空间解析几何与向量代数内容小结
向量代数与空间解析几何知识点总结

向量代数与空间解析几何知识点总
结
向量代数:
1、定义:向量代数是一种数学技术,用于处理和描述空间中的向量。
2、性质:向量的加法满足交换律、结合律,乘法满足分配律。
3、应用:向量代数可以用来求解空间几何问题,例如夹角的大小、两点之间的距离、点的位置等。
空间解析几何:
1、定义:空间解析几何是一种数学技术,用于研究平面图形和立体图形之间的关系。
2、性质:空间解析几何以点、线、面为基本单位,引入向量代数,通过空间关系、变换、测量等方法来求解几何问题。
3、应用:空间解析几何可以用来解决工程设计、地理学、天文学等领域的实际问题。
微积分A(二)总复习(向量代数和空间解析几何)

(6) a , b , c 共面 [a , b , c ] 0 a x a y az
bx cx by cy
a x bx a y by az bz 0.
bz 0. cz
二、空间解析几何
1、空间曲面方程 (1) 空间曲面一般方程
F ( x , y , z ) 0 或 z f ( x , y ) 等。
向量代数
向量的 线性运算
向量概念
向量的 表示法
向量的积
数量积 混合积 向量积
空间解析几何 空间直角坐标系
一般方程 旋转曲面
曲线
参数方程 一般方程 参数方程
曲面
平 面
柱
面
直 线
二次曲面
一般方程
对称式方程 点法式方程
向 向量的坐标表达式、模、方向余弦、 量 单位向量、在另一向量上的投影; 空间两 代 点间的距离; 向量的垂直与平行、数量积 数 与向量积及其运算规律与性质意义 空 间 解 析 柱面、旋转曲面、二次曲面方程;空 几 何 间直线在坐标面上的投影
它满足交换律、结合律、分配律。
0 向量积 a b a b sin ( a ,^ b ) n , 0 a , b 所在平面的 n : 按“右手法则”垂直于 单位向量。 i j k a b a x a y az S a b . bx b y bz
a x a y az 0 与a 平行的单位向量为 a { , , } |a | |a | |a | 2 2 2 其中| a | a x a y az
的投影。
一、向量代数
ay ax a 的方向余弦为 cos , cos , |a | |a | az cos , 方向余弦满足 |a | cos2 cos2 cos2 1.
向量代数与空间解析几何

(1)结合律: (a) (a) ()a ; (2)分配律: ( )a a a ,(a b) a b . 这里 a ,b 为向量, , 为实数.
向量的加法运算以及向量的数乘运算统称为向量的线性运算.
1.2 向量的线性运算
设 a 0 ,与 a 同方向的单位向量记为 ea ,由数与向量乘积的定义有 a | a | ea ,
ea
a |a
|
.Hale Waihona Puke 上式表明一个非零向量除以它的模,结果是一个与原向量同方向的单位向量,
这一过程称为向量单位化.
由于向量 a 与 a 平行,因此我们常用数乘来说明两个向量的平行关系.
1.2 向量的线性运算
定理 1 设向量 a 0 ,那么向量 b 平行于 a 的充分必要条件是:存在唯一的实
本章先介绍向量的概念、性质与运算,然后建立空间直角坐标系,利用坐 标讨论向量的运算,进而研究空间中的平面、直线、曲面、曲线及其方程.
1.1 向量的概念
既有大小又有方向的量称为向量,也称为矢量,如位移、速度、加速度、力、 力矩等.在数学上,通常用一条带箭头的线段来表示向量.例如,如图所示,以 A 为起点, B 为终点的向量记作 AB ,有时也用粗体字母或在字母上面加箭头来表示 向量,如 a 或 a .
1.2 向量的线性运算
2.向量与数的乘法
向量 a 与实数 的乘积是一个向量,记为 a ,它的模是 a 的模的 | | 倍,即 | a || || a | .它的方向为:当 0 时,a 与 a 的方向相同;当 0 时,a 与 a 的方向相反;当 0 时, a 0 .这种运算称为向量的数乘.
1.2 向量的线性运算
特别地,当 a b 时,有 a a a ( a) 0 .
第1章 向量代数与空间解析几何内容小结

m
n
p
(3)参数方程:若设 x x0 y y0 z z0 t,
m
n
p
则直线的参数方程为
x y
x0 y0
mt nt
.
z z0 pt
2.直线与直线、直线与平面的夹角
两直线的方向向量所成的不超过 的夹角称为两直线的夹角.直线和它在平面上的投 2
运算律:
○① 交换律 a b b a ;
○② 与数乘结合律 (a) b a (b) (a b) ;
○3 分配律 (a b) c a c bc .
两向量夹角公式:设 a ax , ay , az , b bx ,by ,bz , ( a 0, b 0) ,则
曲线
f
x,
y
0
绕 y 轴旋转所形成的旋转曲面方程为 f
x2 z2 , y
0;
z0
曲线
f
x,
z
0
绕 x 轴旋转所形成的旋转曲面方程为 f
x,
y2 z2
0;
y0
曲线
f
x,
z
0
绕 z 轴旋转所形成的旋转曲面方程为 f
若点 A 的坐标为 (x1, y1, z1) ,点 B 的坐标为 (x2, y2, z2 ) ,则 AB 的分解表示为 AB axi ay j azk ,
AB 的坐标表示为 AB ax , ay , az ,
其中 ax x2 x1, ay y2 y1, az z2 z1分别为 AB 在 x, y, z 轴上的投影. i, j, k 分别为 沿 x, y, z 轴正向的单位向量,它们称为空间直角坐标系的基本单位向量.
向量代数与空间解析几何(11)

21,
cos
1 2
,
cos
22;
2
3
,
3
,
3
4
27
例2. 已知两点A(4, 0, 5)和B(7, 1, 3). 求方向和AB 一致的单位向量.
解: AB = {3, 1, 2} |AB| 32 12 (2)2 14
a AB { 3 , 1 , 2 } | AB | 14 14 14
azk,
b bxi by j bzk
a
b
(axi
ay j
az
k)
(bx
i
by
j
bzk
)
i jk, i j j k k i 0,
| i || j || k | 1,
i i j j k k 1. a b axbx a yby azbz
37
数量积的坐标表达式
a
b
|
a
||
b
|
cos
a b axbx a yby azbz
两向量夹角余弦的坐标表示式
cos
axbx a yby azbz
ax 2 a y2 az 2 bx 2 by2 bz 2
ab
axbx a yby azbz 0
38
例 a
1 b
;已(知2)aa与{1b,1的,夹4}角,b
(2)掌握向量的线性运算、向量的数量积与向量积计算 方法。
(3)掌握二向量平行、垂直的件。
1
1、向量的概念
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
以 M 1为起点,M 2
向量的模: 向量的大小.
向量代数与空间解析几何

空间解析几何的应用
空间解析几何在物理学中的应用
描述物体运动轨迹和方向
解释重力、电磁场等现象
用于研究光速、波的传播等
描述量子力学中的波函数
空间解析几何在计算机图形学中的应用
建模:利用空间解析几何构建三维模型实现复杂形状的描述和设计。
渲染:通过空间解析几何的方法实现光照、阴影、纹理等效果的渲染提高图像的真实感和质感。
动画:利用空间解析几何描述物体的运动轨迹和形态变化实现逼真的动画效果。
交互:利用空间解析几何的方法实现用户与三维场景的交互例如旋转、缩放、移动等操作。
空间解析几何在机器人学中的应用
添加标题
添加标题
添加标题
添加标题
路径规划:基于空间解析几何的方法规划机器人的移动路径
机器人姿态描述:利用空间向量和矩阵表示机器人的姿态和位置
向量的向量积的坐标表示:向量=(1,2,3)向量b=(b1,b2,b3)则向量和向量b的向量积的坐标表示为×b=(2b3-3b2,3b1-1b3,1b2-2b1)。
向量的混合积的坐标表示:对于三个三维向量、b和c向量和向量b的混合积的坐标表示为(×b)·c其中"·"表示点乘。混合积的结果是一个标量其值等于三个向量的行列式值乘以三个向量的模长。
向量的模和向量的数量积的坐标表示
添加标题
向量的模坐标表示:向量=(x1,y1,z1)则向量的模为||=sqrt(x1^2+y1^2+z1^2)
向量的数量积坐标表示:向量=(x1,y1,z1)向量b=(x2,y2,z2)则向量和向量b的数量积为·b=x1*x2+y1*y2+z1*z2
添加标题
向量的向量积和向量的混合积的坐标表示
向量代数与空间解析几何(修改篇

解:2a b 2 (2,1, 2) (1,1, 2)
(4, 2, 4) (1,1, 2)
(3,3, 2)
20
向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有源自rOMOP
OQ
OR
由勾股定理得
r OM
z
R
o
r
M
Q y
P
o x P( x,0,0)
• M(x, y,z)
y
Q(0, y,0)
19
利用坐标作向量的线性运算
设
a
(aax ,ba
y,
az ), b (ax bx ,
(bx ay
,by ,bz ) by ,az
, 为实数,则
bz )
a
(
ax
,
ay
,
az
)
例3. a (2,1,2), b ( 1,1, 2). 求 2a b .
b
且符合右手规则
a
ab
当a或b为零向量时,或者当 0或 时,ab 0
40
两向量的向量积(叉积, 外积)
设 a , b的夹角为 ,(叉积)向量积: a b a 0,b 0
求 AMB .
35
例8. 已知三点M (1,1,1), A( 2, 2,1), B( 2,1 , 2 ),
求 AMB .
A
解: MA (1, 1, 0 ), MB ( 1, 0, 1)
B
M
则 cos AMB
MA MB MA MB
1 0 0 22
故 AMB
36
设 a ax i ay j az k , b bx i by j bz k , 则
高等数学向量代数与空间解析几何总结

{m,
n,
p}
36
[4] 两直线的夹角
直线 L1 : 直线 L2 :
x x1 y y1 z z1
m1
n1
p1
x x2 y y2 z z2
m2
n2
p2
^ cos(L1, L2 )
| m1m2 n1n2 p1 p2 | m12 n12 p12 m22 n22 p22
x2 y2 z2
27
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G( x, y, z) 0
[2] 空间曲线的参数方程
x x(t)
y
y(t )
z z(t)
28
如图空间曲线 一般方程为
z 1 x2 y2
( x
1)2 2
y2
(1)2 2
x
1 cos t 2
1 2
(1) 曲面S 上任一点的坐标都满足方程; (2) 不在曲面S 上的点的坐标都不满足方程; 那么,方程F ( x, y, z) 0就叫做曲面S 的方程,而 曲面S 就叫做方程的图形.
19
研究空间曲面的两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程. (2)已知坐标间的关系式,研究曲面形状.
bx by bz
a//
b
ax ay az bx by bz
10
请归纳向量的数量积和向量积
在几何中的用途
(①1求)向数量量的积模(1:) a
a
|
a
|2
.
②求两向量的 夹 角: a b | a ||
b
|
cos
cos
a
b
,
| a || b |
空间解析几何与向量代数》知识点、公式总结

空间解析几何与向量代数》知识点、公式总结空间解析几何与向量代数是数学中非常重要的分支,它们在物理、工程、计算机科学等领域得到了广泛的应用。
以下是一些知识点和公式的总结:一、向量的数量积与向量积1. 向量的数量积:两个向量 a 和 b 的数量积 (也叫数量积或点积) 定义为一个新的向量,记作 a·b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a·b)·c=a·(b·c)。
2. 向量积:两个向量 a 和 b 的向量积 (也叫向量积或叉积)定义为一个新的向量,记作 a×b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a×b)·c=a·(b×c)。
二、向量的混合积1. 向量的混合积:三个向量的混合积 (也叫叉积) 定义为一个新的向量,记作 (ab)c,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 d,(ab)c·d=a·(b·c)d。
2. 向量共面的条件:三个向量 a、b、c 共面的条件是它们对应的三条法向量共面。
三、空间平面及其方程1. 空间平面的方程:空间中两个不共线的平面的方程分别为Px+My+Nz=C 和 Px+My+Nz=D,其中 P、M、N 为平面上的任意三个点,C 和D 为已知常数。
2. 平面的点法式方程:设 M(x0,y0,z0) 为平面上的已知点,n(A,B,C) 为法向量,M(x,y,z) 为平面上的任一点,则平面的点法式方程为 A(x-x0)B(y-y0)C(z-z0)=0。
四、空间直线及其方程1. 空间直线的方程:空间中一条直线的方程为 x+My+Nz=C,其中 P、M、N 为直线上的任意三个点,C 为已知常数。
2. 空间直线的参数方程:空间中一条直线的参数方程为x=f(t),y=g(t),z=h(t),其中 t 为参数,f、g、h 分别为直线上的点的 x、y、z 坐标。
《高等数学》向量代数和空间解析几何

a∥ b
运算律
(1) ab ba (2) 分配律 (ab)cacbc
(3) 结合律 (a)ba(b)(ab)
向量积的坐标表达式
ab ( a y b z a z b y ) i ( a z b x a x b z ) j ( a x b y a y b x ) k
i j k a b ax ay az
例5. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程.
解: 因平面通过 x 轴 , 故 AD0 设所求平面方程为 ByCz0
代入已知点 (4,3,1)得 C3B
化简,得所求平面方程 y3z0
空间直线
一般式 A A 21xx B B 2 1y y C C 1 2zz D D 12 00
从柱面方程看柱面的特征:
只含 x, y而缺z的方程F(x, y) 0,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy面上曲线C .
(3) 二次曲面
椭球面
a x2 2b y2 2cz2 21 (a,b,c为正 ) 数 z
x
y
抛物面
z
椭圆抛物面
x2 y2 z ( p , q 同号) 2p 2q
n (0 ,B ,C ) i,平面平行于 x 轴; • A x+C z+D = 0 表示 平行于 y 轴的平面; • A x+B y+D = 0 表示 平行于 z 轴的平面; • C z + D = 0 表示平行于 xoy 面 的平面; • A x + D =0 表示平行于 yoz 面 的平面; • B y + D =0 表示平行于 zox 面 的平面.
o
y
3、空间曲线 (1) 空间曲线的一般方程
空间解析几何知识点

z(~T,y(~2 ~2),X(召—2)(a,b,C
aba cb c
为正数)
单叶双曲面
2 2 2 2 2 2 2 2 2
Xyz1xyz1Xyz1
2 . 2 21,2 .2 21,2 . 2 21a b ca b cab c
双叶双曲面
2 2 2 2 2 2
xyz 1xyz 1
2 2 21,2.2 21a b ca bc
四、平面的表示
方程的形式
相关系数的意义
点法式 方程
M(Xo, yo,Zo
一般式
nA,B,C为平面的法向量
二点式 方程
M1(x「y1,乙),皿:区皿,z?)
M3(X3"3,Z3)为平面上的三点
截距式
a,b,c分别为平面在x,y,z轴上
的截距
五、直线的表示
方程的形式
B(X2, yzZ)
设a与二坐标
设向量a={x, y, z},则
则
轴正向的夹角
AB{x2x-i,
向量的 方向余
为、、,
a {cos,cos,cos }
弦
则cos、
cos、cos为
a的方向余弦
向量的运算
定义
坐标表示
备注
向量 的数 量积
向量 的向 量积
a b a b (sinab)方
向与a、b都垂直,且
椭球面
2 2 2
务与$1,a, b,c为椭球面的半径a b c
圆柱面
2 2^2 2 2 ^2 2 2 ^2
x y R,x zR,y zR
椭圆柱面
2 2 2 2 2 2
xy1xz1yz1
abacbc
高等数学向量代数与空间解析几何总结

高等数学向量代数与空间解析几何总结高等数学是大学数学学科的一门重要基础课程,其中向量代数与空间解析几何是其重要的内容之一、本文将对向量代数与空间解析几何的主要内容进行总结,让我们一起来了解一下吧!向量代数是研究向量的代数性质和运算法则的数学分支,旨在通过研究向量的各种运算进行分析与求解问题。
空间解析几何则是研究点、线、面等几何对象在三维空间中的位置关系和几何性质的学科。
首先,我们先来了解一下向量代数的基本概念和运算法则。
在向量代数中,向量是具有大小和方向的量,通常用一个有向线段表示。
向量的加法是指两个向量相加,得到一个新的向量,其结果是由两个向量的平行四边形法则确定的。
向量的乘法有数量乘法和点乘法两种形式。
数量乘法是指数与向量相乘,得到一个新的向量,其长度与原向量的长度相乘,方向与原向量相同或相反。
点乘法是指两个向量进行点乘,得到一个实数结果,其大小等于两个向量的长度相乘再乘以它们的夹角的余弦值,方向与夹角为锐角的原向量相同,为钝角时与原向量相反。
向量代数的运算法则包括交换律、结合律和分配律。
接下来,我们来了解一下空间解析几何的基本内容。
空间解析几何主要研究三维空间中的点、直线和平面的位置关系和几何性质。
其中,点是空间中没有大小、没有方向的对象,用坐标表示。
直线是由无数个点组成的无限延伸的几何对象,可以通过两点确定一条直线,也可以通过点和方向向量确定一条直线。
平面是由无数个点组成的无限延伸的几何对象,可以通过三个点确定一个平面,也可以通过点和法向量确定一个平面。
空间解析几何要求我们掌握点与点之间的距离、点与直线之间的关系、直线与直线之间的关系、点与平面之间的关系、直线与平面之间的关系等内容。
对于这些关系,我们可以通过向量的性质和运算进行解决。
在向量代数与空间解析几何中,还有一些重要的概念与定理需要了解。
例如,向量的模长是指向量的长度,可以通过向量的坐标和勾股定理求得。
向量的单位向量是指长度为1的向量,可以通过将向量的坐标除以其模长得到。
空间解析几何知识点

, , }
二、向量的运算
定义
坐标表示
备注
向量的数量积
向量的向量积
方向与 、 都垂直,且 、 与 成右手系
=
与 平行
三、几类常见的二次曲面及其标准方程
曲面名称
方程
旋转曲面
曲线 绕 轴旋转构成
绕 轴旋转构成
球面
,半径 ,球心
椭球面
, 为椭球面的半径
圆柱面
, ,
椭圆柱面
, ,
抛物柱面
, ; , ; , ( 为正数)
空间解析几何知识点
第七章空间解析几何与向量代数
一、向量的有关定义和性质
定义
坐标表示
备注
向量
(矢量)
具有大小和方向的量
将 的起点放原点,其终点坐标为 ,则 =
=
①向量:
②零向量:
③设
,
则
向量
的模
向量的大小(或长度)
设 , 则
向量的方向余弦
设 与三坐标轴正向的夹角为 、 、 ,则 、 、 为 的方向余弦
五、直线的表示
方程的形式
相关系数的意义
参数式方程
为直线上一点, 为直线的方向向量
标准方程(对称式)
同上
一般式方程
直线的方向向量为
两点式方程
, 为直线上两点,直线的方向向量为
双曲柱面
, , ( 为正数)
圆锥面
,由直线 或 绕 轴旋转而成
椭圆抛物面
, , ( 为正数)
双曲抛物面
, , ( 为正数)
单叶双曲面
, ,
双叶双曲面
,
四、平面的表示
方程的形式
相关系数的意义
空间解析几何与向量代数知识点总结

空间解析几何与向量代数知识点总结
以下是空间解析几何与向量代数的一些重要知识点总结:
1.三维坐标系:空间解析几何中,我们使用三维坐标系来描述点的位置。
常见的三维坐标系有直角坐标系和球坐标系。
2.点、向量和直线:点是空间中的一个位置,向量是由起点和终点确定的有方向的线段。
直线是空间中一组满足某种几何性质的点的集合。
3.向量的表示和运算:向量可以用坐标表示,常见的表示方法有行向量和列向量。
向量的运算包括加法、减法、数量乘法、点乘和叉乘等。
4.向量的长度和方向:向量的长度可以用模长表示,方向可以用单位向量表示。
单位向量是长度为1的向量,可以通过将向量除以其模长得到。
5.平面和曲面:平面是空间中一组满足某种几何性质的点的集合,可以用法向量和一个过点的向量表示。
曲面是空间中一组满足某种几何性质的点的集合。
6.点到直线和点到平面的距离:点到直线的距离可以通过求取点到直线的垂直距离得到,点到平面的距离可以通过求取点到平面的垂直距离得到。
7.向量的线性相关性和线性独立性:向量的线性相关性表示向量之间存在线性关系,线性独立性表示向量之间不存在线性关系。
8.平面的交线和平面的夹角:两个平面的交线是同时在两个平面上的点的集合,平面的夹角是两个平面的法向量之间的夹角。
9.点积和叉积的应用:点积可以用来计算向量的夹角和投影,叉积可以用来计算向量的长度、面积和法向量。
10.直线和平面的方程:直线可以用参数方程和对称方程表示,平面可以用点法式方程和一般式方程表示。