八年级数学平行线的性质定理

合集下载

第二十四章第3-5节平行线的判定定理;平行线的性质定理;三角形内角和定理

第二十四章第3-5节平行线的判定定理;平行线的性质定理;三角形内角和定理
(2)推理的过程要步步有据.
(3)在推理的过程中,已经推出的结论可以作为后面继续推证的依据.
【模拟试题】(答题时间:50分钟)
一.选择题
1.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不同的直线,有且只有一个公共点;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的有()
又∵EF∥AB(已知),
∴∠EFC=∠B(两直线平行,同位角相等),
∴∠ADE=∠EFC(等量代换).
评析:本题关键是利用平行线的性质,来证明角度相等,要注意角的位置.
例4.如图所示,直线MN分别和直线AB、CD、EF相交于G、H、P,∠1=∠2,∠2+∠3=180°,求证:AB∥EF.
分析:要证AB∥EF,可先证AB∥CD和EF∥CD.根据平行于同一条直线的两条直线平行可得AB∥EF.
(1)∵CE∥AB(已知),
∴∠1=∠B()
(2)∵CE∥AB(已知),
∴∠2=∠A()
(3)∵∠1=∠B,∠2=∠A(已证),
∴∠1+∠2=∠B+∠A()
即∠ACD=∠B+∠A()
(4)∵BCD是一直线(已知),
∴∠1+∠2+∠ACB=180°(),
∴∠A+∠B+∠ACB=180°().
*2.如图所示,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:DG∥BA.
5.提示:因为∠BAC是△ACD的一个外角,所以∠BAC>∠1.因为∠1=∠2,所以∠BAC>∠2.因为∠2是△BCD的一个外角,所以∠2>∠B.所以∠BAC>∠B.
3.提示:因为AB∥CD,所以∠EMB=∠END,即∠1+∠3=∠2+∠4.因为MG∥NH,所以∠3=∠4.所以∠1=∠2.
4.提示:过点E作EF∥AB,所以∠B+∠BEF=180°,因为AB∥CD,所以EF∥CD(平行于同一条直线的两条直线平行),所以∠D+∠DEF=180°,所以∠B+∠BEF+∠DEF+∠D=360°,即∠B+∠BED+∠D=360°.

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册
∵∠EFC=142°,∴∠FCB+∠EFC=180°.
∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质






返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=


∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结


要判断两条直线是否平行,首先要观察图形中与要判断

单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后


题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确

破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平


∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),

初中数学 平行线的判定定理有哪些

初中数学  平行线的判定定理有哪些

初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。

在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。

同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。

1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。

2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。

即如果l||n且m||n,则l||m。

3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。

即如果l∠n且m∠n,则l||m。

4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。

5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。

即如果l||m且m||n,则l||n。

6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。

即如果l∠n且∠A=90°,则l||m。

7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。

8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。

9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。

以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。

八年级数学上册《平行线的性质定理和判定定理》教案、教学设计

八年级数学上册《平行线的性质定理和判定定理》教案、教学设计
(2)运用判定定理判断两条直线是否平行。
(3)综合应用平行线的性质和判定定理解决几何问题。
2.根据课堂学习,同学们尝试自己设计一道关于平行线的性质或判定的几何题目,并给出解题步骤和答案。
3.结合生活中的实例,举例说明平行线的性质定理在实际中的应用,并简述其原理。
4.撰写一篇关于平行线性质定理和判定定理的学习心得,内容包括:
(4)情境教学:创设生活情境,让学生在实际问题中感受几何知识的应用价值。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,如参与度、思维活跃度等,及时给予鼓励和指导。
(2)形成性评价:通过作业、测试等形式,了解学生对平行线性质定理和判定定理的掌握程度。
(3)综合性评价:结合学生的课堂表现、作业完成情况和测试成绩,全面评估学生的学习成果。
3.布置课后作业,巩固学生对平行线性质和判定方法的理解。
4.鼓励学生继续探索几何知识,激发他们对数学的兴趣和热情。
五、作业布置
为了巩固学生对平行线性质定理和判定定理的理解,以及提高学生的几何解题能力,特布置以下作业:
1.请同学们完成课本第十章第2节后的练习题,重点掌握以下题型:
(1)运用性质定理解决角度问题。
八年级数学上册《平行线的性质定理和判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解平行线的定义,掌握平行线的性质定理,如同位角相等、内错角相等、同旁内角互补等。
2.学会使用直尺和圆规画平行线,掌握平行线的判定定理,如同位角相等、内错角相等、同旁内角互补等。
3.能够运用平行线的性质和判定定理解决几何图形中的相关问题,如求角度、证明线段平行等。
(1)自己在本节课中的收获和感悟。
(2)对平行线性质定理和判定定理的理解。

5.4平行线的性质定理和判定定理-青岛版八年级数学上册教案

5.4平行线的性质定理和判定定理-青岛版八年级数学上册教案

5.4 平行线的性质定理和判定定理-青岛版八年级数学上册教案一、知识要点1. 平行线的判定定理1.1 垂线垂直于同一直线的两个线段互相垂直。

1.2 夹角同侧两条直线与第三条直线所成的内角互不相等,则这两条直线平行。

1.3 平移若平面上两条直线同向平移,它们平行。

1.4 平行线的性质(定理)1.4.1 平行线的性质一:平行线夹角定理平面上两条平行线与第三条直线所成的内角互不相等。

1.4.2 平行线的性质二:同位角同位角是两条平行线加上一条第三条直线所形成的内角,同位角互相相等。

1.4.3 平行线的性质三:对顶角对顶角是两个交叉直线形成的补角,对顶角互相相等。

2. 平行线的性质定理2.1 垂线定理过平面外一点引平面上一条直线,该直线与引线段的垂线所形成的直角是唯一的。

2.2 垂线之间的关系式设两个垂线互相垂直,则它们分别在同一平面内,而且它们的交点是这两个平面的公共点。

2.3 垂线和平行线之间的关系式设一条直线与两条平行线相交,则所成的两个内角互不相等;设一条直线与两条平行线相交,则向所成的内角相等。

2.4 平行线夹角的定理若两直线在平面内一个点的两侧分别与另外一条直线交成两对内角互相相等,那么这两条直线互相平行。

3. 平行线的应用由平行线夹角定理和对位角性质,常用于平面图形中的切线和垂足问题的求解。

二、教学重点与难点重点:1.了解平行线的判定定理、性质定理和应用。

2.能够掌握垂线、夹角和平移等概念。

3.了解平行线夹角定理及对位角的性质。

难点:1.掌握平行线夹角定理及对位角的性质。

2.根据所给的数据判断直线是否平行。

3.利用平行线夹角定理和对位角的性质解决实际问题。

三、教学建议•学生可通过上网查找资料、阅读相关文献加深对平行线相关知识的理解。

•教师可配合多媒体教学工具,通过图片、图示等形式让学生更好的理解和掌握知识。

•教师可以将平行线运用到实际日常生活中的问题中,让学生更好地理解和应用平行线。

四、教学方法•理论教学:让学生在理论硬知识上有更加深刻的理解,注重同步练习(例如平行线的相关定理)•活动教学:在教学过程中,增加设计相关的实际操作活动,能够提高学生对知识的实用性的掌握(例如画出相关的图形)•启发式教学:注重启发学生的思维,引导学生,在实际应用中独立发掘相关知识,培养学生的发散性思维和创造性思维。

平行线的性质(八年级数学课件)

平行线的性质(八年级数学课件)

解:∵梯形上、下底互相平行,
D
C
∴ ∠A与∠D互补, ∠B与∠C互补.
于是∠D=180 °-∠A=180°-100°=80A°, B
∠C= 180 °-∠B=180°-115°=65°.
∴梯形的另外两个角分别是80°、65°.
巩固练习
变式训练
如图所示,直线a∥b,直线l与a,b分别相交于A、B两点,
∠1=20°,则∠2= 70 °.
课堂检测
能力提升题
有这样一道题:如图,若AB∥DE , AC∥DF,试说明
∠A+∠D=180o.请补全下面的解答过程,括号内填写依据. F
解: ∵ AB∥DE( 已知 ),
C
∴∠A= _∠__C_P_D_ ( 两直线平行,同位角相等 ). D
E P
∵AC∥DF( 已知 ) ,
1 4
∵ 1+ 4=180°(邻补角的性
b
2
质∴)2,+ 4=180°(等量代换).
c
探究新知
性质3:两条平行线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.
几何语言:
a
∵a∥b(已知)
b
∴∠2+∠4=180 °
(两直线平行,同旁内角互补)
1 4 2
c
探究新知
平行线的性质
过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2
的度数为( C )
A. 58°
B. 42°
C. 32°
D. 28°
探究新知
定理:平行于同一条直线的两条直线平行.
如图:直线a∥b,a∥c,∠1,∠2和∠3是直线 a,b,c被直 线d截出的同位角.求证:b∥c. 证明:∵a∥b (已知),

平行线的性质定理

平行线的性质定理

初中数学《平行线的性质定理》微课精讲+知识点+教案知识点:1. 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。

2. 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。

3 . 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。

两个角的数量关系两直线的位置关系:1、垂直于同一直线的两条直线互相平行。

2、平行线间的距离,处处相等。

3、如果两个角的两边分别平行,那么这两个角相等或互补。

4、平行线的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5、平行线间的距离两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离.视频教学:练习:1.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是( )A.55°B.65°C.75°D.85°2.如图,∠1=∠2,∠3=40°,则∠4等于( )A.120°B.130°C.140°D .40°3.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是( )A.16°B.33°C.49°D.66°4.如图,已知∠1=∠2,若要∠3=∠4,则须( )A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD5.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为( )A.42°B.32°C.62°D.38°6.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为( )A.50°B.45°C.40°D.30°7.如图,∠BAC=40°,DE∥AB,交AC于点F,∠AFE的平分线FG交AB于点H,则正确的是( )A.∠AFG=70°B.∠AFG>∠AHFC.∠FHB=100° D.∠CFH =2∠EFG8.如图,在△ABC中,∠C=90°,点D在AC边上,DE∥AB,如果∠ADE=46°,那么∠B等于( )A.34°B.54°C. 46°D.44°9.将一直角三角板与两边平行的纸条如图所示放置.有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数为( )A.1B.2C.3D.410.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )A.42°,138°B.都是10°C.42°,138°或42°,10° D.以上都不对课件:教案:在证明过程中,进一步理解证明的步骤,格式和方法.教学重难点重点:平行线三个性质的探究及运用.难点:平行线的性质定理与判定定理的区别及综合运用.教学活动设计课堂导入上一节课我们学习了平行线的判定,也就是说知道角的关系能够判断两条直线是否平行.可是老师从一张轻轨的图片和伸缩门的情景看到的却恰好是另一种有意思的情况,这种情况具有普遍意义吗?自学指导续表探索新知合作探究已知:如图,a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角,求证:∠1和∠2互补.证明:因为a∥b,所以∠3=∠2(两直线平行,同位角相等),因为∠1+∠3=180°(平角的定义),所以∠1+∠2=180°(等量代换).简单说成:两直线平行,同旁内角互补.几何语言:因为a∥b,所以∠1+∠2=180°.教师指导(1)归纳两直线平行的判定与性质两直线平行(2)总结证明的一般思路及步骤当堂训练1. 如图所示,EL∥FK,PG∥QH.找出图中与∠1相等的角.2. 已知∠3=∠4,∠1=47°,求∠2的度数.3.如图,AB∥EF,∠ECD=∠E,试说明CD∥AB.板书设计平行线的性质定理两直线平行⇒教学反思语言是思维的工具,要学好证明,必须学会语言的表达和运用,初学几何证明题时,学生对于几何语言不很清楚,几何语言分为文字语言、符号语言和图形语言,老师有必要强调:将图形语言和符号语言相结合是学好证明的基本功,画图时按要求将符合题意的图形画出来.但要注意以下几点:(1)注意所画图形的多种情况.(2)能根据题意画出简单的图形,掌握“题”与“图”的对应关系,一般图形不要画成特殊图形,否则就意味着人为增加了已知条件,反之,特殊图形也不要画成一般图形,这两种做法都没有真实的表达题意.(3)图形力求准确,便于观察,有利于解题.。

八年级数学平行线的性质

八年级数学平行线的性质
该公式可用于计算两条平行线间的距离,其中法向量和常数项可 通过平行线的方程求得。
02
平行线与相交线关系
平行线与相交线判定定理
内错角相等,两直线平 行
同旁内角互补,两直线 平行
同一平面内,垂直于同 一条直线的两条直线互 相平行
同位角相等,两直线平 行
平行线与相交角关系
02
01
03
两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补
公式、平行线间的角关系等。这些知识可以帮助我们更深入地理解平行
线的性质和应用。
THANK YOU
感谢聆听
通过同位角、内错角或同旁内角的关系,可以判定两条直 线是否平行。
平行线在几何图形中的应用
平行线在三角形、四边形等几何图形中有广泛应用,如平 行四边形的对边平行、三角形的中位线与底边平行等。
学生自我评价报告
知识掌握情况
通过本次课程的学习,我掌握 了平行线的定义、性质以及判 定方法,能够运用所学知识解 决相关问题。
坐标系中平行线间距离计算
距离公式
两条平行线 $Ax + By + C1 = 0$ 和 $Ax + By + C2 = 0$ 之间 的距离 $d$ 可以用公式 $d = frac{|C1 - C2|}{sqrt{A^2 + B^2}}$ 来计算。
特殊情况
当平行线垂直于x轴时,它们之间的距离等于纵截距之差的绝对值 。
坐标系中平行线与方程关系
平行于x轴
当一条直线平行于x轴时,它的方程可以表示为 $y = k$,其中 $k$ 是常数。
平行于y轴
当一条直线平行于y轴时,它的方程可以表示为 $x = k$,其中 $k$ 是常数。

数学八年级上册7.4《平行线的性质》(共27张PPT)

数学八年级上册7.4《平行线的性质》(共27张PPT)

证明:
∵ b∥a(
已知
d

两直线平行,同位角相等
∴ ∠1=∠2(
∵c∥a(
已知
) a
1
)
两直线平行,同位角相等 等量代换
b
)
)
2
∴ ∠1=∠3(
∴ ∠2=∠3(
c
)
3
∴b∥c( 同位角相等,两直线平行
学习收获:
定理:平行于同一条直线的两条直线平行. 平行线的性质与判定的区别:
已知 同位角相等 内错角相等 同旁内角互补
基本事实
过直线外一点有且只有一条直线 与这条直线平行.
A

M D D
C
平行线的性质定理1:
两直线平行,同位角相等.
符号语言:
c
∵ a∥b
a b
2
1
∴ ∠1=∠2
学习新知:
两条平行直线被第三条直线所截,内错角相等.
证明命题:两直线平行,内错角相等
(1)根据“两条平行线被第三条直线所截,内错角 相等”,你能作出相关的图形吗? c
判定
性质
结论 两直线平行
结论
已知
3、如图是梯形有上底的一部分,量得∠A=115°, ∠D=100°,梯形另外两个角各是多少度? 解:∵AD∥BC ∴∠ A+∠B=180°∠D+∠C=180° A D
∵ ∠A=115°,∠D=100°
B 答:梯形另外两个角是65°,80° ∴∠B=65°, ∠C=80° C
学以致用
4.如图,已知AB//CD,∠A=∠C,求证:∠E=∠F
解:∵AB//CD ( 已知 ) ∴ ∠ABF = ∠C ( 两直线平行,同位角相等) A ∵∠A=∠C( 已知 ) ∴∠A= ∠ABF ( 等量代换 )

北师大版八年级数学上册《平行线的性质》平行线的证明

北师大版八年级数学上册《平行线的性质》平行线的证明

,
∴AD∥BE(
).
,即∠
栏目索引
=∠
,
答案 BAE;两直线平行,同位角相等;BAE;等量代换;∠1;∠2;BAE; DAC;DAC;内错角相等,两直线平行
4 平行线的性质
栏目索引
6.如图7-4-6,已知∠1+∠2=180° ,∠A=∠C,DA平分∠FDB,试证明∠3= ∠4.
图7-4-6
4 平行线的性质
栏目索引
解析 (1)∵四边形ABCD为长方形,∴AD∥BC, ∴∠1+∠2=180° , ∵∠1=110° ,∴∠2=70° . (2)由折叠的性质得∠D'=90° , 若D'C'∥BC,则有∠EGF=∠D'=90° , ∵AD∥BC, ∴∠2=∠EGF=90° , 则当∠2等于90度时,D'C'∥BC.
图7-4-8
4 平行线的性质
证明 ∵AD⊥BC,EF⊥BC(已知), ∴∠ADC=∠EFD=90° (垂直的定义), ∴AD∥EF(同位角相等,两直线平行), ∴∠3=∠BAD(两直线平行,内错角相等), ∠DAC=∠E(两直线平行,同位角相等), ∵AD平分∠BAC(已知), ∴∠BAD=∠DAC(角平分线的定义), ∴∠E=∠3(等量代换).
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135° ,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180° (两直线平行,同旁内角互 补),又因为∠DOB=135° ,所以∠B=180° -135° =45° ,又∠A=∠B,所以 ∠A=45° .

第七章 平行线的证明 思维图解+综合与实践 知识考点梳理(课件)北师大版数学八年级上册

第七章 平行线的证明 思维图解+综合与实践  知识考点梳理(课件)北师大版数学八年级上册
∵DA⊥FA,∴∠DAF=90°,
∴∠FAB=∠DAF-∠2=52.5°.
综合与实践
[点拨] 本题考查了平行线的判定与性质,锻炼和提升
学生的推理能力,熟练掌握平行线的判定与性质是解答本题
的关键.

线
的ห้องสมุดไป่ตู้


三角形内角和定理






三角形的内角和等
于 180°
三角形的一个外角等于和它不相邻
的两个内角的和
三角形的一个外角大于任何一个和
它不相邻的内角
第七章 平行线的证明






同位角相等,两直线平行


线





线
平行线
的判定
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行,同位角相等
三条直线所截,内错角相等(或同旁内角互补).
第七章 平行线的证明
4. 了解平行于同一条直线的两条直线平行.
5. 探索并证明三角形的内角和定理.掌握它的推论:三角
形的外角等于与它不相邻的两个内角的和.
第七章 平行线的证明
本章内容要点
7 个基本概念:定义,命题,真命题,假命题,反例,
公理,定理
3 类常用定理:平行线的判定定理,平行线的性质定理
∠1=∠2.
综合与实践
(1)如图 2,一束光线 m 射到平面镜 a 上,被 a 反
射到平面镜 b 上,又被 b 反射.若被 b反射出的光线 n
与光线 m 平行,且∠1=50°,求∠2 和∠3 的度数;
(2)在(1)中,m∥n,求∠1 分别为 55°和40°时

八年级数学平行线的性质定理

八年级数学平行线的性质定理

b
同位角相等,两直线平行. 两直线平行,同位角相等. 内错角相等,两直线平行.
两直线平行,内错角相等.
同旁内角互补,两直线平行. 两直线平行,同旁内角互补.
如果 两个角是直角,那么这两个角相等 .
如果 两个角相等 ,那么这两个角是直角 .
如果两个三角形全等,那么它们的对应边相等. 如果两个三角形对应边相等,那么这两个三角形全等.
A
D
B
C
练 习
如图,已知两平行线AB、CD被直线AE所截. (1)从∠1=110 °可以知道∠2是多少度?为什么? (2)从∠1=110 °可以知道∠3是多少度?为什么? (3)从∠1=110 °可以知道∠4是多少度?为什么?
解:∠3 2 =110 110 ° A 4= 70° 解:∠ ° 2 请同学们注意:解题中可 ∵AB AB∥ ∥CD CD(已知) (已知) 1 4 3 ∵ E 别把平行线的判定和性质搞混 ∴∠1 1=∠ =∠ 2 (两直线平行,内错 +∠3 4(两直线平行,同位 =180°(两直线平 ∴∠ 了.由角的已知条件推出两线 角相等) 行,同旁内角互补) 角相等) B D 又∵ ∠ 1 = 110 °(已知) 平行的结论是平行线的判定; 又∵ ∠1=110°(已知) ∴∠3 2 =110 110 °(等量代换) 4= 70° 而由两线的平行条件推出角的 ∴∠ °(等量代换)
1
D
已知:如图,直线AB∥CD,AB,CD被直线 EF所截,∠1和∠2是同旁内角. E 求证: ∠1 +∠2 =180°. A 3
2
B
C
1
D
平行线的性质定理二 两条平行线被第三 条直线所截,同旁内角互量得 ∠A=115°,∠D=100°,你能求出∠B、∠C的 度数吗?如果能,请求出.如果不能,请说明理 由.

北师大八年级数学下册第七章7.3平行线的判定和性质综合应用

北师大八年级数学下册第七章7.3平行线的判定和性质综合应用
∠A+∠B=180°
B
C
∴AB∥CD(同旁内角互 补,两直线平行) 你能说明AD∥BC吗?
如图甲所示
∵ ∠ADE= ∠DEF(已知)
∴ AD ∥ EF (内错角相等,两直线平行 ) 又∵ ∠EFC+ ∠C= 180 ° ∴ EF ∥ BC ( 同旁内角互补,两直线平行 ) ∴ AD ∥
BC

(平行于同一条直线的两条直线互相平行 )
练习
1、观察右图并填空: (1)∠1 与 ∠4 是同位角; (2) ∠5 与 ∠3 是同旁内角; (3) ∠1 与 ∠2 是内错角;
m
2
n
3 5
a b
1
4
2、当图中各角满足下列 条件时,你能指出哪两条直线 平行? n (1) ∠1 = ∠4; a∥b. (2) ∠2 = ∠4; l∥m. (3) ∠1 + ∠3 = 180; l∥n .
m
l
4
a
2
1 3
b
看图填空:
C D
1
A 2
(1)如右图,∵∠1=∠2
∴ AC∥ DE ,
3
E
( 内错角相等,两直线平行 )
∵∠2= ∠4 或 ∵∠3+∠4=180° ∴DE∥ FG ,( 同旁内角互补,两直线平行) ∴AC∥FG.
4 F
∴DE∥ FG(同位角相等,两直线平行)
B
G
看图填空:
(2)如右图,∵ ∠2=( ∠4 ) A
C
A
B
(变式训练二)如果 AB∥CD ,且 ∠ B=∠D , 你能推理得出AD∥BC吗?
题组训练(5) 1 B E G 3 4D C2 F H
A
如图,∠1= ∠2=45 °,∠3=70 °, 则∠4等于 ( B ) (A)70 ° (B)110 ° (C)45 ° (D)35°

八年级数学上册 平行线的性质 人教版

八年级数学上册   平行线的性质   人教版
成立,所以∠1 =∠2.
根据同位角相等可以判定两直线平行,反过来, 如果两直线平行,同位角之间有什么关系呢? 内错角、同旁内角之间又有什么关系呢?
1.两条平行直线被第三条直线所截,同位角是 相等的,那么内错角、同旁内角之间有什么关 系呢?
已知,如图,直线a∥b,∠1和∠2是直线a、 b被直线c截出的内错角. 求证:∠1=∠2. 证明:
2.如图所示,∠4=∠C,∠1=∠2,求证BD
平分∠ABC.
证明:∵∠4=∠C,
∴AD∥BC,∴∠2=∠3.
又∵∠1=∠2,
∴∠1=∠3,即BD平分
∠ABC.
3.如图所示,CD∥OB,EF∥AO,求证 ∠1=∠O.
证明:∵CD∥OB, ∴∠1=∠2, 又∵EF∥AO, ∴∠2=∠O, ∴∠1=∠O.
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行.
已知:如图,直线a,b,c被直线d所
截,且a∥b,c∥b,
求证:a∥c.
d a
b
c
(1)证明的一般步骤: ①理解题意;
完成一个定理的 证明,需要哪些
环节?
②根据题意正确画出图形;
③结合图形,写出“已知”和“求证”;源自④分析题意,探索证明的思路;
E
A
1
B
M2
C
N
D
F
证明:假设∠1 ≠ ∠2,过点M作直线GH,使
∠EMH= ∠2,如图所示.
根据“同位角相等,两直线平行”,可知GH
∥ CD.
又因为AB ∥ CD,这样经过点M存在两条直
线AB和GH都与直线CD平行.
G A
E M1
N2 C
F
这与基本事实“过直
线外一点有且只有一条直 B 线与这条直线平行”相矛 H 盾. D 这说明∠1 ≠ ∠2的假设不

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点八年级数学平行线的证明知识点在日复一日的学习、工作或生活中,大家最不陌生的就是证明了吧,证明是我们经常用到的应用文体。

写证明的注意事项有许多,你确定会写吗?以下是店铺帮大家整理的八年级数学平行线的证明知识点,希望对大家有所帮助。

八年级数学平行线的证明知识点 11、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行初中数学常见公式常见的初中数学公式1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.三角形内角和定理三角形三个内角的和等于180°6.多边形内角和定理 n边形的内角的和等于(n-2)×180°7.定理1 关于某条直线对称的两个图形是全等形初中5种数学提分方法1.细心地发掘概念和公式2.总结相似类型的题目3.收集自己的典型错误和不会的题目4.就不懂的问题,积极提问、讨论5.注重实践(考试)经验的培养初中数学有理数的运算加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

初中数学几何性质定理

初中数学几何性质定理

平行线的性质1.两直线平行,同位角相等。

2.两直线平行,内错角相等。

3.两直线平行,同旁内角互补。

4.在同一平面内的两线平行并且不在一条直线上的直线。

有关平行线:1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 平行公理:过直线外一点有且只有一条直线与已知直线平行。

3. 平行公理的推论(平行的传递性):4. 平行同一直线的两直线平行。

∵a∥c,c ∥b ∴a∥b平行线的判定:1. 两条直线被第三条所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等,两直线平行。

2. 两条直线被第三条所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等,两直线平行。

3 . 两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补,两直线平行。

两个角的数量关系两直线的位置关系:1.垂直于同一直线的两条直线互相平行。

2.平行线间的距离,处处相等。

3.如果两个角的两边分别平行,那么这两个角相等或互补。

基本规律1.平行线的性质和判定中的条件和结论恰好相反。

2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。

3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。

角平分线■ 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

■三角形的角平分线。

【注】三角形的角平分线不是角的平分线,是线段。

角的平分线是射线。

■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

■定理1:在角平分线上的任意一点到这个角的两边距离相等。

■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。

■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例判定公理1、三组对应边分别相等的两个三角形全等(简称“边边边”),这一条也说明了三角形具有稳定性的原因。

初中数学平行线的性质及相关定理

初中数学平行线的性质及相关定理

初中数学平行线的性质及相关定理在初中数学中,平行线是一个重要的概念。

平行线是指在同一个平面内,永不相交的两条直线。

本文将探讨平行线的性质以及与平行线相关的定理。

1. 平行线的性质1.1 两条平行线的特点两条平行线永不相交,以及它们之间的距离始终相等。

1.2 平行线与转角在两条平行线相交的地方,形成的转角称为对顶角。

对顶角是相等的。

1.3 平行线与平行线之间的角关系当一条直线与两条平行线相交时,同侧的内角互补,即它们的和等于180度;而同侧的外角互补,也是等于180度。

2. 平行线的定理2.1 配角定理当一条直线与两条平行线相交时,形成的配角是相等的。

2.2 内错角定理当一条直线与两条平行线相交时,形成的内错角是互补角。

2.3 外错角定理当一条直线与两条平行线相交时,形成的外错角是互补角。

2.4 三角形内角和定理在一个三角形中,如果其中一边与另两边平行,那么与这条边不相邻的两个内角之和等于180度。

2.5 平行线夹角定理当一条直线与两条平行线相交时,形成的夹角是相等的。

2.6 平行线截割定理如果一条直线与两条平行线相交,那么这两条平行线上的对应交线段与直线之间的比例相等。

3. 平行线的应用3.1 平行线在建筑中的应用平行线在建筑设计中具有重要的应用,例如平行线可以帮助确定建筑物的垂直度以及水平度。

3.2 平行线在地理中的应用地图中的经线和纬线是平行线,它们帮助我们在地球上确定位置以及测量距离。

3.3 平行线在运输中的应用平行线在交通工程中用于划定车道,确保车辆行驶的安全与顺利。

4. 总结平行线的性质及相关定理在初中数学中占据重要的位置。

通过学习这些性质和定理,我们能更好地理解平行线的特点,以及运用它们解决实际问题的能力。

同时,平行线的应用范围广泛,涵盖建筑、地理和运输等领域。

在日常生活中,我们也可以发现平行线的存在和应用。

通过深入学习平行线的性质和定理,我们能够更好地理解几何学的重要性和普遍性。

参考文献:[1] 数学知识(PEP人教版). 北京:人民教育出版社,2019.[2] Fuller R, Anderson E. Geometry for Dummies. Wiley, 2011.。

青岛版数学八年级上册5.4《平行线的性质定理和判定定理》教学设计

青岛版数学八年级上册5.4《平行线的性质定理和判定定理》教学设计

青岛版数学八年级上册5.4《平行线的性质定理和判定定理》教学设计一. 教材分析《平行线的性质定理和判定定理》是青岛版数学八年级上册第五章第四节的内容。

本节内容主要介绍了平行线的性质定理和判定定理,是学生进一步理解几何图形性质、提高解题能力的基础。

教材通过生活中的实例引入平行线的性质定理和判定定理,让学生感受数学与生活的紧密联系,激发学习兴趣。

二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的认识有一定的基础。

但是,对于证明过程的严谨性和逻辑性还需加强。

此外,学生的学习兴趣和积极性需要进一步激发,使他们更主动地参与到课堂中来。

三. 教学目标1.理解平行线的性质定理和判定定理,并能运用其解决实际问题。

2.培养学生的逻辑思维能力和证明能力。

3.激发学生对数学学习的兴趣,提高课堂参与度。

四. 教学重难点1.平行线的性质定理和判定定理的理解及运用。

2.证明过程的严谨性和逻辑性的培养。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探究,发现平行线的性质定理和判定定理。

2.利用多媒体辅助教学,展示实例和图形,增强学生的直观感受。

3.采用小组合作学习,培养学生的团队协作能力和沟通能力。

4.以练习题的形式巩固所学知识,提高学生的应用能力。

六. 教学准备1.多媒体教学设备。

2.教学PPT。

3.练习题及答案。

4.几何画板或黑板。

七. 教学过程1.导入(5分钟)利用生活实例,如道路规划、建筑设计等,引导学生关注平行线的应用,激发学生的学习兴趣。

提出问题:“你知道平行线有哪些性质和判定方法吗?”让学生思考并回答。

2.呈现(10分钟)通过PPT展示平行线的性质定理和判定定理,引导学生观察和理解定理的内容。

同时,给出定理的证明过程,让学生初步感受证明的逻辑性和严谨性。

3.操练(10分钟)让学生利用平行线的性质定理和判定定理,解决一些实际问题。

如给出一些图形,让学生判断其中是否包含平行线,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙8手机app下载
[单选]两个或两个以上公司合并组成一个新的统一的法人公司,被合并的各公司原有的法人地位不复存在。这种并购方式属于()。A.吸收合并B.新设合并C.控制权性收购D.非控制权性收购 [单选]美国心理学家沙赫特认为,情绪的产生是外界环境刺激、机体的生理变化和认知过程三者相互作用的结果,而()又起着决定的作用。A.外界环境刺激B.机体的生理变化C.认知过程D.丘脑 [单选]卫星通信分为:通信卫星,地球站,跟踪遥测指令系统,监控管理分系统和无线信道五大部分,其中完成通信功能的是()A.通信卫星,地球站,监控管理系统和无线信道B.通信卫星,地球站,无线信道C.通信卫星,地球站,跟踪遥测系统,无线信道. [单选,A2型题,A1/A2型题]孤独症的康复,"针对孤独症儿童在语言、交流以及感知觉运动等方面所存在的缺陷,有针对性地进行教育"属于()A.社交故事B.结构化教育C.听觉综合训练D.感觉综合训练E.应用行为分析疗法 [多选]对运动关节类手法的要求包括()A.稳B.准C.巧D.快E.轻 [单选,A2型题]一甲亢患者,甲状腺肿大不明显,但食欲亢进、消瘦、血糖增高,医师忽视了甲状腺功能亢进的有关检查,最容易被误诊为()。A.结核病B.糖尿病C.恶性肿瘤D.败血症E.吸收不良综合征 [单选]宫颈鳞状上皮化生的叙述不正确的是()A.鳞状上皮化生是宫颈糜烂愈合的过程B.鳞状上皮化生代替了糜烂的柱状上皮和腺上皮C.如化生的鳞状上皮在排列、形态上有异常时,可诊断为不典型增生D.化生的鳞状上皮来自柱状上皮下的基底细胞E.化生后的鳞状上皮有可逆性,可再成为糜烂面 [单选]RR表示()A.比值比B.相对危险度C.特异危险度D.人群特异危险度E.特异危险度百分比 [单选,A1型题]大隐静脉汇入深静脉前的属支不包括()A.旋髂浅静脉B.腹壁浅静脉C.阴部外浅静脉D.腹壁下静脉E.股内侧浅静脉 [单选]孕妇,29岁,孕1产0,妊娠40周。宫口开全2小时,胎方位为持续性枕后位,双顶径在坐骨棘下2cm,已破水4小时,胎心122次/分,恰当的分娩方式为()A.等待自然分娩B.转正胎头,产钳助产C.胎头吸引器助产D.缩宫素静脉滴注E.剖宫产术 [单选]在3G一个BBU的多块WBBP单板里最多可以直联载波的CPRI接口有几个?()A.3B.4C.5D.6 [单选]未经总监理工程师签字,()。A.建筑材料、构配件和设备不得在工程上使用或安装B.施工单位不得进行下一道工序施工C.不得进行隐蔽验收D.建设单位不拨付进度款 [单选]根据最终需求量并考虑各阶段生产提前期,向各阶段发布生产指令量的方式是()控制方式。A.前馈B.后馈C.推进D.拉动 [多选]瓦斯抽采钻孔施工过程中,操作人员要(),确保钻孔施工过程顺利进行。A.按照操作规程要求操作钻机B.按钻孔施工参数要求精心施工C.严格控制钻进速度D.全程值守 [单选]订单分批是将(),从而提高拣货作业效率。A.订单按批量分批B.订单按同类货品分类C.多张订单合成一批D.同期订单合成一批 [单选]保护对象有很大开口或无法形成密闭空间的场所可采用()。A.全淹没灭火系统B.移动式灭火系统C.局部应用灭火系统D.卤代烷灭火系统 [问答题,案例分析题]2012年1月1日,长江公司销售一批产品给黄河公司,价税合计金额为1000万元,款项尚未收到。因黄河公司发生财务困难,至12月31日长江公司仍未收到款项,长江公司为该应收账款计提坏账准备100万元。2012年12月31日,黄河公司与长江公司协商,达成重组协议如下。( [单选,A2型题,A1/A2型题]检测抗核抗体的最佳实验方法为()。A.ELISAB.免疫印迹C.间接免疫荧光法D.对流免疫电泳E.放射免疫分析 [问答题,简答题]货运检查主要内容有那些? [多选]为了病伤者的需要,应有的医疗机构包括()A.急性病医院B.慢性病医院C.日间医院D.护理中心E.社区医疗站 [单选]关于稿件来源的说法,错误的是()。A.引进稿件是指通过著作权贸易或者出版交流而获得的稿件B.组织稿件是出版单位获得稿件的主要途径C.引进稿件一般都正式出版过,不需再进行审稿和编辑加工D.自投稿意味着作者主动将该作品的出版权授予出版单位 [填空题]露天开采设计中广泛采用的布孔方式有两种即()与(),布孔参数有()、()和()。 [单选]()是专门作为计算吨位和交纳费用依据的尺度。A.船舶尺度B.船型尺度C.登记尺度D.最大尺度 [单选]下列不属于招标采购合同基本法律特点的是()。A.招标采购合同是一种民事法律行为B.招标采购合同是一种刑事法律行为C.招标采购合同是合同当事人意思表示一致的协议D.招标采购合同以设立、变更、终止民事权利义务关系为目的 [多选]以下几种机关之间,因工作需要往来公文,可以使用函的有()。A.省财政厅与省经贸委B.××大学与市劳动局C.省教委与省人民政府D.县公安局与乡人民政府 [单选]关于卡泊芬净,叙述错误的是()A.棘白菌素类代表药B.作用于细胞膜C.不良反应少于伊曲康唑D.不良反应少于伏立康唑E.首剂70mg,静脉注射 [单选]带蒂的子宫浆膜下肌瘤常易误诊为()A.子宫腺肌瘤B.阔韧带肿瘤C.双子宫D.卵巢肿瘤E.残角子宫 [单选]股票价格指数的计算方法很多,但是一般以()为权数进行加权综合。A.价格B.开盘价C.收盘价D.发行量 [单选]某公司进入金融衍生品市场进行交易,如果目的是为了减少未来的不确定性,降低风险,则该公司属于()。A.套期保值者B.套利者C.投机者D.经纪人 [单选,A1型题]有降血糖及抗利尿作用的药物是()。A.甲苯磺丁脲B.氯磺丙脲C.格列本脲D.二甲双胍E.苯乙双胍 [单选]设备轻便、操作灵活,可以应用于短缝的焊接,特别是用于难以达到部位的焊接的焊接方法为()。A.手弧焊B.埋弧焊C.闪光焊D.电阻焊 [单选]关于卵巢非赘生性囊肿的描述哪个不对()A.可与子宫粘连B.多为单侧C.<6cmD.多为囊性E.绝无压痛 [单选]有关窗技术的理解,下列哪个不妥()A.利用窗技术,将人体组织分为的2000个分度,调整到人眼所能辨别的16个灰阶中B.窗位是指窗宽上限、下限CT值的平均数C.窗位、窗中心是指一个概念D.为显示不同组织影像,应在规范的范围调整E.窗口技术调整的目的,是为了拍摄出一张对比良好的 [单选,A1型题]对下肢静脉曲张并发溃疡的治疗,不恰当的是()A.溃疡愈合后做大隐静脉结扎及剥脱术B.3%硼酸溶液湿敷C.抬高患肢D.溃疡不愈合者也可考虑手术E.大隐静脉结扎及剥脱术,溃疡切除并植皮 [单选,A2型题,A1/A2型题]促进红细胞缗钱状形成最强有力的物质为()A.纤维蛋白原B.γ-球蛋白C.α-球蛋白D.β-球蛋白E.清蛋白 [单选,A2型题,A1/A2型题]肺结核的治疗原则是()A.早期、规律、适量、全程、联合B.早期、规律、适量、短程、联合C.早期、规律、足量、全程、联合D.中期、规律、适量、全程、联合E.中期、规律、足量、全程、联合 [单选]某企业2012年度税前会计利润为2000万元,其中本年国债利息收入120万元,税收滞纳金20万元。企业所得税税率为25%,假定不考虑其他因素,该企业2012年度所得税费用为()万元。A.465B.470C.475D.500 [单选,A2型题,A1/A2型题]最适宜用于鉴别原粒和原淋的细胞化学染色是()A.PAS染色B.ACP染色C.AS-DAE染色D.NAP染色E.POX染色 [单选]无线通ห้องสมุดไป่ตู้系统中,收发信机可使用同一频率的是()A.单工B.双工C.半双工 [单选]投保人应将()的有关情况通知保险人。A.再保险B.足额保险C.不足额保险D.重复保险
相关文档
最新文档