2019届高三数学考前指导答案

合集下载

2019届山东师范大学附属中学高考考前模拟数学(文)答案

2019届山东师范大学附属中学高考考前模拟数学(文)答案

山东师大附中2019届高三模拟考试数学(文史类)答案题号123456789101112答案CDDBABCCBCAC13.9;14.035=--y x ;15.()()31322=-+-y x ;16.4.17.解:(Ⅰ)由3422213a a a ,,成等差数列可得32423a a a +=,..................................2分即2113123q a q a q a +=,..................................3分又0>q ,11=a ,故q q 232+=,即0322=--q q ,得3=q ,..................................5分因此数列{}n a 的通项公式为13-=n n a ...................................6分(Ⅱ)132-⋅=n n n b ,1-10323432n n n T ⋅+⋅⋅⋅+⋅+⋅=,①n n n T 323432321⋅+⋅⋅⋅+⋅+⋅=.②①-②得n n n n T 3232323222121⋅-⋅+⋅⋅⋅+⋅+⋅+=--,.................................8分()n n n n T 32313132221-⋅---⋅+=-,..................................10分()2131221+⋅-=n n n T ..................................12分18.解:(Ⅰ)过点E ,作OC EM //,交BC 于M .由已知得1==DC OD ,︒=∠120EFC ,所以︒=∠30DOC .................................1分因为OC EM //,所以︒=∠30OEM ,所以︒︒︒=-=∠9030120BEM ,所以EM BE ⊥,所以OC BE ⊥..................................3分由已知得DE OA ⊥,因为平面⊥ADE 平面BCDE ,平面 ADE 平面DE BCDE =,⊂OA 平面ADE ,所以⊥OA 平面BCDE ,所以BE OA ⊥,⋯5分因为O OC OA = ,⊥BE 平面AOC ..................................6分(Ⅱ)在OBC ∆中,由余弦定理可得3=OC ,同理3=OB ,因为︒=∠120BOC ,所以,433sin 21=∠⨯⨯⨯=∆BOC OC OB S BOC .................................8分又因为4331=⨯⨯==∆--AO S V V BOC BOC A ABC O 所以1=AO .................................9分所以23==∆∆AOB AOC S S ,.................................11分所以437=++∆∆∆BOC AOB AOC S S S ,所以三棱锥ABC O -的侧面积为437.................................12分19.解:(Ⅰ)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为15+560=13.(4分)(Ⅱ)①由统计数据可知,该销售商店内的6辆该品牌车龄已满三年的二手车有2辆事故车,设为b1,b2,4辆非事故车设为a1,a2,a3,a4.从6辆车中随机挑选2辆车的情况有(b1,b2),(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4),共15种.(6分)其中2辆车恰好有一辆为事故车的情况有(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),共8种.所以该顾客在店内随机挑选2辆车,这2辆车恰好有一辆事故车的概率为815.(8分)②由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆,(10分)所以一辆车盈利的平均值为1120[(-5000)×40+10000×80]=5000(元).(12分)20.(Ⅰ)解:由题意知,524=+=pMF ,解得2=p ,⋯⋯⋯⋯⋯⋯2分所以抛物线的方程为x y 42=.⋯⋯⋯⋯⋯⋯4分(Ⅱ)证明:设直线AB 的方程为tmy x +=⋯⋯⋯⋯⋯⋯5分⎩⎨⎧+==t my x x y 42消x 得0442=--t my y ,⋯⋯⋯⋯⋯⋯6分16162>+=∆t m 00442121><-=⋅=+t t y y m y y ,,⋯⋯⋯⋯⋯⋯8分222122212116)(44t y y y y x x ==⋅=⋅,⋯⋯⋯⋯⋯⋯9分5422121=-=+=⋅t t y y x x 解得5=t 或1-=t (舍)⋯⋯⋯⋯⋯⋯10分所以直线方程为5+=my x ,恒过点)05(,。

2019年高考数学冲刺卷01(江苏卷)答案

2019年高考数学冲刺卷01(江苏卷)答案

高考数学精品复习资料2019.5高考数学冲刺卷01(江苏卷)答案数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题..卡相应位置上....... 1.【命题意图】本题考查集合的运算,解题关键是掌握集合并集的概念. 【答案】2【解析】由题意,得2B ∉,则2A ∈,则2a =.2.【命题意图】本题考查复数的运算与复数的几何意义,考查运算求解能力. 【答案】一【解析】因为()11z i i i =-=+,所以复数z 在复平面上对应的点位于第一象限.3.【命题意图】本题考查算法中的循环结构、伪代码等知识,考查学生阅读图表能力与运算求解能力. 【答案】17【解析】第一次循环,I=1,S=1+1=2;第二次循环,I=3,S=2+3=5;第三次循环,I=5,S=5+5=10;第四次循环,I=7,S=10+7=17,结束循环输出S=17.4.【命题意图】本题考查抽样方法中的分层抽样,考查学生的数据处理能力与运算求解能力. 【答案】200【解析】男学生占全校总人数为80012008006002=++,那么1001,2002n n ==5.【命题意图】本题考查复合函数的单调性、函数的定义域与一元二次不等式的解法,考查学生的运算求解能力. 【答案】],[326.【命题意图】本题考查古典概型的基本计算方法,考查用列举法求事件的个数,考查运算求解能力. 【答案】25【解析】从5个数中,随机抽取2个不同的数共有10种情况,其中满足2个数的和为偶数共有1+3,1+5,2+4,3+5这4种,则这2个数的和为偶数的概率是42105=.7.【命题意图】本题考查双曲线的标准方程、抛物线与双曲线的几何性质,考查运算求解能力.【答案】2211122x y -=. 【解析】设双曲线的标准方程为22221x y a b -=,y 2=4x 的焦点为()1,0,则双曲线的焦点为()1,0;y =±x为双曲线的渐近线,则1b a =,又因222a b c +=,所以2211,22a b ==,故双曲线标准方程为2211122x y -=. 8.【命题意图】本题考查向量的数量积运算,考查向量的线性运算,考查运算求解能力. 【答案】3【解析】设正ABC ∆边长为a ,11()22DC AC AD AC AB AC AC AB =-=-+=-, 所以22214DC AC AC AB AB =-⋅+2221cos 43a a a π=-+,即2334a =,即2a =,则11()()22DA DC AB AC AC AB ⋅=-+⋅-22213344AB AC a =-==. 9.【命题意图】本题考查三角恒等变换中的两角和与差的余弦公式、同角三角函数关系,考查对公式的灵活运用能力以及配角法等方法. 【答案】1310.【命题意图】本题考查用基本不等式求最值,考查对数的运算性质及配方法.考查学生的推理论证能力. 【答案】4【解析】由已知222log log log 1xy x y =+=,2xy =,又0x y ->,所以222()2x y x y xy x y x y+-+=-- 4()x y x y =-+-4≥=(当且仅当2x y -=时取等号),所以最小值为4.11.【命题意图】本题考查棱锥的体积,考查空间想象能力和运算求解能力. 【答案】245【解析】因为平面DAC ⊥平面BAC ,所以D 到直线BC 距离为三棱锥ABC D -的高,134123412346,,25555ABC S h h ∆⨯⨯=⨯⨯=====11122463355D ABC ABC V S h -∆=⋅=⨯⨯=.12.【命题意图】本题考查直线与圆相交问题、点到直线的距离、直线方程等基础知识,考查运算求解能力. 【答案】340x y ±+=【解析】如果直线l 与x 轴平行,则(1(1A B ,A 不是PB 中点,则直线l 与x 轴不平行;设:4l x my =-,圆心C 到直线l 的距离d =,令AB 中点为Q ,则3AQ PQ AQ ===,在Rt CPQ ∆中222PQ CQ PC +=,得2252521d m==+,解得3m =±,则直线l 的方程为340x y ±+=.13.【命题意图】本题考查等差数列的前n 项和公式,考查推理能力与运算求解能力. 【答案】35.14.【命题意图】本题考查含绝对值的二次函数的图象与性质,以及函数与方程、零点等知识,考查学生运用分类讨论思想、数形结合思想、函数与方程思想等综合解决问题的能力. 【答案】(0,1)∪(9,+∞)【解析】由()|1|0f x a x --=,得()|1|f x a x =-,作出函数()y f x =,()|1|y g x a x ==-的图象,当0a ≤,两个函数的图象不可能有4个交点,不满足条件,则0a >,此时(1),1()|1|(1),1a x x g x a x a x x -≥⎧=-=⎨--<⎩,当30x -<<时,2()3f x x x =--,()(1)g x a x =--,当直线和抛物线相切时,有三个零点,此时23(1)x x a x --=--,即2(3)0x ax a +-+=,则由2(3)40a a ∆=--=,即21090a a -+=,解得1a =或9a =,当9a =时,()9(1)g x x =--,(0)9g =,此时不成立,∴此时1a =,要使两个函数有四个零点,则此时01a <<,若1a >,此时()(1)g x a x =--与()f x 有两个交点,此时只需要当1x >时,()()f x g x =有两个不同的零点即可,即23(1)x x a x +=-,整理得2(3)0x a x a +-+=,则由2(3)40a a ∆=-->,即21090a a -+>,解得1a <(舍去)或9a >,综上a 的取值范围是(0,1)(9,)+∞.二、解答题 :本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分)【命题意图】本题考查正弦定理、余弦定理,等差数列的性质,考查运算求解能力.16.(本小题满分14分)【命题意图】本题考查平面的基本性质,线面垂直的判断与性质. 【解析】(1)连接AC ,因为E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线, 所以EF∥AC. ………………………2分由直棱柱知1AA 1CC ,所以四边形11C AAC 为平行四边形,所以AC ∥11AC .……5分 所以EF∥11AC ,故1A ,1C ,F ,E 四点共面.……………7分17.(本小题满分14分)【命题意图】本题考查函数的应用题,用基本不等式求函数的最值等数学知识,考查学生阅读理解能力、数学建模能力与运算求解能力.渗透了数形结合思想与数学应用意识.【解析】(1)当0<x ≤40,W =xR (x )-(16x +40)=-6x 2+384x -40;........ 2分当x >40,W =xR (x )-(16x +40)=-40000x-16x +7360............4分 所以,W =26384400404000016736040.x x x x x x ⎧<≤⎪⎨>⎪⎩-+-,,--+,....................................6分(2)①当0<x ≤40,W =-6(x -32)2+6104, 所以W max =W (32)=6104;.............10分 ②当x >40时,W =-40000x-16x +7360, 由于40000x +16x1600, 当且仅当40000x=16x ,即x =50∈(40,+∞)时,W 取最大值为5760...........12分 综合①②知,当x =32时,W 取最大值为6104..................14分 18.(本小题满分16分)【命题意图】本题考查椭圆的方程与几何性质、直线与椭圆相交问题、直线的位置关系等基础知识,,考查运算求解能力和数形结合思想的应用.联立方程得:2200022002221x y cx x y ab ⎧+=⎪⎨+=⎪⎩,消去0y 得:222222002()0c x a cx a a c -+-=解得:0()a a c x c +=或 0()a a c x c-= …………14分0a x a -<< 0()(0,)a a c x a c-∴=∈ 20a ac ac ∴<-< 解得:12e >综上,椭圆离心率e 的取值范围为1(,1)2. …………16分19.(本小题满分16分)【命题意图】本题考查等比数列的通项公式与前n 项和公式,等差数列的判断与通项公式,函数与方程思想,考查代数推理、转化与化归以及综合运用数学知识解决问题的能力.(3)由(2)得1n n c n+=, 对于给定的*n N ∈,若存在*,,,k t n k t N ≠∈,使得n k t c c c =⋅,只需111n k t n k t +++=⋅, 即1111(1)(1)n k t +=+⋅+,即1111n k t kt =++,则(1)n k t k n+=-, …………12分取1k n =+,则(2)t n n =+,∴对数列{}n c 中的任意一项1n n c n +=,都存在121n n c n ++=+和2222212n n n n c n n+++=+使得212n n n n c c c ++=⋅. …………16分 20.(本小题满分16分)【命题意图】本题考查利用导数研究函数的极值、单调性以及零点等知识,考查综合运用数学方法分析与解决问题的能力.①当1122a--≤-,即102a <≤时,()g x 在[2,2]-上单调增,min ()(2)10g x g ∴=-=> 102a ∴<≤………8分 ②当12102a -<--<,即12a >时,()g x 在1[2,1]2a ---上单调减,在1[1,2]2a--上单调增,2(21)120a a ∴∆=+-≤ 解得:11a -≤≤ 112a ∴<≤+综上,a 的取值范围是(0,1+. ………10分 (3)1,a = 设2()(2)4x h x x x e x =++-- ,'2()(33)1x h x x x e =++- 令2()(33)1x x x x e ϕ=++- ,'2()(56)x x x x e ϕ=++ 令'2()(56)0,2,3得x x x x e x ϕ=++==--33()(3)10极大值=x e ϕϕ∴-=-< ,21()(2)10极小值=x e ϕϕ-=-< ………13分 1(1)10,(0)20eϕϕ-=-<=>,∴存在0(1,0)x ∈-,0(,)x x ∈-∞时,()0x ϕ<,0(,)x x ∈+∞时,()0x ϕ>.()h x ∴在0(,)x -∞上单调减,在0(,)x +∞上单调增 又43148(4)0,(3)10,(0)20,(1)450h h h h e e e-=>-=-<=-<=-> 由零点的存在性定理可知:()0h x =的根12(4,3),(0,1)x x ∈--∈,即4,0t =-. ………16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多答,则按作答的前两小题给分.解答时应写出文字说明、证明过程或演算步骤. A .【选修4-1:几何证明选讲】(本小题满分10分)【命题意图】本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力与推理论证能力.B .【选修4-2:矩阵与变换】(本小题满分10分)【命题意图】本题考查矩阵的特征值与特征向量的概念、矩阵乘法等基础知识,考查运算求解能力. 【解析】矩阵A 的特征多项式为()2125614f λλλλλ--==--+, ……………2分 由()0f λ=,解得12λ=,23λ=. …………………………………………4分当12λ=时,特征方程组为20,20,x y x y -=⎧⎨-=⎩故属于特征值12λ=的一个特征向量121α⎡⎤=⎢⎥⎣⎦;………………………………7分当23λ=时,特征方程组为220,0,x y x y -=⎧⎨-=⎩故属于特征值23λ=的一个特征向量211α⎡⎤=⎢⎥⎣⎦. …………………………10分C .【选修4-4:坐标系与参数方程】(本小题满分10分)【命题意图】本题考查极坐标系与极坐标的概念、圆与直线的极坐标方程、极坐标方程与直角坐标方程的互化、点到直线的距离公式,考查转化与化归能力与运算求解能力.D .【选修4-5:不等式选讲】(本小题满分10分)【命题意图】本题考查基本不等式的应用,考查转化与化归能力和推理论证能力. 【解析】因为正实数,,a b c 满足231a b c ++=,所以1≥23127ab c ≤, …………………………5分 所以23127ab c ≥因此,24611127a b c ++≥≥ ……………………10分【必做题】第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)【命题意图】本题考查空间向量、二面角和直线垂直的应用等基础知识,考查应用向量法解决空间角和距离的能力与运算求解能力.【解析】(1)如图,以A 为原点建立空间直角坐标系A -xyz , 则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为,,)x y z n =(,则11100A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,即34040y z x -=⎧⎨=⎩, 令3z =,则0x =,4y =,所以(0,4,3)n =.同理可得,平面BB 1C 1的法向量为(3,4,0)m =, 所以16cos 25⋅==n m n,m |n ||m |. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. ………5分23.(本小题满分10分)【命题意图】本题考查分类讨论思想、归纳推理能力,考查对有一定难度和新颖性问题的进行分析与解决的能力.【解析】(1)由题意,取121,2a a ==,126a a <,满足题意,若33a ∃≥,则必有236a a ≥,不满足题意,综上所述:m 的最大值为2,即(6)2f =. ………………4分(2)由题意,当(1)(1)(2)n n k n n +<≤++时,设1{1,2,A =…,}n ,2{1,2,3,A n n n =+++…}, 显然,∀11,i i a a A +∈时,满足1(1)(1)i i a a n n n n k +≤-<+<,∴从集合1A 中选出的i a 至多n 个,∀12,j j a a A +∈时,1(1)(2)j j a a n n k +≥++≥,∴从集合2A 中选出的j a 必不相邻,又∵从集合1A 中选出的i a 至多n 个,∴从集合2A 中选出的j a 至多n 个,放置于从集合1A 中选出的i a 之间,∴()2f k n ≤, ………………6分(ⅱ)当(1)(2)n n k n n +<≤+时,从1A 中选出的n 个i a :1,2,…,n ,考虑数n 的两侧的空位,填入集合2A 的两个数,p q a a ,不妨设p q na na >,则(2)p na n n k ≥+≥,与题意不符,∴()21f k n ≤-,取一串数i a 为:1,21,2,22,3,23,n n n ---…,2,2,1,1,n n n n n -+-+(写出(ⅰ)、(ⅱ)题的结论但没有证明各给1分.)。

2019年高三高考考前辅导数学试题含答案

2019年高三高考考前辅导数学试题含答案

2019年高三高考考前辅导数学试题含答案《统计问题》1.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a= ,b= 。

2.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为____.《概率问题》1.在区间和分别取一个数,记为, 则方程表示焦点在轴上且离心率小于的椭圆的概率为.2.在圆=4所围成的区域内随机取一个整点P(x,y)(横,纵坐标都是整数点),则满足的整点的概率为 .《三角问题》1.在中,D为BC的中点,∠BAD=,∠CAD=AB=,则AD= .2.已知sin(=(则cos .3.若 .4.在中,若tan A tan B=tan A tan C+tanctan B,则 = .5.若角 C是一三角形内角,关于x的不等式的解集为,则角C的最大角为 . 6.已知的内角的对边成等比数列,则的取值范围为。

《立几问题》1.已知四棱锥S-ABCD 的底面ABCD 是边长为2的正方形,侧面SAB 是等边三角形,侧面SCD是以CD 为斜边的直角三角形,E 为CD 的中点,则三棱锥S-AED 的体积 .2.设为两个不重合的平面,为两条不重合的直线,给出下列的四个命题:(1)若,则;(2)若与相交且不垂直,则与不垂直(3)若,,,,m n n m αβαβα⊥⋂=⊂⊥则(4)若则其中,所有真命题的序号是 .《切线问题》1.已知f(x)= 过A(1,m)可作曲线的三条切线,则m 的取值范围是 . 2.已知函数f(x)=xlnx,若直线l 过点(0,并且与曲线y=f(x)相切,则直线l 与圆截得的弦长为 .3.从点(0,0)作轴的垂线交曲线y=于点(0,1),曲线在点处的切线与轴交于点,现从作轴的垂线交曲线于点,依次重复上述过程得到一系列点:则 .《平面向量的数量积》1.已知BC,DE 是半径为1的圆O 的两条直径,,则的值是 .2.设O 是外心,AB=1,AC=2且则面积为3.已知中,,为的外心,若点在所在的平面上,,且,则边上的高的最大值为 .4.在中,若8,|2|6AB AC AB AC ⋅=-=,则面积的取值范围为 .5.在等腰三角形ABC 中,点D,E,F 分别在AB,BC,CA 上,且AD=DB=EF=1,AC=BC=则的取值范围为 。

2019-2020年高三考前试题精选 数学 含答案

2019-2020年高三考前试题精选 数学 含答案

2019-2020年高三考前试题精选数学含答案一.选择题1.若集合,则集合A. B. C. D. R2.已知集合,,且,那么的值可以是A. B. C. D.3.复数的共轭复数是a+bi(a,bR),i是虚数单位,则ab的值是A、-7B、-6C、7D、64.已知是虚数单位,.,且,则(A)(B)(C)(D)5.已知命题,命题,则下列说法正确的是A.p是q的充要条件B.p是q的充分不必要条件C.p是q的必要不充分条件D.p是q的既不充分也不必要条件6.下面四个条件中,使成立的充分而不必要的条件是A. B. C. D.7.已知数列,那么“对任意的,点都在直线上”是“为等差数列”的(A) 必要而不充分条件 (B) 既不充分也不必要条件(C) 充要条件 (D) 充分而不必要条件8.执行右边的程序框图,若输出的S是127,则条件①可以为(A)(B)(C)(D)9.阅读右面程序框图,如果输出的函数值在区间内,则输入的实数的取值范围是(A)(B)(C)开始是否输入(D )10.要得到函数的图象,只要将函数的图象( ) A .向左平移单位 B .向右平移单位 C .向右平移单位D .向左平移单位11.已知,则 ( ) A . B . C . D .12.如图所示为函数(的部分图像,其中两点之间的距离为,那么( ) A . B . C . D .13.设向量、满足:,,,则与的夹角是( ) A . B . C . D .14.如图,为△的外心,为钝角,是边的中点,则的值( ) A . B .12 C .6 D .515.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )16.如图,平面四边形中,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一个球面上,则该球的体积为( ) A. B. C. D.xy OAB第21题图ABCOM17. ,则实数a取值范围为()A B [-1,1] C D (-1,1]18.已知正项等比数列满足:,若存在两项,使得,则的最小值为()A.B.C.D.不存在19.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20 C.30 D.4020.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数有()A B C D.6 .8 .12 .1621.在各项都为正数的等比数列中,,前三项的和为21,则=()A.33 B.72 C.84 D.18922.若等比数列的前项和,则A.4B.12C.24D.3623.已知、分别是双曲线的左、右焦点,为双曲线上的一点,若,且的三边长成等差数列,则双曲线的离心率是( ).A. B. C. D.24.长为的线段的两个端点在抛物线上滑动,则线段中点到轴距离的最小值是A. B. C. D.25.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A. 2B. 3C. 4D.626.函数f(x)=tan+,x的大致图象为()A B C D27.设在区间可导,其导数为,给出下列四组条件()①是奇函数,是偶函数②是以T为周期的函数,是以T为周期的函数③在区间上为增函数,在恒成立④在处取得极值,A.①②③ B.①②④ C.①③④ D.②③④28.若满足,满足,函数,则关于的方程的解的个数是()A. B.C. D.29.已知函数f(x)是R上的偶函数,且满足f(x+1)+f(x)=3,当x∈[0,1]时,f(x)=2-x,则f(-xx.5)的值为( )A.0.5 B.1.5 C.-1.5 D.130.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称和在上是“关联函数”,区间称为“关联区间”.若与在上是“关联函数”,则的取值范围()A. B. C. D.二.填空题31.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为万只。

扬州市2019届高三考前调研测试试题数学参考答案

扬州市2019届高三考前调研测试试题数学参考答案

扬州市2019届高三考前调研测试试题参考答案(数学) 2019.5第 一 部 分1.{0} 23.5 4.3 5.3106.22y x π=-+ 7.2π 8.529.8π 101112.4613.15,22⎡⎤⎢⎥⎣⎦;可得点P 的轨迹方程为圆:H 222(8)(4)x y R +-=,则圆H 与正方形的四边有公共点.14.23;332222224224224()23(4)38210161610x y xy xy x y xy y x x y x y x y x x y y y x+++==⨯++++++2434()2x y y x x y y x +=⨯++ 令4(0)x y xt y x y=+>,则4t ≥,原式23323222344t t t t =⨯=≤=+++.也可直接换元后求导. 15.证:(1)设,AC BD 交点为O ,连接OM . ∵底面ABCD 是平行四边形 ∴O 为AC 的中点∵M 为线段SC 的中点 ∴//OM AS ………………3分 ∵OM ⊂平面BDM ,AS ⊄平面BDM ∴AS //平面BDM ………………6分 (2)∵平面SAB ⊥平面SBC ,平面SAB I 平面SBC BS =,AS BS ⊥,AS ⊂平面SAB ∴AS ⊥平面SBC ………………9分 ∵又BM ⊂平面SBC ∴AS BM ⊥∵BS BC =,M 为线段SC 的中点 ∴BM SC ⊥又AS SC S =I ,,AS SC ⊂平面SAC ∴BM ⊥平面SAC ………………12分 ∵AC ⊂平面SAC ∴BM AC ⊥. ………………14分 16.解:(1)由题意得:3327212ππωϕπωϕπ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:256ωπϕ=⎧⎪⎨=⎪⎩ ………………3分 又sin 02sin 42A B A B π+=⎧⎪⎨+=⎪⎩,解得:22A B =⎧⎨=⎩∴5()2sin(2)26f x x π=++ ………………3分 由5222,262k x k k Z πππππ-+≤+≤+∈,解得:2,36k x k k Z ππππ-+≤≤-+∈ ∴函数单调增区间为2[,]()36k k k Z ππππ-+-+∈; ………………9分 ()f x(2)∵5()2sin(2)206f x x π=++= ∴5sin(2)16x π+=- ………………11分∵(0,]x π∈ ∴55522666x ππππ<+≤+ ∴53262x ππ+=,解得:3x π= ∴函数在内的零点为3π. ………………14分 17.解:(1)∵椭圆离心率为14,左顶点为A ,右焦点为F ,且5AF =. ∴145c a a c ⎧=⎪⎨⎪+=⎩,解得:41a c =⎧⎨=⎩ ∴215b = ∴椭圆C 的方程为:2211615x y += ………4分(2)由题意得:(4,0),(1,0)A F -,设点P 的坐标为00(,)x y ,则220011615x y +=①当01x =时,直线:1PF x =,与圆M 相切,则7151()88R =--=,不妨取15(1,)4P ,直线154:(4)1(4)PA y x =+--,即34120x y -+= ∴点M 到直线PF7|3()12|158r ⨯-+== ∴直线PF 与圆M 相切 ∴当158r =时,圆M 与直线,PA PF 都相切 ………7分 ②当04x =-时,点P 与点A 重合,不符合题意; ③当01x ≠且04x ≠-时,直线0000:(4),:(1)41y yPA y x PF y x x x =+=-+- 化简得:000000:(4)40,:(1)0PA y x x y y PF y x x y y -++=---=∵圆M 与直线,PA PF 都相切000077|4|||y y y y r -+--=………11分 ∵00y ≠,又220015(1)16x y =-代入化简得:2001221210x x -+=,解得:01x =或0121x = ∵044x -<<且01x ≠ ∴无解 ………13分 综上:158r =. ………14分 18.解:(1)∵矩形ABCD ,4AB =百米,3BC =百米 ∴5AC =百米 ∵P 为AC 中点 ∴52AP CP ==百米 设ACB α∠=,则(0)2πα∈,且4sin 5α=,3cos 5α=()f x (0,]π在CPM △中,sin sin PM CP αθ=,即524sin 5PM θ= ∴2sin PM θ= ………………4分 当点M 在B 处时,θ即为PBC PCB α∠=∠=,则3cos 5θ=,当点N 在B 处时,44PBC ππθα=∠+=+,34cos cos()4525210πθα=+=⨯-= ∴cos θ的取值范围为3[]5(0θπ<<); ………………6分 (2)在APN △中,3sin()sin()24PN AP ππαθ=--,即5233sin()54PN πθ=- ∴32sin()4PN πθ=+…8分123313sin 24sin 2sin (sin cos )1cos2sin 22sin()4PMN S PM PN ππθθθθθθθ=⨯⨯⨯=⋅=⋅=+-++△31)4πθ=- ………………12分∴当242ππθ-=,即38πθ=(0,)π∈时,max sin(2)14πθ-=,则min ()1)PMN S ==△此时3cos 5θ=<符合条件. ………………15分 答:水池PMN △面积的最小值为3)百米2. ………………16分 19.解:(1)∵1()x x f x e +=∴'()x xf x e-= 当(,0)x ∈-∞时,'()0f x >,()f x 单调递增;当(0,)x ∈+∞时,'()0f x <,()f x 单调递减 所以当0x =时,函数()f x 存在极大值(0)1f =,无极小值; ………………3分(2)令21()()()1xx h x f x g x ax e+=-=+-,12'()22x x xe x a h x ax ax e e-=-+=⋅ ∵102a <<,∴112a >,即1ln 02a >,令'()0h x =,解得0x =或1ln 2x a= 当(,0)x ∈-∞时,'()0h x >,()h x 单调递增;当1(0,ln )2x a∈时,'()0h x <,()h x 单调递减;当时1(ln,)2x a∈+∞,'()0h x >,()h x 单调递增 ………………5分 又(0)0h =,1(ln )(0)02h h a <=,210h a =-=>(1ln 2a <),函数()h x 在R 上连续,所以()h x 有一个零点0,且在1(ln2a 上有一个零点,即函数()h x 有两个零点∴当102a <<时,方程()()f x g x =的实根个数为2个; ………………8分 (3)方法(一)由(2)知,即证:当1a ≥时,对于任意实数[1,)x ∈-+∞,不等式()0h x ≥恒成立.∵1a ≥ ∴1ln ln 22a≤- ①当1ln12a ≤-,即2ea ≥时,则(1,0)x ∈-时,'()0h x <,()h x 单调递减;(0,,)x ∈+∞时,'()0h x >,()h x 单调递增 ∴min ()(0)0h x h == ∴当1x ≥-时,()0h x ≥恒成立; ………………12分②当11ln02a -<<,即12e a ≤<时,则1(1,ln )2x a ∈-时,'()0h x >,()h x 单调递增;1(ln ,0)2x a∈'()0h x <,()h x 单调递减;(0,)x ∈+∞时,'()0h x >,()h x 单调递增 ∴min ()min{(0),(1)}h x h h =-∵(0)0,(1)10h h a =-=-≥ ∴当1x ≥-时,()0h x ≥恒成立;综上:当1a ≥时,对于任意实数[1,)x ∈-+∞,()0h x ≥恒成立,即不等式()()f x g x ≥恒成立. ………………16分 方法(二)由(2)知,即证:当1a ≥时,对于任意实数[1,)x ∈-+∞,不等式()0h x ≥恒成立. ①在0x ≥时,∵1a ≥ ∴11022a <≤ 又0x ≥,1x e ≥得:'()0h x ≥, ∴()h x 为在[0,)+∞上是增函数,故()(0)0h x h ≥=; ………………11分②在10x -≤≤时,由于1a ≥,所以2211ax x -≥-要证明()0h x ≥成立,即证2110x x x e ++-≥,也即证1(1)[1]0x x x e ++-≥由于10x +≥,只需证110xx e +-≥ ………………13分 不妨令1()1x m x x e=+-,11'()1x x x e m x e e -=-=由10x -≤≤,得'()0m x ≤且不恒为0,所以()m x 在区间[1,0]-上单调递减,()(0)0m x m ≥=,从而110xx e +-≥得证. 综上,当1a ≥时,对于任意实数[1,)x ∈-+∞,()0h x ≥恒成立,即不等式()()f x g x ≥恒成立. ………………16分 20.解:(1)∵数列1,,a b 具有性质P ∴1ab a b =⎧⎨=⎩∴11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩∴2a b +=或2a b +=-; ……………………3分(2)假设存在不相等的正整数,i j ()i j <,使得n i j a a a =,即201920192019n i jn i j =⋅+++(*)解得:(2019)i nj i n +=-,取1i n -=,则存在1(2020)i n j n n =+⎧⎨=+⎩,使得(*)成立∴数列{}2019nn +具有性质P ; ……………………8分(3)设正项等比数列{}n b 的公比为q ,0q >且1q ≠,则11n n b b q -=⋅. ∵数列{}n b 具有性质P∴存在不相等的正整数,i j ()i j <,i n ≠,j n ≠,使得11111i j b b q b q --=⋅⋅⋅,即121i j b q +-=,且3n ≥∵1j i >≥,且,*i j N ∈ ∴21i j +-≥ 若21i j +-=,即11b q= ∴21b =,3b q = 要使11i j b b b q ==,则21q必为{}n b 中的项,与11b q =矛盾;∴21i j +-≠ 若22i j +-=,即121b q = ∴21b q=,31b =,4b q =, 要使121i j b b b q ==,则31q 必为{}nb 中的项,与121b q =矛盾;∴22i j +-≠ 若23i j +-=,即131b q =∴221b q =,31b q=,41b =,5b q =,26b q =,37b q =, 这时对于1,2,,7n =L ,都存在n i j b b b =,其中i j <,i n ≠,j n ≠.∴数列{}n b 至少有7项. ……………………16分第二部分(加试部分)21.(A )解:设(,)A x y ,则A 在变换T 下的坐标为(3,)x y y +,又绕原点逆时针旋转90︒对应的矩阵为0110-⎡⎤⎢⎥⎣⎦, ……………………4分 所以01341033x y y y x y -+--⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦,得433y x y -=-⎧⎨+=⎩,解得94x y =-⎧⎨=⎩所以点A 的坐标为(9,4)-. ……………………10分(B )解:直线l 的直角坐标方程为y x =.由方程4cos ,1cos 2x y αα=⎧⎨=+⎩可得22212cos 2()48x y x α===,又因为1cos 1α-≤≤,所以44x -≤≤.所以曲线C 的普通方程为21(44)8y x x =-≤≤ …………………6分将直线l 的方程代入曲线方程中,得218x x =,解得0x =,或8x =(舍去)所以直线l 与曲线C 的交点P 的直角坐标为(0,0). …………………10分22.解:(1)记“小球落入4号容器”为事件A ,若要小球落入4号容器,则在通过的四层中有三层需要向右,一层向左.∴34411()()24P A C ==…………………3分 (2)落入4号容器的小球个数X 的可能取值为0,1,2,3.∴3127(0)(1)464P X ==-=,1231127(1)(1)4464P X C ==⨯-=,223119(2)()(1)4464P X C ==⨯-= 311(3)()464P X ===∴X 的分布列为……………7分272791483()012364646464644E X =⨯+⨯+⨯+⨯==………………9分答:落入4号容器的小球个数X 的数学期望为34. ………………10分 23.解:(1)112a =,2712a =,33760a = ………………2分 (2)12,a a 小数点后第一位数字均为5,3a 小数点后第一位数字为6 ………………3分 下证:对任意正整数(3)n n ≥,均有0.60.7n a << 注意到11111021221(21)(22)n n a a n n n n n +-=+-=>+++++ 故对任意正整数(3)n n ≥,有30.6n a a ≥> ………………5分 下用数学归纳法证明:对任意正整数(3)n n ≥,有10.74n a n≤- ①当3n =时,有3371110.70.70.760124343a ==-=-≤-⨯⨯,命题成立; ②假设当*(,3)n k k N k =∈≥时,命题成立,即10.74k a k≤- 则当1n k =+时,11110.7(21)(22)4(21)(22)k k a a k k k k k +=+≤-+++++∵1111104(21)(22)4(1)4(1)4(1)22k k k k k k k k k --=->+++++++ ∴1114(21)(22)4(1)k k k k ->+++ ∴11110.70.74(21)(22)4(1)k a k k k k +≤-+≤-+++ ∴1n k =+时,命题也成立;综合①②,任意正整数(3)n n ≥,10.74n a n≤-. 由此,对正整数(3)n n ≥,0.60.7n a <<,此时n a 小数点后第一位数字均为6.所以12,a a 小数点后第一位数字均为5,当3,*n n N ≥∈时,n a 小数点后第一位数字均为6.…10分。

2019版考前三个月高考数学考前抢分必做 考前回扣 回扣6 Word版含答案

2019版考前三个月高考数学考前抢分必做 考前回扣 回扣6 Word版含答案

回扣6立体几何1.概念理解(1)四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.(2)三视图①三视图的正(主)视图、侧(左)视图、俯视图分别是从几何的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.②三视图排列规则:俯视图放在正(主)视图的下面,长度与正(主)视图一样;侧(左)视图放在正(主)视图的右面,高度和正(主)视图一样,宽度与俯视图一样.2.柱、锥、台、球体的表面积和体积3.平行、垂直关系的转化示意图(1)(2)线线垂直判定性质线面垂直判定性质面面垂直(3)两个结论①⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b ②⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α 4.用向量求空间角(1)直线l 1,l 2夹角θ有cos θ=|cos 〈l 1,l 2〉|(其中l 1,l 2分别是直线l 1,l 2的方向向量). (2)直线l 与平面α的夹角θ有sin θ=|cos 〈l ,n 〉|(其中l 是直线l 的方向向量,n 是平面α的法向量).(3)平面α,β夹角θ有cos θ=|cos 〈n 1,n 2〉|,则α—l —β二面角的平面角为θ或π-θ(其中n 1,n 2分别是平面α,β的法向量).1.混淆“点A 在直线a 上”与“直线a 在平面α内”的数学符号关系,应表示为A ∈a ,a ⊂α.2.在由三视图还原为空间几何体的实际形状时,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线为虚线.在还原空间几何体实际形状时一般是以正(主)视图和俯视图为主.3.易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面积之和,不能漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数13.4.不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l ,m ⊥l ,易误得出m ⊥β的结论,就是因为忽视面面垂直的性质定理中m ⊂α的限制条件.5.注意图形的翻折与展开前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置与数量关系.6.几种角的范围两条异面直线所成的角0°<α≤90° 直线与平面所成的角0°≤α≤90° 二面角0°≤α≤180°两条相交直线所成的角(夹角)0°<α≤90° 直线的倾斜角0°≤α<180° 两个向量的夹角0°≤α≤180°锐角0°<α<90°7.空间向量求角时易忽视向量的夹角与所求角之间的关系,如求解二面角时,不能根据几何体判断二面角的范围,忽视向量的方向,误以为两个法向量的夹角就是所求的二面角,导致出错.1.如图是一个多面体三视图,它们都是斜边长为2的等腰直角三角形,则这个多面体最长一条棱长为()A. 2B. 3C.2 3D.3 2答案 B解析由三视图可知,几何体是一个三棱锥,底面是一个斜边长为2的等腰直角三角形,一条侧棱与底面垂直,且这条侧棱的长度为1,这样在所有棱中,连接与底面垂直的侧棱的顶点与底面的另一锐角顶点的侧棱最长,长度是12+(2)2= 3.故选B.2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧(左)视图为()答案 D解析在被截去的四棱锥的三条可见棱中,两条为长方体的面对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在侧面上的投影与右侧面的对角线重合,对照各图,只有D符合.3.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.72 cm3B.90 cm3C.108 cm3D.138 cm3答案 B解析该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示.V=V三棱柱+V长方体=12×4×3×3+4×3×6=18+72=90(cm3).4.直三棱柱ABC—A1B1C1的直观图及三视图如图所示,D为AC的中点,则下列命题是假命题的是()A.AB1∥平面BDC1B.A1C⊥平面BDC1C.直三棱柱的体积V=4D.直三棱柱的外接球的表面积为43π答案 D解析由三视图可知,直三棱柱ABC—A1B1C1的侧面B1C1CB是边长为2的正方形,底面ABC 是等腰直角三角形,AB⊥BC,AB=BC=2.连接B1C交BC1于点O,连接OD.在△CAB1中,O,D分别是B1C,AC的中点,∴OD∥AB1,∴AB1∥平面BDC1.故A正确.直三棱柱ABC —A 1B 1C 1中,AA 1⊥平面ABC ,∴AA 1⊥BD .又AB =BC =2,D 为AC 的中点,∴BD ⊥AC ,∴BD ⊥平面AA 1C 1C .∴BD ⊥A 1C . 又A 1B 1⊥B 1C 1,A 1B 1⊥B 1B , ∴A 1B 1⊥平面B 1C 1CB ,∴A 1B 1⊥BC 1.∵BC 1⊥B 1C ,且A 1B 1∩B 1C =B 1,∴BC 1⊥平面A 1B 1C . ∴BC 1⊥A 1C ,∴A 1C ⊥平面BDC 1.故B 正确. V =S △ABC ×C 1C =12×2×2×2=4,∴C 正确.此直三棱柱的外接球的半径为3,其表面积为12π,D 错误.故选D.5.如图,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为棱BC 和棱CC 1的中点,则异面直线AC 和MN 所成的角为( )A.30°B.45°C.60°D.90° 答案 C解析 由中点M ,N 可知MN ∥AD 1,由△D 1AC 是正三角形可知∠D 1AC =60°,所以异面直线AC 和MN 所成的角为60°.6.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A.若m ∥α,n ∥α,则m ∥n B.若m ⊥α,n ⊂α,则m ⊥n C.若m ⊥α,m ⊥n ,则n ∥α D.若m ∥α,m ⊥n ,则n ⊥α 答案 B7.已知三棱柱ABC —A 1B 1C 1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为3,AB =1,AC =1,∠BAC =60°,则此球的表面积等于________. 答案52π3解析 由题意得三棱柱底面为正三角形,设侧棱长为h ,则h ·34·12=3⇒h =4,因为球心为上下底面中心连线的中点,所以R 2=22+(33)2=133,因此球的表面积等于4πR 2=4π·133=523π. 8.已知长方体ABCD —A ′B ′C ′D ′,E ,F ,G ,H 分别是棱AD ,BB ′,B ′C ′,DD ′中点,从中任取两点确定的直线中,与平面AB ′D ′平行的有________条.答案 6解析 如图,连接EG ,EH ,FG ,∵EH 綊FG ,∴EFGH 四点共面,由EG ∥AB ′,EH ∥AD ′,EG ∩EH =E ,AB ′∩AD ′=A , 可得平面EFGH 与平面AB ′D ′平行,∴符合条件的共有6条.9.α,β是两平面,AB ,CD 是两条线段,已知α∩β=EF ,AB ⊥α于B ,CD ⊥α于D ,若增加一个条件,就能得出BD ⊥EF ,现有下列条件:①AC ⊥β;②AC 与α,β所成的角相等;③AC 与CD 在β内的射影在同一条直线上;④AC ∥EF . 其中能成为增加条件的序号是________. 答案 ①③解析 由题意得,AB ∥CD ,∴A ,B ,C ,D 四点共面. ①中,∵AC ⊥β,EF ⊂β,∴AC ⊥EF ,又∵AB ⊥α,EF ⊂α, ∴AB ⊥EF ,∵AB ∩AC =A ,∴EF ⊥平面ABCD , 又∵BD ⊂平面ABCD ,∴BD ⊥EF ,故①正确; ②中,由①可知,若BD ⊥EF 成立,则有EF⊥平面ABCD,则有EF⊥AC成立,而AC与α,β所成角相等是无法得到EF⊥AC的,故②错误;③中,由AC与CD在β内的射影在同一条直线上,可知面EF⊥AC,由①可知③正确;④中,仿照②的分析过程可知④错误,故填①③.10.如图,ABCD—A1B1C1D1为正方体,下面结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1;④异面直线AD与CB1所成角为60°. 错误的有________.(把你认为错误的序号全部写上)答案④解析①BD∥B1D1,利用线面平行的判定可推出BD∥平面CB1D1;②由BD⊥平面ACC1可推出AC1⊥BD;③AC1⊥CD1,AC1⊥B1D1可推出AC1⊥平面CB1D1;④异面直线AD与CB1所成角为45°,错误.11.如图,在直三棱柱ABC—A1B1C1中,AB=1,AC=2,BC=3,D、E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为________.答案π6解析如图,取AC中点F,连接FD,FB.则DF∥BE,DF=BE,∴DE∥BF,∴BF与平面BB1C1C所成的角为所求的角,∵AB=1,BC=3,AC=2,∴AB⊥BC,又AB⊥BB1,∴AB⊥平面BB1C1C,作GF∥AB交BC于点G,则GF⊥平面BB1C1C,∴∠FBG为直线BF与平面BB 1C 1C 所成的角,由条件知BG =12BC =32,GF =12AB =12,∴tan ∠FBG =GF BG =33,∴∠FBG =π6.12.如图所示,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,且底面各边长都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)答案 DM ⊥PC (或BM ⊥PC ,答案不唯一) 解析 ∵四边形ABCD 是菱形,∴AC ⊥BD , 又∵P A ⊥平面ABCD , ∴P A ⊥BD , 又AC ∩P A =A ,∴BD ⊥平面P AC ,∴BD ⊥PC . ∴当DM ⊥PC (或BM ⊥PC )时, 即有PC ⊥平面MBD ,而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD .13.在四棱锥P —ABCD 中,P A ⊥平面ABCD ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 中点,又P A =AB =4,∠CDA =120°,点N 在线段PB 上,且PN = 2.(1)求证:BD ⊥PC ;(2)求证:MN∥平面PDC;(3)求二面角A—PC—B的余弦值.(1)证明因为△ABC是正三角形,M是AC中点,所以BM⊥AC,即BD⊥AC,又因为P A⊥平面ABCD,BD⊂平面ABCD,P A⊥BD,又P A∩AC=A,所以BD⊥平面P AC,又PC⊂平面P AC,所以BD⊥PC.(2)证明在正三角形ABC中,BM=23,在△ACD中,因为M为AC中点,DM⊥AC,,所以AD=CD,又∠CDA=120°,所以DM=233所以BM∶MD=3∶1,在等腰直角三角形P AB中,P A=AB=4,PB=42,所以BN∶NP=3∶1,BN∶NP=BM∶MD,所以MN∥PD,又MN⊄平面PDC,PD⊂平面PDC,所以MN∥平面PDC.(3)解因为∠BAD=∠BAC+∠CAD=90°,所以AB⊥AD,分别以AB,AD,AP为x轴,y轴,z轴建立如图所示的空间直角坐标系,所,0),P(0,0,4).以B(4,0,0),C(2,23,0),D(0,433由(1)可知,DB→=(4,-43,0)为平面P AC的一个法向量,3→=(2,23,-4),PB→=(4,0,-4),PC设平面PBC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0, 即⎩⎪⎨⎪⎧2x +23y -4z =0,4x -4z =0.令z =3,则平面PBC 的一个法向量为n =(3,3,3), 设二面角A —PC —B 的大小为θ, 则cos θ=n ·DB →|n ||DB →|=77.所以二面角A —PC —B 的余弦值为77.。

湖南师范大学附属中学2019届高三考前演练(三)理科数学试题答案

湖南师范大学附属中学2019届高三考前演练(三)理科数学试题答案

! " 当直线 6 设直线 6 # & " > 的斜率存在时& > 的方程为$3 3 %7?& ,! % @! % !& !" "& "" $ $
3 %7?& $3 0 " " "" ! 联立方程组/ " 得, & %7 * 3 ? %7 & ? / ! " 3 # " % 7 & 3 % $ 7 3 ! 1& %
数学! 理科" 试题参考答案 第" !页
! " 由已知可得 & " &3'3.3& '3 " 所以*& ' 为正三角形& 73槡 %! 又因为 & 所以 . 所以 . .3槡 "& '3槡 "& 7'7 &! 于是分别以 7 && 7 .& 7 - 为% 轴& # 轴建立如图所示直角坐标系& $ 轴& 则 7! & & " & & & " & & & " & & & " & & & " # # # &! ! # # .! # ! # -! # # '! / ! # # ! % 槡
"
.- .由&, & 7 @3 $7, 7 @3 #得 % % # ! "7 ! "3 $ $ "

河南省顶级2019届高三考前模拟考试数学(理)试卷含答案

河南省顶级2019届高三考前模拟考试数学(理)试卷含答案

俯视图3112019年高考考前模拟考试 理科数学试题考试时间:2019年5月30日15:00—17:00一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2230A x x x =--≥,{}22B x x =-≤<,则AB =.[2,1]A -- .[1,2)B - .[1,1]C - .[1,2)D2.若复数z 满足232z z i +=-,其中i 为虚数单位,则z =.12A i + .12B i - .12C i -+ .12D i--3.设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为.3A .3B - .1C .1D -4.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线过点3) ,则该双曲线的离心率为1.2A .2B 72C 7.2D 5.某几何体的三视图如图所示(单位:cm ), 则该几何体的体积(单位:3cm )是.32A π+ .12B π+3.12C π+ 3.32D π+6.安排3名志愿者完成4项工作,每人至少完成1项, 每项工作由1人完成,则不同的安排方式共有 .12A 种 .18B 种 .24C 种 .36D 种7.在如图所示的流程图中,若输入,,a b c 的值分别 为2,4,5,则输出的x =.1A .2B.lg 2C .10D8.将函数()2sin(2)3f x x π=+图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得 图象向左平移12π个单位得到函数()g x 的图象,在()g x 图象的所有对称轴中,离原点最近的对称轴方程为.12A x π=.4B x π=5.24C x π=.24D x π=- 9.设12,F F 是椭圆:C 2213x y m+=的两个焦点,若C 上存在点P 满足o12120F PF ∠=,则m 的取值范围是.A (0,1][12,)+∞ 3.(0,][23,)2B +∞ 3.(0,][23,)4C +∞ 3.(0,][12,)4D +∞10.甲、乙两艘轮船都要在某一泊位停靠6小时,假定它们在一昼夜的时间段中随机的到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为9.16A 1.2B 7.16C 1.16D11.在三棱柱111C B A ABC -中,122AB AC AA ===23BAC π∠=,1AA ⊥平面ABC ,则该三棱柱的外接球的体积为.40A π .4010B π 40.3C π4010.3D π12. 已知函数1()()x f x x a e=-,曲线()y f x =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是21.(,0)A e -2.(,0)B e - 21.(,+)C e-∞ 2.(,)D e -+∞ 二、填空题:本大题共4个小题,每小题5分,共20分。

2019年江苏省苏州市高考数学考前指导卷含答案解析

2019年江苏省苏州市高考数学考前指导卷含答案解析

2019年江苏省苏州市高考数学考前指导卷一、填空题:本大题共14个小题,每小题5分,共70分.1.设全集U={1,2,3,4,5},集合A={1,2,3},B={2,3,4},则∁U(A∪B)=.2.已知复数z1=1+ai,z2=3+2i,a∈R,i是虚数单位,若z1z2是实数,则a=.3.某班有学生60人,现将所有学生按1,2,3,…,60随机编号.若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,a,28,b,52号学生在样本中,则a+b=.4.等比数列{a n}的前n项和为S n,且a3=2S2+1,a4=2S3+1,则公比q为.5.执行如图所示的流程图,输出的S的值为.6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.7.双曲线﹣=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率e=.8.已知函数f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值为4,最小值为2,且f(x0)=2,则f(x0+)=.9.在三棱锥S﹣ABC中,底面ABC是边长为3的等边三角形,SA⊥SC,SB⊥SC,SA=SB=2,则该三棱锥的体积为.10.已知直线l:x﹣y=1与圆M:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为.11.已知平行四边形ABCD中.∠BAD=120°,AB=1,AD=2,点P是线段BC上的一个动点,则•的取值范围是.12.若x>0,y>0,则的最小值为.13.在钝角△ABC中,已知sin2A+sin2A=1,则sinB•cosC取得最小值时,角B等于.14.若不等式|mx3﹣lnx|≥1对∀x∈(0,1]恒成立,则实数m的取值范围是.二、解答题(每题6分,满分90分,将答案填在答题纸上)15.在△ABC中,角A,B,C的对边分别是a,b,c,已知cos2A=﹣,c=,sinA=sinC.(Ⅰ)求a的值;(Ⅱ)若角A为锐角,求b的值及△ABC的面积.16.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是矩形,AF=a,点M在线段EF上.(1)求证:BC⊥AM;(2)若AM∥平面BDE,试求线段AM的长.17.苏州市举办“广电狂欢购物节”促销活动,某厂商拟投入适当的广告费,对所售产品进行促销,经调查测算,该促销产品在狂欢购物节的销售量p万件与广告费用x万元满足p=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品p万件还需投入成本(10+2p)万元(不含广告费用),产品的销售价格定为(4+)元/件,假定厂商生产的产品恰好能够售完.(1)将该产品的利润y万元表示为广告费用x万元的函数;(2)问广告费投入多少万元时,厂商的利润最大?18.已知椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.19.已知数列{a n}与{b n}满足a n+1﹣qb n+1=a n﹣qb n,其中q∈R,n∈N*.(1)若{b n}是公差为2的等差数列,且a1=q=3,求数列{a n}的通项公式;(2)若{b n}是首项为2,公比为q的等比数列,a1=3q<0,且对任意m,n∈N*,a n≠0,都有∈(,6),试求q的取值范围.20.已知a∈R,函数f(x)=e x﹣1﹣ax的图象与x轴相切.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x>1时,f(x)>m(x﹣1)lnx,求实数m的取值范围.2019年江苏省苏州市高考数学考前指导卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共70分.1.设全集U={1,2,3,4,5},集合A={1,2,3},B={2,3,4},则∁U(A∪B)={5} .【考点】交、并、补集的混合运算.【分析】求出A与B的并集,找出并集的补集即可.【解答】解:∵集合A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4},∵全集U={1,2,3,4,5},∴∁U(A∪B)={5}.故答案为:{5}2.已知复数z1=1+ai,z2=3+2i,a∈R,i是虚数单位,若z1z2是实数,则a=.【考点】复数代数形式的乘除运算.【分析】利用复数定义是法则、复数为实数的充要条件即可得出.【解答】解:∵z1z2=(1+ai)(3+2i)=3﹣2a+(3a+2)i是实数,∴3a+2=0,解得a=﹣.故答案为:.3.某班有学生60人,现将所有学生按1,2,3,…,60随机编号.若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,a,28,b,52号学生在样本中,则a+b=56.【考点】系统抽样方法.【分析】求出样本间隔即可得到结论.【解答】解:∵样本容量为5,∴样本间隔为60÷5=12,∵编号为4,a,28,b,52号学生在样本中,∴a=16,b=40,∴a+b=56,故答案为:564.等比数列{a n}的前n项和为S n,且a3=2S2+1,a4=2S3+1,则公比q为3.【考点】等比数列的前n项和.【分析】a3=2S2+1,a4=2S3+1,两式相减即可得出.【解答】解:设等比数列{a n}的公比为q,∵a3=2S2+1,a4=2S3+1,∴a4﹣a3=2a3,化为=3=q.故答案为:3.5.执行如图所示的流程图,输出的S的值为2.【考点】程序框图.【分析】模拟程序框图的运行过程,即可得出该程序执行的结果是什么.【解答】解:i=0<4,s==,i=1<4,s==﹣,i=2<4,s==﹣3,i=3<4,s==2,i=4,输出s=2,故答案为:2.6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.【考点】互斥事件的概率加法公式.【分析】利用列举法求出甲、乙两人各抽取1张的基本事件的个数和两人都中奖包含的基本事件的个数,由此能求出两人都中奖的概率.【解答】解:设一、二等奖各用A,B表示,另1张无奖用C表示,甲、乙两人各抽取1张的基本事件有AB,AC,BA,BC,CA,CB共6个,其中两人都中奖的有AB,BA共2个,故所求的概率P=.故答案为:.7.双曲线﹣=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率e=.【考点】双曲线的简单性质.【分析】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c 的关系,求出离心率的值.【解答】解:将x=c代入双曲线的方程得y=即M(c,)在△MF1F2中tan30°=即解得故答案为:8.已知函数f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值为4,最小值为2,且f(x0)=2,则f(x0+)=3.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数最值列式求得A,k的值,由f(x0)=2,得到sin(2x0+φ)=﹣1,则cos(2x0+φ)=0,写出f(x0+),结合诱导公式求值.【解答】解:由f(x)=Asin(2x+φ)+k,∵f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值为4,最小值为2,∴,解得:A=1,k=3.∴f(x)=sin(2x+φ)+3.由f(x0)=2,得sin(2x0+φ)+3=2,∴sin(2x0+φ)=﹣1,则cos(2x0+φ)=0.则f(x0+)=+3=cos(2x0+φ)+3=3.故答案为:3.9.在三棱锥S﹣ABC中,底面ABC是边长为3的等边三角形,SA⊥SC,SB⊥SC,SA=SB=2,则该三棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】由题意画出图形,结合已知可得SC⊥平面SAB,并求出SC,解三角形求得△ASB 的面积,代入体积公式求得三棱锥的体积.【解答】解:如图,∵SA⊥SC,SB⊥SC,且SA∩SB=S,∴SC⊥平面SAB,在Rt△BSC中,由SB=2,BC=3,得SC=.在△SAB中,由取AB中点D,连接SD,则SD⊥AB,且BD=.∴.∴.故答案为:.10.已知直线l:x﹣y=1与圆M:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为.【考点】直线与圆的位置关系.【分析】先求出弦长|AB|的长度,然后结合圆与直线的位置关系图象,然后将ABCD的面积看成两个三角形△ABC和△ACD的面积之和,分析可得当BD为AC的垂直平分线时,四边形ABCD的面积最大.【解答】解:把圆M:x2+y2﹣2x+2y﹣1=0化为标准方程:(x﹣1)2+(y+1)2=3,圆心(1,﹣1),半径r=.直线与圆相交,由点到直线的距离公式的弦心距d==,由勾股定理的半弦长==,所以弦长|AB|=2×=.又B,D两点在圆上,并且位于直线AC的两侧,四边形ABCD的面积可以看成是两个三角形△ABC和△ACD的面积之和,如图所示,当B,D为如图所示位置,即BD为弦AC的垂直平分线时(即为直径时),两三角形的面积之和最大,即四边形ABCD的面积最大,最大面积为:S=×|AB|×|CE|+×|AB|×|DE|==.故答案为:.11.已知平行四边形ABCD中.∠BAD=120°,AB=1,AD=2,点P是线段BC上的一个动点,则•的取值范围是[﹣,2].【考点】平面向量数量积的运算.【分析】以为坐标原点,以BC所在的直线为x轴,建立如图所述的直角坐标系,作AE⊥BC,垂足为E,求出A(,),D(,),设点P(x,0),0≤x≤2,根据向量的坐标运算以及向量的数量积的运算得到•=(x﹣)2﹣,根据二次函数的性质即可求出答案.【解答】解:以为坐标原点,以BC所在的直线为x轴,建立如图所述的直角坐标系,作AE⊥BC,垂足为E,∵∠BAD=120°,AB=1,AD=2,∴∠ABC=60°,∴AE=,BE=,∴A(,),D(,),∵点P是线段BC上的一个动点,设点P(x,0),0≤x≤2,∴=(x﹣,﹣),=(x﹣,﹣),∴•=(x﹣)(x﹣)+=(x﹣)2﹣,∴当x=时,有最小值,最小值为﹣,当x=0时,有最大值,最大值为2,则•的取值范围为[﹣,2],故答案为:[﹣,2].12.若x>0,y>0,则的最小值为.【考点】基本不等式.【分析】设=t>0,变形=+t=+﹣,再利用基本不等式的性质即可得出.【解答】解:设=t>0,则=+t=+﹣≥﹣=﹣,当且仅当=时取等号.故答案为:﹣.13.在钝角△ABC中,已知sin2A+sin2A=1,则sinB•cosC取得最小值时,角B等于.【考点】三角函数的化简求值.【分析】利用三角函数恒等变换的应用化简已知等式可得sin(2A﹣)=,由A∈(0,π),可得:2A﹣∈(﹣,),从而可求A的值,又sinB•cosC=﹣sin(2B+),由题意可得sin(2B+)=1,解得B=kπ+,k∈Z,结合范围B∈(0,π),从而可求B 的值.【解答】解:∵sin2A+sin2A=1,可得: +sin2A=1,整理可得:sin2A ﹣cos2A=1,∴(sin2A﹣cos2A)=1,可得:sin(2A﹣)=1,∴解得:sin(2A﹣)=,∵A∈(0,π),可得:2A﹣∈(﹣,),∴2A﹣=,或,从而解得解得:A=或(由题意舍去),∴sinB•cosC=sinBcos(﹣B)=sinB(﹣cosB+sinB)=﹣cos2B﹣sin2B=﹣sin(2B+),∴当sin(2B+)=1时,sinB•cosC=﹣sin(2B+)取得最小值,此时,2B+=2kπ+,k∈Z,∴解得:B=kπ+,k∈Z,∵B∈(0,π),∴B=.故答案为:.14.若不等式|mx3﹣lnx|≥1对∀x∈(0,1]恒成立,则实数m的取值范围是[e2,+∞).【考点】绝对值不等式的解法.【分析】根据绝对值不等式的性质,结合不等式恒成立,利用参数分离法,构造函数,求函数的导数以及函数的最值即可.【解答】解:|mx3﹣lnx|≥1对任意x∈(0,1]都成立等价为mx3﹣lnx≥1,或mx3﹣lnx≤﹣1,即m≥,记f(x)=,或m≤,记g(x)=,f'(x)==,由f'(x)==0,解得lnx=﹣,即x=e﹣,由f(x)>0,解得0<x<e﹣,此时函数单调递增,由f(x)<0,解得x>e﹣,此时函数单调递减,即当x=e﹣时,函数f(x)取得极大值,同时也是最大值f(e﹣)===e2,此时m≥e2,若m≤,∵当x=1时,=0,∴当m>0时,不等式m≤不恒成立,综上m≥e2.故答案为:[e2,+∞).二、解答题(每题6分,满分90分,将答案填在答题纸上)15.在△ABC中,角A,B,C的对边分别是a,b,c,已知cos2A=﹣,c=,sinA=sinC.(Ⅰ)求a的值;(Ⅱ)若角A为锐角,求b的值及△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)根据题意和正弦定理求出a的值;(Ⅱ)由二倍角的余弦公式变形求出sin2A,由A的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.【解答】解:(Ⅰ)在△ABC中,因为,由正弦定理,得.…(Ⅱ)由得,,由得,,则,由余弦定理a2=b2+c2﹣2bccosA,化简得,b2﹣2b﹣15=0,解得b=5或b=﹣3(舍负).所以.…16.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是矩形,AF=a,点M在线段EF上.(1)求证:BC⊥AM;(2)若AM∥平面BDE,试求线段AM的长.【考点】直线与平面平行的性质;空间中直线与直线之间的位置关系.【分析】(1)由已知及等腰梯形的性质,勾股定理可证明AC⊥BC,又平面ACEF⊥平面ABCD,从而可证BC⊥平面ACEF,进而可证BC⊥AM.(2)设AC与BD交于点N,由AM∥平面BDE,可得四边形ANEM是平行四边形,可得AM=EN,由CD=a,CN=DN,∠DNC=120°,解得,又CE=a,从而可求EN,进而可求AM的值.【解答】证明:(1)由题意知,梯形ABCD为等腰梯形,且,由AB2+BC2=AC2,可知AC⊥BC,又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,所以BC⊥平面ACEF,又AM⊂平面ACEF,所以BC⊥AM.解:(2)设AC与BD交于点N,因为AM∥平面BDE,AM⊂平面ACEF,平面ACEF∩平面BDE=EN,所以AM∥EN,FE∥AC,故四边形ANEM是平行四边形,所以AM=EN,由CD=a,CN=DN,∠DNC=120°,所以,又CE=a,所以,所以.17.苏州市举办“广电狂欢购物节”促销活动,某厂商拟投入适当的广告费,对所售产品进行促销,经调查测算,该促销产品在狂欢购物节的销售量p万件与广告费用x万元满足p=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品p万件还需投入成本(10+2p)万元(不含广告费用),产品的销售价格定为(4+)元/件,假定厂商生产的产品恰好能够售完.(1)将该产品的利润y万元表示为广告费用x万元的函数;(2)问广告费投入多少万元时,厂商的利润最大?【考点】导数在最大值、最小值问题中的应用.【分析】(1)由题意知,,将代入化简即可得出.(2)y′=,对a分类讨论,利用导数研究函数的单调性即可得出.【解答】解:(1)由题意知,,将代入化简得:.(2).①当a≥1时,x∈(0,1)时,y'>0,所以函数在(0,1)上单调递增;x∈(1,a)时,y'<0,所以函数在(1,a)上单调递减,∴促销费用投入1万元时,厂家的利润最大.②当a<1时,因为函数在(0,1)上单调递增,在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上所述,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大.18.已知椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,列出方程组,求出a,b,由此能求出椭圆方程.(Ⅱ)当直线l的斜率存在时,设其方程为y=k(x﹣1),A(x1,y1),B(x2,y2),直线方程与椭圆立,利用韦达定理、根的判别式、向量的数量积,结合已知条件能求出存在点满足.【解答】解:(Ⅰ)∵椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,∴,解得c2=1,a2=4,b2=3∴椭圆方程为(Ⅱ)当直线l的斜率存在时,设其方程为y=k(x﹣1),A(x1,y1),B(x2,y2),则△>0,,若存在定点N(m,0)满足条件,则有=(x1﹣m)(x2﹣m)+y1y2=如果要上式为定值,则必须有验证当直线l斜率不存在时,也符合.故存在点满足19.已知数列{a n }与{b n }满足a n+1﹣qb n+1=a n ﹣qb n ,其中q ∈R ,n ∈N *. (1)若{b n }是公差为2的等差数列,且a 1=q=3,求数列{a n }的通项公式;(2)若{b n }是首项为2,公比为q 的等比数列,a 1=3q <0,且对任意m ,n ∈N *,a n ≠0,都有∈(,6),试求q 的取值范围.【考点】等比数列的性质;数列递推式. 【分析】(1)确定{a n }是首项为3,公差为6的等差数列,即可求数列{a n }的通项公式;(2)确定a n =2q n +q ,a n <0,由指数函数的单调性知,{a n }的最大值为,最小值为a 1=3q ,由题意,的最大值及最小值分别为和,即可求q 的取值范围. 【解答】解:(1)由a n+1﹣a n =q (b n+1﹣b n )=2q=6,所以{a n }是首项为3,公差为6的等差数列,故{a n }的通项公式为.(2)因为,所以,当n ≥2时,a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1=2[(q n ﹣q n ﹣1)+(q n ﹣1﹣q n ﹣2)+…+(q 2﹣q )]+3q=2q n +q .当n=1时,a 1=3q ,符合上式,所以,因为a 1=3q <0,且对任意,故a n <0,特别地2q 2+q <0,于是,此时对任意n ∈N *,a n ≠0.当时,,由指数函数的单调性知,{a n }的最大值为,最小值为a 1=3q ,由题意,的最大值及最小值分别为和.由及,解得.综上所述,q 的取值范围为.20.已知a∈R,函数f(x)=e x﹣1﹣ax的图象与x轴相切.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x>1时,f(x)>m(x﹣1)lnx,求实数m的取值范围.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,根据函数图象与x轴相切,求出a的值,从而求出函数的单调区间;(Ⅱ)求出g(x)的导数,通过讨论m的范围,结合函数的单调性以及f(x)>m(x﹣1)lnx,求出m的范围即可.【解答】解:(Ⅰ)f′(x)=e x﹣1﹣a,设切点为(x0,0),依题意,,解得所以f′(x)=e x﹣1﹣1.当x<1时,f′(x)<0;当x>1时,f′(x)>0.故f(x)的单调递减区间为(﹣∞,1),单调递增区间为(1,+∞).(Ⅱ)令g(x)=f(x)﹣m(x﹣1)lnx,x>0.则g′(x)=e x﹣1﹣m(lnx+)﹣1,令h(x)=g′(x),则h′(x)=e x﹣1﹣m(+),(ⅰ)若m≤,因为当x>1时,e x﹣1>1,m(+)<1,所以h′(x)>0,所以h(x)即g′(x)在(1,+∞)上单调递增.又因为g′(1)=0,所以当x>1时,g′(x)>0,从而g(x)在[1,+∞)上单调递增,而g(1)=0,所以g(x)>0,即f(x)>m(x﹣1)lnx成立.(ⅱ)若m>,可得h′(x)在(0,+∞)上单调递增.因为h′(1)=1﹣2m<0,h′(1+ln(2m))>0,所以存在x1∈(1,1+ln(2m)),使得h′(x1)=0,且当x∈(1,x1)时,h′(x)<0,所以h(x)即g′(x)在(1,x1)上单调递减,又因为g′(1)=0,所以当x∈(1,x1)时,g′(x)<0,从而g(x)在(1,x1)上单调递减,而g(1)=0,所以当x∈(1,x1)时,g(x)<0,即f(x)>m(x﹣1)lnx不成立.纵上所述,k的取值范围是(﹣∞,].2019年8月1日。

【江苏高考】2019届考前三个月数学理科总复习训练 考前回扣3 含答案

【江苏高考】2019届考前三个月数学理科总复习训练 考前回扣3 含答案

回扣3 三角函数与平面向量1.准确记忆六组诱导公式 对于“k π2±α,k ∈Z ”的三角函数值与α角的三角函数值的关系口诀:奇变偶不变,符号看象限.2.三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan45°等. (2)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (3)弦、切互化:一般是切化弦.(4)灵活运用辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a .3.三种三角函数的性质4.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换y =sin x ―――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度y =sin(x +φ) ――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ) ―――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 5.正弦定理及其变形asin A=b sin B =csin C=2R (2R 为△ABC 外接圆的直径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R.a ∶b ∶c =sin A ∶sin B ∶sin C .6.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .7.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .8.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 9.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 10.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.11.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 12.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A.(2)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.利用同角三角函数的平方关系式求值时,不要忽视角的范围,要先判断函数值的符号. 2.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.3.求函数f (x )=A sin(ωx +φ)的单调区间时,要注意A 与ω的符号,当ω<0时,需把ω的符号化为正值后求解.4.三角函数图象变换中,注意由y =sin ωx 的图象变换得y =sin(ωx +φ)时,平移量为⎪⎪⎪⎪⎪⎪φω,而不是φ. 5.在已知两边和其中一边的对角时,要注意检验解是否满足“大边对大角”,避免增解. 6.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行.7.a·b >0是〈a ,b 〉为锐角的必要不充分条件;a·b <0是〈a ,b 〉为钝角的必要不充分条件.1.2sin45°cos15°-sin30°的值=________. 答案32解析2sin45°cos15°-sin30°=2sin45°cos15°-sin(45°-15°)=2sin45°cos15°-(sin45°cos15°-cos45°sin15°)=sin45°cos15°+cos45°sin15°=sin60°=32. 2.(1+tan18°)(1+tan27°)的值是________. 答案 2解析 由题意得tan(18°+27°)=tan18°+tan27°1-tan18°tan27°,即tan18°+tan27°1-tan18°tan27°=1, 所以tan18°+tan27°=1-tan18°tan27°,所以(1+tan18°)(1+tan27°)=1+tan18°+tan27°+tan18°tan27°=2.3.(2017·江苏泰州中学期中)向量a =(cos10°,sin10°),b =(cos70°,sin70°),|a -2b |=________. 答案3解析 a ·b =cos70°cos10°+sin70°sin10°=cos60°=12,|a |=|b |=1,所以|a -2b |=a 2+4b 2-4a ·b =1+4-2= 3.4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________. 答案332解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6,① ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332.5.已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限,且∠AOC =135°,设OC →=-OA →+λOB →(λ∈R ),则λ的值为__________. 答案 12解析 由∠AOC =135°知,点C 在射线y =-x (x <0)上,设点C 的坐标为(a ,-a ),a <0,则有(a ,-a )=(-1+λ,λ),得a =-1+λ,-a =λ,消去a 得λ=12.6.已知a ,b 为同一平面内的两个向量,且a =(1,2),|b |=12|a |,若a +2b 与2a -b 垂直,则a 与b 的夹角为________. 答案 π解析 |b |=12|a |=52,而(a +2b )·(2a -b )=0,即2a 2-2b 2+3a·b =0,所以a·b =-52,从而cos 〈a ,b 〉=a·b|a||b |=-1,所以〈a ,b 〉=π.7.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-32,3解析 由两个三角函数图象的对称中心完全相同可知,两函数的周期相同,故ω=2, 所以f (x )=3sin ⎝⎛⎭⎪⎫2x -π6, 那么当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-π6≤2x -π6≤5π6, 所以-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1,故f (x )∈⎣⎢⎡⎦⎥⎤-32,3.8.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为__________.答案2918解析 方法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →(λ>0),∴AE →·AF →=(AB →+λBC →)·⎝ ⎛⎭⎪⎫AD →+19λDC →=AB →·AD →+AB →·19λDC→+λBC →·AD →+λBC →·19λDC →=2×1×cos60°+2×1×19λ+λ×1×1×cos60°+λ×19λ×1×1×cos120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918. 方法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝ ⎛⎭⎪⎫2-12λ,32λ,F ⎝ ⎛⎭⎪⎫12+19λ,32,λ>0,∴AE →·AF →=⎝ ⎛⎭⎪⎫2-12λ⎝ ⎛⎭⎪⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0,当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3-3sin ⎝ ⎛⎭⎪⎫2x -π6. (1)求函数f (x )的最小正周期和单调增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,试求f (x )的最值,并写出取得最值时自变量x 的值.解 (1)由题意知,f (x )=-sin2x +3cos2x =2sin ⎝⎛⎭⎪⎫2x +2π3, 所以f (x )的最小正周期为T =2π2=π.当-π2+2k π≤2x +2π3≤π2+2k π(k ∈Z )时,f (x )单调递增,解得x ∈⎣⎢⎡⎦⎥⎤-7π12+k π,-π12+k π(k ∈Z ), 所以f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-7π12+k π,-π12+k π(k ∈Z ). (2)因为x ∈⎣⎢⎡⎦⎥⎤-π6,π3,所以π3≤2x +2π3≤4π3,当2x +2π3=π2,即x =-π12时,f (x )取得最大值2,当2x +2π3=4π3,即x =π3时,f (x )取得最小值- 3.10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos A -3sin A )cos B =0.(1)求角B 的大小;(2)若a =2,b =7,求△ABC 的面积. 解 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0, 即sin A sin B -3sin A cos B =0, 因为sin A ≠0, 所以sin B -3cos B =0,又cos B ≠0,所以tan B =3, 又0<B <π,所以B =π3.(2)因为sin B =32,cos B =12, 所以a sin A =b sin B =732=2213,又a =2, 所以sin A =321=217, 因为a <b , 所以cos A =277.所以sin C =sin(A +B )=sin A cos B +cos A sin B =32114,所以S =12ab sin C =332.。

江苏省启东中学2019届高三高考考前辅导数学试题(Word版含答案))

江苏省启东中学2019届高三高考考前辅导数学试题(Word版含答案))

启东中学2018届高三高考考前辅导数学试题填空题《统计问题》1.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a= ,b= 。

2.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为____.《概率问题》1.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,, 则方程22221x y ab+=表示焦点在x 轴上且离心率小于32的椭圆的概率为 .2.在圆=4所围成的区域内随机取一个整点P(x,y)(横,纵坐标都是整数点),则满足的整点的概率为 .《三角问题》 1.在中,D 为BC 的中点,∠BAD=,∠CAD=AB=,则AD= .2.已知sin(=(则cos.3.若.4.在ABC ∆中,若tanAtanB=tanAtanC+tanctanB ,则 222c b a += .5.若角 C 是一三角形内角,关于x 的不等式的解集为,则角C 的最大角为 .6.已知ABC ∆的内角C B A ,,的对边c b a ,,成等比数列,则ABsin sin 的取值范围为 。

《立几问题》1.已知四棱锥S-ABCD 的底面ABCD 是边长为2的正方形,侧面SAB 是等边三角形,侧面SCD 是以CD为斜边的直角三角形,E 为CD 的中点,则三棱锥S-AED 的体积 . 2.设,αβ为两个不重合的平面,,m n 为两条不重合的直线,给出下列的四个命题:(1)若,m n m α⊥⊥,则//n α;(2)若α与β相交且不垂直,则n 与m 不垂直 (3)若,,,,m n n m αβαβα⊥⋂=⊂⊥则n β⊥(4)若//,,//,m n n ααβ⊥则m β⊥其中,所有真命题的序号是 .《切线问题》 1.已知f(x)=过A(1,m)可作曲线的三条切线,则m 的取值范围是 .2.已知函数f(x)=xlnx,若直线l 过点(0,并且与曲线y=f(x)相切,则直线l 与圆截得的弦长为 .3.从点(0,0)作轴的垂线交曲线y=于点(0,1),曲线在点处的切线与轴交于点,现从作轴的垂线交曲线于点,依次重复上述过程得到一系列点:则.《平面向量的数量积》1.已知BC,DE 是半径为1的圆O 的两条直径,,则的值是 .2.设O 是外心,AB=1,AC=2且则面积为3.已知ABC ∆中,60B ∠=︒,O 为ABC ∆的外心,若点P 在ABC ∆所在的平面上,OP OA OB OC =++,且8BP BC ⋅=,则边AC 上的高h 的最大值为 .4.在ABC ∆中,若8,|2|6AB AC AB AC ⋅=-=,则ABC ∆面积的取值范围为 . 5.在等腰三角形ABC 中,点D,E,F 分别在AB,BC,CA 上,且AD=DB=EF=1,AC=BC=则的取值范围为 。

2019届江苏省苏州大学高考考前指导卷1数学试卷【含答案及解析】

2019届江苏省苏州大学高考考前指导卷1数学试卷【含答案及解析】

2019届江苏省苏州大学高考考前指导卷1数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 已知集合,,且,则实数a的值为________ .2. i是虚数单位,复数z满足,则=________ .3. 对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为________ .4. 某学校高三有A,B两个自习教室,甲、乙、丙三名同学随机选择其中一个教室自习,则他们在同一自习教室上自习的概率为________ .5. 执行如图所示的流程图,会输出一列数,则这列数中的第3个数是________ .6. 已知双曲线的一条渐近线平行于直线l:y=2x+10,且它的一个焦点在直线l上,则双曲线 C 的方程为________ .7. 已知等差数列{a n }的前n项和为S n ,且2S 3 -3S 2 =1 2 ,则数列{a n }的公差是________ .8. 已知一个圆锥的底面积为2 ,侧面积为4 ,则该圆锥的体积为________ .9. 已知直线是函数的图象在点处的切线,则________ .10. 若cos( -θ)=,则cos( +θ)-sin 2 (θ- )=________ .11. 在等腰直角△ABC 中,,,M,N 为 AC 边上的两个动点,且满足,则的取值范围为________ .12. 已知圆C:x 2 +y 2 - 2 x- 2 y+ 1 =0,直线l :.若在直线l上任取一点 M 作圆C的切线 M A ,M B,切点分别为 A, B,则AB的长度取最小值时直线AB的方程为________ .13. 已知函数,若方程有两个不同的实根,则实数k的取值范围是________ .14. 已知不等式对任意恒成立,其中是整数,则的取值的集合为________ .二、解答题15. 已知函数的最小值是-2,其图象经过点.(1)求的解析式;(2)已知,且,,求的值.16. 如图,在四棱锥中,底面是菱形,侧面是直角三角形, , 点是的中点,且平面平面.证明:(1)平面;(2)平面平面.17. 如图,OM,ON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知,,Q到海岸线OM,ON的距离分别为3 km,km.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q .(1)求水上旅游线AB的长;(2)若小岛正北方向距离小岛6 km处的海中有一个圆形强水波P,从水波生成t h 时的半径为(a为大于零的常数).强水波开始生成时,一游轮以km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.18. 椭圆 M :的焦距为,点关于直线的对称点在椭圆上.(1)求椭圆M的方程;(2)如图,椭圆 M的上、下顶点分别为A , B,过点P的直线与椭圆M相交于两个不同的点C , D.① 求的取值范围;② 当与相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.19. 已知是等差数列,是等比数列,其中.(1)若,,,试分别求数列和的通项公式;(2)设,当数列的公比时,求集合的元素个数的最大值.20. 已知函数,其中 R ,是自然对数的底数 .(1)若曲线在的切线方程为,求实数,的值;(2)① 若时,函数既有极大值,又有极小值,求实数的取值范围;② 若,,若对一切正实数恒成立,求实数的最大值(用表示) .参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届高三数学《考前指导》参考答案专题二 函数、导数二、考题剖析例1.解 (1)方程f(x)=|m|,即|x -m|=|m|. 此方程在x ∈R 时的解为x =0和x =2m.(2分)要使方程|x -m|=|m|在x ∈[-4,+∞)上有两个不同的解. ∴2m≥-4且2m≠0. 则m 的取值范围是m≥-2且m≠0.(5分) (2)原f(x 1)min >g(x 2)min .(7分)对于任意x 1∈(-∞,4],f(x 1)min =⎩⎪⎨⎪⎧,m ->对于任意x 2∈[3,+∞),g(x 2)min =⎩⎪⎨⎪⎧m 2-10m +9 <,m 2-(9分)①当m <3时,0>m 2-10m +9.(11分) ∴1<m <3.②当3≤m≤4时,0>m 2-7m.(13分) ∴3≤m≤4.③当m≥4时,m -4>m 2-7m.(15分) ∴4≤m<4+2 3 综上所述1<m <4+2 3.(16分) 例2.解: (I ),2)(xax x f -='依题意]2,1(,0)(∈>'x x f ,即22x a <,]2,1(∈x . ∵上式恒成立,∴2≤a ① ………………2分又xax g 21)(-=',依题意)1,0(,0)(∈<'x x g ,即x a 2>,)1,0(∈x .∵上式恒成立,∴.2≥a ② …………4分由①②得2=a . ∴.2)(,ln 2)(2x x x g x x x f -=-=…………5分(II )由(1)可知,方程2)()(+=x g x f ,.022ln 22=-+--x x x x 即 设22ln 2)(2-+--=x x x x x h ,,1122)(xx x x h +--='则 令0)(>'x h ,并由,0>x 得,0)222)(1(>+++-x x x x x 解知.1>x令,0)(<'x h 由.10,0<<>x x 解得列表分析知)(x h 在∴0)(=x h 在(0,+∞)上只有一个解.即当x >0时,方程2)()(+=x g x f 有唯一解. …………10分(III )设2'23122()2ln 2()220x x x bx x x b x x x ϕϕ=--+=---<则, ()x ϕ∴在(0,1]为减函数min()(1)1210x b ϕϕ∴==-+≥ 又1b >-所以:11≤<-b 为所求范围. …………16分例3.解:(1)212S R θ=扇,21sin 2OCD S R θ∆=, 21()(sin )2S f R θθθ==-弓. 又12S Rl =扇,21sin 2OCD l S R R∆=, 1()(sin )2l S g l R l R R ==-弓.(2)设总利润为y 元,草皮利润为1y 元,花木地利润为2y ,观赏样板地成本为3y21113()22y R lR π=-,221sin 82y R θ=⋅,31(sin )22y R l R θ=-⋅,222212311113()sin 8(sin )22222y y y y R R R R πθθθθ∴=+-=-+⋅--⋅ .21[3(510sin )]2R πθθ=--.设()510sin g θθθ=- (0,)θπ∈. '()510cos g θθ=- , …………12分'1()0,cos ,()2g g πθθθθ<>∈在(0, )3上为减函数; '1()0,cos ,()2g g πθθθθπ><∈在(,)3上为增函数. 当3πθ=时,()g θ取到最小值,此时总利润最大.答:当园林公司把扇形的圆心角设计成3π时,总利润最大.三、热身冲刺1. 解: 解:(1)函数xx x f ln )(=的定义域为),1()1,0(+∞ , 2ln 1()ln x f x x -'=,……3分 令()0f x '=,解得e x =,列表所以极小值为)(e f =e ,无极大值.(2)当0x ≤时,对任意0a ≠,不等式恒成立; 当0x >时,在x ae x >两边取自然对数,得ln xx a>, 1当01x <≤时,ln 0x ≤,当0a >,不等式恒成立;如果0a <,ln 0x <, ln 0a x >,不等式等价于ln xa x<, 由(1)得,此时(,0)ln xx∈-∞,不等式不恒成立. 2当1x >时,ln 0x >,则0a >,不等式等价于ln xa x<, 由(1)得,此时ln xx的最小值为e , 得0a e <<.…………14分 综上:a 的取值范围是0a e <<.【说明】本题考查用导数判断函数单调性、求极值、对数函数的性质、转化化归思想、分类讨论思想、不等式的性质、恒成立问题处理方法2.解:(1)22(2),,()2(2),,x a x x a f x x x a x x a x x a ⎧+-⎪=-+=⎨-++<⎪⎩≥由()f x 在R 上是增函数,则2,22,2a a a a -⎧-⎪⎪⎨+⎪⎪⎩≥≤即22a -≤≤,则a 范围为22a -≤≤;…4分 (2)由题意得对任意的实数[1,2]x ∈,()()f x g x <恒成立,即1x x a -<,当[1,2]x ∈恒成立,即1x a x -<,11x a x x-<-<,11x a x x x -<<+,故只要1x a x-<且1a x x <+在[1,2]x ∈上恒成立即可,在[1,2]x ∈时,只要1x x -的最大值小于a 且1x x+的最小值大于a 即可,………6分而当[1,2]x ∈时,21110x x x '⎛⎫-=+> ⎪⎝⎭,1x x -为增函数,max 132x x ⎛⎫-= ⎪⎝⎭;当[1,2]x ∈时,21110x x x '⎛⎫+=-> ⎪⎝⎭,1x x +为增函数,min 12x x ⎛⎫+= ⎪⎝⎭,所以322a <<; …………………10分(3)当22a -≤≤时,()f x 在R 上是增函数,则关于x 的方程()()f x t f a =不可能有三个不等的实数根; ……… 11分则当(2,4]a ∈时,由22(2),,()(2),x a x x a f x x a x x a⎧+-⎪=⎨-++<⎪⎩≥得x a ≥时,2()(2)f x x a x =+-对称轴22a x a -=<,则()f x 在[,)x a ∈+∞为增函数,此时()f x 的值域为[(),)[2,)f a a +∞=+∞,x a <时,2()(2)f x x a x =-++对称轴22a x a +=<,则()f x 在2,2a x +⎛⎤∈-∞ ⎥⎝⎦为增函数,此时()f x 的值域为2(2),4a ⎛⎤+-∞ ⎥⎝⎦, ()f x 在2,2a x a +⎡⎫∈⎪⎢⎣⎭为减函数,此时()f x 的值域为2(2)2,4a a ⎛⎤+ ⎥⎝⎦;由存在(2,4]a ∈,方程()()2f x t f a ta ==有三个不相等的实根,则2(2)22,4a ta a ⎛⎫+∈ ⎪⎝⎭,即存在(2,4]a ∈,使得2(2)1,8a t a ⎛⎫+∈ ⎪⎝⎭即可,令2(2)14()488a g a a a a +⎛⎫==++⎪⎝⎭, 只要使()max ()t g a <即可,而()g a 在(2,4]a ∈上是增函数,()max 9()(4)8g a g ==, 故实数t 的取值范围为91,8⎛⎫⎪⎝⎭; ………………… 15分同理可求当[4,2)a ∈--时,t 的取值范围为91,8⎛⎫⎪⎝⎭;综上所述,实数t 的取值范围为91,8⎛⎫⎪⎝⎭. ……………16分专题三 三角函数、平面向量二、考题剖析 例1.解:(Ⅰ)),sin ,(cos ),sin ,(cos ββαα==b a分即分分6.53)cos(.54)cos(224,552)sin (sin )cos (cos ,552||2).sin sin cos (cos 22 =-∴=--=-+-∴=---=-∴βαβαβαβαβαβαb a b a (Ⅱ)分7.0,02,20 πβαβππα<-<∴<<-<<分分分12.6533)135(53131254sin )cos(cos )sin(])sin[(sin 9.1312cos ,135sin 8.54)sin(,53)cos( =-⋅+⋅=-+-=+-=∴=∴-==-∴=-ββαββαββααβββαβα 例2.分析:由向量n m ,的关系可得三角形三个内角的正弦值的等量关系,再利用正弦定理可以实现边角的互化,再联立三角形周长等量关系可求得边c ;角C 的范围可由其余弦值确定。

解:(I )由n m ⊥得:0sin 2sin sin =-+C B A ,由正弦定理可得:c b a 2=+,又12+=++c b a ,可解得1=c ; (II )由(I )2=+b a ,则:01)(212112)(2cos 222222=-+≥-=--+=-+=b a ab ab c b a ab c b a C ,故20π≤<C 。

说明:这是以向量为载体的解三角形问题,着重于考查向量的数量积、正弦定理、余弦定理和均值不等式等知识。

例3.解:设n (, ),m n 1, 1.x y x y =⋅=-+=由有①……(1分)m 与n 夹角为43π,有m ·n =|m |·|n |·43cos π, |n | 1∴=则1y x 22=+②……(3分)由①②解得⎩⎨⎧=-=01y x 或⎩⎨⎧-==10y x∴即n (1, 0)=-或n (0, 1)=-……(6分) (Ⅱ)由n 与q 垂直知n (0, 1)=-……(7分)由2B =A +C 知B =3π,A +C =32π, 32A 0π<<若n (0, 1)=-, 则n +p =)12C cos 2,A (cos 2- =)C cos ,A (cos ∴2221cos 21cos 2|n p | cos cos 22A C A C +++=+=+ =)3A 2cos(211)]A 234cos(A 2[cos 211π++=-π++……(10分)∵,353A 23,32A 0π<π+<ππ<< ∴当1)3A 2cos(-=π+时, |n p |+取得最小值 即2min 1|n p |,2+=∴min 2|n p |+=…………(12分) 三、热身冲刺1.解:(I )在△ABC 中有B+C=π-A ,由条件可得:4[1-cos(B+C)] -4cos 2A+2=7 又∵cos(B+C)= -cosA∴4cos 2A -4cosA+1=0解得.3),,0(,21cos ππ=∴∈=A A A 又 解: (II )由bc a c b bc a c b A 3)(,21221cos 22222=-+=-+=即知)12(.122123)10(.2,3,3分或由分代入得又⎩⎨⎧==⎩⎨⎧==⇒⎩⎨⎧==+==+=c b c b bc c b bc c b a2.解: (1)(8,),820AB n t AB a n t =-⊥∴-+=又2225||||,564(3)5OB AB n t t =∴⨯=-+=,得8t =± (4分)(24,8)OB ∴=或(8,8)OB =--(2)(sin 8,)AC k t θ=-AC 与a 向量共线, 2sin 16t k θ∴=-+232sin (2sin 16)sin 2(sin )4k t k k kθθθθ=-+=--+4,104k k ∴>∴>>,∴当sin 4k θ=时,sin t θ取最大值为32k(8分) 由324k =,得8k =,此时,(4,8)6OC πθ== (8,0)(4,8)32OA OC ∴∙=∙= (12分)专题四 不等式、数列二、考题剖析例1. 分析:对于(2)注意到我们解决含参不等式问题的经验——特殊不等式与等式的等价性:|a+b|≤0 |a+b|=0 a+b=0;前事不忘后事之师,又注意到上述不等式的特征:右边为0,所以这里欲由一个不等式确定两个实数a,b 的值,在运用特取手段时,首先选择使右式等于零的x 的值,解题的局面便是由此打开的。

相关文档
最新文档