电流互感器极性常见的几个问题
互感器极性及其接线安全技术
互感器极性及其接线安全技术互感器是电力系统中常见的电气设备,用于测量电流和电压,并将其转换成适合测量和保护装置使用的信号。
在使用互感器时,不仅需要了解其工作原理和性能特点,还需要掌握互感器的极性及其接线安全技术。
一、互感器极性互感器的极性指的是互感器的朝向和接线方式。
在工程实践中,为了保证电力系统的稳定和安全运行,互感器的极性需要正确配置。
在电流互感器(CT)中,通常规定将线圈的起点标记为极性端,线圈的末端标记为非极性端。
当经过绕组的电流方向与箭头方向一致时,将产生正向磁通,输出电压方向为正。
此时,将极性端连接到负载端,非极性端连接到电源端。
如果电流方向相反,输出电压方向将为负,因此需要将极性端和非极性端的连接方式进行调整。
在电压互感器(VT)中,通常规定将高压侧标记为极性端,低压侧标记为非极性端。
此时,当高压侧电压大于低压侧电压时,输出电压方向为正。
同样地,如果高压侧电压小于低压侧电压,输出电压方向将为负,需要调整接线方式。
二、互感器接线安全技术互感器的接线安全技术主要包括以下几个方面:1. 接线材料的选择:互感器的线圈通常采用铜线或铝线进行绕制,因此接线材料需要选择合适的铜或铝导线。
在选择导线时,需要考虑其截面积、导电性能、耐腐蚀性等因素。
2. 接线端子的选择:互感器的线圈和外部电气设备之间通过接线端子进行连接。
为确保接线可靠和安全,端子需要具有良好的接触性能和导电性能,且具有防震、防潮、防腐蚀等功能。
3. 接线方法的选择:互感器的接线方法有直接接线法和间接接线法两种。
直接接线法指的是将互感器与电气设备之间的线路直接连接,适用于小型电力系统和较短距离的电路。
间接接线法指的是通过继电器等中间设备来连接互感器和电气设备,适用于大型电力系统和较长距离的电路。
4. 接线标准的遵循:在进行互感器接线时,需要遵循相应的接线标准或规程,确保接线正确、可靠和安全。
例如,根据GB/T 23592-2009《互感器技术条件》的规定,CT的接线应符合Yyn0、Dyn11、Yd11等标准。
电流互感器极性问题
在生产实践中,由于电流互感器极性及接线不正确,造成保护装置误动和拒动,由此而引起的停电事故时有发生,这在克拉玛依电网已发生过多起,且故障多发生在主变差动保护、110 kV线路保护及母差保护中。
例如:石西地区110 kV 陆良变电站及35 kV莫北变电站都因1,2号主变差动保护电流互感器极性及接线存在问题,造成多次全站失电。
因此,正确判断电流互感器的极性及二次接线的正确性是非常重要的。
1 极性的判断及二次线的联接以双圈变压器差动保护接线为例,简要说明如何判断电流互感器极性以及正确的电流互感器二次接线。
1.1 电流互感器的极性判断电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。
标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。
1.2 正确的电流互感器的二次接线方式(1) 变压器按Y/△-11接线时,两侧电流之间有30。
的相位差,即同相的低压侧电流超前高压侧电流30。
,为了消除这一不平衡电流,差动保护的电流互感器二次侧应采用△/Y接线,如图2所示。
变压器低压侧,即副边一次线圈接成△,则与其对应的低压侧电流互感器二次接线应接成Y型。
如电流互感器为减极性,并假定靠母线侧为正,电流互感器的正端子联接在一起,作为中性线。
二次引出线分别接在a、b、c各相负端子上。
变压器高压侧即原边一次线圈接成Y,则与其对应的高压侧电流互感器二次接线应接成△型,将A相电流互感器的负端子与B相电流互感器的正端子联接后,引出a 相线电流;B相负端子与C相正端子联接后,引出b相线电流;C 相负端子与A相正端子联接后,引出c相线电流。
根据电流相位关系做出向量图,因2组电流互感器的二次线电流同相位,若不考虑其它因素的影响,流入差动继电器的各相电流均应为0。
(2) 一般的过电流保护只靠动作时限获得选择性,但对双侧电源线路和环形网络,不能满足选择性的要求,为实现保护的选择性,在各电流保护上加装一方向元件,便构成方向过流保护。
电流互感器(加极性、减极性)相关知识
极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L2和K2分别为同极性端。
反之,就是加极性。
低压电流互感器实用技术问答30例(之一)刘国宏马晓文河北省康保供电分公司(076650)1.电流互感器铭牌上额定电流比的含义是什么?答:额定电流比系指一次额定电流与二次额定电流之比。
通常用不约分的分数表示。
所谓额定电流就是在这个电流下互感器可以长期运行而不会同发热损坏。
2.何为电流互感器的准确等级?答:电流互感器变换电流存在着一定的误差,根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。
0.l级以上电流互感器主要用于试验,进行精密测量或者作为标准用来校验低等级的互感器,也可以与标准仪表配合用来校验仪表,常被称为标准电流互感器;0.2级和0.5级常川来连接电气计量仪表;3级及以下等级电流互感器主要连接某些继电保护装置和控制设备。
3.电流互感器的极性标志是怎样规定的?答:极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L 2和K2分别为同极性端。
4.电流互感器额定容量的含义是什么?答:电流互感器的额定容量就是额定二次电流I2e 通过额定负载Z2e时所消耗的视在功率,即S2e=。
一般I2e =5A,因此S2e=25Z2e。
在电流互感器的使用中,二次连接及仪表电流线圈的总阻抗不超过铭牌上规定的额定容量(伏安数或欧姆数)时,才能保证它的准确性。
5.什么是电流互感器误差?答:由于电流互感器铁芯的结构以及材料性能等原因的影响,电流互感器存在着激磁电流Í,使其产生误差。
从电流互感器一次电流Í1和折算后的二次电流Í2’的向量图来看(如图 2所示),折算后的二次电流旋转180˚后一Í2’,与一次电流Í1相比较,不但大小不等而且两者相位不重合,即存在着两种误差,称为比差(比值误差)和角差(相角误差)。
升压站电流互感器极性的几点看法
升压站电流互感器极性的几点看法500kV开关站的CT极性比较重要,涉及保护测量的相关设计,极性接反可能导致差动保护误动,测量极性接反,会导致后台显示的有功、无功数据与实际相反,导致方向误判。
用于保护的CT极性是否正确,可通过现场调试试验验证。
但测量、计量CT的极性不能单靠试验验证,同时还需根据电网的潮流方向进行核实。
在图中主变高压侧CT“一次潮流是从主变流向电网,500kV主接线图上测量和计量CT的P2朝向主变,汇控柜端接图纸取S1接相,S2接N。
在倒送电时,电流和功率极性是发电状态,所以需要修改为取S2接相,S1接N ”。
广东中调自动化明确,对于500kV开关站和发变组是独立的系统,500kV开关站所有出线正方向均为由母线指向线路或变压器,发电机流出恒为正。
故在机组发电时,发电机组为正,是发电状态,主变出口(主变低压侧)为正(主变低压侧),功率流入厂内架空线;开关站主变出线为负,功率流入开关站,线路出线为正,功率流出开关站;在倒送电时,线路出线为负,功率流入开关站,开关站主变出线为正,功率流入厂内架空线,主变出口(主变低压侧)为负,功率流入主变;而按照调换主变高压侧的测量CT极性后,导致倒送电时开关站主变出线和线路出线功率均为负,调度自动化图显示错误。
所以要求重新调回主变高压侧测量CT接线极性,保留计量CT接线极性。
1、极性接法原理分析(1)计量、测量互感器极性接法电流互感器的计量绕组必须掌握两点确定接线,一是确定电流互感器P1的安装位置,二是确定绕组功能类型,我们知道计量、测量都反映功率事实,电度表是功率的时间累计,而功率由电流、电压及相位组成。
一般定性的规定电厂输出功率为正,吸收功率为负,功率计算一般以电压为参考方向,在发电机电压正方向确定的前提下,电流互感器以发电机指向母线为正方向。
(2) 差动、后备保护极性接法要正确完成差动及后备保护CT极性接法,必须先弄清楚其保护对象,还有它的一次极性端朝向,差动保护及后备保护要求CT一次必须以流入设备的电流方向为正方向,极性不能接错。
电流互感器极性讲解
1电流互感器极性定义1.1什么是电流互感器的极性•首先为什么电流互感器会有极性这样的概念,电流互感器相当于小的变压器,都是基于电磁感应原理工作的,一次电压/电流经过变比感应出小的二次电压/电流,用于测量、计量、保护等的作用。
•在一次二次线圈只有少量的匝数缠绕,我们可以通过右手螺旋定则判定出二次线圈中电流的方向,但是电流互感器一次二次线圈是多匝数的,而且外部又有绝缘材料的覆盖,所以是不能看出一次和二次电流的走向的和关系的,所以这个时候我们就需要通过专业的方法去测量确定二次电流和一次电流的方向关系,所以我们把电流互互感器的方向关系称为电流互感器的极性。
1.2电流互感器的极性分为几种,叫什么?•通过上面的了解,我们就清楚了互感器的极性概念,那么也就能想到有几种了,对,就是两种,一种一次和二次电流方向是一致的,一种是相反的,叫加极性和减极性。
1.3电流互感器极性的测量。
•上面了解到了极性的概念,那应该怎么测量呢,我想大家应该都想到了最简单和最早期的做法了,是对的,就是那样的,给一次侧通流,然后用电流表去测量二次侧的方向,就能确定一次二次电流的方向关系,后来为了方便,电力测试厂家发明了电流互感器综合测试仪,这个可以比较快、比较方便的测量出极性,但其实原理还是一样的,大家看他是怎么测量的,是给电流互感器一次电缆两端夹上夹子给他通流,然后将二次对应端子接入综合测试仪对应端子,就能测出极性,其实里面就是一个电子回路模拟万用表测出二次电流的方向,然后将结果经过对比打印出来,这样的设备操作非常简单,我相信大家用一次就会使用,很多工程测试人员是不明白其原理的,但是会用,能测出来,这是没有技术含量的,作为运维人员还是要清楚真正的原理的。
• 2 差动保护中极性的使用2.1差动保护原理•差动保护很多人都知道是两侧的电流做对比来定位故障点是区内还是区外,一些学过保护原理的同事知道差动保护中有差动电流和制动电流,差动电流等于两侧电流相量相加的绝对值,制动电流一般是两侧电流相量差绝对值的二分之一(也有用单侧电流最大值的)。
电流互感器极性问题
极性接反的 后果 电流互感器 常识 减极性原则 回忆本节 内容
谢谢大家!
思考题
思考题
电流互感器
2013-09-08
极性接反的 后果 电流互感器 常识 减极性原则 回忆本节 内容
思考题
互感器极性接反引发的事件
2013-09-08
极性接反的 后果 电流互感器 常识 减极性原则 回忆本节 内容
XX地区220kV变电站,新增一条110kV线路, 在电流互感器二次接线过程中,工作人员将互 感器极性接反,负责人在调试和验收的过程中 均未注意极性问题。该线路投运初始时负荷较 低,保护未动作,当线路负荷增大到一定值时, 保护动作,直接导致对侧用户站全站失压,致 使客户所有用电设备停工、部分设备损坏。 这不仅给公司和用户造成了无法估计的经 济损失而且在客户的心中留下不良印像。
K1
K2
保护装置
思考题
确定了一二次电流之间的相位关系,若 规定一次电流方向为自母线流出为正, 则电流二次极性端指K1。那么二次接线 按照减极性原则:K1为头,K2为尾
二次减极性接线
2013-09-08
极性接反的 后果 电流互感器 常识 减极性原则 回忆本节 内容
思考题
电流互感器极性校验
2013-09-08
极性接反的 后果 电流互感器 常识
1、极性校验
s
+ + +
E
减极性原则
-
v
-
互感器
回忆本节 内容
干电池、直流档、指针偏转
思考题2013-0Fra bibliotek-08极性接反的 后果 电流互感器 常识 减极性原则 回忆本节 内容
2、用互感器特性测试仪直接测量
思考题
电流互感器极性
电流互感器极性
电流互感器是一种专为电力系统安装的装置,它可以用来检测和测量系统中电流的变化。
电流互感器的极性很重要,它可以确保电流互感器的正确使用和精确测量。
本文将介绍如何确定电流互感器的极性,这些知识对于电力系统的监控和维护至关重要。
电流互感器有两种极性:正和负,其中正极性表示在正电极上产生的正电流,负极性表示在负电极上产生的负电流。
正确确定电流互感器的极性可以确保它们正确安装和使用,以便获得精确的电流数据。
确定电流互感器的极性需要注意几个因素:首先,电流互感器必须正确安装,以便精确检测电流变化;其次,必须确定电流传感器安装点的极性,即正电极和负电极;最后,需要检查电流传感器本身是正极性还是负极性,以便正确连接。
具体来说,要确定电流互感器的极性,可以进行以下操作:首先,确定电流传感器安装点的极性,将安装点分为正电极和负电极;其次,观察电流传感器本身是正极性还是负极性,正极性电流互感器应该安装在正电极,而负极性电流互感器应安装在负电极;最后,检查安装时准确确定电流互感器的正确极性;如果极性不正确,可能会导致测量误差或故障。
此外,需要注意的是,电流互感器极性的确定不仅仅是连接的问题,还包括电路参数的问题,比如线圈电感、线圈电阻等,这些参数和极性有关。
电流互感器极性也可以根据使用情况和要求来确定,如果没有经验,最好咨询专业人士,由专业人士确定最佳的安装极性。
总的来说,确定电流互感器的极性非常重要,电流互感器的正确极性不仅能确保安全,而且可以提高测量精度和可靠性。
因此,在安装和使用电流互感器时,必须根据电路参数和使用要求精确确定极性,从而保证电力系统的稳定和安全。
电流互感器的极性和误差解析
电流互感器的极性和误差解析【摘要】电流互感器在电力运行中其极性接入是否正确,对继电保护装置是否正确动作及二次回路接入表计读数是否准确等影响极大,直接影响电力电网的安全运行。
【关键词】电流互感器极性;电流互感器误差;电力运行1 电流互感器的极性1.1 电流互感器接线端抽头有极性标注,一次侧是L1和L2表示,二次侧是K1和K2表示,L1和K1为同极性端子,L2和K2为同极性端子。
当一次电流由L1流进L2流出时,二次电流应当由K1流出经过二次负载流进K2。
这样当一、二次绕组中同时由同性端子通入电流时,在铁芯中产生的磁通方向也相同;相反二次侧不能正确测量一次侧电流大小和方向,保护装置则不能正确判断事故,导致“误动”现象。
1.2 电力运行经验表明,电流互感器的极性对继电保护装置能否正确动作影响很大,农配网中大多保护装置特别是变压器差动保护装置,误动的主要原因就是电流互感器二次线圈极性接反,这种事例日常工作中时有出现,教训也是很惨痛的。
所以实际工作中要求工作人员要耐心细致,一丝不苟,电流互感器二次回路接线完后,一定要对一、二次绕组间的极性进行检验,以保证接线正确。
检验方法是:在二次回路中串接一只电流指示仪表,一次侧加入直流电流,根据一次侧电流方向和电流表指示方向,来判断接线是否正确,如下图:当开关K闭合时,电流表指针顺时针方向偏转,则电流互感器极性接线正确,反之是错误的。
2 电流互感器的误差3 影响电流互感器误差的因素3.1 与励磁线圈安匝数大小有关,励磁安匝数增大,励磁电流增加,误差加大;与一次电流大小有关,由fwc=(I2-I’1)/ I’1×100%可知,一次电流增加,误差相对减小。
3.2 与二次负载阻抗有关,二次阻抗增大,电流减小,去磁安匝数减小,使励磁电流加大,误差也加大;与二次负载感抗有关,二次感抗增大,则cosψ减小,使二次电流减小,励磁电流增加,误差也加大。
4 减小电流互感器误差的措施4.1 励磁电流的存在是造成电流互感器误差的主要因素,因此减小励磁电流是减小误差的关键。
电流互感器常见故障分析及处理的相关问题
电流互感器常见故障分析及处理的相关问题电流互感器常见故障分析及处理的相关问题为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量。
为了保护人身和设备安全,测量和保护装置需要通过电流互感器间接接入系统,来满足对系统的测量和监视。
分析电流互感器在电力系统中出现故障的原因,找出解决的办法,保证系统稳定运行。
电流互感器故障处理稳定运行一、电流互感器的作用为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量。
但一般的测量和保护装置不能直接接入一次高压设备,而需要将一次系统的大电流按比例变换成小电流,供给测量仪表和保护装置使用。
在测量交变电流的大电流时,为了便于二次仪表测量需要,转换为比较统一的电流(我国规定电流互感器的二次额定电流为5A或1A),另外线路上的电压都比较高,如直接测量是非常危险的。
电流互感器就起到变流和电气隔离作用。
它是电力系统中测量仪表、继电保护等二次设备获取电气一次回路电流信息的传感器,电流互感器将高电流按比例转换成低电流,电流互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等。
二、电流互感器工作原理电流互感器由一次线圈、二次线圈、铁芯、绝缘支撑及出线端子等组成。
电流互感器的铁芯有硅钢片叠置而成,其一次线圈与主电路串联,且通过被测电流I1,它在铁芯内产生交变磁通,使二次线圈感应出相应二次电流I2(其额定电流为5A)。
如将励磁损耗忽略不计,则I1N1=I2N2,其中N1、N2分别为一、二次线圈匝数。
电流互感器的变流比K=I1/I2=N2/N1。
由于电流互感器的一次线圈连接在主电路中,所以一次线圈对地必须采取与一次线路电压相适应的绝缘材料,以保障二次回路与人身的安全。
三、电流互感器的分类电流互感器分为测量用电流互感器和保护用电流互感器;测量用电流互感器的作用是用来计量(计费)和测量运行设备电流的;保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。
浅析电流互感器极性接反的危害与判别方法
浅析电流互感器极性接反的危害与判别方法摘要:电流互感器极性如不正确,将会使接入该回路的具有方向性的仪表如功率表、电能表等指示错误,以及使方向性继电保护失去作用甚至误动作,例如:“电流互感器极性接反”能造成主变压器差动误动、馈线保护拒动而中断供电。
关键词:电流互感器极性、功率因数角的判别0引言“电流互感器极性接反”是设备安装或试验后恢复接线错时误造成,运行中的设备用仪器校验极性必须停电,所以探讨简易的方法:不停电通过查看分析功率因数角即可判断电流互感器极性是否正确很有实用意义。
1电流互感器极性接反危害浅析1.1极性接反造成差动保护动作从电磁感应原理知道,电流互感器是有极性的,即同名端,变压器差动回路的电流互感器指向母线侧还是变压器侧,将对变压器差动电流的计算结果正确与否有直接影响,供电系统正常的相序为正序,也就是与A相为基准,B相比A相超前120°,C相比A相滞后120°,如果变压器任何一侧的电流互感器出现极性接错的情况,就会形成差电流,导致变压器差动保护误动作。
例如:1、2009年合武线长安集变电所主变侧电流互感器4LH极性接反,一、二次侧电流向量和得出差流电流(正常运行差流电流应为0),导致3#、4#主变差动保护动作。
2、2019年青阜线青町变电所试投运时主变侧电流互感器9LH、11LH极性接反,导致1#主变差动保护动作。
1.2、馈线侧电流互感器极性接反造成阻抗保护拒动当馈线侧电流互感器极性接反会导致馈线距离保护和故障测距误动,或者故障报告不准。
因为馈线距离保护和测距装置电流向量的采集都由馈线电流互感器测量而来,流互极性接反将会使阻抗角计算出错,从而造成保护误动。
正常馈线负荷角度一般在0-90之间,当电流互感器极性接反时负荷角度偏转增加180°,此时负荷角就为180°-270°,而在阻抗保护特性图中,四边形特性阻抗在第三象限完全拒动,平行四边形特性图中阻抗动作区大大减小。
电流互感器极性常见的几个问题
电流互感器极性常见的几个问题在电力系统中,因为电流互感器极性接线错误导致保护装置误动或拒动的现象时有发生,严重影响供电系统的稳定运行。
同样,电流互感器的极性接线在化工厂应用中也显得尤为重要。
本文就化工厂常见的一些电流互感器极性问题进行总结,并给出相应整改措施。
标签:电流互感器;极性;保护装置;措施1 前言电流互感器(CT)是将一次侧大电流转换成可供计量、测量、保护等二次设备使用的二次侧电流的变流设备,还可以使二次设备与一次高压隔离。
它的一次、二次绕组都是由两个端子引出,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置的正确动作,也影响电力系统的在线监测及故障处理,严重时还会引起人身安全。
2 电流互感器极性为了便于正确接线和理论分析,电流互感器的一次绕组和二次绕组的引出端子都标有极性符号。
一次绕组P1为首端,P2为末端;二次绕组S1为首端,S2为末端。
通常用“.”“*”等符号标记,表示同极性,即P1、S1(或P2、S2)为同名端。
通常电流互感器采用减极性原则(同名端流入,同名端流出)标注,规定当一次侧电流从首端P1流入,由末端P2流出;二次侧电流从首端S1流出,末端S2端流入。
3 电流互感器极性常见的几个问题结合本化工厂实际,保护1为南瑞RCS-9671CS变压器差动保护装置;保护2、3、4为施耐德MiCOM P140馈线管理保护装置系列下的P143装置,相间/零序过电流保护可自由设置方向;保护5为施耐德MiCOM P640 变压器保护装置系列下的P643装置。
3.1 变压器或线路差动保护CT接线变压器或线路差动保护保护范围内两侧CT采用180度極性接线,为了满足被保护对象正常运行或区外故障时,二次侧差流近似于零,保护不会动作;区内故障时,二次侧差流近似等于两倍短路电流,保护动作。
3.2 针对35kV IV母进线和馈线(带方向)①4#主变进线保护2所示CT极性:电流方向指向母线,为反方向动作;②4#热电站升压变高压侧后备保护4所示CT极性:电流方向指向主变,为正方向动作。
电流互感器的极性问题探析
电流互感器的极性问题探析作者:童岩峰来源:《科技资讯》2011年第36期摘要:本文介绍了供电系统继电保护和计量装置中使用电流互感器时极性错误导致的故障情况,详细分析了故障原因,并介绍了测定同名端极性的常用方法。
关键词:电流互感器极性继电保护计量装置中图分类号:TN93 文献标识码:A 文章编号:1672-3791(2011)12(c)-0000-001 引言供用电系统中继电保护装置和计量装置等都要用到电流互感器,通过电流互感器来测量线路中实际电流的大小。
在使用电流互感器时一定要注意其同名端极性的问题,否则会影响保护装置的可靠性、计量仪表无法正确计量。
尤其是穿心式电流互感器,从表面看两侧差别不大,如不仔细辨别非常容易将互感器穿反,或者是当进线方式改变而电流互感器没有调整,都将导致其二次侧接线极性错误。
下面我们以电流保护和三相计量装置分别进行分析。
2 电流保护中电流互感器极性错误的情况分析地铁中压系统是中性点非直接接地的供电系统,其相间短路保护通常采用电流速断保护和过电流保护,而电流互感器与继电器的结线方式有多种,下面以10kV、35kV系统中典型的两相三继电器式结线作一分析。
图1是两相三继电器正确接线的原理图,与为同名端,与为同名端。
从图中可看出,系统一次侧电流为、、,A、C相经电流互感器后二次侧的电流为、,分别流入继电器KA1、KA2,即,,而。
在中性点不接地的系统中,等于-。
也就是说,KA3流过的电流大小为,三个继电器分别反映出三个相电流的大小。
因此当一次电路发生相间短路时,至少会有一个继电器动作。
图2所示的是C相电流互感器一次侧极性反接的情况。
由于的一次侧反接,电流互感器二次侧的电流方向也随之相反,如图。
此时流入继电器、的电流大小依然分别为和,但流入的电流为,其大小为。
而继电器整定的动作电流是根据正确接线情况下确定的,也就是根据的大小乘以大于1的系数来整定。
那么流过继电器的电流为原来的倍时,很有可能在系统未发生短路故障时继电器就会误判系统短路,导致保护装置误动作。
电流互感器(加极性、减极性)相关知识
电流互感器(加极性、减极性)相关知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L2和K2分别为同极性端。
反之,就是加极性。
低压电流互感器实用技术问答30例(之一)刘国宏马晓文河北省康保供电分公司(076650)1.电流互感器铭牌上额定电流比的含义是什么答:额定电流比系指一次额定电流与二次额定电流之比。
通常用不约分的分数表示。
所谓额定电流就是在这个电流下互感器可以长期运行而不会同发热损坏。
2.何为电流互感器的准确等级答:电流互感器变换电流存在着一定的误差,根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。
0.l级以上电流互感器主要用于试验,进行精密测量或者作为标准用来校验低等级的互感器,也可以与标准仪表配合用来校验仪表,常被称为标准电流互感器;0.2级和0.5级常川来连接电气计量仪表;3级及以下等级电流互感器主要连接某些继电保护装置和控制设备。
3.电流互感器的极性标志是怎样规定的答:极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L2和K2分别为同极性端。
4.电流互感器额定容量的含义是什么答:电流互感器的额定容量就是额定二次电流I2e通过额定负载Z2e时所消耗的视在功率,即S2e=。
一般I2e=5A,因此S2e=25Z2e。
在电流互感器的使用中,二次连接及仪表电流线圈的总阻抗不超过铭牌上规定的额定容量(伏安数或欧姆数)时,才能保证它的准确性。
5.什么是电流互感器误差答:由于电流互感器铁芯的结构以及材料性能等原因的影响,电流互感器存在着激磁电流Í0,使其产生误差。
从电流互感器一次电流Í1和折算后的二次电流Í2’的向量图来看(如图 2所示),折算后的二次电流旋转180˚后一Í2’,与一次电流Í1相比较,不但大小不等而且两者相位不重合,即存在着两种误差,称为比差(比值误差)和角差(相角误差)。
电流互感器及其极性分析
电流互感器及其极性分析发布时间:2022-11-08T04:00:05.396Z 来源:《当代电力文化》2022年7月13期作者:梁辰1 徐漠北1 [导读] 随着继电保护及安全自动装置水平的不断提高梁辰1 徐漠北11.中电投东北能源科技有限公司,辽宁沈阳 1100179;摘要:随着继电保护及安全自动装置水平的不断提高,电流互感器作为保护及自动装置采样的基础元件,其精度以及设备质量也在不断提高。
互感器的极性问题在二次系统中变得尤为重要;从一次回路中施加电压,通过不同的接线方式来对一次系统的电流回路进行检验的做法及一次通流试验在系统调试中进行了应用,提高了调试工作的效率和投运的成功率。
关键词:电流互感器;接线方式;一次通流试验Current transformer and its polarity analysis LiangChen1 XuMobei1 (1. The CPI Northeast Energy Technology Co., Ltd, Shenyang Liaoning 1100179)Abstract:With the continuous improvement of the level of relay protection and safety automatic device, the accuracy and equipment quality of current transformer, as the basic component of protection and automatic device sampling, are also improving. The polarity of the transformer becomes particularly important in the secondary system; The method of applying voltage from the primary circuit to check the current circuit of the primary system through different wiring methods and the primary current test are applied in the system commissioning, which improves the efficiency of commissioning and the success rate of commissioning. Key words:Current transformer;Wiring mode;Primary flow test1 电流互感器的基本分类试验步骤:为防止220kV升压站、1号启备变及厂用电受电和机组整套启动电气试验时,由于电流互感器二次回路的缺陷引起的事故和电气试验时间延长等情况的发生,在升压站受电及机组整套启动前进行一次加电流试验,检查测量所有保护及测量用电流互感器的二次电流幅值和相位正确,保证CT回路极性及接线符合设计要求。
电流互感器极性及方向保护的问题
电流互感器极性及方向保护的问题谈谈对于极性与方向保护的理解以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢?所谓减极性接线就就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还就是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果就是流入,那么二次侧应该就是流出;一次侧如果就是流出,那么二次侧就就是流入。
为什么一次电流与二次侧电流要相反呢?其实这个相反就是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置?保护装置!这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又就是流入了!!因此,减极性的接法的目的就是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!!减极性具体接线接线具体来说比方说当流变P1侧指向母线,则二次上应该将三根S1 与短接三根S2成为一根后总计4根线接入保护装置。
当流变P2侧指向母线,则二次上应该将三根S2 与短接三根S1成为一根线后总计4根线接入保护装置。
对于电压互感器而言也存在一个极性问题,采用减极性接线的目的也就是要保证二次设备感受到的电压要与一次电压相一致。
再说说方向保护对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性:当正方向故障时一次侧电压超前电流30°左右当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°)既然流变与压变均采用减极性接法,也就就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了!再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次侧?我们必须遵循一定的规范,这个规范就就是减极性接法!!如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可能实际就是反方向,判断为反方向其实为正方向,那么就乱了套了!这就再一次印证了我们经常说的对于方向性保护,一定要注意二次接线,极性不要搞错了交流电每时每刻电流、电压的大小与方向均就是在不停变化的,我们常说假设电流由母线流向线路为正,其实就是指某个瞬间交流电流由母线流向线路。
电流互感器极性
电流互感器极性、接线方式及运行中注意的问题1 引言在电力系统中电流互感器的作用是把大电流变成小电流,将连接在继电器及测量仪器仪表的二次回路与一次电流的高压系统隔离,并将一次电流变换到5A 或1A 两种标准的二次电流值。
电流互感器的极性与电流保护密切相关,特别是在农电系统中,电流保护起主导作用,因此必须掌握好极性与保护的关系。
本文分析了电流互感器的极性和常用电流保护的关系,以及易出错的二次接线。
2 电流互感器的极性电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。
电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。
(也可理解为一次电流与二次电流的方向关系)。
按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。
在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。
其三种标注方法如图1 所示。
电流互感器同极性端的判别与耦合线圈的极性判别相同。
较简单的方法例如用1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。
当开关闭合时,如果发现电压表指针正向偏转,可判定1 和2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。
3 电流互感器的极性与常用电流保护以及易出错的二次接线3.1 一相接线图1 电流互感器的三种极性标注图2 一相接线一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。
电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。
但是严禁多点接地。
两点接地二次电流在继电器前形成分路,会造成继电器无动作。
因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。
电流互感器的极性问题探析
供用电系统中继电保护装置和计量装置等都要用到电流互感器,通过电流互感器来测量线路中实际电流的大小。
在使用电流互感器时一定要注意其同名端极性的问题,否则会影响保护装置的可靠性、计量仪表无法正确计量。
尤其是穿心式电流互感器,从表面看两侧差别不大,如不仔细辨别非常容易将互感器穿反,或者是当进线方式改变而电流互感器没有调整,都将导致其二次侧接线极性错误。
下面我们以电流保护和三相计量装置分别进行分析。
1 电流保护中电流互感器极性错误的情况分析地铁中压系统是中性点非直接接地的供电系统,其相间短路保护通常采用电流(a)接线图 (b)相量图图4 三相三线有功电能表A 相电流互感器极性反接电流互感器的极性问题探析童岩峰(南京铁道职业技术学院 南京 210031)摘 要:本文介绍了供电系统继电保护和计量装置中使用电流互感器时极性错误导致的故障情况,详细分析了故障原因,并介绍了测定同名端极性的常用方法。
关键词:电流互感器 极性 继电保护 计量装置中图分类号:TN 93文献标识码:A 文章编号:1672-3791(2011)12(c)-0086-02速断保护和过电流保护,而电流互感器与继电器的结线方式有多种,下面以10k V、35kV系统中典型的两相三继电器式结线作一分析。
图1是两相三继电器正确接线的原理图,1L 与1K 为同名端,2L 与2K 为同名端。
从图中可看出,系统一次侧电流为A I 、B I 、C I ,A、C相经电流互感器后二次侧的电流为a I 、c I ,分别流入继电器K A 1、K A 2,即a KA I I 1,c KA I I 2,而c a KA I I I 3。
在中性点不接地的系统中,c a I I 等于-b I 。
也就是说,KA3流过的电流大小为bI ,三个继电器分别反映出三个相电流的大小。
因此当一次电路发生相间短路时,至少会有一个继电器动作。
图2所示的是C相电流互感器一次侧极性反接的情况。
由于2TA 的一次侧反接,电流互感器二次侧的电流方向也随之相反,图1 两相三继电器式结线图2 两相三继电器式C相极性错误A B C N(a)A B C N(a)(b )(a)接线图 (b)相量图图3 三相三元件电能表A 相电流互感器极性反接(下转88页)如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流互感器极性常见的几个问题
在电力系统中,因为电流互感器极性接线错误导致保护装置误动或拒动的现象时有发生,严重影响供电系统的稳定运行。
同样,电流互感器的极性接线在化工厂应用中也显得尤为重要。
本文就化工厂常见的一些电流互感器极性问题进行总结,并给出相应整改措施。
标签:电流互感器;极性;保护装置;措施
1 前言
电流互感器(CT)是将一次侧大电流转换成可供计量、测量、保护等二次设备使用的二次侧电流的变流设备,还可以使二次设备与一次高压隔离。
它的一次、二次绕组都是由两个端子引出,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置的正确动作,也影响电力系统的在线监测及故障处理,严重时还会引起人身安全。
2 电流互感器极性
为了便于正确接线和理论分析,电流互感器的一次绕组和二次绕组的引出端子都标有极性符号。
一次绕组P1为首端,P2为末端;二次绕组S1为首端,S2为末端。
通常用“.”“*”等符号标记,表示同极性,即P1、S1(或P2、S2)为同名端。
通常电流互感器采用减极性原则(同名端流入,同名端流出)标注,规定当一次侧电流从首端P1流入,由末端P2流出;二次侧电流从首端S1流出,末端S2端流入。
3 电流互感器极性常见的几个问题
结合本化工厂实际,保护1为南瑞RCS-9671CS变压器差动保护装置;保护2、3、4为施耐德MiCOM P140馈线管理保护装置系列下的P143装置,相间/零序过电流保护可自由设置方向;保护5为施耐德MiCOM P640 变压器保护装置系列下的P643装置。
3.1 变压器或线路差动保护CT接线
变压器或线路差动保护保护范围内两侧CT采用180度極性接线,为了满足被保护对象正常运行或区外故障时,二次侧差流近似于零,保护不会动作;区内故障时,二次侧差流近似等于两倍短路电流,保护动作。
3.2 针对35kV IV母进线和馈线(带方向)
①4#主变进线保护2所示CT极性:电流方向指向母线,为反方向动作;②4#热电站升压变高压侧后备保护4所示CT极性:电流方向指向主变,为正方向
动作。
当电流值超过整定值,且无论保护2或是保护4处电流互感器极性方向错误,都会使故障侧保护拒动,而非故障侧保护误动。
3.3 零序方向保护
当系统侧有较大零序电流(容性电流)时,会流向负荷侧的各支路,当其中有超过整定值的支路就会引起零序保护误动,故装设零序方向保护。
以卸储煤2#变为例,零序保护均带有方向。
只有当零序电流由负荷侧流向系统侧,且当零序电流超过整定值时,零序保护才会动作。
若以电流流向负荷侧为正方向,则当电流流向母线侧(系统侧)时,保护会动作,此时动作角度近似为(180~0)度。
3.4 电能计量装置
电能计量装置无论采用哪种接线方式,电流互感器极性反接都使其公用线电流增大,电能表将少计电量。
若不及时更正,公用线会因过载而烧断,使所计电量进一步减少。
作为“公平秤”的电能计量装置,尤其是在这种带有自备电厂的化工厂,高准确度的计量,显得尤为重要。
一旦发生极性接线错误,除了面临国家电网相应考核,造成重大经济损失,还有可能责令停产整改。
4 电流互感器极性错误相应的整改措施
若CT一次侧极性接线错误,以图1 PE2#变为例,低压侧CT一次侧P1端指向变压器侧,而非指向母线侧,此时将CT 二次侧接入综合保护装置、测量或计量装置,就会出现保护装置误动、拒动或测量计量不准确。
针对此类现象的整改措施:①重新安装CT,使其一次侧P1端指向母线;②改变接入保护装置及计量装置的二次接线:此时的一次侧P1电流流入CT,使其二次侧S1电流流入CT;③若是带方向的保护,反方向动作的改为正方向动作,或是改变灵敏角,加(减)180度。
若CT二次侧极性接线错误,可参考上述整改措施2或3。
5 结束语
综上所述,电流互感器的极性接线非常重要。
就化工厂而言,在确保其连续生产的状态下,无论是电流互感器一次侧或是二次侧极性反接,相应保护装置、测量及计量装置等都会报出错误数据,以致给化工生产造成不可低估的经济损失,甚至人员伤亡。
参考文献:
[1]王海波王宏伟等.电力系统继电保护[M].北京:中国电力出版社,2012.。