南卷] ⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .204.A [解析]由题意可得通项公式T r +1=C r 5⎝⎛⎭⎫12x 5-r (-2y )r =C r 5⎝⎛⎭⎫125-r(-2)r x 5-r y r ,令r =3,则C r 5⎝⎛⎭⎫125-r (-2)r =C 35×⎝⎛⎭⎫122×(-2)3=-20. 5.[2014·湖南卷] 已知命题p :若x >y ,则-x <-y ,命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( ) A .①③B .①④ C .②③D .②④5.C [解析]依题意可知,命题p 为真命题,命题q 为假命题.由真值表可知p ∧q 为假,p ∨q 为真,p ∧(綈q )为真,(綈p )∨q 为假.6.[2014·湖南卷] 执行如图1-1所示的程序框图.如果输入的t ∈[-2,2],则输出的S 属于( )A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6]6.D [解析] (特值法)当t =-2时,t =2×(-2)2+1=9,S =9-3=6,所以D 正确. 7.、[2014·湖南卷] 一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打A .1B .2C .3D .47.B [解析]由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得r =6+8-102=2.8.[2014·湖南卷] 某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-18.D [解析]设年平均增长率为x ,则有(1+p )(1+q )=(1+x )2,解得x =(1+p )(1+q )-1. 9.[2014·湖南卷] 已知函数f (x )=sin(x -φ),且 ∫2π30f(x)d x =0,则函数f(x)的图像的一条对称轴是( ) A .x =5π6B .x =7π12C .x =π3D .x =π69.A [解析]因为∫2π30f(x)d x =0,即∫2π30f(x)d x =-cos (x -φ)2π30=-cos ⎝⎛⎭⎫2π3-φ+cos φ=0,可取φ=π3,所以x =5π6是函数f(x)图像的一条对称轴.10.、[2014·湖南卷] 已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .(-∞,1e) B .(-∞,e)C.⎝⎛⎭⎫-1e ,eD.⎝⎛⎭⎫-e ,1e10.B [解析]依题意,设存在P (-m ,n )在f (x )的图像上,则Q (m ,n )在g (x )的图像上,则有m 2+e -m -12=m 2+ln(m +a ),解得m +a =ee -m -12,即a =ee -m -12-m (m >0),可得a ∈(-∞,e).(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题计分)11.[2014·湖南卷] 在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.11.ρcos θ-ρsin θ=1 [解析]依题意可设直线l :y =x +b ,曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α的普通方程为(x -2)2+(y -1)2=1.由|AB |=2可知圆心(2,1)在直线l :y =x +b 上,即l :y =x -1,所以l 的极坐标方程是ρcos θ-ρsin θ-1=0.12.[2014·湖南卷] 如图1-3所示,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于12.32[解析]设圆的半径为r ,记AO 与BC 交于点D ,依题可知AD =1.由相交弦定理可得1×(2r -1)=2×2,解得r =32.13.[2014·湖南卷] 若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x -53<x <13,则a =________.13.-3 [解析]依题意可得-3<ax -2<3,即-1<ax <5,而-53<x <13,即-1<-3x <5,所以a =-3.(二)必做题(14~16题)14.[2014·湖南卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.14.-2 [解析]画出可行域,如图中阴影部分所示,不难得出z =2x +y 在点A (k ,k )处取最小值,即3k =-6,解得k =-2.15.[2014·湖南卷] 如图1-4的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.15.1+2 [解析]依题意可得C ⎝⎛⎭⎫a 2,-a ,F ⎝⎛⎭⎫a2+b ,b ,代入抛物线方程得a =p ,b 2=2a ⎝⎛⎭⎫a 2+b ,化简得b 2-2ab -a 2=0,即b a 2-2⎝⎛⎭⎫b a -1=0,解得ba =1+ 2. 16.[2014·湖南卷] 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.16.1+7 [解析]由|CD →|=1,得动点D 在以C 为圆心,半径为1的圆上,故可设D (3+cos α,sin α),所以OA +OB +OD =(2+cos α,3+sin α),所以|OA +OB +OD |2=(2+cos α)2+(3+sin α)2=8+4cos α+23sin α=8+27sin(α+φ),所以(|OA →+OB →+OD →|2)max =8+27,即|OA →+OB →+OD →|max =7+1. 17.、[2014·湖南卷] 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率.(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.17.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =EF ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因为P (X =0)=P (EF )=13×25=215,P (X =100)=P (EF )=13×35=15, P (X =120)=P (EF )=23×25=415,P (X =220)=P (EF )=23×35=25,数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.18.、[2014·湖南卷] 如图1-5AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.18.解:(1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.(2)设∠BAC =α,则α=∠BAD -∠CAD .因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫2772=217, sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin(∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD sin ∠CAD=32114×277-⎝⎛⎭⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=ACsin ∠CBA .故BC =AC ·sin αsin ∠CBA =7×32216=3.19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求二面角C 1­OB 1­D 的余弦值.19.解:(1)如图(a),因为四边形ACC 1A 1为矩形,所以CC 1⊥AC .同理DD 1⊥BD . 因为CC 1∥DD 1,所以CC 1⊥BD .而AC ∩BD =O ,因此CC 1⊥底面ABCD . 由题设知,O 1O ∥C 1C .故O 1O ⊥底面ABCD .(2)方法一:如图(a),过O 1作O 1H ⊥OB 1于H ,连接HC 1.由(1)知,O 1O ⊥底面ABCD O 1O ⊥A 1C 1.又因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形A 1B 1C 1D 1是菱形,因此A 1C 1⊥B 1D 1,从而A 1C 1⊥平面BDD 1B 1,所以A 1C 1⊥OB 1,于是OB 1⊥平面O 1HC 1. 进而OB 1⊥C 1H .故∠C 1HO 1是二面角C 1­OB 1­D 的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197.故cos ∠C 1HO 1=O 1HC 1H =237197=25719.即二面角C 1­OB 1­D 的余弦值为25719.方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O ­xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0),B 1(3,0,2),C 1(0,1,2).易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB →1=0,n 2·OC →1=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1­OB 1­D 的大小为θ,易知θ是锐角,于是cos θ=|cos 〈,〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719.故二面角C 1­OB 1­D 的余弦值为25719.20.、[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此错误!.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝⎛⎭⎫122n -1=(-1)2n 22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝⎛⎭⎫122n =(-1)2n +122n.④由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n 2n -1=1+12·1-⎝⎛⎭⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1. 21.、、、[2014·湖南卷] 如图1-7,O 为坐标原点,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y2b2=1的左、右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.21.解: (1)因为e 1e 2=32,所以a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b ,0),F 4(3b ,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x22-y 2=1.(2)因AB 不垂直于y 1x =my -1,由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2mm 2+2,y 1y 2=-1m 2+2.因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0.由⎩⎨⎧y =-m 2x ,x22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2,从而|PQ |=2x 2+y 2=2m 2+42-m 2.设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m 2m 2+4.故四边形APBQ 的面积S =12|PQ |·2d =22·1+m 22-m 2=22·-1+32-m 2.而0<2-m 2≤2,故当m =0时,S 取最小值2. 综上所述,四边形APBQ 面积的最小值为2. 22.、[2014·湖南卷] 已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.(1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.22.解:(1)f ′(x )=a1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*)当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增. 当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a 舍去.当x ∈(0,x 1)时,f ′(x )<0; 当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减, 在区间(x 1,+∞)上单调递增. 综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝ ⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a ,+∞上单调递增.(2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-aa,且由f (x )的定义可知,x >-1a且x ≠-2,所以-21-a a >-1a ,-21-a a ≠-2,解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点.而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2.令2a -1=x .由0<a <1且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.(i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(-1,0)上单调递减, 从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0.(ii)当0<x <1时,g (x )=2ln x +2x-2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0.综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1.。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·浙江卷(文科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·浙江卷(文科数学)

2014·浙江卷(文科数学)1.[2014·浙江卷] 设集合S ={x |x ≥2},T ={x |x ≤5},则S ∩T =( )A .(-∞,5]B .[2,+∞)C .(2,5)D .[2,5]1.D [解析]依题意,易得S ∩T =[2,5] ,故选D. 2.[2014·浙江卷] 设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2.A [解析]若四边形ABCD 为菱形,则AC ⊥BD ;反之,若AC ⊥BD ,则四边形ABCD 不一定为平行四边形.故“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.故选A.3.[2014·浙江卷] 某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )图1-1A .72cm 3B .90cm 3C .108cm 3D .138cm 33.B [解析]此几何体是由长方体与三棱柱组合而成的,其体积为6×4×3+12×3×4×3=90cm 3,故选B.4.[2014·浙江卷] 为了得到函数y =sin3x +cos3x 的图像,可以将函数y =2cos3x 的图像( )A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.A [解析]y =sin3x +cos3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,故将函数y =2cos3x 的图像向右平移π12个单位可以得到函数y =sin3x +cos3x 的图像,故选A.5.[2014·浙江卷] 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-85.B [解析]圆的标准方程为(x +1)2+(y -1)2=2-a ,r 2=2-a ,则圆心(-1,1)到直线x +y +2=0的距离为|-1+1+2|2= 2.由22+(2)2=2-a ,得a =-4, 故选B.6.、[2014·浙江卷] 设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ⊥n ,n ∥α,则m ⊥α B .若m ∥β,β⊥α,则m ⊥αC .若m ⊥β,n ⊥β,n ⊥α,则m ⊥αD .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α 6.C [解析]A ,B ,D 中m 与平面α可能平行、相交或m 在平面内α;对于C ,若m ⊥β,n ⊥β,则m ∥n ,而n ⊥α,所以m ⊥α.故选C.7.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >97.C [解析]由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3,∴6<c ≤9,故选C. 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D [解析]只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.9.[2014·浙江卷] 设θ为两个非零向量a ,b 的夹角.已知对任意实数t ,|b +t a |的最小值为1( )A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定9.B [解析]|b +t a |≥1,则a 2t 2+2|a ||b |t cos θ+b 2的最小值为1,这是关于t 的二次函数,故最小值为4a 2b 2-4(|a ||b |cos θ)24a 2=1,得到4a 2b 2sin 2θ=4a 2,故|b |sin θ=1.若|b |确定,则存在两个θ满足条件,且两个θ互补;若θ确定,则|b |唯一确定.故选B.10.[2014·浙江卷] 如图1-3,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若AB =15m ,AC =25m ,∠BCM =30°,则tan θ的最大值是()图1-3A.305 B.3010C.439D.53910.D [解析]由勾股定理得BC =20m .如图,过P 点作PD ⊥BC 于D ,连接AD ,则由点A 观察点P 的仰角θ=∠P AD ,tan θ=PDAD .设PD =x ,则DC =3x ,BD =20-3x ,在Rt △ABD 中,AD =152+(20-3x )2=625-403x +3x 2,所以tan θ=x625-403x +3x 2=1625x 2-403x+3=1625⎝⎛⎭⎫1x -2036252+2725≤539,故tan θ的最大值为539,故选D.11.[2014·浙江卷] 已知i 是虚数单位,计算1-i(1+i )2=________.11.-12-12i [解析]1-i (1+i )2=1-i 2i =(1-i )i -2=i +1-2=-12-12i. 12.[2014·浙江卷] 若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.12.[1,3] [解析]实数x ,y 满足的可行域如图中阴影部分(包括边界)所示,图中A (1,0),B (2,1),C ⎝⎛⎭⎫1,32.令z =x +y ,则y =-x +z .当直线y =-x +z 经过A 点时,z 取最小值1;经过B 点时,z 取最大值3.故x +y 的取值范围是[1,3].13.[2014·浙江卷] 若某程序框图如图1-4所示,当输入50时,则该程序运行后输出的结果是________.图1-413.6 [解析]第一次运行,S =1,i =2;第二次运行,S =4,i =3;第三次运行,S =11,i =4;第四次运行,S =26,i =5;第五次运行,S =57,i =6,此时S >n ,输出i =6.14.[2014·浙江卷] 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.14.13 [解析]基本事件的总数为3×2=6,甲、乙两人各抽取一张奖券,两人都中奖只有2种情况,所以两人都中奖的概率P =26=13.15.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.15.2 [解析]令t =f (a ),若f (t )=2,则t 2+2t +2=2满足条件,此时t =0或t =-2,所以f (a )=0或f (a )=-2,只有-a 2=-2满足条件,故a = 2.16.[2014·浙江卷] 已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________.16.63[解析]方法一:令b =x ,c =y ,则x +y =-a ,x 2+y 2=1-a 2,此时直线x +y =-a 与圆x 2+y 2=1-a 2有交点,则圆心到直线的距离d =|a |2≤1-a 2,解得a 2≤23,所以a 的最大值为63. 方法二:将c =-(a +b )代入a 2+b 2+c 2=1得2b 2+2ab +2a 2-1=0,此关于b 的方程有实数解,则Δ=(2a )2-8(2a 2-1)≥0,整理得到a 2≤23,所以a 的最大值为63.17.[2014·浙江卷] 设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________.17.52 [解析]双曲线的渐近线为y =±bax ,易求得渐近线与直线x -3y +m =0的交点为A ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b ,B ⎝ ⎛⎭⎪⎫-am a -3b ,-bm a -3b .设AB 的中点为D .由|P A |=|PB |知AB 与DP 垂直,则D ⎝ ⎛⎭⎪⎫-a 2m (a +3b )(a -3b ),-3b 2m (a +3b )(a -3b ),k DP=-3, 解得a 2=4b 2,故该双曲线的离心率是52.18.[2014·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B 2+4sin A sin B =2+ 2. (1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值. 18.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2, 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22,所以A +B =3π4,从而C =π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. 19.[2014·浙江卷] 已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 19.解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1), 所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4. 20.、[2014·浙江卷] 如图1­5,在四棱锥A ­BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.图1-5(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.20.解:(1)证明:连接BD ,在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE .(2)在直角梯形BCDE 中,由BD =BC =2,DC =2,得BD ⊥BC . 又平面ABC ⊥平面BCDE ,所以BD ⊥平面ABC .作EF ∥BD ,与CB 的延长线交于点F ,连接AF ,则EF ⊥平面ABC . 所以∠EAF 是直线AE 与平面ABC 所成的角.在Rt △BEF 中,由EB =1,∠EBF =π4,得EF =22,BF =22;在Rt △ACF 中,由AC =2,CF =322,得AF =262. 在Rt △AEF 中,由EF =22,AF =262, 得tan ∠EAF =1313. 所以,直线AE 与平面ABC 所成的角的正切值是1313. 21.[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a >0).若f (x )在[-1,1]上的最小值记为g (a ).(1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 21.解:(1)因为a >0,-1≤x ≤1,所以,(i)当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数;若x ∈[a ,1],则f (x )=x 3+3x -3a ,f ′(x )=3x 2+3>0,故f (x )在(a ,1)上是增函数. 所以g (a )=f (a )=a 3.(ii)当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数,所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明:令h (x )=f (x )-g (a ).(i)当0<a <1时,g (a )=a 3.若x ∈[a ,1],则h (x )=x 3+3x -3a -a 3,得h ′(x )=3x 2+3>0,则h (x )在(a ,1)上是增函数,所以h (x )在[a ,1]上的最大值是h (1)=4-3a -a 3,而0<a <1,所以h (1)<4,故f (x )≤g (a )+4.若x ∈[-1,a ],则h (x )=x 3-3x +3a -a 3≤0,得h ′(x )=3x 2-3,则h (x )在(-1,a )上是减函数,所以h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3,令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0,知t (a )在(0,1)上是增函数,所以t (a )<t (1)=4,即h (-1)<4.故f (x )≤g (a )+4.(ii)当a ≥1时,g (a )=-2+3a ,故h (x )=x 3-3x +2,得h ′(x )=3x 2-3≤0,此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4.故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 22.、[2014·浙江卷] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM .图1-6(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.22.解:(1)由题意知焦点F (0,1),准线方程为y =-1.设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得到y 0=2,所以P (22,2)或P (-22,2).由PF =3FM ,分别得M ⎝⎛⎭⎫-223,23或M ⎝⎛⎭⎫223,23. (2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0).由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y 得x 2-4kx -4m =0, 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k ,2k 2+m ). 由PF →=3FM →,得(-x 0,1-y 0)=3(2k ,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m ,由x 20=4y 0得k 2=-15m +415. 由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=41+k 2k 2+m ,点F (0,1)到直线AB 的距离为d =|m -1|1+k 2, 所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝⎛⎭⎫-13<m ≤43. 令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1.可得f (m )在⎝⎛⎭⎫-13,19上是增函数,在⎝⎛⎭⎫19,1上是减函数,在⎝⎛⎭⎫1,43上是增函数. 又f ⎝⎛⎭⎫19=256243>f ⎝⎛⎭⎫43.所以,当m =19时,f (m )取到最大值256243,此时k =±5515. 所以,△ABP 面积的最大值为2565135.。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·北京(理科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·北京(理科数学)

2014·北京卷(理科数学)1.[2014·北京卷] 已知集合A ={x |x 2-2x =0},B ={0,1,2},则A ∩B =( )A .{0}B .{0,1}C .{0,2}D .{0,1,2}1.C [解析]∵A ={0,2},∴A ∩B ={0,2}∩{0,1,2}={0,2}. 2.、[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)2.A [解析]由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.3.[2014·北京卷] 曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上3.B [解析]曲线方程消参化为(x +1)2+(y -2)2=1,其对称中心点为(-1,2),验证知其在直线y =-2x 上.4.[2014·北京卷] 当m =7输出的S 值为( )A .7B .42C .210D .8404.C [解析]S =1×7×6×5=210. 5.[2014·北京卷] 设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.D [解析]当a 1<0,q >1时,数列{a n }递减;当a 1<0,数列{a n }递增时,0<q <1.故选D.6.[2014·北京卷] 若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( ) A .2B .-2C.12D .-126.D [解析]可行域如图所示,当k >0时,知z =y -x 无最小值,当k <0时,目标函数线过可行域内A 点时z 有最小值.联立⎩⎪⎨⎪⎧y =0,kx -y +2=0,解得A ⎝⎛⎭⎫-2k ,0,故z min =0+2k =-4,即k =-12.7.[2014·北京卷] 在空间直角坐标系Oxyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,2).若S 1,S 2,S 3分别是三棱锥D -ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 17.D [解析]设顶点D 在三个坐标平面xOy 、yOz 、zOx 上的正投影分别为D 1、D 2、D 3,则AD 1=BD 1=2,AB =2,∴S 1=12×2×2=2,S 2=SOCD 2=12×2×2=2,S 3=SOAD 3=12×2×2= 2.∴选D. 8.[2014·北京卷] 学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人8.B [解析]假设A 、B 两位学生的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的学生比另一个学生“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两位学生数学成绩是相同的.因为数学成绩只有3种,因而学生数量最大为3,即3位学生的成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件.9.[2014·北京卷] 复数⎝ ⎛⎭⎪⎫1+i 1-i 2=________.9.-1 [解析]⎝ ⎛⎭⎪⎫1+i 1-i 2=⎣⎢⎡⎦⎥⎤(1+i )2(1-i )(1+i )2=⎝⎛⎭⎫2i 22=-1.10.[2014·北京卷] 已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.10.5 [解析]∵λa +b =0,∴λa =-b , ∴|λ|=|b ||a |=51= 5.11.[2014·北京卷] 设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.11.x 23-y 212=1 y =±2x [解析]设双曲线C 的方程为y 24-x 2=λ,将(2,2)代入得224-22=-3=λ,∴双曲线C 的方程为x 23-y 212=1.令y 24-x 2=0得渐近线方程为y =±2x .12.[2014·北京卷] 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.12.8 [解析]∵a 7+a 8+a 9=3a 8>0,a 7+a 10=a 8+a 9<0,∴a 8>0,a 9<0,∴n =8时,数列{a n }的前n 项和最大.13.[2014·北京卷] 把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.13.36 [解析]A 33A 22A 13=6×2×3=36. 14.[2014·北京卷] 设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________.14.π [解析]结合图像得T 4=π2+2π32-π2+π62,即T =π.图1-215.[2014·北京卷] 如图1-2,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD=2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.15.解:(1) 在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314. (2)在△ABD 中,由正弦定理得 BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得 AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49,所以AC =7. 16.、[2014·北京卷] 李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x 为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x 的大小.(只需写出结论)16.解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C =AB ∪AB ,A ,B 相互独立.根据投篮统计数据,P (A )=35,P (B )=25.故P (C )=P (AB )+P (AB ) =35×35+25×25 =1325. 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX =x -.17.、[2014·北京卷] 如图1-3,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P -ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H .(1)求证:AB ∥FG ;(2)若P A ⊥底面ABCDE ,且P A =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.图1-317.解:(1)证明:在正方形AMDE 中,因为B 是AM 的中点,所以AB ∥DE . 又因为AB ⊄平面PDE , 所以AB ∥平面PDE .因为AB ⊂平面ABF ,且平面ABF ∩平面PDE =FG , 所以AB ∥FG .(2)因为P A ⊥底面ABCDE , 所以P A ⊥AB ,P A ⊥AE .建立空间直角坐标系Axyz ,如图所示,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC →=(1,1,0).设平面ABF 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AB →=0,n ·AF →=0,即⎩⎪⎨⎪⎧x =0,y +z =0.令z =1,则y =-1.所以n =(0,-1,1).设直线BC 与平面ABF 所成角为α,则 sin α=|cos 〈n ,BC →〉|=⎪⎪⎪⎪⎪⎪n ·BC →|n ||BC →|=12.因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH →=λPC →(0<λ<1).即(u ,v ,w -2)=λ(2,1,-2),所以u =2λ,v =λ,w =2-2λ. 因为n 是平面ABF 的一个法向量, 所以n ·AH →=0,即(0,-1,1)·(2λ,λ,2-2λ)=0, 解得λ=23,所以点H 的坐标为⎝⎛⎭⎫43,23,23. 所以PH =⎝⎛⎭⎫432+⎝⎛⎭⎫232+⎝⎛⎭⎫-432=2.18.[2014·北京卷] 已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin xx <b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.18.解:(1)证明:由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝⎛⎭⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎡⎦⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当c ≥1时,因为对任意x ∈⎝⎛⎭⎫0,π2,g ′(x )=cos x -c <0,所以g (x )在区间⎝⎛⎭⎫0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎫0,π2上的情况如下:因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.19.、、[2014·北京卷] 已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t ,2), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =±2.圆心O 到直线AB 的距离d =2, 此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t (x -t ),即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =|2x 0-ty 0|(y 0-2)2+(x 0-t )2. 又x 20+2y 20=4,t =-2y 0x 0,故 d =⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4=⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x 20= 2.此时直线AB 与圆x 2+y 2=2相切.20.[2014·北京卷] 对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)20.解:(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·全国(理科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·全国(理科数学)

2014·全国卷(理科数学)1.[2014·全国卷] 设z =10i3+i,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i1.D [解析]z =10i3+i =10i (3-i )(3+i )(3-i )=10(1+3i )10=1+3i ,根据共轭复数的定义,其共轭复数是1-3i.2.、[2014·全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析]因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.3.[2014·全国卷] 设a =sin33°,b =cos55°,c =tan35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b3.C [解析]因为b =cos55°=sin35°>sin33°,所以b >a .因为cos35°<1,所以1cos35°>1,所以sin35°cos35°>sin35°.又c =tan35°=sin35°cos35°>sin35°,所以c >b ,所以c >b >a .4.[2014·全国卷] 若向量a ,b 满足:|a|=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A .2B. 2 C .1D.224.B [解析]因为(a +b )⊥a ,所以(a +b )·a =0,即|a|2+b·a =0.因为(2a +b )⊥b ,所以(2a +b )·b =0,即2a·b +|b|2=0,与|a|2+b·a =0联立,可得2|a|2-|b|2=0,所以|b|=2|a|= 2. 5.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种5.C [解析]由题意,从6名男医生中选2名,5名女医生中选1名组成一个医疗小组,不同的选法共有C 26C 15=75(种).6.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1D.x 212+y 24=1 6.A [解析]根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.7.[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( ) A .2eB .e C .2D .17.C [解析]因为y ′=(x e x -1)′=e x -1+x e x -1,所以y =x e x -1在点(1,1)处的导数是y ′|x =1=e 1-1+e 1-1=2,故曲线y =x e x -1在点(1,1)处的切线斜率是2.8.、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD.27π48.A [解析]如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝⎛⎭⎫942=81π4. 9.[2014·全国卷] 已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.239.A [解析]根据题意,|F 1A |-|F 2A |=2a ,因为|F 1A |=2|F 2A |,所以|F 2A |=2a ,|F 1A |=4a .又因为双曲线的离心率e =ca =2,所以c =2a ,|F 1F 2|=2c =4a ,所以在△AF 1F 2中,根据余弦定理可得cos ∠AF 2F 1=|F 1F 2|2+|F 2A |2-|F 1A |22|F 1F 2|·|F 2A |=16a 2+4a 2-16a 22×4a ×2a=14. 10.[2014·全国卷] 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .310.C [解析]设数列{a n }的首项为a 1,公比为q ,根据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎨⎧a 1=16125,q =52,所以a n =a 1qn -1=16125×⎝⎛⎭⎫52n -1=2×⎝⎛⎭⎫52n -4,所以lg a n =lg2+(n -4)lg 52,所以前8项的和为8lg2+(-3-2-1+0+1+2+3+4)lg 52=8lg2+4lg 52=4lg ⎝⎛⎭⎫4×52=4. 11.[2014·全国卷] 已知二面角α-l -β为60°,AB ⊂α,AB ⊥l ,A 为垂足,CD ⊂β,C ∈l ,∠ACD =135°,则异面直线AB 与CD 所成角的余弦值为( )A.14B.24C.34D.1211.B [解析]如图所示,在平面α内过点C 作CF ∥AB ,过点F 作FE ⊥β,垂足为点E ,连接CE ,则CE ⊥l ,所以∠ECF =60°.过点E 作DE ⊥CE ,交CD 于点D 1,连接FD 1.不妨设FC =2a ,则CE =a ,EF =3a .因为∠ACD =135°,所以∠DCE =45°,所以,在Rt △DCE 中,D 1E =CE =a ,CD 1=2a ,∴FD 1=2a ,∴cos ∠DCF =4a 2+2a 2-4a 22×2a ×2a=24.12.[2014·全国卷] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )12.D [解析]设(x 0,y 0)为函数y =f (x )的图像上任意一点,其关于直线x +y =0的对称点为(-y 0,-x 0).根据题意,点(-y 0,-x 0)在函数y =g (x )的图像上,又点(x 0,y 0)关于直线y =x 的对称点为(y 0,x 0),且(y 0,x 0)与(-y 0,-x 0)关于原点对称,所以函数y =f (x )的反函数的图像与函数y =g (x )的图像关于原点对称,所以-y =g (-x ),即y =-g (-x ).13.[2014·全国卷] ⎝⎛⎭⎫x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 13.70 [解析]易知二项展开式的通项T r +1=C r 8⎝⎛⎭⎫x y 8-r ⎝⎛⎭⎫-y x r=(-1)r C r 8x 8-3r 2y 3r 2-4.要求x 2y 2的系数,需满足8-3r 2=2且3r 2-4=2,解得r =4,所以T 5=(-1)4C 48x 2y 2=70x 2y 2,所以x 2y 2的系数为70.14.[2014·全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.14.5 [解析]的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1), 所以z max =1+4=5. 15.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.15.43 [解析]如图所示,根据题意,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=22,所以tan ∠OP A =OA P A =222=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43, 即l 1与l 2的夹角的正切值等于43.16.、[2014·全国卷] 若函数f (x )=cos2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.16.(-∞,2] [解析]f (x )=cos2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].17.[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .17.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C .因为tan A =13,所以cos C =2sin C ,所以tan C =12.所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 18.、[2014·全国卷]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n 10(10-3n ).19.、[2014·全国卷] 如图1-1所示,三棱柱ABC -A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1­AB ­C 的大小.19.解:方法一:(1)证明:因为11平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1. 作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3.因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3.作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1­AB ­C 的平面角.由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1D DF =15,所以cos ∠A 1FD =14. 所以二面角A 1­AB ­C 的大小为arccos 14.方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C -xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B .(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为|CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c .又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3).设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =23,r =1,所以n =(3,23,1). 又p =(0,0,1)为平面ABC 的法向量,故 cos 〈n ,p 〉=n ·p |n ||p |=14.所以二面角A 1­AB ­C 的大小为arccos 14.20.、[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.20.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )= P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )= 0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C ) =P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =4)=P (A 2·B ·C )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,所以EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.21.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.21.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1). 又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22= 4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1,故所求直线l 的方程为x -y -1=0或x +y -1=0. 22.、[2014·全国卷] 函数f (x )=ln(x +1)-axx +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数.(iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2.当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3<a k +1≤3k +3,结论成立.根据(i)(ii)知对任何n ∈N *结论都成立.。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·辽宁卷(文科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·辽宁卷(文科数学)

2014·辽宁卷(文科数学)1.[2014·辽宁卷] 已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( )A .{x |x ≥0}B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1}1.D [解析]由题意可知,A ∪B ={x |x ≤0或x ≥1},所以∁U (A ∪B )=x |0<x <1}. 2.[2014·辽宁卷] 设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3iB .2-3iC .3+2iD .3-2i2.A [解析]由(z -2i)(2-i)=5,得z -2i =52-i=2+i ,故z =2+3i.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析]因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .4.[2014·辽宁卷] 已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ⊂α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α4.B [解析]由题可知,若m ∥α,n ∥α,则m 与n 平行、相交或异面,所以A 错误;若m ⊥α,n ⊂α,则m ⊥n ,故B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错误;若m ∥α,m ⊥n ,则n ∥α或n ⊥α或n 与α相交,故D 错误.5.、[2014·辽宁卷] 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )5.A [解析]由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q6.[2014·辽宁卷] 若将一个质点随机投入如图1-1所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π86.B [解析]由题意AB =2,BC =1,可知长方形ABCD 的面积S =2×1=2,以AB 为直径的半圆的面积S 1=12×π×12=π2.故质点落在以AB 为直径的半圆内的概率P =π22=π4.7.、[2014·辽宁卷] 某几何体三视图如图1-2所示,则该几何体的体积为( )A .8-π4B .8-π2C .8-πD .8-2π7.C [解析]根据三视图可知,该几何体是正方体切去两个体积相等的圆柱的四分之一后余下的部分,故该几何体体积V =23-12×π×12×2=8-π.8.[2014·辽宁卷] 已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-128.C [解析]因为抛物线C :y 2=2px 的准线为x =-p2,且点A (-2,3)在准线上,故-p 2=-2,解得p =4,所以y 2=8x ,所以焦点F 的坐标为(2,0),这时直线AF 的斜率k AF =3-0-2-2=-34.9.[2014·辽宁卷] 设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d >0B .d <0 C .a 1d >0D .a 1d <09.D [解析]令b n =2a 1a n ,因为数列{2a 1a n }为递减数列,所以 b n +1b n =2a 1a n +12a 1a n=2a 1(a n+1-a n )=2a 1d <1,所以a 1d <0.10.[2014·辽宁卷] 已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎨⎧cos πx ,x ∈⎣⎡⎦⎤0,12,2x -1,x ∈⎝⎛⎭⎫12,+∞,则不等式f (x -1)≤12的解集为( )A.⎣⎡⎦⎤14,23∪⎣⎡⎦⎤43,74B.⎣⎡⎦⎤-34,-13∪⎣⎡⎦⎤14,23 C.⎣⎡⎦⎤13,34∪⎣⎡⎦⎤43,74D.⎣⎡⎦⎤-34,-13∪⎣⎡⎦⎤13,3410.A [解析]由题可知,当x ∈⎣⎡⎦⎤0,12时,函数f (x )单调递减,由cos πx ≤12,得13≤x ≤12;当x ∈⎝⎛⎭⎫12,+∞时,函数f (x )单调递增,由2x -1≤12,得12<x ≤34.故当x ≥0时,由f (x )≤12,得13≤x ≤34.又因为f (x )为偶函数,所以f (x )≤12的解解集为⎣⎡⎦⎤-34,-13∪⎣⎡⎦⎤13,34,所以不等式f (x -1)≤12的解满足-34≤x -1≤-13或13≤x -1≤34,解得x ∈⎣⎡⎦⎤14,23∪⎣⎡⎦⎤43,74. 11.[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增11.B [解析]将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,得到y =3sin ⎝⎛⎭⎫2x -23π的图像,函数单调递增,则-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z ,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,当k =0时,可知函数在区间⎣⎡⎦⎤π12,7π12上单调递增.12.、[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3]12.C [解析]当-2≤x <0时,不等式可转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故函数f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤f min (x )=f (-1)=1+4-3-1=-2.当x =0时,不等式恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4,故函数g (x )在(0,1]上单调递增,此时有a ≥g max (x )=g (1)=1-4-31=-6. 综上,-6≤a ≤-2. 13.[2014·辽宁卷] 执行如图1-3所示的程序框图,若输入n =3,则输出T =________. 13.20[解析]由题意可知,第一步,i =1,S =1,T =1;第二步,i =2,S =3,T =4;第三步,i =3,S =6,T =10;第四步,i =4,S =10,T =20.14.[2014·辽宁卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,则目标函数z =3x +4y 的最大值为________.14.18 [解析]不等式组表示的平面区域如图阴影部分所示,由z =3x +4y 得y =-34x+z4,当直线经过点C 时,z 取得最大值.由⎩⎪⎨⎪⎧x -2y +4=0,3x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =3,故C 点坐标为(2,3),这时z =3×2+4×3=18.15.[2014·辽宁卷] 已知椭圆C :x 9+y4=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.15.12 [解析]设MN 的中点为G ,则点G 在椭圆C 上,设点M 关于C 的焦点F 1的对称点为A ,点M 关于C 的焦点F 2的对称点为B ,则有|GF 1|=12·|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.16.[2014·辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +b 2-c =0且使|2a +b |最大时,1a +2b +4c的最小值为________.16.-1 [解析]因为4a 2-2ab +b 2-c =0,所以(2a +b )2-c =6ab =3×2ab ≤3×(2a +b )24,所以(2a +b )2≤4c ,当且仅当b =2a ,c =4a 2时,|2a +b |取得最大值.故1a +2b +4c =2a +1a 2=⎝⎛⎭⎫1a +12-1,其最小值为-1.17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →·BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13×79+2 23×4 29=2327. 18.、[2014·辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行(1)习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2++,18.解:(1)将2×2列联表中的数据代入公式计算,得χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)},其中a i 表示喜欢甜品的学生,i =1,2,b j 表示不喜欢甜品的学生,j =1,2,3. Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)}.事件A 由7个基本事件组成,因而P (A )=710.19.、[2014·辽宁卷] 如图1-4所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC=BD =2,∠ABC =∠DBC =120,AD 的中点.(1)求证:EF ⊥平面BCG ; (2)求三棱锥D -BCG 的体积.附:锥体的体积公式V =13Sh ,其中S 为底面面积,h 为高.19.解:(1)证明:由已知得△ABC ≌△DBC , 因此AC =DC .又G 为AD 的中点,所以CG ⊥AD ,同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC . 又EF ∥AD ,所以EF ⊥平面(2)在平面ABC 内,作AO ⊥CB 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 的中点,所以G 到平面BDC 的距离h 是AO 长度的一半. 在△AOB 中,AO =AB ·sin60°=3,所以V 三棱锥D -BCG =V 三棱锥G -BCD =13·S △DBC·h =13×12·BD ·BC ·sin120°·32=12. 20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P ((1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.21.、[2014·辽宁卷] 已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=(x -π)1-sin x 1+sin x +2xπ-1.证明:(1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.21.证明:(1)当x ∈⎝⎛⎫0,π2时,f ′(x )=π+πsin x -2cos x >0,所以f (x )在区间⎝⎛⎭⎫0,π2上为增函数.又f (0)=-π-2<0,f ⎝⎛⎭⎫π2=π22-4>0,所以存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0.(2)当x ∈⎣⎡⎦⎤π2,π时,化简得g (x )=(π-x )·cos x 1+sin x +2xπ-1.令t =π-x 则t ∈⎣⎡⎦⎤0,π2.记u (t )=g (π-t )=-t cos t 1+sin t -2πt +1,则u ′(t )=f (t )π(1+sin t ). 由(1)得,当t ∈(0,x 0)时,u ′(t )<0;当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )>0.所以在⎝⎛⎫x 0,π2上u (t )为增函数,由u ⎝⎛⎭⎫π2=0知,当t ∈⎣⎡⎭⎫x 0,π2时,u (t )<0,所以u (t )在⎣⎡⎭⎫x 0,π2上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0.于是存在唯一t 0∈⎝⎛⎫0,π2,使u (t 0)=0.设x 1=π-t 0∈⎝⎛⎭⎫π2,π,则g (x 1)=g (π-t 0)=u (t 0)=0.因此存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.由于x 1=π-t 0,t 0<x 0,所以x 0+x 1>π. 22.[2014·辽宁卷] 选修4-1:几何证明选讲如图1-6,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若AC =BD ,求证:AB =ED .22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD . 由于PD 为切线,故∠PDA =∠DBA .又由于∠PGD =∠EGA ,故∠DBA =∠EGA , 所以∠DBA +∠BAD =∠EGA +∠BAD , 从而∠BDA =∠PF A .因为AF ⊥EP ,所以∠PF A =90°,所以∠BDA =90°,故AB 为圆的直径. (2)连接BC ,DC .由于AB 是直径,故∠BDA 在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而Rt △BDA ≌Rt △ACB ,所以∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB . 因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角.所以ED 为直径.又由(1)知AB 为圆的直径,所以ED =AB . 23.[2014·辽宁卷] 选修4-4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.23.解:(1)设(x 1,y 1)为圆上的点,经变换为C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t(t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12,即2x -4y =-3,化为极坐标方程,得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.24.[2014·辽宁卷] 选修4-5:不等式选讲设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.24.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1).当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0, 故0≤x <1.所以f (x )≤1的解集M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43.(2)由g (x )=16x 2-8x +1≤4得16⎝⎛⎭⎫x -142≤4,解得-14≤x ≤34,因此N =⎩⎨⎧⎭⎬⎫x -14≤x ≤34,故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤x ≤34.当x ∈M ∩N 时,f (x )=1-x ,于是 x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝⎛⎭⎫x -122≤14.。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·福建(文科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·福建(文科数学)

2014·福建卷(文科数学)1.[2014·福建卷] 若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}1..A[解析]把集合P={x|2≤x<4}与Q={x|x≥3}在数轴上表示出来,得P∩Q={x|3≤x<4},故选A.2.[2014·福建卷] 复数(3+2i)i等于()A.-2-3iB.-2+3iC.2-3iD.2+3i2.B[解析] (3+2i)i=3i+2i2=-2+3i,故选B.3.[2014·福建卷] 以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.13.A[解析]由题意可知,该正方形旋转一周后所得的圆柱的底面半径r=1,高h=1,则该圆柱的侧面积S=2πrh=2π,故选A.4.[2014·福建卷] 阅读如图1-1所示的程序框图,运行相应的程序,输出的n的值为()图1-1A.1B.2C.3D.44.B[解析]当n=1时,21>12成立,执行循环,n=2;当n=2时,22>22不成立,结束循环,输出n=2,故选B.5.[2014·福建卷] 命题“∀x∈[0,+∞),x3+x≥0”的否定是()A.∀x∈(-∞,0),x3+x<0B.∀x∈(-∞,0),x3+x≥0C.∃x0∈[0,+∞),x30+x0<0D.∃x0∈[0,+∞),x30+x0≥05.C[解析]“∀x∈[0,+∞),x3+x≥0”是含有全称量词的命题,其否定是“∃x0∈[0,+∞),x30+x0<0”,故选C.6.[2014·福建卷] 已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y-2=0B.x-y=2=0C.x+y-3=0D.x-y+3=06.D[解析]由直线l与直线x+y+1=0垂直,可设直线l的方程为x-y+m=0.又直线l过圆x2+(y-3)2=4的圆心(0,3),则m=3,所以直线l的方程为x-y+3=0,故选D.7. [2014·福建卷] 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称7.D [解析]将函数y =sin x 的图像向左平移π2个单位后,得到函数y =f (x )=sin ⎝⎛⎭⎫x +π2的图像,即f (x )=cos x .由余弦函数的图像与性质知,f (x )是偶函数,其最小正周期为2π,且图像关于直线x =k π(k ∈Z )对称,关于点⎝⎛⎭⎫π2+k π,0(k ∈Z )对称,故选D.图1-28. [2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析]由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.9. [2014·福建卷] 要制作一个容积为4m 3,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元9.C [解析]设底面矩形的一边长为x .由容器的容积为4m 3,高为1m .得另一边长为4x m.记容器的总造价为y 元,则 y =4×20+2⎝⎛⎭⎫x +4x ×1×10 =80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160,当且仅当x =4x,即x =2时等号成立.因此,当x =2时,y 取得最小值160,即容器的最低总造价为160元,故选C. 10. [2014·福建卷] 设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B .2OM → C .3OM →D .4OM →10.D [解析]如图所示,因为M 为平行四边形ABCD 对角线的交点,所以M 是AC 与BD 的中点,即MA →=-MC →,MB →=-MD →.在△OAC 中,OA →+OC →=(OM →+MA →)+(OM →+MC →)=2OM →. 在△OBD 中,OB →+OD →=(OM →+MB →)+(OM →+MD →)=2OM →, 所以OA →+OC →+OB →+OD →=4OM →,故选D.11. [2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4911.C [解析]作出不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0表示的平面区域Ω(如下图阴影部分所示,含边界),圆C :(x -a )2+(y -b )2=1的圆心坐标为(a ,b ),半径为1.由圆C 与x 轴相切,得b =1.解方程组⎩⎪⎨⎪⎧x +y -7=0,y =1,得⎩⎪⎨⎪⎧x =6,y =1,即直线x +y -7=0与直线y =1的交点坐标为(6,1),设此点为P .又点C ∈Ω,则当点C 与P 重合时,a 取得最大值, 所以,a 2+b 2的最大值为62+12=37,故选C.12. [2014·福建卷] 在平面直角坐标系中,两点P 1(x 1,y 1),P 2(x 2,y 2)间的“L -距离”定义为||P 1P 2||=|x 1-x 2|+|y 1-y 2|,则平面内与x 轴上两个不同的定点F 1,F 2的“L -距离”之和等于定值(大于||F 1F 2||) )AC图1-412.A [解析]设M (x ,y )是轨迹上任意一点,F 1(-c ,0),F 2(c ,0),||MF 1|+|MF 2||=2a ,其中a 为常数,且a >c >0,由“L -距离”定义,得|x +c |+|y |+|x -c |+|y |=2a ,即|y |=12(2a -|x +c |-|x -c |),当y ≥0时,y =⎩⎪⎨⎪⎧x +a ,x <-c ,a -c ,-c ≤x <c ;-x +a ,x ≥c ,当y <0时,y =⎩⎪⎨⎪⎧-x -a ,x <-c ,-a +c ,-c ≤x <c ,x -a ,x ≥c .则满足上述关系的图像只有选项A.13. [2014·福建卷] 如图1-5所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图1-513.0.18 [解析]设阴影部分的面积为S .随机撒1000粒豆子,每粒豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即S 1≈落在阴影部分中的豆子数落在正方形中的豆子数=1801000=0.18, 所以可以估计阴影部分的面积为0.18.14. [2014·福建卷] 在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________. (这是边文,请据需要手工删加)14.1 [解析]由BC sin A =ACsin B ,得sin B =2sin60°3=1,即B =90°,所以△ABC 为以AB ,BC 为直角边的直角三角形, 则AB =AC 2-BC 2=22-(3)2=1,即AB 等于1.15. [2014·福建卷] 函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.15.2 [解析]当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2,即在区间(-∞,0)上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x , 令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图像,则两函数图像只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点. 综上可知,函数f (x )的零点的个数是2. 16. [2014·福建卷] 已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个正确,则100a +10b +c 等于________.16.201 [解析] (i)若①正确,则②③不正确,由③不正确得c =0,由①正确得a =1,所以b =2,与②不正确矛盾,故①不正确.(ii)若②正确,则①③不正确,由①不正确得a =2,与②正确矛盾,故②不正确. (iii)若③正确,则①②不正确,由①不正确得a =2,由②不正确及③正确得b =0,c =1,故③正确.则100a +10b +c =100×2+10×0+1=201. 17. [2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 17.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.18. [2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin2x +cos2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin2x +cos2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .19. [2014·福建卷] 如图1-6所示,三棱锥A ­BCD 中,AB ⊥平面BCD ,CD ⊥BD .(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A -MBC 的体积.图1-619.解:方法一:(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD , ∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD .∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点, ∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD ,∴三棱锥C -ABM 的高h =CD =1,因此三棱锥A -MBC 的体积 V A -MBC =V C ­ABM =13S △ABM ·h =112.方法二:(1)同方法一.(2)由AB ⊥平面BCD ,得平面ABD ⊥平面BCD . 且平面ABD ∩平面BCD =BD .如图所示,过点M 作MN ⊥BD 交BD 于点N , 则MN ⊥平面BCD ,且MN =12AB =12.又CD ⊥BD ,BD =CD =1,∴S △BCD =12.∴三棱锥A -MBC 的体积V A ­MBC =V A ­BCD -V M ­BCD =13AB ·S △BCD -13MN ·S △BCD =112. 20. [2014·福建卷] 根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035~4085美元为中等偏下收入国家;人均GDP 为4085~12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.20.解:(1)设该城市人口总数为a ,则该城市人均GDP 为8000×0.25a +4000×0.30a +6000×0.15a +3000×0.10a +10000×0.20aa=6400(美元).因为6400∈[4085,12616),所以该城市人均GDP 达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A ,B},{A ,C},{A ,D},{A ,E},{B ,C},{B ,D},{B ,E},{C ,D},{C ,E},{D ,E},共10个.设事件M 为“抽到的2个行政区人均GDP 都达到中等偏上收入国家标准”, 则事件M 包含的基本事件是:{A ,C},{A ,E},{C ,E},共3个. 所以所求概率为P (M )=310.21. [2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.21.解:方法一:(1)设S (x ,y )为曲线Γ上任意一点.依题意,点S 到点F (0,1)的距离与它到直线y =-1的距离相等, 所以曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线, 所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下: 由(1)知抛物线Γ的方程为y =14x 2.设P (x 0,y 0)(x 0≠0),则y 0=14x 20,由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0,所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =0,得A ⎝⎛⎭⎫12x 0,0.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3,得M ⎝⎛⎭⎫12x 0+6x 0,3. 又N (0,3),所以圆心C ⎝⎛⎭⎫14x 0+3x 0,3, 半径r =12|MN |=⎪⎪⎪⎪14x 0+3x 0, |AB |=|AC |2-r 2 =⎣⎡⎦⎤12x 0-⎝⎛⎭⎫14x 0+3x 02+32-⎝⎛⎭⎫14x 0+3x 02= 6.所以点P 在曲线Γ上运动时,线段AB 的长度不变. 方法二:(1)设S (x ,y )为曲线Γ上任意一点,则|y -(-3)|-(x -0)2+(y -1)2=2.依题意,点S (x ,y )只能在直线y =-3的上方,所以y >-3,所以(x -0)2+(y -1)2=y +1, 化简得,曲线Γ的方程为x 2=4y . (2)同方法一. 22. [2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 22.解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln2.当x <ln2时,f ′(x )<0,f (x )单调递减; 当x >ln2时,f ′(x )>0,f (x )单调递增. 所以当x =ln2时,f (x )有极小值,且极小值为f (ln2)=e ln2-2ln2=2-ln4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln2)=2-ln4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:对任意给定的正数c ,取x 0=1c ,由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1cx ,即x <c e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <c e x 成立,只要e x >kx 成立.而要使e x >kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0, 当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x,第 11 页 共 11 页 所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增. 取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln2), 易知k >ln k ,k >ln2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c,当x ∈(x 0,+∞)时,恒有x <c e x . 综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法三:(1)同方法一.(2)同方法一.(3)证明:①若c ≥1,取x 0=0,由(2)的证明过程知,e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x , 即x <c e x .②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1.令h ′(x )=0得x =ln 1c. 当x >ln 1c时,h ′(x )>0,h (x )单调递增. 取x 0=2ln 2c, 则h (x 0)=c e2ln 2c -2ln 2c=2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增, 所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0, 即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014· 安徽(理科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014· 安徽(理科数学)

2014·安徽卷(理科数学)1.[2014·安徽卷] 设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i +i ·z-=( )A .-2B .-2iC .2D .2i1.C [解析]因为z =1+i ,所以z i+i ·z -=(-i +1)+i +1=2.2.[2014·安徽卷] “x <0”是“ln(x +1)<0”的( ) A .充分不必要条件B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 2.B [解析]ln(x +1)<0⇔0<1+x <1⇔-1<x <0,而(-1,0)是(-∞,0)的真子集,所“x <0”是“ln(x +1)<0”的必要不充分条件.3.[2014·安徽卷] 如图1-1所示,程序框图(算法流程图)的输出结果是( )图1-1A .34B .53C .78D .893.B [解析]由程序框图可知,变量的取值情况如下: 第一次循环,x =1,y =1,z =2; 第二次循环,x =1,y =2,z =3; 第三次循环,x =2,y =3,z =5; 第四次循环,x =3,y =5,z =8; 第五次循环,x =5,y =8,z =13; 第六次循环,x =8,y =13,z =21; 第七次循环,x =13,y =21,z =34;第八次循环,x =21,y =34,z =55,不满足条件,跳出循环. 4.[2014·安徽卷] 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14B .214C.2D .2 24.D [解析]直线l 的普通方程为y =x -4,圆C 的直角坐标方程是(x -2)2+y 2=4,圆心(2,0)到直线l 的距离d =|2-0-4|2=2,所以直线l 被圆C 截得的弦长为222-(2)2=2 2.5.[2014·安徽卷] x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不.唯一..,则实数a 的值为( ) A.12或-1B .2或12C .2或1D .2或-1 5.D [解析]方法一:画出可行域,如图中阴影部分所示,可知点A (0,2),B (2,0),C (-2,-2), 则z A =2,z B =-2a ,z c =2a -2.要使对应最大值的最优解有无数组,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A , 解得a =-1或a =2.方法二:画出可行域,如图中阴影部分所示,z =y -ax 可变为y =ax +z ,令l 0:y =ax ,则由题意知l 0∥AB 或l 0∥AC ,故a =-1或a =2.6.[2014·安徽卷] 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( ) A.12B.32 C .0D .-126.A [解析]由已知可得,f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6=f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6=f ⎝⎛⎭⎫5π6+sin 5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝⎛⎭⎫-π6=sin 5π6=12.7.[2014·安徽卷] 一个多面体的三视图如图1-2所示,则该多面体的表面积为( ) A .21+3B .8+ 2C .21D .18图1-27.A [解析]如图,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其表面积S =6×4-12×6+2×12×2×62=21+3.8.[2014·安徽卷] 从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对8.C [解析]方法一(直接法):在上底面中选B 1D 1,四个侧面中的面对角线都与它成60°,共8对,同样A 1C 1对应的对角线也有8对,同理下底面也有16对,共有32对.左右侧面与前后侧面中共有16对面对角线所成的角为60°,故所有符合条件的共有48对.方法二(间接法):正方体的12条面对角线中,任意两条垂直、平行或所成的角为60°,所以所成角为60°的面对角线共有C 212-6-12=48.9.、[2014·安徽卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8B .-1或5 C .-1或-4D .-4或8 9.D [解析]当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a 2时,f min (x )=f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.10.、[2014·安徽卷] 在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ |≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R10.A [解析]由已知可设OA →=a =(1,0),OB →=b =(0,1),P (x ,y ),则OQ →=(2,2),|OQ |=2.曲线C ={P |OP →=(cos θ,sin θ),0≤θ<2π}, 即C :x 2+y 2=1.区域Ω={P |0<r ≤|PQ →|≤R ,r <R }表示圆P 1:(x -2)2+(y -2)2=r 2与P 2:(x -2)2+(y -2)2=R 2所形成的圆环,如图所示.要使C ∩Ω为两段分离的曲线,则有1<r <R <3.11.[2014·安徽卷] 若将函数f (x )=sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是________.11.3π8 [解析]方法一:将f (x )=sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =sin ⎝⎛⎭⎫2x +π4-2φ的图像,由该函数的图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,所以当φ>0时,φmin=3π8. 方法二:由f (x )=sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位后所得的图像关于y 轴对称可知,π4-2φ=π2+k π,k ∈Z ,又φ>0,所以φmin =3π8. 12.、[2014·安徽卷] 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.12.1 [解析]因为数列{a n }是等差数列,所以a 1+1,a 3+3,a 5+5也成等差数列.又a 1+1,a 3+3,a 5+5构为公比为q 的等比数列,所以a 1+1,a 3+3,a 5+5为常数列,故q =1.13.[2014·安徽卷] 设a ≠0,n 是大于1的自然数,⎝⎛⎭⎫1+x a n的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图1-3所示,则a =________.图1-313.3 [解析]由图可知a 0=1,a 1=3,a 2=4,由组合原理知⎩⎨⎧C 1n ·1a =a 1=3,C 2n·1a 2=a 2=4,故⎩⎨⎧na=3,n (n -1)a 2=8,解得⎩⎪⎨⎪⎧n =9,a =3.14.[2014·安徽卷] 设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.14.x 2+32y 2=1 [解析]设F 1(-c ,0),F 2(c ,0),其中c =1-b 2, 则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1→=3F 1B →,故⎩⎪⎨⎪⎧-2c =3x 0+3c ,-b 2=3y 0,即⎩⎨⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得25(1-b 2)9+19b 2=1,解得b 2=23,故椭圆方程为x 2+3y 22=1.15.[2014·安徽卷] 已知两个不相等的非零向量a ,b ,两组向量,,,,和,,,,均由2个a 和3个b 排列而成.记S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4+x 5·y 5,S min 表示S 所有可能取值中的最小值,则下列命题正确的是________(写出所有正确命题的编号).①S 有5个不同的值②若a ⊥b ,则S min 与|a |无关 ③若a ∥b ,则S min 与|b |无关 ④若|b |>4|a |,则S min >0⑤若|b |=2|a |,S min =8|a |2,则a 与b 的夹角为π415.②④ [解析]S 可能的取值有3种情况:S 1=2+3,=+2+2a·b ,S 3=+4a ·b ,所以S 最多只有3个不同的值.因为a ,b 是不相等的向量,所以S 1-S 3=2+2-4a ·b =2(a -b )>0,S 1-S 2=+-2a·b =(a -b )2>0,S 2-S 3=(a -b )>0,所以S 3<S 2<S 1,故S min =S 3=b 2+4a·b .对于①,可知明显错误;对于②,当a ⊥b 时,S min 与|a |无关,故②正确; 对于③,当a ∥b 时,S min 与|b |有关,故③错误; 对于④,设a ,b 的夹角为θ,则S min =b 2+4a·b =|b 2|+4|a||b |cos θ>||-4|a ||b|>16|a|2-16|a|2=0,所以S min >0,故④正确;对于⑤,|b |=2|a |,S min =4|a |2+8|a |2cos θ=8|a |2,所以cos θ=12,又θ∈[0,π],所以θ=π3,故⑤错误.16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值.16.解: (1)因为A =2B ,所以sin A =sin2B =2sin B cos B ,由余弦定理得cos B =a 2+c 2-b 22ac =sin A2sin B ,所以由正弦定理可得a =2b ·a 2+c 2-b 22ac. 因为b =3,c =1,所以a 2=12,即a =2 3. (2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13.因为0<A <π,所以sin A =1-cos 2A =1-19=223. 故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=223×22+⎝⎛⎭⎫-13×22=4-26.17.、[2014·安徽卷] 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).17.解:用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4)=⎝⎛⎭⎫232+13×⎝⎛⎭⎫232+23×13×⎝⎛⎭⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)= P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为EX =2×59+3×29+4×1081+5×881=22481.18.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 18.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 19.、[2014·安徽卷] 如图1-4,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.图1-4(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点,记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值.19.解:(1)证明:设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),则由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 1x ,得A 1⎝⎛⎭⎫2p 1k 21,2p 1k 1, 由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 2x ,得A 2⎝⎛⎭⎫2p 2k 21,2p 2k 1. 同理可得B 1⎝⎛⎭⎫2p 1k 22,2p 1k 2,B 2⎝⎛⎭⎫2p 2k 22,2p 2k 2.所以A 1B 1→=⎝⎛⎭⎫2p 1k 22-2p 1k 21,2p 1k 2-2p 1k 1=2p 1⎝⎛⎭⎫1k 22-1k 21,1k 2-1k 1, A 2B 2→=⎝⎛⎭⎫2p 2k 22-2p 2k 21,2p 2k 2-2p 2k 1=2p 2⎝⎛⎭⎫1k 22-1k 21,1k 2-1k 1. 故A 1B 1→=p 1p 2A 2B 2→,所以A 1B 1∥A 2B 2(2)由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2,所以△A 1B 1C 1∽△A 2B 2C 2, 因此S 1S 2=⎝ ⎛⎭⎪⎫|A 1B 1→||A 2B 2→|2.又由(1)中的A 1B 1→=p 1p 2|A 2B 2→|知,|A 1B 1→||A 2B 2→|=p 1p 2,故S 1S 2=p 21p 22. 20.、、[2014·安徽卷] 如图1-5,四棱柱ABCD -A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,四边形ABCD 为梯形,AD ∥BC ,且AD =2BC .过A 1,C ,D 三点的平面记为α,BB 1与α的交点为Q .图1-5(1)证明:Q 为BB 1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA 1=4,CD =2,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小.20.解: (1)证明:因为BQ ∥AA 1,BC ∥AD , BC ∩BQ =B ,AD ∩AA 1=A , 所以平面QBC ∥平面A 1AD ,从而平面A 1CD 与这两个平面的交线相互平行, 即QC ∥A 1D .故△QBC 与△A 1AD 的对应边相互平行, 于是△QBC ∽△A 1AD ,所以BQ BB 1=BQ AA 1=BC AD =12,即Q 为BB 1的中点.(2)如图1所示,连接QA ,QD .设AA 1=h ,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC =a ,则AD =2a .图1V 三棱锥Q -A 1AD =13×12·2a ·h ·d =13ahd ,V 四棱锥Q -ABCD=13·a +2a 2·d ·⎝⎛⎭⎫12h =14ahd , 所以V 下=V 三棱锥Q -A 1AD +V 四棱锥Q -ABCD =712ahd . 又V 四棱柱A 1B 1C 1D 1­ABCD =32ahd ,所以V 上=V 四棱柱A 1B 1C 1D 1­ABCD -V 下=32ahd -712ahd =1112ahd ,故V 上V 下=117.(3)方法一:如图1所示,在△ADC 中,作AE ⊥DC ,垂足为E ,连接A 1E .又DE ⊥AA 1,且AA 1∩AE =A ,所以DE ⊥平面AEA 1,所以DE ⊥A 1E .所以∠AEA 1为平面α与底面ABCD 所成二面角的平面角. 因为BC ∥AD ,AD =2BC ,所以S △ADC =2S △BCA . 又因为梯形ABCD 的面积为6,DC =2, 所以S △ADC =4,AE =4.于是tan ∠AEA 1=AA 1AE =1,∠AEA 1=π4.故平面α与底面ABCD 所成二面角的大小为π4.方法二:如图2所示,以D 为原点,DA ,DD 1→分别为x 轴和z 轴正方向建立空间直角坐标系.设∠CDA =θ,BC =a ,则AD =2a .因为S 四边形ABCD =a +2a2·2sin θ=6, 所以a =2sin θ.图2从而可得C (2cos θ,2sin θ,0),A 1⎝⎛⎭⎫4sin θ,0,4,所以DC =(2cos θ,2sin θ,0),DA 1→=⎝⎛⎭⎫4sin θ,0,4.设平面A 1DC 的法向量n =(x ,y ,1),由⎩⎨⎧DA 1→·n =4sin θx +4=0,DC →·n =2x cos θ+2y sin θ=0,得⎩⎪⎨⎪⎧x =-sin θ,y =cos θ, 所以n =(-sin θ,cos θ,1).又因为平面ABCD 的法向量m =(0,0,1), 所以cos 〈n ,m 〉=n·m|n||m|=22,故平面α与底面ABCD 所成二面角的大小为π4.21.、、[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p .①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立. 由a n +1=p -1p a n +c p a 1-pn 易知a n >0,n ∈N *.当n =k +1时,a k +1a k =p -1p +c p a -pk =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p=⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p>1+p ·1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p, 所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n <1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0.由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p .①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p ),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p 均成立.。

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·天津卷(文科数学)

2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·天津卷(文科数学)

2014·天津卷(文科数学)1.[2014·天津卷] i 是虚数单位,复数7+i3+4i=( )A .1-iB .-1+i C.1725+3125iD .-177+257i 1.A [解析]7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i )=25-25i32+42=1-i.2.[2014·天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .52.B [解析]联立⎩⎪⎨⎪⎧x +y -2=0,y =1,解得⎩⎪⎨⎪⎧x y =1,可得点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值z =1×1+2×1=3.3.[2014·天津卷] 已知命题p :∀x >0,总有(x +1)e x >1,则綈p 为( ) A .∃x 0≤0,使得(x 0+1)e x 0≤1 B.∃x 0>0,使得(x 0+1)e x 0≤1 C.∀x >0,总有(x +1)e x ≤1 D.∀x ≤0,总有(x +1)e x ≤13.B [解析]含量词的命题的否定,先改变量词的形式,再对命题的结论进行否定.4.[2014·天津卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a4.C [解析]∵a =log 2π>1,b =log 12π<0,c =1π2<1,∴b <c <a . 5.[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12D .-125.D [解析]∵S 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,且S 1,S 2,S 4成等比数列,∴(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.6.[2014·天津卷] 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1 C.3x 225-3y 2100=1D.3x 2100-3y 225=1 6.A [解析]∵b a =2,0=-2c +10,∴c =5,a 2=5,b 2=20,∴双曲线的方程为x 25-y 220=1.7.[2014·天津卷] 如图1-1所示,∠BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分∠CBF ;②FB 2=FD ·F A ;③AE ·CE =BE ·DE ;④AF ·BD =AB ·BF .则所有正确结论的序号是( )A .①②B .③④C .①②③D .①②④7.D [解析]∵∠DBC =∠DAC ,∠DBF =∠DAB ,且∠DAC =∠DAB ,∴∠DBC =∠DBF ,∴BD 平分∠CBF ,∴△ABF ∽△BDF ,∴AB BD =AF BF =BFDF,∴AB ·BF =AF ·BD ,BF 2=AF ·DF .故①②④正确.由相交弦定理得AE ·DE =BE ·CE ,故③错误.8.[2014·天津卷] 已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C .πD .2π 8.C [解析]∵f (x )=2sin ⎝⎛⎭⎫ωx +π6=1,∴sin ⎝⎛⎭⎫ωx +π6=12,∴ωx 1+π6=π6+2k 1π(k 1∈Z )或ωx 2+π6=5π6+2k 2π(k 2∈Z ),则ω(x 2-x 1)=2π3+2(k 2-k 1)π.又∵相邻交点距离的最小值为π3,∴ω=2,∴T =π.9.[2014·天津卷] 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.9.60 [解析]由分层抽样方法可得,从一年级本科生中抽取的学生人数为300×44+5+5+6=60.10.[2014·天津卷] 一个几何体的三视图如图1-2所示(单位:m),则该几何体的体积为________m 3.10.20π3[解析]由三视图可知,该几何体为圆柱与圆锥的组合体,其体积V =π×12×4+13π×22×2=20π3. 11.[2014·天津卷] 阅读图1-3S 的值为________.11.-4 [解析]由程序框图易知,2=-4. 12.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________.12.(-∞,0) [解析]函数f (x )=lg x 2的单调递减区间需满足x 2>0且y =x 2单调递减,故x ∈(-∞,0).13.[2014·天津卷] 已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.13.2 [解析]建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2),由BC →=3BE →,得(1,3)=3(x 1,y 1+3),可得E ⎝⎛⎭⎫13,-233;由DC →=λDF →,得(1,-3)=λ(x 2,y 2-3),可得F ⎝ ⎛⎭⎪⎫1λ,3-3.∵AE ·AF =⎝⎛⎭⎫43,-233·⎝ ⎛⎪⎫1λ+1,3-3λ=10-23=1,∴λ=2.14.[2014·天津卷] 已知函数f (x )=⎩⎪⎨⎪2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.14.(1,2) [解析]在同一坐标系内分别作出y =f (x )与y =a |x |的图像,如图所示,当y =a |x |与y =f (x )的图像相切时,联立⎩⎪⎨⎪⎧-ax =-x 2-5x -4,a >0,整理得x 2+(5-a )x +4=0,则Δ=(5-a )2-4×1×4=0,解得a =1或a =1<a <2.15.、[2014·天津卷X ,Y ,Z ,其年级情况如下表:现从这6). (1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.15.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.16.[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a -c =66b ,sin B =6sin C .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值.16.解:(1)在△ABC 中,由b sin B =c sin C ,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c .所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c2=64. (2)在△ABC 中,由cos A =64,可得sin A =104.于是cos2A =2cos 2A -1=-14,sin2A =2sin A ·cos A =154.所以cos ⎝⎛⎭⎫2A -π6=cos2A ·cos π6+sin2A ·sin π6=15-38.17.、、[2014·天津卷] 如图1-4所示,四棱锥P -ABCD 的底面ABCD 是平行四边形,BA =BD =2,AD =2,P A =PD =5,的中点.(1)证明:EF ∥平面P AB ; (2)若二面角P -AD -B 为60°.(i)证明:平面PBC ⊥平面ABCD ;(ii)求直线EF 与平面PBC17.解:(1)证明:如图所示,取,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB .(2)(i)证明:连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P -AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60˚,由余弦定理,可解得PB =3,从而∠PBE =90˚,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .(ii)连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =112.又BE=1,故在直角三角形EBF 中,sin ∠EFB =BE EF =21111.所以直线EF 与平面PBC 所成角的正弦值为21111.18.、[2014·天津卷] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2.又b 2=a 2-c 2,则c 2a 2=12,所以椭圆的离心率e =22.(2)由(1)知a 2=2c 2,b 2=c 2,故椭圆方程为x 22c 2+y 2c2=1.设P (x 0,y 0).由F 1(-c ,0),B (0,c ),有F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ).由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.① 因为点P 在椭圆上,所以 x 202c 2+y 20c2=1.② 由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c ,代入①得y 0=c 3,即点P 的坐标为⎝⎛⎭⎫-4c 3,c 3. 设圆的圆心为T (x 1,y 1),则x 1=-43c +02=-23c ,y 1=c 3+c 2=23c ,进而圆的半径r =(x 1-0)2+(y 1-c )2=53c .由已知,有|TF 2|2=|MF 2|2+r 2.又|MF 2|=22,故有⎝⎛⎭⎫c +23c 2+⎝⎛⎭⎫0-23c 2=8+59c 2,解得c 2=3,所以所求椭圆的方程为x 26+y 23=1.19.、[2014·天津卷] 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求a 的取值范围.19.解:(1)由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a.所以,f (x )的单调递增区间是⎝⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2. (2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知,当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0;当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0. 设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然0∉B .下面分三种情况讨论:(i)当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (ii)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0).由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以A ⊆B .(iii)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集.综上,a 的取值范围是⎣⎡⎦⎤34,32. 20.、、[2014·天津卷] 已知q 和n 均为给定的大于1的自然数,设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A .(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .20.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)qn -2-q n -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t .。

2014年高考真题精校精析纯word可编辑·2014高考真题解析 广西卷(全国)化学

2014年高考真题精校精析纯word可编辑·2014高考真题解析 广西卷(全国)化学

2014·全国卷(大纲化学)6.[2014·全国卷] 下列叙述正确的是()A.锥形瓶可用作加热的反应器B.室温下,不能将浓硫酸盛放在铁桶中C.配制溶液定容时,俯视容量瓶刻度会使溶液浓度偏高D.用蒸馏水润湿的试纸测溶液的pH,一定会使结果偏低6.A[解析] 锥形瓶为可垫石棉网加热的仪器,A项正确;室温下铁遇浓硫酸发生钝化,因此室温下可以用铁制容器盛放浓硫酸,B项错误;配制溶液定容时,俯视容量瓶刻度,会造成所加水偏多,浓度偏小,C项错误;用蒸馏水润湿的试纸测溶液的pH,相当于将待测液稀释,当待测液为酸时,所测结果偏大,当待测液为中性时,不产生误差,D项错误。

7.[2014·全国卷] N A表示阿伏伽德罗常数,下列叙述正确的是()A.1 mol FeI2与足量氯气反应时转移的电子数为2N AB.2 L 0.5 mol·L-1硫酸钾溶液中阴离子所带电荷数为N AC.1 mol Na2O2固体中含离子总数为4N AD.丙烯和环丙烷组成的42 g混合气体中氢原子的个数为6N A7.D[解析] 1 mol FeI2与足量Cl2反应时,Fe2+被氧化为Fe3+,I-被氧化为I2,转移电子3N A,A项错误;2 L0.5 mol·L-1的硫酸钾溶液中n(SO2-4)=1 mol,所带电荷数为2N A,B 项错误;Na2O2由Na+和O2-2(过氧根离子)构成,1 mol Na2O2中的离子总数为3N A,C项错误;丙烯和环丙烷为同分异构体,其分子式均为C3H6,最简式为CH2,42 g混合气中的氢原子个数为42 g14 g·mol-1×2N A=6N A,D项正确。

8.[2014·全国卷] 下列叙述错误的是()A.SO2使溴水褪色与乙烯使KMnO4溶液褪色的原理相同B.制备乙酸乙酯时可用热的NaOH溶液收集产物以除去其中的乙酸C.用饱和食盐水替代水跟电石反应,可以减缓乙炔的产生速率D.用AgNO3溶液可以鉴别KCl和KI8.B[解析] SO2使溴水褪色与乙烯使KMnO4溶液褪色均发生了氧化还原反应,二者褪色原理相同,A项正确;乙酸乙酯在NaOH溶液中易发生水解,B项错误;用饱和食盐水替代水与电石反应时,水消耗时析出的NaCl晶体包裹在电石表面,可减缓反应速率,C项正确;AgNO3溶液与KCl、KI反应分别生成白色沉淀和黄色沉淀,可据此现象鉴别KCl和KI,D项正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014·重庆卷(理科数学)1.[2014·重庆卷] 复平面内表示复数i(1-2i)的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限1.A [解析]i(1-2i)=2+i ,其在复平面内对应的点为(2,1),位于第一象限. 2.[2014·重庆卷] 对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9,成等比数列2.D [解析]因为在等比数列中a n ,a 2n ,a 3n ,…也成等比数列,所以a 3,a 6,a 9成等比数列.3.[2014·重庆卷] 已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A .y ^=0.4x +2.3B .y ^=2x -2.4C .y ^=-2x +9.5D .y ^=-0.3x +4.43.A [解析]因为变量x 与y 正相关,则在线性回归方程中,x 的系数应大于零,排除B ,D ;将x =3,y =3.5分别代入A ,B 中的方程只有A 满足,故选A.4.[2014·重庆卷] 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3D.1524.C [解析]∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b )⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.5.[2014·重庆卷] 执行如图1-1所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >455.C [解析]第一次循环结束,得s =1×910=910,k =8;第二次循环结束,得s =910×89=45,k =7;第三次循环结束,得s =45×78=710,k =6,此时退出循环,输出k =6.故判断框内可填s >710.6.[2014·重庆卷] 已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q6.D [解析]根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以綈q 为真命题,所以p ∧綈q 为真命题.7.[2014·重庆卷] ( )A .54B .60C .66D .727.B [解析]由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为S =12×3×4+3×52+2+52×4+2+52×5+3×5=60. 8.[2014·重庆卷] 设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D .3 8.B [解析]不妨设P 为双曲线右支上一点,根据双曲线的定义有|PF 1|-|PF 2|=2a ,联立|PF 1|+|PF 2|=3b ,平方相减得|PF 1|·|PF 2|=9b 2-4a 24,则由题设条件,得9b 2-4a 24=94ab ,整理得b a =43,∴e =c a =1+⎝⎛⎭⎫b a 2=1+⎝⎛⎭⎫432=53.9.[2014·重庆卷] 某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .1689.B [解析]分两步进行:(1)先将3个歌舞进行全排,其排法有A 33种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有2A 33种.若两歌舞之间有两个其他节目时插法有C 12A 22A 22种.所以由计数原理可得节目的排法共有A 33(2A 33+C 12A 22A 22)=120(种).10.,[2014·重庆卷]已知△ABC 的内角A ,B ,C 满足sin2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )A .bc (b +c )>8B .ab (a +b )>16 2C .6≤abc ≤12D .12≤abc ≤2410.A [解析]因为A +B +C =π,所以A +C =π-B ,C =π-(A +B ),所以由已知等式可得sin2A +sin(π-2B )=sin[π-2(A +B )]+12,即sin2A +sin2B =sin2(A +B )+12,所以sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )]=sin2(A +B )+12,所以2sin(A +B )cos(A -B )=2sin(A +B )cos(A +B )+12,所以2sin(A +B )[cos(A -B )-cos(A +B )]=12,所以sin A sin B sin C =18.由1≤S ≤2,得1≤12bc sin A ≤2.由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以1≤2R 2·sin A sin B sin C ≤2,所以1≤R 24≤2,即2≤R ≤2 2,所以bc (b +c )>abc =8R 3sin A sin B sin C =R 3≥8.11.[2014·重庆卷] 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.11.{7,9} [解析]由题知∁U A ={4,6,7,9,10}, ∴(∁U A )∩B ={7,9}. 12.[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.12.-14 [解析]f (x )=log 2x ·log 2(2x )=12log 2x ·2log 2(2x )=log 2x ·(1+log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14,所以当x =22时,函数f (x )取得最小值-14.13.[2014·重庆卷] 已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.13.4±15 [解析]由题意可知圆的圆心为C (1,a ),半径r =2,则圆心C 到直线ax+y -2=0的距离d =|a +a -2|a 2+1=|2a -2|a 2+1.∵△ABC 为等边三角形,∴|AB |=r =2.又|AB |=2r 2-d 2,∴222-⎝ ⎛⎭⎪⎫|2a -2|a 2+12=2,即a 2-8a +1=0,解得a =4±15.14.[2014·重庆卷] 过圆外一点P 作圆的切线P A (A 为切点),再作割线PBC 依次交圆于B ,C .若P A =6,AC =8,BC =9,则AB =________.14.4 [解析]根据题意,作出图形如图所示,由切割线定理,得P A 2=PB ·PC =PB ·(PB +BC ),即36=PB ·(PB +9)∴PB =3,∴PC =12.由弦切角定理知∠P AB =∠PCA ,又∠APB=∠CP A ,∴△P AB ∽△PCA ,∴AB CA =PB,即AB =PB ·CA =3×86=4.15.[2014·重庆卷] 已知直线l 的参数方程为⎩⎪⎨⎪y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.15.5 [解析]由题意,得直线l 的普通方程为x -y +1=0,曲线C 的平面直角坐标方程为y 2=4x ,联立直线l 与曲线C 的方程,解得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 与曲线C 的公共点的极径ρ=(1-0)2+(2-0)2= 5.16.[2014·重庆卷] 若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a的取值范围是________.16.⎣⎡⎦⎤-1,12 [解析]令f (x )=|2x -1|+|x +2|,则①当x <-2时,f (x )=-2x +1-x -2=-3x -1>5;②当-2≤x ≤12时,f (x )=-2x +1+x +2=-x +3,故52≤f (x )≤5;③当x >12时,f (x )=2x -1+x +2=3x +1>52.综合①②③可知f (x )≥52,所以要使不等式恒成立,则需a 2+12a+2≤52,解得-1≤a ≤12.17.,,[2014·重庆卷] 已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3,求cos ⎝⎛⎭⎫α+3π2的值.17.解:(1)因为f (x )的图像上相邻两个最高点的距离为π,所以ƒ(x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图像关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,….因为-π2≤φ<π2,所以φ=-π6.(2)由(1)得ƒ⎝⎛⎭⎫α2=3sin(2×α2-π6)=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154.因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤(α-π6)+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12 =3+158.18.,[2014·重庆卷] 一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数)18.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.19.,[2014·重庆卷]如图1-3所示,四棱锥P ­ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长; (2)求二面角A -PM -C19.解:(1)如图所示,连接AC ,BD ,因为四边形ABCD 为菱形,所以AC ∩BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知,BM →=14BC →=⎝⎛⎭⎫-34,-14,0,从而OM →=OB →+BM →=⎝⎛⎭⎫-34,34,0,即M ⎝⎛⎭⎫-34,34,0.设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝⎛⎭⎫34,-34,a .因为MP ⊥AP ,所以MP →·AP →=0,即-34+a 2=0,所以a =32或a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝⎛⎭⎫-3,0,32,MP →=⎝⎛⎭⎫34,-34,32,CP →=⎝⎛⎭⎫3,0,32.设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).由n 1·AP →=0, n 1·MP →=0,得⎩⎨⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝⎛⎭⎫1,533,2.由n 2·MP →=0,n 2·CP →=0,得⎩⎨⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155,故所求二面角A -PM -C 的正弦值为105.20.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.20.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e -2x )=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1.(2)当c =3时,f (x )=e 2x -e -2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0, 故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e -2x -c ,而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当且仅当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x -c >0,此时f (x )无极值.当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值.当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2.当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).21.,[2014·重庆卷] 如图1-4所示,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 1||DF 1|=22得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322,所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2,|P 1P 2|=2|x由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2.又|CP 1|=|CP 2|,故圆C 的半径|CP 1|=22|P 1P 2|=2|x 1|=423.22.,,[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题 a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④ 综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.。

相关文档
最新文档