生活中的一元一次不等式应用
用一元一次不等式(组)解决生活中的实际问题
用一元一次不等式(组)解决生活中的实际问题用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4、解不等式(组);5、根据题意,写出合理答案。
一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?解析:利润 = 售价-进价。
设可以打x折,则:400×0.1x-200≥120解之得,x≥8答:最低可以打8折。
二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?解析:甲队总得分= 甲队胜场的得分+甲队平场的得分。
设甲队胜了x场,则:3x+1×(12-x)>26解之得,x>7∴x的最小整数值是8 。
答:甲队至少胜了8场。
三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?解析:设需要买x块肥皂,第一种方法的购价为:2+2×0.7×(x-1)元,第二种方法的购价为:2×0.8 = 1.6元。
则:2+2×0.7×(x-1)<1.6解之得,x>3∴x的最小整数值是4 。
答:最少需要买4块肥皂。
四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
解析:最后1名学生分得的苹果数= 苹果总数-7(学生数-1),设学生人数为x 名,则:44-(x-1)×7>0 ①44-(x-1)×7<3 ②解之得,<x<∵x是整数,∴x=7答:学生人数是7人。
一元一次不等式(组)在生活中的应用
一元一次不等式(组)在生活中的应用
一元一次不等式(组)是小学数学中的一个重要内容,它在我们的日常生活中有很多应用。
以下是一些关于一元一次不等式(组)在生活中的应用:
购物打折:很多商场会举办打折活动,例如:打五折、打八折等。
我们可以用一元一次不等式来计算打折后商品的价格,帮助我们做出更明智的购物决策。
制定家庭预算:家庭预算可以帮助我们合理规划家庭收支,避免浪费。
在制定家庭预算时,我们可以使用一元一次不等式来计算各种开支和收入之间的关系,以及如何分配家庭预算。
健身计划:健身计划可以帮助我们制定科学合理的健身计划,达到健身的目的。
在健身计划中,我们可以用一元一次不等式来计算身体指标和目标之间的关系,例如:BMI指数和体重、身高之间的关系。
公交出行:公交车站的到达时间通常是不确定的,我们可以使用一元一次不等式来计算公交车的到达时间和出发时间之间的关系,以便更好地安排出行时间。
总之,一元一次不等式(组)在我们的日常生活中有很多应用。
它可以帮助我们计算各种事物之间的关系,从而更好地规划生活和工作。
一元一次不等式的格式
一元一次不等式的格式一元一次不等式是数学中的基础概念,它是我们在日常生活中常常会遇到的问题。
通过学习一元一次不等式,我们可以更好地理解和解决各种实际问题。
本文将介绍一元一次不等式的基本概念和解题方法,并通过实际例子来说明其应用。
一元一次不等式指的是只有一个未知数的一次不等式,即未知数的指数为1。
一元一次不等式通常采用如下的形式:ax + b > c,其中a、b和c为已知数,x为未知数。
这个不等式可以解读为“未知数x与其它数的线性关系中,与c相比,ax + b大于”。
在解一元一次不等式时,我们的目标是确定未知数x的取值范围,使得不等式成立。
解一元一次不等式的方法通常有以下几种:1. 通过移项和简化,将不等式转化为形如ax > b的形式,解出未知数的范围。
2. 利用图像法,将一元一次不等式转化为一条直线和一个不等号的关系,通过图像上的点的位置来确定未知数的范围。
3. 通过区间法,将一元一次不等式转化为未知数x所属的数轴上的某个区间,通过确定这个区间的范围来确定未知数的取值。
接下来,我们将通过几个实际例子来说明一元一次不等式的应用。
例子一:假设小明在一家餐馆打工,他的工资为每小时10元,并且他每天至少工作4小时。
那么他一天至少能赚多少钱?解答:我们可以用一元一次不等式来表示这个问题。
设他一天工作x小时,那么他一天的工资为10x元,根据题意,我们可以得到不等式10x ≥ 40。
解这个不等式,得到x ≥ 4。
所以小明一天至少能赚40元。
例子二:某超市举办特价活动,购买满100元减20元,小华想买一件200元的商品,他需要至少再购买多少元的商品才能享受优惠?解答:我们可以用一元一次不等式来表示这个问题。
设他需要再购买x 元的商品,那么他需要支付的金额为200 + x元。
根据题意,我们可以得到不等式200 + x ≥ 100。
解这个不等式,得到x ≥ -100。
所以小华至少还需要购买100元的商品才能享受优惠。
一元一次不等式实例分析
一元一次不等式实例分析
什么是一元一次不等式
一元一次不等式是一个数学方程式,包含一个或多个变量,并且变量包含在不等式中。
此类方程通常涉及到大小比较,如小于、大于、小于等于、大于等于等。
一元一次不等式的解法
我们可以通过将不等式中的变量转化为未知数,并通过简单的代数运算得到不等式的解。
例如,当解决 x + 2 < 6 时,我们可以将不等式转化为 x < 4,即变量 x 的值必须小于 4。
一元一次不等式的实例分析
例如,我们需要确定满足不等式 -x + 2 > 4 的所有 x 的值。
首先,我们可以移项将不等式转换成 -x > 2,然后再通过乘以 -1 将其变为 x < -2。
这意味着所有小于 -2 的 x 都满足该不等式。
总结
通过以上实例分析我们可以看到,一元一次不等式的解决方法是比较简单直观的,只需要将不等式中的变量转换为未知数并进行代数运算,就可以获得不等式的解。
在解决不等式问题时,如果提供了一个具体的不等式,我们可以通过类似的步骤来找到所有满足该不等式的解。
一元一次不等式组及其应用
制造商在有限的生产资源下,通过一元一次不等式组可以制定最优 生产计划,以满足市场需求并最小化成本。
时间规划问题
项目进度安排
在项目管理中,一元一次不等式组可以帮助制定项目的时间表,确 保各项任务在规定时间内完成。
时间分配
对于个人或团队来说,可以利用一元一次不等式组来合理规划时间 ,确保各项工作或活动得到合理安排,提高时间利用效率。
没有交集,则不等式组无解。
01
一元一次不等式组的解法
图形解法
优点
图形解法能够直观地展示不等式 组的解集,特别适用于较为简单
的一元一次不等式组。
作图步骤
首先,分别画出各个一元一次不 等式的解集图形;然后,找出各 个解集的交集部分,即为不等式
组的解集。
适用范围
图形解法主要适用于一元一次不 等式组的解集在数轴上能够直观
目标设定
通过一元一次不等式组,企业可以设定不同的营销目标( 如销售额、市场份额、品牌知名度等),并在预算约束下 求出最优解。
营销策略
根据不等式组的解,企业可以调整营销策略,实现预算内 最优的营销效果。
个人理财中的投资规划问题
投资选择
个人理财过程中,投资者需要在多种投资品种(如股票、债券、基金、房产等)中选择合 适的投资组合。
风险控制
通过一元一次不等式组,投资者可以设定不同的风险控制目标(如最大亏损限额、预期收 益水平等),从而在各种投资品种中寻求最优配置。
投资决策
基于不等式组的解,投资者可以制定个性化的投资规划,实现风险可控前提下的投资收益 最大化。
01
总结与展望
一元一次不等式组的重要性总结
基础数学知识
01
一元一次不等式组是初中数学的基础知识之一,对于后续学习
10道一元一次不等式应用题和答案过程
一元一次不等式解应用题一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B 种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。
(1)试确定A种类型店面的数量?(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?解:设A种类型店面为a间,B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:1、每亩地水面组建为500元,。
2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;问题:1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面,贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=366003900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A 型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆,由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .由于a是车的数量,应为正整数,所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。
一元一次不等式组应用实例及答案
一元一次不等式组应用实例及答案本文介绍了一元一次不等式组的应用实例及其答案。
一元一次不等式组是用来解决不等式问题的数学工具。
它由多个一元一次不等式组成,其中每个不等式都含有一个未知数,并且未知数的指数为1。
应用实例下面是一些应用实例,展示了如何使用一元一次不等式组解决实际问题。
实例1:商店促销某商店打折销售苹果和橙子,苹果每个1元,橙子每个2元。
现有100元购物券,问最多可以购买多少个苹果和橙子?解析:设购买苹果的个数为x,购买橙子的个数为y。
根据题意,我们可以列出以下两个一元一次不等式:- 苹果总价为x元:1 * x ≤ 100- 橙子总价为2y元:2 * y ≤ 100接下来,我们可以求解这个不等式组,找到满足约束条件的x和y的取值范围。
实例2:生产计划某工厂有两个生产部门A和B,每天生产产品的数量不等。
已知部门A每天最多生产50个产品,部门B每天最多生产30个产品。
同时,工厂每天总共生产的产品数量不得超过80个。
问部门A和部门B每天生产的产品数量应如何分配,使得生产数量最大化?解析:设部门A每天生产的产品数量为x,部门B每天生产的产品数量为y。
根据题意,我们可以列出以下三个一元一次不等式:- 部门A每天最多生产50个产品:x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80通过求解这个不等式组,我们可以找到生产数量最大化时部门A和部门B每天生产的产品数量的合理分配方案。
答案实例1的答案:- 苹果总价不得超过100元:1 * x ≤ 100,解得x ≤ 100- 橙子总价不得超过100元:2 * y ≤ 100,解得y ≤ 50根据题意,购买苹果和橙子的个数必须是整数,所以最多可以购买的苹果个数为100个,最多可以购买的橙子个数为50个。
实例2的答案:- 部门A每天最多生产50个产品:x ≤ 50,解得x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30,解得y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80,解得x + y ≤ 80通过求解这个不等式组,我们可以得到合理的生产方案,例如部门A每天生产50个产品,部门B每天生产30个产品,总产量为80个产品。
一元一次不等式经典题
一元一次不等式经典题嘿,大家好,今天咱们聊聊一元一次不等式,别看名字高大上,其实它就是个简单的小家伙。
想象一下,咱们生活中常常要做一些选择,比如买东西时预算有限,或者约朋友吃饭时要看钱袋子,没钱了可就得啃面包了。
所以,这个不等式就像是生活中的导航仪,帮咱们找到合适的路。
想象一下,你要去超市,想买点好吃的。
可钱包里只有一百块,心里琢磨着,能不能买一盒好巧克力,再加上那包薯片呢?这时,咱们就可以用不等式来表示了。
比如,巧克力三十,薯片二十,算算一共就是五十块。
这时候咱们就可以说,五十块要小于等于一百块,明白吧?这就是个简单的不等式。
通过这个简单的例子,你就能看出不等式在日常生活中的重要性。
咱们来点儿幽默的吧。
你知道不等式就像是学校里的那个爱吃零食的同学吗?总是偷偷摸摸地想吃更多的糖果,但又不敢让老师发现。
咱们设定一个“糖果上限”,比如老师说,最多只能吃五颗。
这个同学就得保证自己吃的数量要小于等于五颗,才能心安理得地享受美味。
要是吃多了,那可就要面临被老师“训斥”的后果,嘿,谁也不想被罚站啊。
不等式还可以用来制定一些小规则。
比如你打算约朋友去看电影,票价一百,想请朋友,但自己口袋里只有三百。
这个时候,你就得算算,最多请多少人,才能不破产。
设个不等式,三百块要大于等于票价乘以人数。
通过这些小计算,咱们能更好地掌控自己的财务,避免花冤枉钱,省吃俭用不丢人。
聊到这里,大家是不是觉得不等式挺有趣的?不等式的应用可比看电影的情节还要精彩。
生活中无处不在的选择就像是一场“智力游戏”,咱们要时刻保持警觉,不能随便让自己的选择“出轨”。
就像打麻将,得时刻记住自己的牌,不然可就要被其他人“包饺子”了。
你可能会想,不等式是不是太简单了?哼,别小看它,很多时候,咱们可能会遇到“复合不等式”。
就像是生活中一堆复杂的选择,想要买新手机,但又想攒钱去旅行,这时候就得有个清晰的头脑,别让自己被各种欲望牵着鼻子走。
复合不等式能帮助咱们理清这些关系,保持理智。
一元一次不等式的应用
一元一次不等式的应用一元一次不等式是数学中的基础内容,它在实际生活中有着广泛的应用。
本文将从几个不同的角度探讨一元一次不等式的应用,并且给出相应的例子来说明。
1. 经济学中的应用一元一次不等式在经济学中有着重要的应用。
假设某公司生产一种产品,每个单位的成本为C元,而售价为P元。
为了保证公司盈利,必须满足售价高于成本的条件,即P > C。
这个条件可以用一元一次不等式来表示:P - C > 0。
若我们已知成本为10元,可以通过解不等式P - 10 > 0,得到售价的最小值为10元。
2. 几何学中的应用一元一次不等式在几何学中也有着广泛的应用。
考虑一个简单的情境,如果一个长方形的长度为x,宽度为y,而周长必须小于20个单位长度。
我们可以得到不等式2x + 2y < 20。
这个不等式的解集表示了周长小于20的长方形的所有可能的长度和宽度组合。
3. 物理学中的应用一元一次不等式在物理学中也是常见的。
例如,假设一个物体的质量为m千克,加速度为a米/秒²,而所施加的力必须满足F > ma。
这个不等式表示物体所受的力必须大于等于质量乘以加速度的乘积。
如果已知质量为5千克,加速度为2米/秒²,我们可以用一元一次不等式F - 10 > 0来表示所施加的力必须大于10牛顿。
4. 生活中的实际应用一元一次不等式在生活中也有许多实际的应用。
例如,考虑一个不定期活动的打折促销,商品打折幅度为d%。
假设某物品原价为P元,我们希望知道打折后的价格必须小于等于或等于某个特定的值,即P - dP ≤ 500。
这个不等式表示了商品打折后的价格必须小于等于500元。
总结:通过以上几个例子,我们可以看到一元一次不等式在不同领域中的广泛应用。
经济学、几何学、物理学以及生活中的实际问题中都可以运用到一元一次不等式来进行分析和解决。
通过解不等式,我们可以得到满足特定条件的变量的取值范围,从而帮助我们做出合理的决策。
一元一次不等式组的实际应用
品,按原价销售;若一次性购买超过 5 件,按原价的八折进行销售.小明现有 29 元,则最多可
购买该商品
件.
12、甲乙两队进行篮球对抗赛,比赛规定每队胜一场得 3 分,平一场得 1 分,负一场得 0
分.甲队与乙队一共比赛了 10 场,甲队保持了不败记录,得分不低于 24 分,甲队至少胜了
பைடு நூலகம்
场.
13、某次数学测验中有 18 道选择题,评分办法:答对一道得 6 分,答错一道扣 2 分,不答得 0
33 0 的。
16、解:设打 x 折,根据题意1200x 800 5% 得解得 x≥7.所以最低可打七折. 800
17、解:∵每次钉入木块的钉子长度是前一次的 1 .已知这个铁钉被敲击 3 次后全部进入木块(木 3
块足够厚),且第一次敲击后铁钉进入木块的长度是 acm,根据题意得:敲击 2 次后铁钉进入木
9x 3x
(50 (50
x)4 360 解得:30≤x≤32,∵x x)10 290
为整数,∴x=30,31,32,∴有
3
种生产方案:方案
1,A 产品 30 件,B 产品 20 件;方案 2,A 产品 31 件,B 产品 19 件;方案 3,A 产品 32 件, B 产品 18 件.答案为:3
案是:6.
6、解析:设有 x 名儿童,则有牛奶(5x+18)盒,则若每人分 6 盒,则最后一个人分得的数量是
精心整理
精心整理
(5x+18)-6(x-1).根据题意得:
24 24
x x
3 6
解得:18<x≤21.则这个儿童福利院的儿童最少有
19
人,最多有 21 人.故答案是:19,21.
一元一次不等式解实际问题
一元一次不等式解实际问题今天咱们聊聊一元一次不等式,嗯,听上去是不是有点吓人?别担心,这其实就是一种数学工具,帮助我们解决一些实际问题。
你看啊,生活中不就是时时刻刻在面临各种条件限制吗?比方说,你去超市买东西,袋子里能装多少东西,或者你想买两件衣服,预算能不能支持等等,都是可以用一元一次不等式来解决的。
对吧,大家都知道,数学不止是书本里的公式,它就像一把钥匙,帮我们打开生活的大门。
你想象一下,如果你去买东西,预算有限,商家也许会给你打折,但折扣再多,你也不可能买得超过自己口袋里的钱对吧?这就是一元一次不等式的一个现实应用。
你可以通过简单的运算,快速找出满足条件的结果,省时省力还不容易出错。
比如你要买一件T恤,店里标价150元,你的预算是200元。
首先你得看看有没有额外的折扣,这时候,咱们就可以利用不等式来找出能买几件。
假设折扣是20%,那T恤价格就变成了150 × 80% = 120元。
现在我们就可以写出一个不等式,设买T恤的数量为x,120x ≤ 200,解出x,就知道最多可以买几件。
这个过程就像做一道题,不是很难,但又能直观地解决问题,让你知道到底能花多少钱、买多少件。
这个时候,你就会发现,数学其实比你想的要实用得多!不光是买东西,生活中的很多场景都能用一元一次不等式来描述。
比如,假设你要举办一个聚会,邀请了20个朋友,你希望每个人都能吃到一定量的蛋糕。
蛋糕的总重量和每个朋友吃的分量就成了一个不等式问题。
如果蛋糕总重是5公斤,而每个人吃掉不超过300克,那么你就能通过不等式来算出,最多能邀请多少朋友。
你看,这不就挺有趣的吗?数学在实际生活中的作用,比你想象的要广泛得多。
你看,每个小小的不等式背后,其实都蕴藏着生活的智慧。
不管你是买东西,还是规划活动,甚至是管理自己的时间,处处都能见到它的身影。
想想看,如果你打算买一辆二手车,预算是6万元,车主给你报价7万元,但你觉得价格有点高。
你可以通过不等式,算出自己最高能接受的价格区间,帮助自己做出决策。
一元一次不等式的实际应用
一元一次不等式的实际应用一元一次不等式是初中数学中的重要内容,它是解决实际问题的基础。
在生活中,我们经常会遇到一些与一元一次不等式相关的问题,比如购物打折、工资收入等等。
下面,我们将从这些实际问题入手,探讨一元一次不等式的实际应用。
一、购物打折在购物时,商家常常会推出打折活动,比如“买一送一”、“满100元减20元”等等。
这些活动都可以用一元一次不等式来表示。
例如,某商场推出了“满200元减50元”的活动,那么我们可以用以下不等式来表示:x≥200,其中x表示购物金额。
这个不等式的意思是,只有当购物金额不小于200元时,才能享受减50元的优惠。
如果购物金额小于200元,就不能享受优惠。
二、工资收入在工作中,我们的收入往往与工作时间和工作量有关。
如果我们知道了每小时的工资和工作时间,就可以用一元一次不等式来计算收入。
例如,某人每小时的工资为10元,他一天工作8小时,那么他一天的收入可以用以下不等式来表示:y≥80,其中y表示一天的收入。
这个不等式的意思是,他一天的收入不会小于80元。
如果他加班或者工作时间更长,他的收入会更高。
三、运动健身运动健身是现代人追求健康生活的一种方式。
在运动时,我们需要控制自己的心率和呼吸频率,以达到最佳的锻炼效果。
这个过程可以用一元一次不等式来表示。
例如,某人的最大心率为220减去他的年龄,他希望在锻炼时保持心率在最大心率的70%到85%之间,那么他的心率应该满足以下不等式:126≤x≤153,其中x表示他的心率。
这个不等式的意思是,他的心率应该在126到153之间,才能达到最佳的锻炼效果。
四、旅游出行旅游出行是人们放松身心、开阔眼界的一种方式。
在旅游时,我们需要控制自己的预算,以避免超支。
这个过程也可以用一元一次不等式来表示。
例如,某人计划去旅游,他的预算为1000元,他希望在旅游中尽可能多地体验当地的美食和文化,那么他的花费应该满足以下不等式:x≤1000,其中x表示他的花费。
定 一元一次不等式组应用题
8.3 一元一次不等式组应用题一.分配问题1、某校住校生若干人,住若干间宿舍,,若每间住4人,则余20人无宿舍若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数。
2、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?3、把一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果少于3个,问有几个孩子?有多少只苹果?4、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数有多少人?。
5、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?二、方程与不等式1.为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?2.为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?3、儿童服装店欲购进A、B两种型号的儿童服装.经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.(1)求A、B两种型号童装的进货单价各是多少元?(2)若该店每销售1件A型号童装可获利4元,每销售1件B型号童装可获利9元,该店准备用不超过6300元购进A、B两种型号童装共300件,且这两种型号童装全部售出后总获利不低于1795元.问该店应该怎样安排进货,才能使总获利最大?最大总获利为多少元?三、方案问题1、2012年某市某县筹备40周年市庆,园林部门决定利用现有的3490盆甲种,两种花卉和2950盆乙种花卉搭配A B园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?2.某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲,乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,•乙种行李每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可能的租车方案;(2)如果甲,乙两种汽车每辆的租车费用分别为2000元,1800元,请你选择最省钱的一种租车方案.3.已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B 种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.求有几种生产方案?哪种方案所获利润最大?最大利润是多少?4 .为打造“书香校园”某学校计划用 1 900本科技类书籍和1 620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?5.(12分)某商场从厂家直接购进A,B,C三种不同型号的洗衣机108台,其中A种洗衣机的台数是C种的4倍,购进三种洗衣机的总金额不超过147000元.已知A,B,C三种型号的洗衣机的出厂价格分别为1000元/台,1500元/台,2000元/台.(1)求该商场至少购买C种洗衣机多少台?(2)若要求A种洗衣机的台数不超过B 种洗衣机的台数,问有哪些购买方案?6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?7.(12分)某公交公司有A,B型两种客车,它们的载客量和租金如下表:红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.8.某企业在生产过程中产生大量的污水,为了保护环境,该企业决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买污水处理设备的资金不多于107万元,设购买A型设备x 台(x≥1).(1)请你为该企业设计出所有的购买方案;(2)若该企业每月产生的污水量为2060吨,为了能够及时处理掉每月所产生的污水量,同时也尽可能减少购买设备的资金,应选择哪种购买方案?为什么?9.(8分)上海某宾馆客房部有三人普通间和二人普通间,每间收费标准如表所示.世博会期间,一个由50名女工组成的旅游团人住该宾馆,她们都选择了三人普通间和二人普通间,且每间正好都住满.设该旅游团人住三人普通间有x间.(1)该旅游团人住的二人普通间有_________间(用含x的代数式表示);(2)该旅游团要求一天的住宿费必须少于4500元,且入住的三人普通间不多于二人普通间.若客房部能满足该旅游团的要求,那么该客房部有哪几种安排方案?10.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?11.(2008,山东,8分)为了美化校园环境,建设绿色校园,•某学校准备对校园中30亩空地进行绿化.绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不.已知种植草少于种植树木面积的32皮与种植树木每亩的费用分别为8000元与12000元.(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少?四、销售问题1.(表格信息题)青青商场经销甲,乙两种商品,甲种商品每件进价15元,•售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲,乙两种商品共100件恰好用去2700元,求能购进甲,•乙两种商品各多少件?(2)该商场为使甲,乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“五·一”期间,该商场对甲,乙两种商品进行如下优惠促销活动:按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,•第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲,•乙两种商品一共多少件?(通过计算求出所有符合要求的结果)2.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲,乙两种货车共8辆将这批水果全部运往外地销售,•已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲,乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,•则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?3.“中国荷藕之乡”扬州市宝应县有着丰富的荷藕资源.某荷藕加工企业已收购荷藕60吨,根据市场信息,如果对荷藕进行粗加工,•每天可加工8•吨,•每吨可获利1000元;如果进行精加工,每天可加工0.5吨,每吨可获利5000元.•由于受设备条件的限制,两种加工方式不能同时进行.(1)•设精加工的吨数为x•吨,•则粗加工的吨数为_____•吨,•加工这批荷藕需要_____天,可获利______元(用含x的代数式表示);(2)为了保鲜的需要,该企业必须在一个月(30天)内将这批荷藕全部加工完毕,•粗加工的吨数x在什么范围内时,该企业加工这批荷藕的获得不低于80000元?并说明理由.。
一元一次不等式组应用题及答案
一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
一.分配问题:1.把假设干颗花生分给假设干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但缺乏5颗。
问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将缺乏40只鸡放入假设干个笼中,假设每个笼里放4只,那么有一只鸡无笼可放;假设每个笼里放5只,那么有一笼无鸡可放,且最后一笼缺乏3只。
问有笼多少个?有鸡多少只?5. 用假设干辆载重量为8吨的汽车运一批货物,假设每辆汽车只装4吨,那么剩下20吨货物;假设每辆汽车装满8吨,那么最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住假设干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的平安地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原方案至少提前两天完成,那么以后平均每天至少要比原方案多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
一元一次不等式组的应用
一元一次不等式组的应用一元一次不等式组是数学中的重要知识点,也是我们日常生活中经常会遇到的问题。
它可以帮助我们解决许多实际问题,如生活中的购物、物品生产等方面。
下面我们就来具体了解一下一元一次不等式组的应用。
首先,让我们来看一个实际例子。
假设小明去商店买水果,他带了40元钱,他知道苹果和橙子的价格分别是每斤5元和每斤4元。
他想知道自己最多能买多少斤水果,以确保自己不会超出预算。
这个问题可以用一元一次不等式组来解决。
首先,我们设苹果的购买量为x斤,橙子的购买量为y斤。
根据题意,我们可以得到两个不等式:5x + 4y ≤ 40和x ≥ 0,y ≥ 0。
其中,5x + 4y ≤ 40表示所花费的钱不能超过40元,x ≥ 0和y ≥ 0表示水果的购买量必须是非负数。
接下来,我们来解决这个不等式组。
首先我们可以将不等式5x +4y ≤ 40转化为等式5x + 4y = 40。
根据一元一次方程的知识,我们可以求出一组解,即x = 8,y = 0。
这表示小明最多只能买8斤苹果而没有橙子,因为再多买的话就会超出预算了。
这个例子告诉我们,一元一次不等式组可以帮助我们在实际生活中解决预算等问题。
通过设定合理的不等式和约束条件,我们可以得出最理想的解决方案。
除了购物问题,一元一次不等式组还可以应用在许多其他方面。
比如,在物品生产方面,我们可以根据生产成本和销售价格来确定最适宜的生产量,以保证利润最大化。
在时间管理方面,我们可以根据工作时间和休息时间的约束条件,来平衡工作和生活的安排,以达到工作效率的最大化和身心健康的保持。
综上所述,一元一次不等式组是一个非常实用的数学工具,在我们的日常生活中应用广泛。
通过解决实际问题,它可以帮助我们做出理性的决策,提高生活质量和工作效率。
因此,掌握一元一次不等式组的应用是非常有指导意义和实际价值的。
希望大家能够认真学习并灵活运用这一知识点,为自己的生活和工作带来更多的便利和效益。
一元一次不等式的应用题
一元一次不等式的应用题一元一次不等式是数学中的重要概念之一,其在实际问题中的应用十分广泛。
本文将通过具体的应用例题来介绍一元一次不等式的应用。
请参考以下内容:案例一:商品打折小明在某商场看中了一双原价为200元的鞋子,商店正好在进行优惠活动,打折力度为n折。
小明想知道如果商品可以享受到2折优惠,他需要支付多少钱?解析:根据题意,我们可以建立如下一元一次不等式:n * 200 ≤ 200,其中n表示折扣数。
通过对不等式进行运算,得到n ≤ 1/10。
由于n是折扣数,因此n必须为正数。
因此,小明实际上需要支付的金额不能低于0,所以他最多享受到1折的优惠。
案例二:车辆超速违章某城市的高速公路对车辆速度进行限制,标识要求车辆速度不得超过v km/h。
小红驾驶汽车行驶在某路段上,她想知道自己的车速是否超过了限制。
解析:根据题意,我们可以建立如下一元一次不等式:v - x ≥ 0,其中v表示限速值,x表示小红的车速。
如果不等式成立,说明小红未超速;如果不等式不成立,则说明小红超速了。
案例三:裁剪布料小张在裁剪布料时,从一块长方形的布料中切割出一块长为x米、宽为y米的布料。
他想要知道是否有足够的布料满足要求。
解析:根据题意,我们可以建立如下一元一次不等式:x ≤ 长度,y ≤ 宽度,其中x表示所需的布料长度,y表示所需的布料宽度。
如果不等式成立,说明有足够的布料满足要求;如果不等式不成立,则说明没有足够的布料满足要求。
通过上述案例,我们可以看到一元一次不等式在实际问题中的应用。
无论是商品打折、车辆超速还是裁剪布料,一元一次不等式都能帮助我们解决具体问题,找到满足条件的解答。
总结:一元一次不等式的应用包括但不限于商品打折、车辆超速违章、布料裁剪等。
通过建立一元一次不等式,并利用不等式的性质进行数学运算,我们可以得出所需的答案。
在实际问题中,我们需要根据题意确定不等式的形式以及解的意义,从而找到正确的解法。
不等式的应用不仅能够帮助我们解决实际生活中的问题,还可以提升我们的逻辑思维能力和数学运算能力。
一元一次不等式的实际问题
一元一次不等式的实际问题一元一次不等式是数学中常见的一种形式,可以用来描述现实生活中的很多实际问题。
在本文中,我们将探讨一元一次不等式的应用,介绍一些实际问题,并给出相应的解决方法。
1. 简单的一元一次不等式问题首先,我们来看一个简单的一元一次不等式问题。
假设某人的年收入为x万元,他的生活开销为y万元。
已知他的年收入在5万至10万元之间,生活开销不能超过年收入的30%。
我们可以用以下不等式来描述这个问题:5 ≤ x ≤ 10y ≤ 0.3x其中,第一个不等式表示年收入的范围,第二个不等式表示生活开销不能超过年收入的30%。
解决这个问题的方法是找到满足这两个不等式的解集。
根据第一个不等式,x的取值范围是[5, 10],根据第二个不等式,y的取值范围是[0, 0.3x]。
因此,满足两个不等式的解集可以表示为:5 ≤ x ≤ 100 ≤ y ≤ 0.3x这个解集表示了满足条件的年收入和生活开销的取值范围。
2. 一元一次不等式在实际问题中的应用一元一次不等式可以应用于很多实际问题中,例如经济学、物理学、工程学等领域。
下面我们来看一些具体的例子。
例子1:生产成本与产量的关系假设某个工厂的生产成本和产量之间存在如下关系:生产成本每增加一单位,产量将减少2单位。
已知当生产成本为1000万元时,产量为5000单位。
我们可以用以下不等式来描述这个问题:x ≥ 1000y ≤ 5000 - 2(x - 1000)其中,x表示生产成本(单位:万元),y表示产量(单位:单位)。
解决这个问题的方法是找到满足不等式的生产成本和产量的取值范围。
根据第一个不等式,生产成本的取值范围是[x ≥ 1000],根据第二个不等式,产量的取值范围是[y ≤ 5000 - 2(x - 1000)]。
因此,满足两个不等式的解集可以表示为:x ≥ 1000y ≤ 5000 - 2(x - 1000)这个解集表示了满足条件的生产成本和产量的取值范围。
八年级上册数学-一元一次不等式应用题集锦
八年级上册数学-一元一次不等式应用题集锦.1、一元一次不等式应用题集锦1.1、混合糖果问题甲种糖果每千克价格为20元,乙种糖果每千克价格为18元。
现在要将8千克甲种糖果和若干千克乙种糖果混合,使得总价不超过400元,且糖果总量不少于15千克。
问:混合的乙种糖果最多是多少?最少是多少?1.2、安排宿舍问题某中学为八年级寄宿学生安排宿舍。
每间宿舍可以住4人或8人。
如果每间住4人,则会有20人无法安排宿舍;如果每间住8人,则会有一间宿舍不满也不空。
问:这个中学有多少间宿舍?可以安排多少名学生住宿?1.3、水产养殖问题一块水面每亩年租金为500元,每亩水面可以混合投入4千克蟹苗和20千克虾苗。
蟹苗每千克价格为75元,饲养费用为525元,当年可获得1,400元收益;虾苗每千克价格为15元,饲养费用为85元,当年可获得160元收益。
问:1)租用n亩水面的年租金共需多少元?2)每亩水面混合养殖蟹虾的年利润是多少?(利润=收益-成本)3)XXX现有资金25,000元,他准备向银行贷款不超过25,000元,用于蟹虾混合养殖。
已知银行贷款的年利率为8%。
问:XXX应该租多少亩水面,向银行贷款多少元,才能使年利润超过35,000元?1.4、课外读物问题某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。
如果每人送3本,则还有8本余下;如果每人送5本,最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖。
问:1)用含x的代数式表示m;2)该校获奖人数和所买课外读物的本数分别是多少?1.5、蔬菜种植问题有10名菜农,每人可以种3亩甲种蔬菜或2亩乙种蔬菜。
已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元。
现在要使总收入不低于15.6万元,应该如何安排人员?1.6、出租车费用问题某出租车起价为10元,行驶路程在5公里以内需付10元车费。
超过5公里后,每增加1公里加价1.2元(不足1公里按1公里计算)。
10道一元一次不等式应用题和答案过程
一元一次不等式解应用题1.某水产品市场管理部门规划建造面积为2400平方米的大棚.大棚设A 种类型和B种类型的店面共80间.每间A种类型的店面的平均面积为28平方米.月租费为400元.每间B种类型的店面的平均面积为20平方米..月租费为360元.全部店面的建造面积不低于大棚总面积的85%。
(1) 试确定A种类型店面的数量?(2)该大棚管理部门通过了解.A种类型店面的出租率为75%.B种类型店面的出租率为90%.为使店面的月租费最高.应建造A种类型的店面多少间?. . . 资料. .解:设A种类型店面为a间.B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55 A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显.a≥55.所以当a=55时.可以获得最大月租费为25920-24x55=24600元. . . 资料. .二、水产养殖户大爷准备进行大闸蟹与河虾的混合养殖.他了解到情况:每亩地水面组建为500元;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元.其饲养费用为525元.当年可获1400元收益;每公斤虾苗的价格为15元.其饲养费用为85元.当年可获160元收益;问题:1、水产养殖的成本包括水面年租金.苗种费用和饲养费用.求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、大爷现有资金25000元.他准备再向银行贷款不超过25000元.用于蟹虾混合养殖.已知银行贷款的年利率为10%.试问大爷应租多少亩水面.并向银行贷款多少元.可使年利润达到36600元?. . . 资料. .解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面.贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=36600. . . 资料. .3900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司.要将300吨物资运往某地.现有A、B两种型号的车可供调用.已知A型车每辆可装20吨.B型车每辆可装15吨.在每辆车不超载的条件下.把300吨物资装运完.问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆.由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .. . . 资料. .由于a是车的数量.应为正整数.所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨.全部由甲.乙两个垃圾厂处理.已知甲厂每小时处理垃圾55吨.需费用550元;乙厂每小时处理垃圾45吨.需费用495元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活中的一元一次不等式应用
山东张海生
一元一次不等式的在生活的应用十分广泛,涉及到社会生活和生产的方方面面, 为了更好的运用所学知识解决实际问题使学有所用,下面就以例题的形式一块和同学们欣赏一下,这也是培养我们实际能力的好机会.
一.学校决策问题
学校为购买计算器的学生联系了两家公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每个计算器按九折出售;乙公司表示购买100个以上,按八折收费.请你为学校分析,应选择哪家公司较好.
解:设在学校集体购买的计算器为n个,
①显然,当n≤100时,选择甲公司较好;
②当n>100时,设每个计算器的价格为x元,
那么,学校付给甲公司为:0.9xn元;付给乙公司为:100x+0.8(n-100)x元
当0.9xn<100x+0.8(n-100)x时,n<200;
当0.9xn=100x+0.8(n-100)x时,n=200;
当0.9xn>100x+0.8(n-100)x时,n>200.
所以,当学校购买的计算器在200个以内时,选择甲公司较好;当购买200个计算器时,两个公司都一样;当购买计算器在200个以上时,选择乙公司较好.
二、工程预算问题
爆破时导火索燃烧的速度是每秒钟0.9cm,点导火索的人需要跑到120m以外才安全,如果他跑的速度是每秒6m,那么这个导火索的长度应大于多少cm?
解:设导火索的长度应大于xcm.
x>18
答:导火索的长度应大于18cm.
四、生活娱乐问题
小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时,爸爸的脚仍然着地.后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果小宝和妈妈的脚着地.猜猜小宝的体重约有多少千克?(精确到1千克)
解:设小宝的体重是x千克,则妈妈的体重是2x千克.
由题意得,由此可以得出小宝的体重.
五、能源节约问题
水是人类宝贵的资源之一,我国水资源人均占有量远远低于世界平均水平.为节约用水,保护环境,学校于本学期初便制定了详细的用水计划.如果实际每天比计划多用一吨水,那么本学期的用水总量将会超过2300吨;如果实际每天比计划节约一吨水,那么本学期的用水总量将会不足2100吨.如果本学期在校时间按110天(22周)计算,那么学校计划每天用水量应控制在什么范围?(结果保留4个有效数字)
解:设学校计划每天用水x吨,依题意,得:
110(x+1)>2300110(x-1)<2100,
解这个不等式组,得21911<x<22111,
所以19.91<x<20.09.
答:学校计划每天用水量应控制在19.91吨至20.09吨之间.
六、企业预算问题
某市某童装企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份进行工资改革,改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分每加工1套童装奖励若干元.⑴为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元(精确到分)?
⑵根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张六月份至少加工多少套童装?
解:⑴设企业每套童装至少奖励x元,由题意,得:200+60%•150x≥450,解得:x≥279≈2.78.
因此,该企业每套至少应奖励2.78元.
⑵设小张在六月份至少加工y套,由题意,得:200+5y≥1200,解得y≥200.
答:小张在六月份至少加工200套.
七、工程人力开发问题
某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的每月工资分别是600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使每月所付的工资最少?
解:设招聘甲种工种x人,则乙种为人.依题得
.∴.
设所聘请的工人共需付工资y元,则有.
∴.∴当x=50时,y最小.
.此时.
以上几例可以看出,不等式应用题的取材广泛,内容丰富多彩,又紧密联系现实生活.解这类问题难点在于理清题意,寻找题目中的关键信息词,例如“不少于”、“不得超过”、“大于”、“小于”、“比……要节省”等,从而找到不等关系.
相信同学们欣赏上面的例题后,一定能将下面的问题解决!!不妨自己试一试!!
小明的爸爸妈妈购买了手机,在怎样选择付费方式上,一时想不好,就请小明当参谋.爸爸说:使用“全球通”是这样收费的:每月交纳50元基础话费,然后每打1分钟,收费0.4元;妈妈说:使用“神州行”是这样收费的:不交纳基础话费,每打1分钟,收费0.6元.妈妈问小明在什么情况下使用“神州行”比较合适?。