七年级上册数学几何图形初步重点难点题型全覆盖试卷附详细答案

合集下载

专题05 几何图形初步重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版

专题05 几何图形初步重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版

专题05 高分必刷题-几何图形初步重难点题型分类(原卷版) 专题简介:本份资料包含《几何图形初步》这一章除压轴题题之外的全部重要题型,所选题目源自各名校月考、期末试题中的典型考题,具体包含九类题型:正方体的展开图、立体图形的三视图、直线射线线段的概念、算术方法求线段长度、方程方法求线段长度、角的概念与单位换算、折叠中的角度计算、算术方法求角度、方程方法求角度。

适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。

题型一:正方体的展开图1.(长郡)下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D .【解答】解:A 、属于“田”字型,不是正方体的展开图,故选项错误;B 、属于“7”字型,不是正方体的展开图,故选项错误;C 、属于“1+4+1”字型,是正方体的展开图,故选项正确;D 、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C .2.(长梅)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是__________.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.3.(中雅)如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是__________.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“京”与“你”相对,面“迎”与面“北”相对,“欢”与面“空白”相对.故答案为:欢.4.(西雅)如图,是一个正方体的表面展开图,则原正方体中“爱”字所对应的面相对的面上标的字是( )A.我B.的C.祖D.国你迎欢京北【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“的”是相对面;故选:B.题型二:立体图形的三视图5.(雅礼)如图所示是由一些相同的小正方体构成的立体图形从正面、左面、上面看到的形状图,那么构成这个立体图形的小正方体的个数是个。

七年级数学几何图形初步难题精选(含解析答案)

七年级数学几何图形初步难题精选(含解析答案)

第1页 共16页七年级数学几何图形初步难题精选(含解析答案)1. 美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是A. B. C. D2. 《几何原本》的诞生,标志着几何学已成为一个有着严密理论系统和科学方法的学科,它奠定了现代数学的基础.它是下列哪位数学家的著作( )A. 欧几里得B. 杨辉C. 费马D. 刘徽3.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,BD ⊥DC ,BD =DC ,CE 平分∠BCD ,交AB 于点E ,交BD 于点H ,EN ∥DC 交BD 于点N ,下列结论:①BH =DH ;②CH =(√2+1)EH ;③S △ENH S △EBH =EHEC.其中正确的是( )A. ①②③B. 只有②③C. 只有②D. 只有③4. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是( )A. B. C. D.5. 如图,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图形是( )A. AB. BC. CD. D6. 图1所示的正方体木块棱长为6 cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A爬行到顶点B的最短距离为cm.7. 如图1,图2,图3,用一种大小相等的正多边形密铺成一个“环”,我们称之为环形密铺,但图4,图5不是我们所说的环形密铺.请你再写出一种可以进行环形密铺的正多边形:.8. 如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2面积为S1,四边形P2M2N2N3的面积为S2,…,四边形PnMnNnNn+1的面积记为Sn,通过逐一计算S1,S2,…,可得Sn=________.9. 有一张矩形纸片ABCD,按下面步骤进行折叠:第一步:如图①,将矩形纸片ABCD折叠,使点B,D重合,点C落在点C′处,得折痕EF;第二步:如图②,将五边形AEFC′D折叠,使AE,C′F重合,得折痕DG,再打开;第三步:如图③,进一步折叠,使AE,C′F均落在DG上,点A,C′落在点A′处,点E,F落在点E′处,得折痕MN,QP.第3页 共16页这样,就可以折出一个五边形DMNPQ .(1)请写出图①中一组相等的线段__________(写出一组即可);(2)若这样折出的五边形DMNPQ (如图③)恰好是一个正五边形,当AB =a ,AD =b ,DM =m 时,有下列结论:①a 2-b 2=2ab tan 18°; ②m =√a 2+b 2tan 18°;③b =m +a tan 18°; ④b =32m +m tan 18°其中,正确结论的序号是______(把你认为正确结论的序号都.填上). 10. 一个圆柱形的蛋糕,将它截三刀,能截出六块、七块或八块吗?若能,画出示意图;若不能,请说明理由.11. 图①的正方体切去一块,得到图②~⑤的几何体.(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明其他形状的几何体也切去一块,所得到的几何体的面数、棱数和顶点数各是多少? (3)若面数记为f ,棱数记为e ,顶点数记为v ,则f , v , e 应满足什么关系?12. 有一副直角三角板,其中一个三角板的内角是45°,45°,90°,另一个三角板的内角是30°,60°,90°.(1)将该副三角板按如图①所示方式放置,AB ⊥AD ,则∠CAE =________,BC 与AD 的位置关系是________;(2)在第1问的基础上,再拿一个内角为30°,60°,90°的直角三角板,按如图②所示方式放置,AC'边和AD 边部分重合,则AE 平分∠CAB′吗?请说明理由;(3)根据第1问和第2问的计算,请解决下列问题:如图③,∠BAG =90°,∠BAC =∠FAG =20°,将一个内角为45°,45°,90°的直角三角板的一直角边与AG 部分重合,锐角顶点与∠BAG 的顶点重合,AE 平分∠CAF 吗?请说明理由;(4)如果图③中的∠BAC =∠FAG =∠α(∠α是锐角),其他条件不变,那么第3问中的结论还成立吗?只需回答成立或者不成立,不需要说明理由.13. 如图给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线表示,在图中标注出必要的符号和数据,并作简要说明)(1)将图①中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图②中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图③中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.14. 十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察如图所示的几种简单多面体模型,解答下列问题.四面体长方体正八面体正十二面体(1)根据上面的多面体模型,补全表格:顶点数(V)、面数(F)、棱数(E)之间存在的关系式是________;(2)一个多面体的顶点数比面数大8,且有30条棱,则这个多面体的面数是________;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成的,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面的三角形的个数为x,八边形的个数为y,求x+y 的值.15. 在图中,对于四个平面图形①②③④,我们规定:如图形③,它的顶点为共5个,区域为△AED,△ABE,△BEC,△CED,共4个,边为AE,EC,DE,EB,AB,BC,CD,DA,共8条.①②③④(1)按此规定将图形①②④的顶点数、边数、区域数填入下列表格:第5页 共16页(2)观察上表,请你归纳上述平面图形的顶点数、边数、区域数之间的数量关系;(3)如果有一个平面图形满足第2问中归纳所得的数量关系,它共有9个区域,且从每一个顶点出发都有3条边,那么这个平面图形共有多少条边?16. 在多边形中,三角形是最基本的图形,而研究多边形一般是将多边形分割成三角形,那么一个八边形至少可以分割成多少个三角形?n 边形呢?17. 如图,P 是定长线段AB 上一点,C ,D 两点同时从P ,B 出发分别以1cm s ⁄和2 cm/s 的速度沿线段向左运动(C 在线段AP 处上,D 在线段BP 上).已知C ,D 运动到任一时刻时,总有PD =2AC .(1)线段AP 与线段AB 的数量关系是________;(2)若Q 是线段AB 上一点,且AQ -BQ =PQ ,求证:AP =PQ .(3)若C ,D 运动5秒,恰好有CD =12AB ,此时C 点停止运动,D 点在线段BP 上继续运动, M ,N 分别是CD , PD 的中点,问MN AB 的值是否发生变化?若变化,请说明理由;若不变,请求出MNAB的值. 18. 已知在同一平面内,∠AOB =90°,∠AOC =60°. (1)∠COB = ;(2)如果OD 平分∠BOC ,OE 平分∠AOC ,那么∠DOE 的度数为 ;(3)试问在第2问的条件下,如果将题目中∠AOC =60°改成∠AOC =2α(α<45°),其他条件不变,你能求出∠DOE 的度数吗?若能,请写出求解过程;若不能,请说明理由.19. 先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n (n >1)台机床在工作,我们要设置一个零件供应站P ,使这n 台机床到供应站P 的距离总和最小,要解决这个问题,先“退”到比较简单的情形:如图所示,如果直线上有2台机床甲、乙,很明显供应站P 设在A 1和A 2之间的任何地方都行,因为甲和乙到P 的距离之和等于A 1到A 2的距离.如图所示,如果直线上有3台机床甲、乙、丙,不难判断,供应站P 设在中间A 2处最合适,因为如果P设在A 2处,甲和丙到P 的距离之和恰好为A 1到A 3的距离,而如果把P 设在别处,例如D 处,那么甲和丙到P 的距离之和仍是A 1到A 3的距离,可是乙到P 的距离是从A 2到D 的这一段的长,这是多出来的,因此P 放在A 2处最合适.不难知道,如果直线上有4台机床,P 应设在第2台与第3台之间的任何地方;有5台机床,P 应设在第3台处.(1)有n (n >1)台机床时,P 应设在何处?(2)根据第1问的结论,求|x-1|+|x-2|+|x-3|+…+|x-617|的最小值.(3)变式:某公司员工分别住在离公路较近的A,B,C三个住宅区,其中A区有75人,B区有45人,C区有30人,A,B,C三区与公路的连接点分别为D,E,F,如图,且DE=100米,EF=200米,该公司的接送车打算在公路上只设一个停靠点,为使所有员工在公路上步行到停靠点的路程之和最小,那么停靠点的位置应设在.20. 如图,两个形状、大小完全相同的含有30°,60°角的三角尺如图①放置,PA,PB与直线MN重合,且三角尺PAC,三角尺PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90°;(2)如图②,若三角尺PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图③,若三角尺PAC的边PA从PN处开始绕点P逆时针旋转,转速为3°/秒,同时三角尺PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,在两个三角尺旋转过程中(PC转到与PM重合时,两三角尺都停止转动),以下两个结论:①∠CPD∠BPN为定值;②∠BPN+∠CPD为定值,请选出正确的结论,并说明理由.21. 已知线段AB=12,CD=6,线段CD在直线AB上运动(如图,A在B的左侧,C在D的左侧,且运动中D在B的右侧).(1)M,N分别是线段AC,BD的中点,若BC=4,求MN的长;(2)当线段CD运动到D点与B点重合时,P是线段AB的延长线上一点,下列两个结论:①PA+PBPC 是定值,②PA-PBPC是定值.其中有一个正确,请你选出正确的结论,并求出这个定值.22. 墙角处有由若干大小相同的小正方体堆成的如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、上面、右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走多少个小正方体?23. 已知C为直线AB上任意一点,M,N分别为AC,BC的中点,试探究MN与AB之间的关系,并说明理由.24. 已知直线AB上有点O,OD,OC是从点O出发的两条射线,∠AOD=42°,∠BOC=34°,求∠AOD 与∠BOC的角平分线的夹角的度数.25. 如图,射线OM,ON分别是∠AOC和∠BOC的平分线,且∠AOB=90°.(1)求∠MON的度数;(2)当OC在∠AOB内转动时,∠MON的度数是否会发生变化?简单说明理由.26. 比较两个角的大小,有以下两种方法(规则):①用量角器度量两个角的大小,用度数表示,则角度大的角大;②构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.27. 如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)若将题干中的∠AOB=90°改为∠AOB=α,其余条件不变,求∠MON的度数;(3)若将题干中的∠BOC=30°改为∠BOC=β(β为锐角),其余条件不变,求∠MON的度数;(4)从前面的结果中,你能得出什么结论?28. 根据所给图形解答问题.第7页共16页(1)如图1,已知∠AOB=80°,OC是∠AOB的平分线,OD,OE分别平分∠COB,∠AOC,求∠DOE的度数;(2)如图2,在第1问中把“OC是∠AOB的平分线”改为“OC是∠AOB内任意一条射线”,其他任何条件都不变,试求∠DOE的度数;(3)如图3,在第1问中把“OC是∠AOB的平分线”改为“OC是∠AOB外任意一条射线”,其他任何条件都不变,你能求出∠DOE的度数吗?说明理由.29. 一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的?在图上画出来,这样的最短路线有几条?参考答案1. 【答案】B【解析】由图的特征可知B选项符合题意2. 【答案】A【解析】由常识可知选A.3. 【答案】B【解析】过点H作HM⊥BC于M.∵CE平分∠BCD.∴DH=HM.在Rt△BMH中BH>HM∴BH>DH.故①不正确②③正确故选B.4. 【答案】B【解析】实际动手做一下,就可知几何体表面展开图是B.5. 【答案】D【解析】相反操作顺序展开,再利用对称性作图,可得D正确.6. 【答案】3√2+3√6【解析】本题考查平面展开图及最短路径问题,难度较大.将图②的几何体表面展开,根据“两点之间线段最短”得出结果.如图所示,蚂蚁爬行的最短距离即线段AB的长度,∵BC=BD,AC=AD,∴AB垂直平分线段CD,设垂足为点E,∵△BCD是等腰直角三角形,∴CD=√BC2+BD2=第9页 共16页√62+62=6√2(cm),∴BE =12CD =3√2(cm),∵AD ,AC ,CD 均为正方形的对角线,∴AD =AC =CD =6√2,即△ACD 是等边三角形,∴AE =AD sin 60°=6√2×√32=3√6, ∴AB =BE +AE =3√2+3√6(cm),∴蚂蚁爬行的最短距离为(3√2+3√6)cm.7. 【答案】正十二边形(答案不唯一)【解析】本题考查平面图形的镶嵌问题,属于较难题.由题意知,符合环形密铺的条件是各正多边形的重心到所围成的图形的重心距离要相等,即正多边形的重心在一个圆上,图中的④,⑤明显的不符合,正六边形符合,则正十二边形也符合.8. 【答案】3√34-12n+1√34【解析】当上底为1,腰为1,下底为2时,高为√1−14=√32,上底与下底的比为1∶2,∴S △1=14S △AN 1M 1=2×√32×23×14×12=√312, S 1=12(1+2)√32-√312=3√34-√312=2√33,S 1=3√34-12×1+1√34,同理,由相似,S 2=3√34-12×2+1√34,…,以此类推,S n =3√34-12n+1√34. 9.(1) 【答案】AD =C ′D (答案不唯一,也可以是AE =C ′F 等)【解析】图①中,AD =C ′D ,AE =C ′F ,DE =BE ,C ′F =CF 等 (2) 【答案】①②③【解析】延长MN ,则M 、N 、B 在一条直线上,∴∠MBA =18°, ∴AM AB =AMa=tan 18°,∴AM =a tan 18°,又AD =AM +MD ,∴b =m +a tan 18°,延长线BM 至M ′,使DM =DM ′,∠DM ′M =∠DMM ′=72°, ∴∠M ′DB =90° ∴DM =DM ′=BD tan18°=√a 2+b 2tan18°=m .∴AE =b tan 18°,DE =BE =a -b tan 18°,AD =b .∴b 2+b 2tan 2 18°=a 2-2ab tan 18°+b 2tan 18°,∴2ab tan 18°=a2-b2.故①②③正确10. 【答案】垂直、平行于底面各截一刀,第三刀刚好过前两个截面的交线,如图1,可以截出六块(方法不唯一);垂直、平行于底面各截一刀,第三刀不过前两个截面的交线,如图2,可以截出七块;垂直于底面交叉截两刀,再平行于底面横截一刀,如图3,可以截出八块.11.(1) 【答案】题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2) 【答案】例如:三棱锥被切去一块,如图所示,所得到的几何体有5个面、9条棱、6个顶点.(3) 【答案】由前两问可得到规律,f+v-e=2,所以f,v,e应满足的关系是f+v-e=2.12.(1) 【答案】15°;BC∥AD.(2) 【答案】AE平分∠CAB′,理由:易知∠EAB′=15°,由第1问知,∠CAE=15°,所以∠CAE=∠EAB′,所以AE平分∠CAB′.(3) 【答案】AE平分∠CAF,理由:因为∠GAE=45°,∠BAG=90°,所以∠BAE=45°,因为∠BAC=∠FAG=20°,所以∠CAE=25°,∠EAF=25°,即∠CAE=∠EAF,则AE平分∠CAF. (4) 【答案】成立.13.(1) 【答案】将图①中四个角上的4个小正方形剪下,拼成一个正方形,作为直四棱柱的一个底面.(2) 【答案】将图②中三个角上的3个四边形剪下,拼成一个正三角形,作为直三棱柱的一个底面.第11页 共16页(3) 【答案】将图③中五个角上的5个四边形剪下,拼成一个正五边形,作为直五棱柱的一个底面.14.(1) 【答案】6;6;V +F −E =2.(2) 【答案】12.(3) 【答案】这个多面体的面数为x +y ,棱数为24×32=36,根据V +F −E =2可得24+(x +y)−36=2,所以x +y =14. 15.(1) 【答案】①栏依次填入:4;6;3;②栏依次填入:6;9;4;④栏依次填入:10;15;6.(2) 【答案】顶点数+区域数-边数=1.(3) 【答案】设这个平面图形有n 个顶点.因为从每一个顶点出发都有3条边,所以它3n2有条边.根据上述数量关系,有n +9−3n 2=1,可得n =16.所以3n2=24,所以这个平面图形共有24条边.16. 【答案】(1)将八边形内一点与各个顶点相连,可把八边形分割成8个三角形(如图(1)),用同样方法分割,可知n 边形可以分割成n 个三角形;(2)从八边形边上一点出发,连接各个顶点,能分成7个三角形(如图(2)),用同样方法分割,可知n 边形可以分割成(n −1)个三角形;(3)将八边形的一个顶点与同它不相邻的各顶点相连可以分割成6个三角形(如图(3)),用同样方法分割,可知n 边形可以分割成(n −2)个三角形.综上所述,八边形至少可以分割成6个三角形,n 边形至少可以分割成(n −2)个三角形.17.(1) 【答案】 AB =3AP .(提示:因为PD =2AC,DB =2PC ,所以PB =PD +DB =2(AC +PC )=2AP ,AB = AP +PB ,所以AB =3AP )(2) 【答案】证明:如图,由题意得AQ>BQ,∴AQ=AP+PQ,又∵AQ−BQ=PQ,∴AQ=BQ+PQ,∴AP=BQ.由第1问得,AP=13AB,∴PQ=AB−AP−BQ=13AB.∴AP=PQ.(3) 【答案】MNAB的值不变.当C点恰好停止运动时,有CD=12AB,∴AC+BD=12AB,∴AP−PC+BD=12AB,又∵AP=13AB,当C点恰好停止运动时,PC=1×5=5cm,BD=2×5=10cm,∴13AB−5+10=12AB,∴AB=30cm.∵M是CD的中点,N是PD的中点,∴MN=CD−MC−ND=CD−12CD−12PD=12(CD−PD)=12CP=52(cm),∴MNAB =112.18.(1) 【答案】150°或30°(2) 【答案】45°(3) 【答案】能求出∠DOE的度数.当OC在∠AOB内部时,如图①,因为∠AOB=90°,∠AOC=2α,所以∠BOC=90°-2α,因为OD,OE分别平分∠BOC,∠AOC,所以∠DOC=12∠BOC=45°-α,∠COE=12∠AOC=α,所以∠DOE=∠DOC+∠COE=(45°-α)+α=45°;当OC在∠AOB外部时,如图②,因为∠AOB=90°,∠AOC=2α,所以∠BOC=90°+2α,因为OD,OE分别平分∠BOC,∠AOC,所以∠DOC=12∠BOC=45°+α,∠COE=12∠AOC=α,所以∠DOE=∠DOC-∠COE=(45°+α)-α=45°.综上所述,∠DOE=45°.第13页 共16页19.(1) 【答案】当n 为奇数时,P 应设在第n+12台处;当n 为偶数时,P 应设在第n 2台和第(n 2+1)台之间的任何地方.(2) 【答案】根据绝对值的几何意义,求|x -1|+|x -2|+|x -3|+…+|x -617|的最小值就是在数轴上找出表示x 的点,使它到表示1,2,…,617各点的距离之和最小,根据问题(1)的结论知,当x =309时,原式的值最小.最小值是:|309-1|+|309-2|+|309-3|+…+|309-308|+0+|309-310|+|309-311|+…+|309-617|=308+307+306+…+1+1+2+…+308=308×309=95172. (3) 【答案】D 与E 两点之间(包括点D ,E )20.(1) 【答案】因为∠DPB =30°, ∠CPA =60°,所以∠DPC =180°-30°-60°=90°.(2) 【答案】设∠CPE =∠DPE =x ,∠CPF =y ,则∠APF =∠DPF =2x +y ,因为∠CPA =60°,所以y +2x +y =60°,所以x +y =30°,所以∠EPF =x +y =30°.(3) 【答案】①正确,②不正确.理由:设旋转时间为t 秒,则∠BPM =(2t )°,∠APN =(3t )°.所以∠BPN =180°-∠BPM =(180-2t )°,∠DPM =30°-∠BPM =(30-2t )°.所以∠CPD =180°-∠DPM -∠CPA -∠APN =(90-t )°,所以∠CPD ∠BPN =90-t 180-2t =12.21.(1) 【答案】如图①,因为M ,N 分别为线段AC ,BD 的中点,所以AM=12AC =12(AB +BC)=8,DN =12BD =12(CD +BC )=5,所以MN =AD -AM -DN =9;如图②,困为M ,N 分别为线段AC ,BD 的中点,所以AM =12AC =12(AB -BC )=4,DN =12BD =12(CD -BC )=1,所以MN =AD -AM -DN =9. (2) 【答案】①正确.因为PA+PB PC =(PC+AC)+(PC -CB)PC =2PC PC =2,所以PA+PBPC是定值2.22. 【答案】第1列最多可以搬走9个小正方体; 第2列最多可以搬走8个小正方体;第3列最多可以搬走3个小正方体;第4列最多可以搬走5个小正方体;第5列最多可以搬走2个小正方体,因为9+8+3+5+2=27(个),所以最多可以搬走27个小正方体.23. 【答案】因为M是线段AC的中点,所以CM=12AC.因为点N是线段BC的中点,所以CN=12BC.分以下三种情况:①当点C在线段AB上时,如图1,则有MN=CM+CN=12AC+12BC=12(AC+BC)=12AB;②当点C在线段AB的延长线上时,如图2,则有MN=CM−CN=12AC−12BC=12(AC−BC)=12AB;③当点C在线段BA的延长线上时,如图3,则有MN=CN−CM=12BC−12AC=12(BC−AC)=12AB.综上所述,MN=12AB.24. 【答案】设∠AOD,∠BOC的角平分线分别为OE,OF.分两种情况讨论.①当射线OD和射线OC在直线AB的同侧时,由题意,得∠BOF=12∠BOC=17°,∠AOE=12∠AOD=21°,故∠EOF=180°−∠BOF−∠AOE=180°−17°−21°=142°;②当射线OD和射线OC在直线AB的异侧时,∠EOF=180°−∠AOE+∠BOF=180°−21°+17°=176°.综上所述,∠AOD与∠BOC的角平分线的夹角为142°或176°.25.(1) 【答案】因为∠NOC=12∠BOC,∠MOC=12∠AOC,所以∠MON=∠NOC+∠MOC=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB=45°.(2) 【答案】由第1问知,∠NOC+∠MOC是个定值,所以当OC在∠AOB内转动时,∠MON的度数不会发生改变,恒为45°.26. 【答案】①测量∠ABC=45°,∠DEF=65°,所以∠ABC<∠DEF.②如图,使∠ABC的一边BC与∠DEF的一边EF、顶点B与E分别重合,BA落在∠DEF的内部,所以∠ABC<∠DEF.27.(1) 【答案】因为OM平分∠AOC,ON平分∠BOC,所以∠MOC=12∠AOC,∠NOC=12∠BOC,又因为∠AOB=90°,∠BOC=30°所以∠MON=∠MOC−∠NOC=12∠AOC−12∠BOC=12(∠AOC−∠BOC)=12∠AOB=12×90°=45°.(2) 【答案】当∠AOB=α,其他条件不变时,∠MON=12∠AOB=12α.(3) 【答案】当∠BOC=β,其他条件不变时,∠MON=12∠AOB=12×90°=45°.(4) 【答案】∠MON总等于∠AOB的一半,而与∠BOC的大小无关.28.(1) 【答案】因为∠AOB=80°,OC是∠AOB的平分线,所以∠AOC=∠BOC=12∠AOB=40°. 因为OD,OE分别平分∠BOC,∠AOC,所以∠COD=12∠BOC=20°,∠COE=12∠AOC=20°,所以∠DOE=∠COD+∠COE=40°.第15页共16页(2) 【答案】因为OD,OE分别平分∠BOC,∠AOC,所以∠COD=12∠BOC,∠COE=12∠AOC,所以∠DOE=∠COD+∠COE=12(∠BOC+∠AOC)=12∠AOB=12×80°=40°.(3) 【答案】能.∠DOE=∠DOC−∠COE=12∠BOC−12∠AOC=12(∠BOC−∠AOC)=12∠AOB=12×80°=40°.29. 【答案】欲求从A点到B点的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形.如图所示.在两点之间,走线段最短,因而沿着从A到B的虚线(如上图)走路程最短.在正方体中,像这样的最短路线一共有六条,如图所示.。

七年级上册数学几何图形初步单元重点练习附答案 教师版

七年级上册数学几何图形初步单元重点练习附答案 教师版

【分析】先设两个角为α,β.则(α+β)+(α﹣β)=180°,整理得出这两个角的关系.
7.如图,将下面的平面图形绕直线 l 旋转一周,得到的立体图形是( )
第 2 页 共 23 页
A.
B.
C.
D.
【答案】 D 【解析】【解答】解:已知的平面图形是梯形,可以看成上面是长方形,下面是直角三角形,
∵面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱, ∴所求的图形:下面是圆锥,上面是圆柱 故答案为:D 【分析】根据面动成体,可知梯形绕下底边旋转是圆柱(上面)加圆锥(下面),即可得出答案。 8.一个正方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )
在 A、B 之间时:AC=AB-BC=3-1=2,当点 A、B、C 不在同一条直线上时,A、B、C 三点组成三角形,根据
三角形的三边关系 AB-BC <AC<AB+BC,即 2<AC<4,综上所述,选 D.故答案选 D.
【分析】①当 A,B,C 三点在一条直线上时,分点 B 在 A、C 之间和点 C 在 A、B 之间两种情况讨论;②
当 A,B,C 三点不在一条直线上时,根据三角形三边关系讨论.
6.两个角的和与这两个角的差互补,则这两个角( ).
A. 一个是锐角,一个是钝角;
B. 都是钝角;
C. 都是直角;
D. 必有一个是直角
【答案】 D
【解析】【解答】设两个角为α,β.则(α+β)+(α﹣β)=180°,即α=90°.故选 D.
A. 庆
B. 力
C. 大
D. 魅
【答案】A
【解析】【解答】解:易知“建”与“力”相对,“魅”与“大”相对,则“创”与“庆”相对.

七年级上册数学 几何图形初步单元测试卷(含答案解析)

七年级上册数学 几何图形初步单元测试卷(含答案解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)【答案】(1)解:∠ACE=∠BCD,理由如下:∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,∴∠ACE=∠BCD(2)解:若∠DCE=30°,∠ACD=90°,∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,∵∠BCE=90°且∠ACB=∠ACE+∠BCE,∠ACB=90°+60°=150°(3)解:猜想∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°(4)解:成立【解析】【分析】(1)根据同角的余角相等即可求证;(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;(4)根据重叠的部分实质是两个角的重叠可得。

最新人教版七年级数学上册《几何图形初步》全章综合测试题及解析.docx

最新人教版七年级数学上册《几何图形初步》全章综合测试题及解析.docx

人教版数学七年级上册“单元精品卷”(含精析)第四章几何图形初步(培优提高卷)题型选择题填空题解答题总分得分一、选择题。

(本题有10个小题,每小题3分,共30分)1.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A.B.C.D.2.某几何体的三视图如图所示,这个几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥3.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()A.4 B.6 C.8 D.124.如图所示,∠BAC=90°,AD⊥BC,垂足为D,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离.A.1个B.2个C.3个D.4个5.如图,平面内有公共端点的、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2015”在()A.射线OA上B.射线OB上C.射线OD上D.射线OE上6.下列说法中,不正确的是()A. 若点C在线段BA的延长线上,则BA=AC-BCB. 若点C在线段AB上,则AB=AC+BCC. 若AC+BC>AB,则点C一定在线段BA外D. 若A、B、C三点不在一直线上,则AB<AC+BC7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A、15°B、28°C、29°D、34°8.如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15 °30′,则下列结论中不正确...的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′9.如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是()【来源:21cnj*y.co*m】10.如图所示,把一张矩形纸片AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题。

【常考压轴题】2023学年七年级数学上册(人教版)几何图形初步考点训练(解析版)

【常考压轴题】2023学年七年级数学上册(人教版)几何图形初步考点训练(解析版)

几何图形初步考点训练1.如图 C 、D 是线段AB 上两点 M 、N 分别是线段AD 、BC 的中点 下列结论:①若AD=BM 则AB=3BD ;②若AC=BD 则AM=BN ;③AC -BD=2(MC -DN );④2MN=AB -CD .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④【答案】D【详解】解:∵M N 分别是线段AD BC 的中点 ∴AM=MD CN=NB. ①∵AD=BM ∴AM+MD=MD+BD ∴AM=BD. ∵AM=MD AB=AM+MD+DB ∴AB=3BD. ②∵AC=BD ∴AM+MC=BN+DN.∵AM=MD CN=NB ∴MD+MC=CN+DN ∴MC+CD+MC=CD+DN+DN ∴MC=DN ∴AM=BN.③AC -BD=AM+MC -BN -DN=(MC -DN)+(AM -BN)=(MC -DN)+(MD -CN)=2(MC -DN); ④AB -CD=AC+BD=AM+MC+DN+NB=MD+MC+DN+CN=MD+DN+MC+CN=2MN. 综上可知 ①②③④均正确 故答案为:D2.已知 点C 在直线 AB 上 AC =a BC =b 且 a ≠b 点 M 是线段 AB 的中点 则线段 MC 的长为( ) A .2a b+ B .2a b- C .2a b +或2a b- D .+2a b 或||2a b -∵AC =a BC =b ∴AB =AC +BC =a +b .∵AC =a BC =b ∴AB =AC +BC =a +b .∵AC =a BC =b ∴AB =BC -AC =b -a . BOD ∠ 下列结论:①180DOG BOE ∠+∠=︒; ②45AOE DOF ∠-∠=︒; ③180EOD COG ∠+∠=︒; ④90AOE DOF ∠+∠=︒ 其中正确的个数有( )A .1个B .2个C .3个D .4个.如图直线AB 与CD 相交于点60 一直角三角尺的直角顶点与点重合 OE 平分AOC ∠ 现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转 同时直线CD 也以每秒9的速度绕点O 顺时针旋转 设运动时间为t 秒(040t ≤≤) 当CD 平分EOF ∠时 t 的值为( )A .2.5B .30C .2.5或30D .2.5或32.5【答案】D【详解】解:分两种情况:①如图OC 平分EOF ∠时 45AOE ∠=︒即930345t t +︒-=︒ 解得 2.5t =;②如图OD 平分EOF ∠时 45DOE ∠=︒即918030345t t -︒+︒-=︒ 解得32.5t =.综上所述 当CD 平分EOF ∠时 t 的值为2.5或32.5. 故选:D .5.在锐角AOB ∠内部由O 点引出3种射线 第1种是将AOB ∠分成10等份;第2种是将AOB ∠分成12等份;第3种是将AOB ∠分成15等份 所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595 B .406C .35D .666∠的大小为()射线OD将∠BOE分成了角度数之比为2:1的两个角则COFA.45︒B.60︒C.72︒或45︒D.40︒或60︒故选:C.7.如图点O是钟面的中心射线OC正好落在3:00时针的位置.当时钟从2:00走到3:00 则经过___________分钟时针分针与OC所在的三条射线中其中一条射线是另外两条射线所夹角的角平分线.240EOF=100° OE平分∠AOP现将三角形EOF以每秒6°的速度绕点O逆时针旋转至三角形E′OF′ 同时直线PQ也以每秒9°的速度绕点O顺时针旋转至P′Q′ 设运动时间为m秒(0≤m≤20)当直线P′Q′平分∠E′OF′时则∠COP′=___.【详解】AOP∠=1 2AOP=∠AB OC⊥90AOC∴∠=︒EOF△以每秒6︒的速度绕点①如图1中当OP(69)Q OE m EOQ ''∠=︒+︒⨯-∠ 14m914COP '=︒⨯(AOC -∠-(9040-︒-50︒-︒76=︒故答案为:32︒或我们知道在9点整时 经过__________分钟后 时钟的时针与分针的夹角为105°.30此时∠AOC=0.5x∠BOD=6x此时∠AOC=0.5x∠BOD=360°-6x【答案】38°【详解】如下图设∠MCD=x° ∠MAD=y°∵AM 、CM 平分∠BAD 和∠BCD ∴∠BAF=y° ∠MCF=x° ∵∠B=34° ∠D=42°∴在△ABF 中 ∠BFA=180°-34°-y°=146°-y° 在△CED 中 ∠CED=180°-42°-x°=138°-x°∴∠CFM=∠AFB=146°-y° ∠AEM=∠CED=138°-x° ∴在△AME 中 y°+∠M+138°-x°=180° 在△FMC 中 x°+146°-y°+∠M=180° 约掉x 、y 得 ∠M=38° 故答案为:38°11.如图所示:已知5cm AB = 10cm BC = 现有P 点和Q 点分别从A B 两点出发相向运动 P 点速度为2cm/s Q 点速度为3cm/s 当Q 到达A 点后掉头向C 点运动 Q 点在向C 的运动过程中经过B 点时 速度变为4cm/s P Q 两点中有一点到达C 点时 全部停止运动 那么经过____s 后PQ 的距离为0.5cm .4753由题意得:5-2t -3t=0.5 解得:t=0.9s5⎛⎫5⎛⎫1010⎛⎫点D 从点B 出发 以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC = 若点M 为直线OA 上一点 且AM BM OM -= 则ABOM的值为_______.由AM-BM=OM得m-a-(m-b)=m 即:m=b-a;由AM-BM=OM得m-a-(b-m)=m 即:m=a+b;4+-a b a a由AM-BM=OM得a-m-(b-m)=-m 即:m=b-a=-5a;13.已知:如图1 30AOB ∠=︒ 34BOC AOC ∠=∠.(1)求AOC ∠的度数;(2)如图2 若射线OP 从OA 开始绕点O 以每秒旋转10︒的速度逆时针旋转 同时射线OQ 从OB 开始绕点O 以每秒旋转6︒的速度逆时针旋转;其中射线OP 到达OC 后立即改变运动方向 以相同速度绕O 点顺时针旋转 当射线OQ 到达OC 时 射线OP OQ 同时停止运动.设旋转的时间为t 秒 当10POQ ∠=︒时 试求t 的值;(3)如图3 若射线OP 从OA 开始绕O 点逆时针旋转一周 作OM 平分AOP ∠ ON 平分COP ∠ 试求在运动过程中 MON ∠的度数是多少?(请直接写出结果)由OP OQ 的运动可知 ∠AOP =10°t ∠BOQ =6°tOP OQ相遇前如图(3)∠BOC=∠COP+∠BOQ+∠POQ即90°=10°t-120°+6°t+10°③∠CON=180°前如图3(3)∵OM 平分∠AOP ON 平分∠COP(1)如图1 当∠C OD 在∠AOB 的内部时 若∠AOD =95° 求∠BOC 的度数;(2)如图2 当射线OC 在∠AOB 的内部 OD 在∠AOB 的外部时 试探索∠AOD 与∠BOC 的数量关系 并说明理由;(3)如图3 当∠COD 在∠AOB 的外部时 分别在∠AOC 内部和∠BOD 内部画射线OE OF 使∠AOE =23∠AOC ∠DOF =13∠BOD 求∠EOF 的度数.【答案】(1)85°(2)AOD ∠与BOC ∠互补 理由见解析(3)当060BOC <∠<︒或120180BOC <∠<时 80EOF ∠=︒;当60120BOC ︒<∠<︒时40EOF ∠=︒;当60BOC ∠=︒或120BOC ∠=︒时 40EOF ∠=︒或80EOF ∠=︒【解析】(1)解:∵120AOB ∠=︒ 95AOD ∠=︒ ∴25BOD AOB AOD ∠=∠-∠=︒ ∵60COD ∠=︒ ∴85BOC BOD COD ∠=∠+∠=︒; (2)AOD ∠与BOC ∠互补;理由如下:∵120AOD AOB BOD BOD ∠=∠+∠=︒+∠ 60BOC COD BOD BOD ∠=∠-∠=︒-∠ ∴12060AOD BOC BOD BOD ∠+∠=︒+∠+︒-∠180=︒ ∴AOD ∠与BOC ∠互补.120AOC n ∠=︒+︒ 60BOD n ∠=︒+︒则180AOC ∠=︒ 120AOD AOB ∠=∠=︒ 120BOD ∠=︒240AOC n ∠=︒-︒ 60BOD n ∠=︒+︒则180BOD ∠=︒ 120AOC AOD DOC ∠=∠+∠=︒111尺的直角顶点放在点O处直角边OM在射线OB上另一边ON在直线AB的下方.【操作一】:将图1中的三角尺绕着点O以每秒15︒的速度按顺时针方向旋转.当它完成旋转一周时停止设旋转的时间为t秒.∠的度数是___________ 图1中与它互补的角是___________.(1)BOC(2)三角尺旋转的度数可表示为___________(用含t的代数式表示):当t=___________⊥.时MO OC【操作二】:如图2将一把直尺的一端点也放在点O处另一端点E在射线OC上.如图3 在三角尺绕着点O以每秒15︒的速度按顺时针方向旋转的同时直尺也绕着点O以每秒5︒的速度按顺时针方向旋转当一方完成旋转一周时停止另一方也停止旋转设旋转的时间为t秒.(3)当t为何值时OM OE⊥并说明理由?(4)试探索:在三角尺与直尺旋转的过程中当623t≤≤是否存在某个时刻使得COM∠与COE∠中其中一个角是另一个角的两倍?若存在请求出所有满足题意的t的值;若不存在请说明理由.∵OM OE⊥∵OM OE⊥265252。

难点详解人教版七年级数学上册第四章几何图形初步综合测评试卷(含答案详解版)

难点详解人教版七年级数学上册第四章几何图形初步综合测评试卷(含答案详解版)

人教版七年级数学上册第四章几何图形初步综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面内两两相交的6条直线,交点个数最少为m 个,最多为n 个,则m n +等于( )A .12B .16C .20D .222、如图所示,与B 不是同一个角的是( )A .1∠B .ABC ∠ C .DBE ∠D .DAC ∠3、给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④4、若∠1与∠2互补,则∠1+∠2=( )A .90°B .100°C .180°D .360°5、把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是( )A .五棱锥B .五棱柱C .六棱锥D .六棱柱6、若12018'∠=︒,22015'30''∠=︒,320.25∠=︒,则( )A .123∠>∠>∠B .213∠>∠>∠C .132∠>∠>∠D .312∠>∠>∠7、如图,小林利用圆规在线段CE 上截取线段CD ,使CD AB =.若点D 恰好为CE 的中点,则下列结论中错误..的是( )A .CD DE =B .AB DE =C .12CE CD = D .2CE AB =8、下列图形是正方体展开图的个数为( )A .1个B .2个C .3个D .4个9、已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒10、一副直角三角板有不同的摆放方式,图中满足∠α与∠β相等的摆放方式是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、长方体纸盒的长、宽、高分别是10,8,5cm cm cm ,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是_______cm .2、由n 个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n 的最大值是________.3、如图,各图中的阴影部分绕着直线l 旋转360°,所形成的立体图形依次是_______.4、如图所示的三个图中,不是三棱柱的展开图的是_____.(只填序号)5、一个几何体的三视图如图所示,则该几何体的表面积为____________.三、解答题(5小题,每小题10分,共计50分)1、如图是由7个大小相同的小立方块搭成的一个几何体,请画出该几何体分别从上面、左面看到的形状图.2、如图,是一个几何体的表面展开图.(1)该几何体是________;A.正方体B.长方体 C .三棱柱 D .四棱锥(2)求该几何体的体积.3、 (1)下面这些基本图形和你很熟悉,试写出它们的名称;(2)将这些几何体分类,并写出分类的理由.4、如图,160AOB ∠=︒,OC 为其内部一条射线.(1)若OE 平分AOC ∠,OF 平分BOC ∠.求EOF ∠的度数;(2)若100AOC ∠=,射线OM 从OA 起绕着O 点顺时针旋转,旋转的速度是20︒每秒钟,设旋转的时间为t ,试求当AOM ∠+MOC ∠+MOB ∠200=时t 的值.5、如图,已知线段AB ,延长AB 到C ,使BC =13AB ,D 为AC 的中点,DC =2,求AB 的长.-参考答案-一、单选题1、B【解析】【分析】根据直线相交的情况判断出m 和n 的值后,代入运算即可.【详解】解:当六条直线相交于一点时,交点最少,则1m =当任意两条直线相交都产生一个交点时交点最多,∵且任意三条直线不过同一点∴此时交点为:6(61)215⨯-÷=∴15n =∴11516m n +=+=故选:B【考点】本题主要考查了直线相交的交点情况,找出交点个数是解题的关键.2、D【解析】【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】解:除了DAC ∠,其他三种表示方法表示的都是同一个角B .故选:D【考点】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字.3、C【解析】【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【考点】本题考查了认识立体图形,熟记各种图形的特征是解题关键.4、C【解析】【分析】由补角的概念,如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角,即可得出答案.【详解】解:1∠与2∠互补,∴∠+∠=︒,12180故选:C.【考点】本题主要考查补角的概念,解题的关键是利用补角的定义来计算.5、A【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选A .【考点】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.6、A【解析】【分析】由度分秒的换算法则,分别把每个角度化为度分秒形式,再进行判断,即可得到答案.【详解】解:∵12018'∠=︒,22015'30''∠=︒,320252015'∠=︒=︒., ∴123∠>∠>∠.故选:A .【考点】本题考查了角度的单位换算,角度的大小比较,解题的关键是掌握角度的单位进制是60进制.7、C【解析】【分析】根据线段中点的性质逐项判定即可.【详解】解:由题意得:D是线段CE的中点,AB=CDCE=CD=DE,即B、D正确,C错误.∴CD=DE,即选项A正确;AB=12故答案为C.【考点】本题考查了尺规作图和线段中点的性质,其中正确理解线段中点的性质是解答本题的关键.8、C【解析】【分析】根据正方体的展开图的特征,11种不同情况进行判断即可.【详解】解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.故选:C.【考点】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.9、A【解析】【分析】根据余角的定义、角度的四则运算即可得.【详解】和为90︒的两个角互为余角,且6032α'∠=︒,α∴∠的余角为909060322928α''︒-∠=︒-︒=︒,故选:A .【考点】本题考查了余角、角度的四则运算,熟练掌握余角的定义是解题关键.10、B【解析】【分析】根据题意分别求出∠α、∠β关系,做出判断即可.【详解】解:A. ∠α、∠β互余,不合题意;B.根据根据同角的余角相等可得∠α=∠β,符合题意;C. ∠α=60°,∠β=75°,不合题意;D. ∠α=45°,∠β=60°,不合题意.故选:B .【考点】本题考查了互为余角的意义.掌握同角的余角相等是解题的关键.二、填空题1、92【解析】【分析】分析长方体展开图所得的平面图形得到周长最小的情况,画出图形,然后计算,即可得到答案. 【详解】解:根据题意,长方体展开图所得的平面图形周长最小的情况:如下图,∴最小周长为:5884102=92⨯+⨯+⨯cm;故答案为:92.【点睛】本题考查了几何体的展开图,熟练掌握几何体的几种展开图是解题的关键.2、13【解析】【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,从上往下数,底面最多有 2+2+3=7 个,第二层最多有1+1+2=4 个,第三层最多有1+0+1=2 个,则n的最大值是 7+4+2=13故答案为:13.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.3、圆柱、圆锥、球体(球)【解析】【分析】长方形旋转得圆柱,三角形旋转可得圆锥,半圆旋转得球即可.【详解】解:根据各图中的阴影图形绕着直线I旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点睛】本题考查的是面动成体的知识,掌握圆柱、圆锥与球都是旋转体,是由长方形,三角形半圆旋转一周的几何体.4、③【解析】【分析】根据三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,可得答案.【详解】解:三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,所以不是三棱柱的展开图的是③.故答案为:③.【点睛】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.5、3π+4【解析】【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【详解】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故答案为:3π+4.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.三、解答题1、见解析【解析】【分析】由题意观察图形可知,从上面看到的图形是3列,从左往右正方形个数依次是2,1,1;从左面看到的图形是2列,从左往右正方形个数依次是3,1;据此即可画图.【详解】解:作图如下:【考点】本题主要考查从不同方向看得到的图形的画法,正确利用观察角度不同分别得出符合题意的图形是解题的关键.2、(1)C;(2)4【解析】【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C.(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2;故该几何体体积=底面积⨯高=22=4⨯.【考点】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.3、 (1)从左向右依次是球、圆柱、圆锥、长方体、三棱柱.(2)按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体【解析】【分析】(1)针对立体图形的特征,直接填写它们的名称即可;(2)按柱体、锥体、球体进行分类即可.【详解】解:(1)从左向右依次是球、圆柱、圆锥、长方体、三棱柱.(2)观察图形,按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.【考点】本题考查了立体图形的认识和几何体的分类,熟记立体图形的特征是解决本题的关键.4、(1)80EOF ∠=;(2)3t s =或7t s =,【解析】【分析】(1)根据角平分线定义和角的和差计算即可;(2)分四种情况讨论:①当OM 在∠AOC 内部时,②当OM 在∠BOC 内部时,③当OM 在∠AOB 外部,靠近射线OB 时,④当OM 在∠AOB 外部,靠近射线OA 时.分别列方程求解即可.【详解】(1)∵OE 平分∠AOC ,OF 平分∠BOC , ∴∠1=12∠AOC ,∠2=12∠BOC ,∴∠EOF =∠1+∠2=12∠AOC +12∠BOC =12(∠AOC +∠BOC )=12∠AOB .∵∠AOB =160°,∴∠EOF =80°.(2)分四种情况讨论:①当OM 在∠AOC 内部时,如图1.∵∠AOC =100°,∠AOB =160°,∴∠MOB =∠AOB -∠AOM =160°-20t .∵∠AOM+∠MOC+∠MOB=∠AOC+∠MOB=200°,∴100°+160°-20t=200°,∴t=3.②当OM在∠BOC内部时,如图2.∵∠AOC=100°,∠AOB=160°,∴∠BOC=∠AOB-∠AOC=160°-100°=60°.∵∠AOM+∠MOC+∠MOB=∠AOM+∠COB=200°,∴2060200t+=,∴t=7.③当OM在∠AOB外部,靠近射线OB时,如图3,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵∠AOM =20t ,∴∠MOB =∠AOM -∠AOB =20160t ︒-︒,∠MOC =20100t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴202010020160200t t t ︒+︒-︒+︒-︒=︒,解得:t =233. ∵∠AOB =160°,∴OM 转到OB 时,所用时间t =160°÷20°=8. ∵233<8, ∴此时OM 在∠BOC 内部,不合题意,舍去.④当OM 在∠AOB 外部,靠近射线OA 时,如图4,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵36020AOM t ∠=︒-︒,∴∠MOC =∠AOM +∠AOC =36020100t ︒-︒+︒=46020t ︒-︒,∠MOB =∠AOM +∠AOB =36020160t ︒-︒+︒=52020t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴()()()360204602052020200t t t ︒-︒+︒-︒+︒-︒=︒,解得:t =19.当t =19时,20t =380°>360°,则OM 转到了∠AOC 的内部,不合题意,舍去.综上所述:t =3s 或t =7s .【考点】本题考查了角的和差和一元一次方程的应用.用含t 的式子表示出对应的角是解答本题的关键.5、AB=3.【解析】【分析】先设BC=x ,则AB=3x ,再根据DC=2,列出等式求出x 的值即可.【详解】设BC=x ,则AB=3x , ∴DC=2AB BC +=2x=2, ∴x=1,∴AB=3.【考点】本题考查了线段的知识点,解题的关键是根据线段中的等量关系列式求值.。

七年级上册数学几何图形初步重点难点题型全覆盖试卷附详细答案

七年级上册数学几何图形初步重点难点题型全覆盖试卷附详细答案

七年级上册数学几何图形初步重点难点题型全覆盖试卷附详细答案一、单选题(共14题;共28分)1.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A. B. C. D.2.下列语句,正确的是().A. 直线可表示一个平角;B. 平角的两边向左右无限延伸;C. 延长线段AB至点C,则∠ACB=180°;D. 在一条直线上顺次取三点A、B、C,则∠ABC=180°3.两个角的和与这两个角的差互补,则这两个角().A. 一个是锐角,一个是钝角;B. 都是钝角;C. 都是直角;D. 必有一个是直角4.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A. 36B. 37C. 38D. 395.有三个点A,B,C,过其中每两个点画直线,可以画出直线()A. 1条B. 2条C. 1条或3条D. 无法确定6.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q是AM 的中点,则MN:PQ等于()A. 1B. 2C. 3D. 47.一个几何体的表面展开图如图所示,则这个几何体是()A. 四棱锥B. 四棱柱C. 三棱锥D. 三棱柱8.下列平面图形中不能围成正方体的是( )A. B.C. D.9.小强制作了一个正方体模型的展开图,如图所示,把“读书使人进步”六个字分别粘贴在六个面上,那么在正方体模型中与“书”相对的面上的字是()A. 使B. 人C. 进D. 步10.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A. B. C. D.11.下列说法正确的有()句.①两条射线组成的图形叫做角;②同角的补角相等;③若AC=BC,则C为线段AB的中点;④线段AB就是点A与点B之间的距离;⑤平面上有三点A、B、C,过其中两点的直线有三条或一条.A. 0B. 1C. 2D. 312.下列图形中能用∠1,∠AOB,∠O三种方法表示同一个角的图形是()A. B. C. D.13.下列说法中正确的有( )(1)过两点有且只有一条直线(2)连接两点的线段叫两点的距离(3)两点之间线段最短(4)如果AB=BC,则点B是线段AC的中点A. 1B. 2C. 3D. 414.用一个放大镜去考查一个角的大小,正确的说法是()A. 角的度数扩大了B. 角的度数缩小了C. 角的度数没有变化D. 以上都不对二、填空题(共12题;共17分)15.如图,已知C、D是AB上两点,且AB=20cm,CD=6cm,M是AD的中点,N是BC的中点,则线段MN 的长为________cm.16.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD的中点,则MN=________cm.17.时钟的分针1小时转________度,时针1小时转________ 度;时钟的分针1•分钟转________度,时针1分钟转________ 度.18.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是________cm2.19.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是________ .20.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼________米处.BM,点P、Q 分别是AM、AB 的中点.21.已知线段AB=16,AM= 13请从(A)、(B)两题中任选一题作答.(A)如图,当点M 在线段AB 上时,则PQ 的长为________.(B)当点M 在直线AB 上时,则PQ 的长为________.22.如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.23.如图所示,共有线段________条,共有射线________条.24.如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y=________.25.观察下列图形,并阅读图形下面的相关文字:像这样,十条直线相交,最多有________个交点.26.上午6点45分时,时针与分针的夹角是________度.三、计算题(共3题;共35分)27.一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?28.计算:(1)28°32′46″+15°36′48″;(2)(30°-23′40″).29.计算下列各题:(1)153°19′42″+26°40′28″;(2)90°3″﹣57°21′44″;(3)33°15′16″×5;(4)175°16′30″﹣47°30′÷6+4°12′50″×3.四、解答题(共9题;共50分)30.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?31.定义:从一个角的顶点出发,把这个角分成1∶2的两个角的射线,叫作这个角的三分线,显然,一个角的三分线有两条.例如:如图①,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)已知:如图①,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC的度数;(2)已知:∠AOB=90°,如图②,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n度得到∠C′OD′,当OA恰好是∠C′OD′的三分线时,求n的值.32.如图,C是线段AB的中点,D是线段AC上一点,AD-DC=2cm,已知AB=12cm,求DC的长度.33.如图,已知∠AOC:∠BOC=1:4,OD平分∠AOB,且∠COD=36°,求∠AOB的度数.34.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)35.如图,是一个3×3方格,试求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8+∠9的度数.36.第一行的平面图形绕虚线旋转一周能得到第二行的一个几何体,请用线连接起来.37.如图,在A、B两个营地之间有一条河(假定河岸是平行的直线).如何在河上架一座与河岸垂直的桥,并从A、B分别修路到桥,使得路的总长最短?38.如图,C,D,E将线段AB分成2:3:4:5四部分,M,P,Q,N分别是AC,CD,DE,EB的中点,且MN=21,求PQ的长.39.如图,已知点A、B、C,根据下列语句画图:(尺规作图,要保留作图痕迹.)(1)画出直线AB;(2)画出射线AC;(3)在线段AB的延长线上截取线段BD,使得AD=AB+BC;(4)画出线段CD.40.如图,已知四点A、B、C、D,请用尺规作图完成(保留作图痕迹)(1)画直线AB;(2)画射线AC;(3)求作点P,使PA+PB+PC+PD的值最小.41.已知平面上A,B,C,D四个点,按下列要求画出图形.(1)连接AB,DC;(2)过A,C作直线AC;(3)作射线DB交AC于O;(4)延长AD,BC相交于K.42.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=________(填空)的值.(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求MNAB43.如图,线段AB,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)若AB=8cm,AC=3.2cm,求线段MN的长;(2)若BC=a,试用含a的式子表示线段MN的长.44.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?45.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM 上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是________;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是________(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.46.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P 运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.(1)已知数轴上A、B两点分别表示-3、5,则AB=________,数轴上M、N两点分别表示数m、n,则MN=________;(2)如图1,E、F为线段AB的三等分点,P为直线AB上一动点(P不与E、F、A重合),在点P运动过程中,PE、PF、PA有何数量关系?请写出结论并说明理由(3)已知如图2,数轴上AB=10,M、N两点分别表示数m、n,且n-m=2,求出MA+NB的最小值并说明理由(M、N不与A、B重合)48.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.50.如图,P是线段AB上任一点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.答案解析部分一、单选题1.【答案】B【考点】几何体的展开图【解析】【解答】解:选项A、C、D折叠后都符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形不交于一个顶点,•与正方体三个剪去三角形交于一个顶点不符.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.2.【答案】D【考点】角的概念【解析】【解答】A. 一个角由有公共端点的两射线组成,一个平角的两边在一条直线上,则一条直线不是一个平角,所以错误;B.角的两边是射线,射线是无限长的,不能说无限延伸射线,故说法错误;C.角的两边应该是射线,延长线段AB至点C,AB和BC都是线段,故错误; D . 在一条直线上顺次取三点A、B、C,则∠ABC是平角,等于180°,正确;故答案选D.【分析】根据角的定义意义进行分析,然后排出错误的答案.3.【答案】D【考点】角的运算,余角、补角及其性质【解析】【解答】设两个角为α,β.则(α+β)+(α﹣β)=180°,即α=90°.故选D.【分析】先设两个角为α,β.则(α+β)+(α﹣β)=180°,整理得出这两个角的关系.4.【答案】B【考点】直线、射线、线段,直线的性质:两点确定一条直线【解析】【解答】最多有9×(9−1)个交点,最少有1个交点,所以m+n=36+1=37.故选B.2个交点,最少有一个交点.【分析】平面内两两相交的n条直线最多有n×(n−1)25.【答案】C【考点】直线、射线、线段【解析】【解答】①、当三点在同一条直线上时,只能画一条;②、当三点不在同一条直线上时可以画3条;故答案选C.【分析】解本题主要考虑两种情况:三点在同一条直线上和三点不在同一条直线上,过不在同一条直线上条直线.的n个点,可以画n×(n−1)26.【答案】 B【考点】线段的长短比较与计算【解析】【解答】 A.两点之间的连线中,线段最短,错误;B.根据中点的定义可知若P 是线段AB 的中点,则AP=BP , 正确;C.只有当点P 在线段AB 上,且AP=BP 时,点P 才是线段AB 的中点,错误;D.连接两点的线段的长度叫做两点的距离,错误.所以选B .【分析】根据B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,可知PQ=AP-AQ= 12AN- 12AM= 12 (AN-AM )= 12MN , 即可得出答案.7.【答案】 A【考点】几何体的展开图【解析】【解答】如图所示:这个几何体是四棱锥.故选:A .【分析】根据四棱锥的侧面展开图得出答案. 8.【答案】A【考点】几何体的展开图【解析】【解答】∵根据常见的不能围城正方体的展开图的形式:“一线不过四,田、凹应弃之.” ∴只有A 选项不能围成正方体. 故答案为:A .【分析】据常见的不能围城正方体的展开图的形式:“一线不过四,田、凹应弃之.”由此即可得出答案. 9.【答案】 D【考点】几何体的展开图【解析】【解答】结合展开图可知,与“书”相对的面上的字是“步”.故答案为:D .【分析】运用展开图找对面的基本法则“隔行隔列法”. 10.【答案】B【考点】几何体的展开图【解析】【解答】解:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B . 故选:B .【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决. 11.【答案】C【考点】直线、射线、线段,角的概念,余角、补角及其性质【解析】【解答】解:①由一个点出发的两条射线组成的图形叫角,故①错误; ③若AC=BC ,此时点C 在线段AB 的垂直平分线上,故③错误;④线段AB的长度是点A与点B之间的距离,故④错误;故选(C)【分析】根据角、直线,线段,射线,补角的概念即可得出判断.12.【答案】B【考点】角的概念【解析】【解答】A、不能用∠1,∠AOB,∠O三种方法表示同一个角,故A不符合题意;B、能用∠1,∠AOB,∠O三种方法表示同一个角,故B符合题意;C、不能用∠1,∠AOB,∠O三种方法表示同一个角,故C不符合题意;D、不能用∠1,∠AOB,∠O三种方法表示同一个角,故D不符合题意;故答案为:B.【分析】角可以用一个大写字母表示,也可以用三个大写字母表示,其中顶点字母要写在中间,当顶点处只有一个角时,才能用顶点处的一个字母表示,否则分不清这个字母表示的是哪个角;角还可以用一个希腊字母表示或阿拉伯数字表示,据此判断即可.13.【答案】B【考点】直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,线段的中点【解析】【分析】根据两点确定一条直线,两点间的距离的定义,两点之间线段最短,对各选项分析判断利用排除法求解.【解答】A、过两点有且只有一条直线,正确,故本选项正确;B、连接两点的线段的长度叫做两点的距离,故本选项错误;C、两点之间,线段最短,故本选项正确;D、AB=BC,则点B是AC的中点错误,因为A、B、C三点不一定共线,故本选项错误.故选B.【点评】本题考查了直线的性质,线段的性质,以及两点间的距离的定义,是基础题,熟记相关性质是解题的关键.14.【答案】C【考点】角的大小比较【解析】【解答】用放大镜看一个角的大小时,角的度数不会发生变化,故答案为:C【分析】根据角的大小是由角的两条射线张开的角度决定的,得到用放大镜去考查一个角的大小时,角的度数没有变化.二、填空题15.【答案】7【考点】两点间的距离【解析】【解答】∵AB=20cm,CD=6cm,∴设AC=x,则BD=14﹣x,∵M是AD的中点,N是BC的中点,∴AM=DM= (AC+CD)= (x+6),BC=CD+BD=20﹣x,CN=BN=10﹣x,∴AN=CN+AC=10+ x,∴MN=AN﹣AM=10+ x﹣x﹣3=7(cm).故答案为:7cm.【分析】设AC=x,则BD=14﹣x,再用x表示出各线段的长度,再根据MN=AN﹣AM即可得出结论.16.【答案】8【考点】两点间的距离【解析】【解答】∵M、N分别是AC、BD的中点,∴MN=MC+CD+ND= 12AC+CD+ 12DB= 12(AC+DB)+CD= 12(AB﹣CD)+CD= 12×(10﹣6)+6=8.故答案为:8.【分析】MN的长可整体上求,CD是已知量,只要求出MC+DN即可,不必求出MC、DN的长,然后转化为12(AC+BD)=12(AB−CD)即可.17.【答案】360;30;6;0.5【考点】钟面角、方位角,角的计算【解析】【解答】每过1小时,则分针转360度,每分钟分针转36060=6度.每过1小时,则时针转30度,每分钟时针转3060=0.5度;故答案为:360,30,6, 0.5【分析】钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°,钟表上12个数字,每相邻两个数字之间的夹角为30°.则每过1小时,则时针转30度,每分钟时针转0.5度;进而得出分针每小时和每分钟转动的角度18.【答案】30【考点】认识立体图形【解析】【解答】解:通过观察,从前、后、左、右、上5个方向各有6个面暴露,∴涂颜色的面积为5×6=30cm2故答案为:30。

七年级数学上册几何图形初步单元测试卷(含答案解析)

七年级数学上册几何图形初步单元测试卷(含答案解析)

由(2)知,∠ EFD=∠ BEF+30° 设∠ BEF=2x°,则∠ EFD=(2x+30)° ∵ EP 平分∠ BEF,GF 平分∠ EFD
∴ ∠ PEF= ∠ BEF=x°,∠ EFG= ∠ EFD=(x+15)° ∵ FH∥ EP ∴ ∠ PEF=∠ EFH=x°,∠ P=∠ HFG ∵ ∠ HFG=∠ EFG-∠ EFH=15° ∴ ∠ P=15° 【解析】【解答】解:(1)分别过点 E、F 作 EM∥ AB,FN∥ AB,则有 AB∥ EM∥ FN∥ CD. ∴ ∠ B=∠ BEM=30°,∠ MEF=∠ EFN,∠ DFN=180°-∠ CDF=60°, ∴ ∠ BEF=∠ MEF+30°,∠ EFD=∠ EFN+60°, ∴ ∠ EFD=∠ BEF+30°=90°. 【分析】(1)分别过点 E、F 作 AB 的平行线,根据平行线的性质即可求解; (2)根据平行线的性质可得∠ DFN=60°,∠ BEM=30°,∠ MEF=∠ NFE,即可得到结论; (3)过点 F 作 FH∥ EP,设∠ BEF=2x°,根据(2)中结论即可表示出∠ BFD,根据角平分线 的定义可得∠ PEF=x°,∠ EFG=(x+15)°,再根据平行线的性质即可得到结论.
(2)解:设∠ EHM=x, ∵ HG⊥HE, ∴ ∠ GHK=90°-x, ∵ MH 平分∠ CHG, ∴ ∠ EHC=90°-2x, ∵ AB∥ CD ∴ ∠ HMB=90°-x, ∴ ∠ HMB=∠ MHG=90°-x, ∵ AB∥ CD, ∴ ∠ BMH+∠ DHM=180°,即∠ BMH+∠ GHM+∠ GHD =180°, ∴ 90°-x+90°-x+∠ GHD =180°,解得,∠ GHD =2x, ∴ ∠ GHD=2∠ EHM;

部编数学七年级上册专题12几何图形初步章末重难点题型(13个题型)(解析版)含答案

部编数学七年级上册专题12几何图形初步章末重难点题型(13个题型)(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题12 几何图形初步章末重难点题型(13个题型)一、经典基础题题型1 直线、射线、线段、角的基本概念题型2 角的表示、换算及比较大小题型3 直线、射线、线段的实际生活中的应用题型4 线段、角度中的计数问题题型5 作图问题题型6 与线段有关的计算题型7 实际背景下线段的计算问题题型8 钟面上的角度问题题型9 方位角问题题型10 一副直角三角形板中的角度问题题型11 与角平分线(角的和差)有关的计算题型12 余角、补角、对顶角的相关计算题型13 七巧板相关问题二、优选提升题题型1 直线、射线、线段、角的基本概念解题技巧:熟练掌握直线、射线、线段基本性质和概念。

数学七年级上册 几何图形初步综合测试卷(word含答案)

数学七年级上册 几何图形初步综合测试卷(word含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是________;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式 =3,若存在,求线段PD的长;若不存在,请说明理由.【答案】(1)解:设运动t秒时,BC=8单位长度,①当点B在点C的左边时,由题意得:6t+8+2t=24解得:t=2(秒);②当点B在点C的右边时,由题意得:6t﹣8+2t=24解得:t=4(秒)(2)解:4或16(3)解:存在关系式 =3.设运动时间为t秒,1)当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,AP+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即 =3;2)当3<t<时,点C在点A和点B之间,0<PC<2,①点P在线段AC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+2PC=AB﹣BC+2PC=2﹣BC+2PC,当PC=1时,有BD=AP+3PC,即 =3;点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC,当PC= 时,有BD=AP+3PC,即 =3;3°当t= 时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC= 时,有BD=AP+3PC,即 =3;4°当<t 时,0<PC<4,BD=CD﹣BC=4﹣BC,AP+3PC=AB﹣BC+4PC=2﹣BC+4PC,PC= 时,有BD=AP+3PC,即 =3.∵P在C点左侧或右侧,∴PD的长有3种可能,即5或3.5【解析】【解答】解:(2)当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.【分析】(1)设运动t秒时,BC=8(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;(2)由(1)中求出的运动时间即可求出点B在数轴上表示的数;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.2.如图(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。

七年级数学上册几何图形初步综合测试卷(word含答案)

七年级数学上册几何图形初步综合测试卷(word含答案)

交 BE 于 点 H , 根 据 平 行 线 性 质 过点 G 作
交 BE 于点 H,得到
,因为
,所以
,得到

即可求解.(4)过点 G 作
交 BE 于点 H,得∠ DEC=∠ EGH,因为
,推得∠ HGF+∠ BFG=180°,即可求解.
2.如图下图所示,已知 AB//CD, ∠ B=30°,∠ D=120°;
这三个角的度数和是否为一个定
值? 如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点 E 在线段 AC 的延长线上时,(2)中的结论是否仍然成立?如果不成
立, 请直接写出
之间的关系.
(4)当点 E 在线段 CA 的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直
接 写出
之间的关系.
【答案】 (1)解:∵ ∴
∵ ∴

(2)解: 过点 G 作 ∴ ∵ ∴ ∴


这三个角的度数和为一个定值,是 交 BE 于点 H
(3)解:过点 G 作 ∴ ∵ ∴ ∴


交 BE 于点 H

的关系仍成立
(4)不成立| ∠ EGF-∠ DEC+∠ BFG=180° 【解析】【解答】解:(4)过点 G 作
∴ ∠ DEC=∠ EGH ∵ ∴ ∴ ∠ HGF+∠ BFG=180° ∵ ∠ HGF=∠ EGF-∠ EGH ∴ ∠ HGF=∠ EGF-∠ DEC ∴ ∠ EGF-∠ DEC+∠ BFG=180°
请直接写出∠ P 与∠ A+∠ B+∠ E+∠ F 的数量关系: ▲ . 【答案】 (1)解:探究一:∵ ∠ FDC=∠ A+∠ ACD,∠ ECD=∠ A+∠ ADC, ∴ ∠ FDC+∠ ECD=∠ A+∠ ACD+∠ A+∠ ADC=180°+∠ A;

部编数学七年级上册专题04几何图形初步(解析版)含答案

部编数学七年级上册专题04几何图形初步(解析版)含答案

专题04 几何图形初步一、单选题1.下列平面图形绕虚线旋转一周,能形成如图所示几何体的是( )A.B.C.D.【答案】C【分析】根据“面动成体”进行判断即可.【解析】解:将平面图形绕着虚线旋转一周可以得到的几何体为,故选:C.【点睛】本题考查点、线、面、体,理解“点动成线,线动成面,面动成体”是正确判断的前提.2.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.12AC AB=B.AC CB=C.2AB CB=D.AC CB AB+=【答案】D【分析】根据线段中点的定义,结合选项一一分析,排除答案即可.【解析】解:A、B、C均能确定点C是线段AB的中点,不符合题意D选项中不论点C在线段AB的什么位置都满足AC CB AB+=,所以点C不一定是线段AB的中点,符合题意,故选D .【点睛】此题考查了线段中点的定义,正确理解线段中点的定义及线段的和的关系是解题的关键.3.下列说法正确的个数是( )①连接两点之间的线段叫两点间的距离;②线段AB 和线段BA 表示同一条线段;③木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;④若2AB CB =,则点C 是AB 的中点.A .1个B .2个C .3个D .4个【答案】A【分析】根据直线的性质,两点的距离的概念,线段中点的概念判断即可.【解析】解:连接两点之间的线段的长叫两点间的距离,故①不符合题意;线段AB 和线段BA 表示同一条线段,正确,故②符合题意;木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,故③不符合题意;若2AB CB =,点C 可能在AB 外,则点C 不一定是AB 的中点,故④不符合题意;故选:A .【点睛】本题考查了直线的性质,两点的距离的概念,线段中点的概念,正确理解定义是解题的关键.4.如图是由6个大小相同的正方体搭成的几何体,其左视图是( )A .B .C .D .【答案】B【分析】根据三视图的定义,从左边看到的图形是左视图,即可判断.【解析】解:根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选:B .【点睛】本题考查了三视图,解题的关键是明确左视图是从物体的左边观察得到的图形.5.已知三条射线OA ,OB ,OC ,OA ⊥OC ,∠AOB =60°,则∠BOC 等于( )A .150°B .30°C .40°或140°D .30°或150°【答案】D 【分析】直接根据题意绘制图形,进而结合分类讨论得出符合题意的答案.【解析】解:分两种情况讨论,如图1所示,∵OA ⊥OC ,∴=90AOC а,∵∠AOB =60°,∴906030BOC AOC AOB Ð=Ð-Ð=°-°=°;如图2所示,∵OA ⊥OC ,∴=90AOC а,∵∠AOB =60°,∴9060150BOC AOC AOB Ð=Ð+Ð=°+°=°.综上所述,∠BOC 等于30°或150°.故选:D .【点睛】本题主要考查了角的计算,正确利用分类讨论的思想分析问题是解题的关键.6.点C 是线段AB 的三等分点,点D 是线段AC 的中点.若线段18cm AB =,则线段BD 的长为( )A .12cmB .15cmC .8cm 或10cmD .12cm 或15cm【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.7.下列关于余角、补角的说法,正确的是()A.若∠α+∠β=90°,则∠α与∠β互余B.若∠1+∠2=90°,则∠1 与∠2 互补C.若∠1+∠2+∠3=90°,则∠1,∠2,∠3 互余D.若∠α+∠β+∠γ=180°,则∠α,∠β,∠γ互补【答案】A【分析】若两个角的和为90°,则这两个角互余;若两个角的和为180°,则这两个角互补.根据此定义判断即可.【解析】A.若∠α+∠β=90°,则∠α与∠β互余,此选项符合题意;B.若∠1+∠2=90°,则∠1 与∠2 互余,此选项不符合题意;C.3个角不符合互余的定义,此选项不符合题意;D.3个角不符合互补的定义,此选项不符合题意.故选:A.【点睛】本题考查了余角和补角,解题的关键是熟悉余角和补角的定义和性质.8.“病毒无情人有情”,2022年正值全民抗击疫情的关键之年,小茜同学在一个正方体每个面上分别写一个汉字,组成“全力抗击疫情”,如图是该正方体的一种展开图,那么在原正方体上,与汉字“疫”相对的面上所写汉字为()A.全B.力C.抗D.击【答案】B【分析】根据空间想象能力判断出与汉字“疫”相对的面.【解析】解:与汉字“疫”相对的面上所写汉字为“力”.故选:B.【点睛】本题考查正方体的展开图,解题的关键是掌握正方体展开图中面与面的对应关系.9.若一个角的余角是它的补角的25,则这个角的度数是()A.30°B.60°C.120°D.150°【答案】A10.如图,点O 为线段AD 外一点,点M ,C ,B ,N 为AD 上任意四点,连接OM ,OC ,OB ,ON ,下列结论不正确的是( )A .以O 为顶点的角共有15个B .若MC CB =,MN ND =,则2CD CN=C .若M 为AB 中点,N 为CD 中点,则()12MN AD CB =-D .若OM 平分AOC Ð,ON 平分BOD Ð,5AOD COB Ð=Ð,则()32MON MOC BON Ð=Ð+Ð二、填空题11.如果一个几何体的三视图之一是三角形,那么这个几何体可能是__________,_________,________.(写出3个即可)【答案】三棱柱、三棱锥、圆锥【解析】如果俯视图是三角形,则这个几何体可能是三棱锥,如果主视图或左视图是三角形,则这个几何体可能是三棱锥或圆锥.故答案为(1). 三棱柱、(2). 三棱锥、(3). 圆锥12.计算79°12′+21°49′的结果为__________.°【答案】1011¢【分析】根据角度的和进行计算,注意进位【解析】解:79°12′+21°49′100611011¢¢=°=°故答案为:1011¢°【点睛】本题考查了角度的运算,注意单位与进位是解题的关键.13.某几何体的三视图如图所示,则这个几何体是__________.【答案】圆锥【分析】根据三视图(主视图、左视图、俯视图)的概念即可得.【解析】由三视图(主视图、左视图、俯视图)可知这个几何体的形状如下:即这个几何体是圆锥故答案为:圆锥.【点睛】本题考查了由三视图判定几何体的形状,熟练掌握相关概念是解题关键.14.一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积是_______cm 2.【答案】6【解析】解:根据长方体的主视图和左视图得:这个长方体的高是4,底面长是3,底面宽是2;∴长方体的俯视图就是其底面的图形是长是3,宽是2的长方形,∴它的面积= 32´=6.故答案为:6【点睛】本题考查俯视图,解答本题需要掌握三视图的概念,会观察几何体的俯视图,此类题比较简单15.平面上不重合的四条直线,可能产生交点的个数为_____个.【答案】0,1,3,4,5,6【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解析】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点睛】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高,学会分类讨论思想是解题的关键.16.如图,OB 平分AOC Ð,OD 平分COE Ð,100AOC Ð=°,40EOC Ð=°,则BOD Ð的度数为___°.【答案】70°【分析】根据角平分线定义先求出∠BOC 的度数,和∠COD ,然后根据两角和求解即可.【解析】解:∵∠AOC =100°,∠COE =40°,∵OB 平分∠AOC ,∴∠BOC =∠AOB =50°,∵OD 平分∠COE ,∴∠COE =2∠COD =40°.∴∠COD =20°,∴∠BOD=∠BOC+∠DOC=50°+20°=70°.故答案为:70°.【点睛】本题考查了角的计算、角平分线的定义,角的和,解题的关键是熟练掌握角平分线定义.17.如图,点B 在线段AC 上,BC =25AB ,点D 是线段AC 的中点,已知线段AC =14,则BD =______.18.如图,已知射线OC 在AOB Ð内部,OD 平分AOC Ð,OE 平分BOC Ð,OF 平分AOB Ð,现给出以下4个结论:①DOE AOF Ð=Ð;②2DOF AOF COF Ð=Ð-Ð;③AOD BOC Ð=Ð;④()12EOF COF BOF Ð=Ð+Ð其中正确的结论有(填写所有正确结论的序号)______.三、解答题19.读句画图.(1)画射线BA ,连接BC 并延长线段BC 至E ;(2)用直尺和圆规作DCE Ð,使得DCE ABC Ð=Ð.【答案】(1)见解析(2)见解析【分析】(1)根据射线和线段的定义即可作射线BA ,线段BC ;(2)利用基本作图(作一个角等于已知角)作DCE Ð,使得DCE ABC Ð=Ð.(1)如图1,射线BA ,线段BC 即为所求,(2)如图2,DCE Ð即为所求,【点睛】本题考查了作图—基本作图,作射线,线段,作一个角等于已知角,熟练掌握基本作图的方法是解本题的关键.20.如图,C 是线段AB 上的一点,AC :CB =2:1.(1)图中以点A ,B ,C 中任意两点为端点的线段共有 条.(2)若AC =4,求AB 的长.【答案】(1)3(2)6【分析】(1)从图中找出所有线段即可;(2)由AC =4,AC :CB =2:1,求得CB 的长度,利用线段的和即可得到AB 的长.(1)解:以点A ,B ,C 中任意两点为端点的线段是AB 、AC 、BC ,共有3条,故答案为:3(2)解:∵AC =4,AC :CB =2:1,∴CB =2,∴AB =AC +CB =4+2=6.【点睛】此题考查了线段、线段的和差,熟练掌握线段的和差运算是解题的关键.21.如图1,把一张长10cm 、宽6cm 的长方形纸板分成两个相同的直角三角形(圆锥的体积公式为213V r h p =,π取3.14).(1)甲三角形(如图2)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?(2)乙三角形(如图3)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?22.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.(1)若10cm AB =,则MN = cm ;若=6cm M N ,则AB = cm .(2)若5AC =,2CP =,求线段PN 的长.【答案】(1)5,12(2)2.523.如图,OB 是AOC Ð的平分线,OD 是EOC Ð的平分线.(1)如果76AOD Ð=°,18BOC Ð=°,则DOE Ð的度数为 ;(2)如果54BOD Ð=°,求AOE Ð的度数.【答案】(1)40°(2)108°【分析】(1)利用角平分线的定义解答即可;(2)利用角平分线的定义易求2AOE BOD Ð=Ð.【解析】(1)解:76AOD Ð=°Q ,18BOC Ð=°,761858DOC AOB \Ð+Ð=°-°=°,OB Q 是AOC Ð的平分线,18BOC AOB \Ð=Ð=°,581840DOC \Ð=°-°=°,OD Q 是EOC Ð平分线,40DOE COD \Ð=Ð=°,故答案为:40°;(2)OB Q 平分AOC Ð,OD 平分EOC Ð,2AOC BOC \Ð=Ð,2COE COD Ð=Ð,54BOC COD BOD Ð+Ð=Ð=°Q ,AOE AOC COE Ð=Ð+ÐQ ,()22108AOE BOC COD BOD \Ð=Ð+Ð=Ð=°.【点睛】本题考查了角平分线的定义,解题时,实际上是根据角平分线定义得出所求角与已知角的关系转化求解.24.如图是一个正方体纸盒的展开图,已知这个正方体纸盒相对面上的代数式的值相等.(1)求a ,b ,c 的值;(2)求代数式()234bc abc bc abc ---的值.25.如图,直线、AB CD 相交于点O 。

七年级上册几何图形初步单元试卷(word版含答案)

七年级上册几何图形初步单元试卷(word版含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O =40°,∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=又∵CF平分∠ACD ,∴ (角平分线定义)∴∠ECF=(2)证明:∵CG⊥CF,∴ .∴又∵)∴∵∴ (等角的余角相等)即CG平分∠OCD(3)解:结论:当∠O=60°时,CD平分∠OCF .当∠O=60°时∵DE//OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD∴∠DCF=60°,∴即CD平分∠OCF【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.2.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=________(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【答案】(1)2;4(2)解:当点C、D运动了2 s时,CM=2 cm,BD=4 cm∵AB=12 cm,CM=2 cm,BD=4 cm∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm(3)4(4)解:①当点N在线段AB上时,如图1,∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=4∴MN=AB﹣AM﹣BN=12﹣4﹣4=4∴ = = ;②当点N在线段AB的延长线上时,如图2,∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB=12∴ = =1;综上所述 = 或1【解析】【解答】解:(1.)根据题意知,CM=2cm,BD=4cm,∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,故答案为:2,4;(3.)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM= AB=4,故答案为:4;【分析】(1)根据运动速度和时间分别求得CM、BD的长,根据线段的和差计算可得;(2)由题意得CM=2 cm、BD=4 cm,根据AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD可得答案;(3)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM= AB;(4)分点N在线段AB上时和点N在线段AB的延长线上时分别求解可得.3.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?【答案】(1)解:∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30=120°.由角平分线的性质可知:∠MOC= ∠AOC=60°,∠CON= ∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=60°﹣15°=45°(2)解:∠AOB=α,∠BOC=30°,∴∠AOC=α+30°.由角平分线的性质可知:∠MOC= ∠AOC= α+15°,∠CON= ∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON= α+15°﹣15°= α(3)解:∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.由角平分线的性质可知:∠MOC= ∠AOC= β+45°,∠CON= ∠BOC= β.∵∠MON=∠MOC﹣∠CON,∴∠MON= β+45°﹣β=45°(4)解:根据(1)、(2)、(3)可知∠MON= ∠BOC,与∠BOC的大小无关【解析】【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC= α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC= β+15°,∠CON= β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.4.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关.5.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O 处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=________;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD= ∠AOE.求∠BOD的度数.【答案】(1)30(2)解:∵OE平分∠AOC,∴∠COE=∠AOE= ∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线(3)解:设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120,∴x=5或7.5,即∠COD=65°或37.5°,∴∠BOD=65°或52.5°【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=∠BOE-∠COB=30°,故答案为30;【分析】(1)根据图形得出∠COE=∠BOE-∠COB,代入求出即可;(2)根据角平分线定义求出∠COE=∠AOE= ∠COA,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x+90﹣x=120,解方程即可得.6.(1)如图,已知C为线段AB上的一点,AC=60cm,M、N分别为AB、BC的中点.①若BC=20cm,则MN=________cm;②若BC=acm,则MN=________cm.(2)如图,射线OC在∠AOB的内部,∠AOC=60°,OM平分∠AOB,射线ON在∠BOC 内,且∠MON=30°,则ON平分∠BOC吗?并说明理由.【答案】(1)30;30(2)解:平分理由:∵OM分别平分∠AOB,∴∠BOM= ∠AOB= (∠AOC+∠BOC)=30°+ ∠BOC.又∵∠BOM=∠MON+∠BON=30°+∠BON,∴∠BON= ∠BOC.∴ON平分∠BOC.【解析】【解答】解:(1)①∵BC=20,N为BC中点,∴BN= BC=10.又∵M为AB中点,∴MB= AB=40.∴MN=MB-BN=40-10=30.故答案为30;②当BC=a时,AB=60+a,BN= a,MB= AB=30+ a,∴MN=MB-BN=30.故答案为30;【分析】(1)①由已知得到AB=80,根据线段中点求出MB和BN的值,计算MB-BN即可得结果;②分别用a表示出BN、MB,根据MN=MB-BN计算即可;(2)根据OM分别平分∠AOB,用∠BOC表示出∠BOM,再用∠BON表示出∠BOM,两个式子进行比较即可得出结论.7.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?【答案】(1)30(2)解:∵OE平分∠AOC,∴∠COE=∠AOE=∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线(3)解:设∠COD=x,则∠AOE=5x.∵∠AOE+∠DOE+∠COD+∠BOC=180°,∠DOE=90°,∠BOC=60°,∴5x+90°+x+60°=180°,解得x=5°,即∠COD=5°.∴∠BOD=∠COD+∠BOC=5°+60°=65°∴∠BOD的度数为65°【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;【分析】(1)根据角的和差,由∠COE=∠BOE-∠COB即可算出答案;(2)根据角平分线的定义得出∠COE=∠AOE=∠COA,根据角的和差及平角的定义得出∠AOE+∠DOB=90°,∠COE+∠COD=90°,根据等角的余角相等得出∠COD=∠DOB,故 OD所在射线是∠BOC的平分线;(3)设∠COD=x,则∠AOE=5x ,根据平角的定义得出5x+90°+x+60°=180°,求解算出x的值,从而求出∠COD的度数,进而根据∠BOD=∠COD+∠BOC 即可算出答案。

数学七年级上册 几何图形初步综合测试卷(word含答案)

数学七年级上册 几何图形初步综合测试卷(word含答案)

∴ 6∠ M+∠ E=360°
(3)证明:根据(2)的结论可知 2n∠ ABM+2n∠ CDM+∠ E=360° 2n(∠ ABM+∠ CDME)+∠ E=360° ∵ ∠ M=∠ ABM+∠ CDM ∴ 2n∠ M+m°=360° ∴ ∠ M=
【解析】问题情境 1: 图 1 中∠ B,∠ P,∠ D 之间关系是:∠ P+∠ B+∠ D=360°,问题情境 2: 图 3 中∠ B,∠ P,∠ D 之间关系是:∠ P=∠ B+∠ D; 【分析】问题情境 1 和 2 过点 P 作 EP∥ AB,利用平行线的性质,可证得结论。 (1)利用问题情境 2 的结论,可得出∠ BFD=∠ AEF+∠ CDF,再根据角平分线的定义得出 ∠ AEF=∠ FBE , ∠ CDF=∠ FDE , 再 证 明 ∠ E+∠ BFD+∠ FBE+∠ FDE=360°, 就 可 建 立 方 程 80°+∠ BFD+∠ BFD=360°,解方程求出∠ BFD 的度数即可。 (2)根据已知可得出∠ ABF=3∠ ABM,∠ CDF=3∠ CDM,再根据角平分线的定义得出, ∠ ABE=6∠ ABM,∠ CDE=6∠ CDM,然后根据问题情境 1 的结论∠ ABE+∠ CDE+∠ E=360°,可 推出 6(∠ ABM+∠ CDM)+∠ E=360°,变形即可证得结论。 (3)根据已知得出 2n∠ ABM+2n∠ CDM+∠ E=360°,再根据∠ M=∠ ABM+∠ CDM,代入变形 即可得出结论。
计算即可得;②设
,因点 F(异于
A、B、C 点)在线段 AB 上,

2022-2023学年七年级数学上《几何图形初步》测试卷及答案解析

2022-2023学年七年级数学上《几何图形初步》测试卷及答案解析

2022-2023学年七年级数学上《几何图形初步》一.选择题(共8小题)1.(2021秋•唐山期末)下列几何体中,面的个数最多的是()A.B.C.D.2.(2022•北京)下面几何体中,是圆锥的为()A.B.C.D.3.(2021秋•金水区校级期末)某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出如图所示的无盖长方体盒子,制作过程如下:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.则该无盖长方体盒子的体积可以表示为()A.b(a﹣b)2cm3B.b(a﹣b)2cm3C.b(a﹣2b)2cm3D.b(a﹣2b)2cm34.(2021秋•南岗区期末)下列说法正确的是()A.0的倒数还是0B.圆锥的体积等于圆柱体积的C.半径相等的两个圆的周长相等D.正方体的表面积与它的棱长成正比例关系5.(2021秋•道里区期末)甲、乙两个圆的直径之比是3:2,则甲、乙两圆的面积之比为()A.2:3B.3:2C.9:16D.9:4 6.(2021秋•威县期末)将下列图形绕直线l旋转一周,可得圆锥的是()A.B.C.D.7.(2021秋•曾都区期末)下列立体图形中,各面不都是平面图形的是()A.B.C.D.8.(2021秋•乳山市期末)我们知道,圆柱是由长方形绕着它的一边所在直线旋转一周得到的,下列绕着直线旋转一周能得到下图的是()A.B.C.D.二.多选题(共2小题)(多选)9.(2021秋•潍坊期末)用一个平面去截一个几何体,如果截面是四边形,那么这个几何体可能是()A.圆锥体B.正方体C.圆柱体D.球体(多选)10.(2019秋•盐田区期末)下列几何体中,截面可能为圆的是()A.棱柱B.圆柱C.圆锥D.球三.填空题(共6小题)11.(2022•平邑县二模)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为n,则正方体上小球总数用n表示为.12.(2021秋•崂山区期末)一块长、宽、高分别为5cm,4cm,3cm的长方体橡皮泥,要用它来捏一个底面半径为2cm的圆柱,设它的高是hcm,根据题意列方程为.13.(2021秋•法库县期末)一个棱柱有18条棱,则这个棱柱共有个面.14.(2021秋•杜尔伯特县期末)如图所示,把一个圆柱形木料削成一个与它等底等高的圆锥,削去部分的体积是9dm3,圆锥的体积是dm3.15.(2021秋•浦东新区期末)如图,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等,图中阴影部分的周长是厘米.16.(2021秋•宝安区校级期中)一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是.四.解答题(共4小题)17.(2021秋•仁寿县期末)如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按图中虚线折叠四边使其成为一个有底无盖的长方体盒子.(1)用含x的代数式表示长方体盒子的底面积.(2)当x=1cm时,求长方体盒子的体积.18.(2021秋•广丰区期末)如图,有一个零件,由三部分组成,底座是一个长方体,底面正方形边长为2Rcm,高为3cm,中间部分是底面半径为Rcm,高为3cm的圆柱,上部是底面半径为rcm,高为2cm的圆柱,计算它的体积.19.(2021秋•朝阳区校级期末)求如图的体积(不用写单位,π取3.14).20.(2021秋•吴兴区期末)如图1所示,爱心农场的一个长、宽、高分别为12分米、8分米、20分米的长方体鱼池内装有高度为9分米的水.某项目化学习小组需要将一长方体基座(足够高)放置在鱼池内.若基座竖直放置在鱼池底部,如图2所示,则池内水面上升3分米.(1)求基座的底面积;(2)在安装过程中,先将基座吊起,使得基座的底部与水面齐平,如图3所示,然后将基座以每分钟2分米的速度下降,设下降的时间为t分钟.求当t=2时,水面上升的高度;(3)在(2)的条件下,求下降过程中,基座的底面把池中水深分成1:2的两部分时t 的值.2022-2023学年七年级数学上《几何图形初步》参考答案与试题解析一.选择题(共8小题)1.(2021秋•唐山期末)下列几何体中,面的个数最多的是()A.B.C.D.【考点】认识立体图形.【专题】展开与折叠;几何直观.【分析】根据每一个几何体的面的个数判断即可.【解答】解:A.圆锥有2个面,B.三棱柱有5个面,C.长方体有6个面,D.圆柱有3个面,∴上列几何体中,面的个数最多的是长方体,故选:C.【点评】本题考查了认识立体图形,熟练掌握每一个几何体的特征是解题的关键.2.(2022•北京)下面几何体中,是圆锥的为()A.B.C.D.【考点】认识立体图形.【专题】投影与视图;几何直观.【分析】简单几何体的识别.【解答】解:A是圆柱;B是圆锥;C是三棱锥,也叫四面体;D是球体,简称球;故选:B.【点评】本题考查简单几何体的识别,正确区分几何体是解题的关键.3.(2021秋•金水区校级期末)某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出如图所示的无盖长方体盒子,制作过程如下:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.则该无盖长方体盒子的体积可以表示为()A.b(a﹣b)2cm3B.b(a﹣b)2cm3C.b(a﹣2b)2cm3D.b(a﹣2b)2cm3【考点】认识立体图形;列代数式.【专题】投影与视图;空间观念.【分析】根据分别用代数式表示长方体的长、宽、高,利用体积计算公式可得答案.【解答】解:由题意得,这个长方体的底面是边长为(a﹣2b)的正方形,高为b,所以体积为(a﹣2b)(a﹣2b)×b=b(a﹣2b)2(cm3),故选:D.【点评】本题考查认识立体图形,掌握长方体体积的计算方法是正确解答的关键.4.(2021秋•南岗区期末)下列说法正确的是()A.0的倒数还是0B.圆锥的体积等于圆柱体积的C.半径相等的两个圆的周长相等D.正方体的表面积与它的棱长成正比例关系【考点】认识立体图形;倒数.【专题】实数;函数及其图象;与圆有关的计算;数感;应用意识.【分析】根据倒数的定义,圆锥体积的计算方法,圆周长的计算方法以及正方体表面积的定义与计算方法逐项进行判断即可.【解答】解:A.0没有倒数,因此选项A不符合题意;B.圆锥的体积等于与它等底等高圆柱体体积的,因此选项B不符合题意;C.由于圆的周长为2πr,所以半径相等的两个圆的周长相等,因此选项C符合题意;D.设正方体的棱长为a,正方体的表面积为S=6a2,所以表面积与a2成正比例关系,因此选项D不符合题意;故选:C.【点评】本题考查倒数的定义,圆锥体积、圆周长、正方体表面积,掌握倒数的定义,圆锥体积、圆周长、正方体表面积的计算方法是正确判断的前提.5.(2021秋•道里区期末)甲、乙两个圆的直径之比是3:2,则甲、乙两圆的面积之比为()A.2:3B.3:2C.9:16D.9:4【考点】认识平面图形.【专题】与圆有关的计算;运算能力.【分析】先求出两圆的半径比,再根据圆的面积公式计算即可.【解答】解:∵甲、乙两个圆的直径之比是3:2,∴甲、乙两个圆的半径之比也是3:2,∵圆的面积等于πr2,∴甲、乙两圆的面积之比为9:4,故选:D.【点评】本题考查了认识平面图形,熟练掌握圆的面积计算公式是解题的关键.6.(2021秋•威县期末)将下列图形绕直线l旋转一周,可得圆锥的是()A.B.C.D.【考点】点、线、面、体.【专题】展开与折叠;空间观念.【分析】根据空间想象逐一判断即可.【解答】解:A.绕直线l旋转一周可以得到圆柱体;B.绕直线l旋转一周可以得到圆锥体;C.绕直线l旋转一周可以得到球体;D.绕直线l旋转一周可以得到圆锥与圆柱组合体;故选:B.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.7.(2021秋•曾都区期末)下列立体图形中,各面不都是平面图形的是()A.B.C.D.【考点】认识立体图形.【专题】几何图形问题;空间观念.【分析】根据组成立体图形的面进行分析判断.【解答】解:A、四棱锥由四个平面组成,故此选项不符合题意;B、圆锥由一个平面和一个曲面组成,故此选项符合题意;C、六棱柱由八个平面组成,故此选项不符合题意;D、三棱柱由五个平面组成,故此选项不符合题意;故选:B.【点评】本题考查立体图形,准确识图,理解平面及曲面的特征是解题关键.8.(2021秋•乳山市期末)我们知道,圆柱是由长方形绕着它的一边所在直线旋转一周得到的,下列绕着直线旋转一周能得到下图的是()A.B.C.D.【考点】点、线、面、体.【专题】展开与折叠;空间观念.【分析】根据每一个几何体的特征判断即可.【解答】解:A.绕着直线旋转一周能得到上图所示的几何体,故A符合题意;B.绕着直线旋转一周不能得到上图所示的几何体,故B不符合题意;C.绕着直线旋转一周不能得到上图所示的几何体,故C不符合题意;D.绕着直线旋转一周不能得到上图所示的几何体,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.二.多选题(共2小题)(多选)9.(2021秋•潍坊期末)用一个平面去截一个几何体,如果截面是四边形,那么这个几何体可能是()A.圆锥体B.正方体C.圆柱体D.球体【考点】截一个几何体.【专题】展开与折叠;空间观念.【分析】根据每一个几何体的截面形状判断即可.【解答】解:用一个平面去截一个几何体,圆锥体、球体的截面形状不可能是四边形,正方体、圆柱体的截面形状可能是四边形,所以,用一个平面去截一个几何体,A.圆锥体,B.正方体,C.圆柱体,D.球体,如果截面是四边形,那么这个几何体可能是:BC,故选:BC.【点评】本题考查了截一个几何体,熟练掌握每一个几何体的截面形状是解题的关键.(多选)10.(2019秋•盐田区期末)下列几何体中,截面可能为圆的是()A.棱柱B.圆柱C.圆锥D.球【考点】截一个几何体;认识立体图形.【专题】推理填空题;空间观念.【分析】用一个平面去截一个几何体,根据截面的形状即可得出结论.【解答】解:用一个平面去截一个几何体,截面可能为圆的是圆柱、圆锥、球.故选:BCD.【点评】此题主要考查了截一个几何体和认识立体图形.解题的关键是明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.三.填空题(共6小题)11.(2022•平邑县二模)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为n,则正方体上小球总数用n表示为12n﹣16.【考点】认识立体图形;列代数式.【专题】线段、角、相交线与平行线;空间观念.【分析】每条棱上有n个小球,12条棱就有12n个小球,这时,每个顶点处的小球被多计算了2次,应该减去,于是可得答案.【解答】解:因为正方体有12条棱,每条棱上的小球数为n,所以12条棱上有12n个小球,但每个顶点处的小球被多计算2次,8个顶点就被多计算2×8=16(次),正方体上小球总数用n表示为12n﹣16.故答案为:12n﹣16.【点评】本题考查正方体的特征、列代数式等知识,掌握正方体的特征是解决问题的前提,考虑每个顶点处的小球被重复计算是解决问题的关键.12.(2021秋•崂山区期末)一块长、宽、高分别为5cm,4cm,3cm的长方体橡皮泥,要用它来捏一个底面半径为2cm的圆柱,设它的高是hcm,根据题意列方程为3×4×5=4πh.【考点】认识立体图形;由实际问题抽象出一元一次方程.【专题】线段、角、相交线与平行线.【分析】根据题意找出题中存在的等量关系:长方体的体积=圆柱体的体积,根据等量关系列方程即可.【解答】解:根据等量关系列方程得:3×4×5=4πh,故答案为:3×4×5=4πh.【点评】此题主要考查了认识立体图形,正确掌握圆柱体体积公式是解题关键.13.(2021秋•法库县期末)一个棱柱有18条棱,则这个棱柱共有八个面.【考点】认识立体图形.【专题】投影与视图;空间观念;几何直观.【分析】根据n棱柱的“棱”条数计算规律得出答案.【解答】解:由n棱柱有3n条棱,所以一个棱柱有18条棱,则它是18÷3=6,因此它是六棱柱,而六棱柱有6+2=8个面,故答案为:八.【点评】本题考查认识立体图形,掌握棱柱的形体特征是正确判断的前提.14.(2021秋•杜尔伯特县期末)如图所示,把一个圆柱形木料削成一个与它等底等高的圆锥,削去部分的体积是9dm3,圆锥的体积是 4.5dm3.【考点】认识立体图形.【专题】展开与折叠;运算能力.【分析】根据圆柱与圆锥的体积公式即可解答.【解答】解:∵圆柱的体积=底面积×高,圆锥的体积=底面积×高,∴削去部分的体积=圆锥的体积的2倍,∴9÷2=4.5(立方分米),∴圆锥的体积是4.5dm3,故答案为:4.5.【点评】本题考查了认识立体图形,熟练掌握圆柱与圆锥的体积公式是解题的关键.15.(2021秋•浦东新区期末)如图,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等,图中阴影部分的周长是20.5厘米.【考点】认识平面图形.【专题】与圆有关的计算;运算能力.【分析】根据圆周长、面积,长方形面积之间的关系用OA,分别表示AB,CD,弧AD 的长,然后根据周长的定义进行计算即可.【解答】解:设OA=r,∵圆的周长是16.4厘米,即2πr=16.4,∴πr=8.2,又∵圆的面积与长方形的面积正好相等,∴π×OA2=AB•OA,∴AB=πr,∴阴影部分的周长=AB+OA+CD+弧AD长=πr+r+(πr﹣r)+×2πr=πr=×8.2=20.5(厘米),故答案为:20.5.【点评】本题考查认识平面图形,掌握圆周长、面积以及长方形的面积、周长的定义是正确解答的关键.16.(2021秋•宝安区校级期中)一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是面动成体.【考点】点、线、面、体.【专题】投影与视图;空间观念.【分析】根据点、线、面、体的关系,“点动成线,线动成面,面动成体”进行判断即可.【解答】解:硬币的面可以近似看作“圆形”的面,快速旋转,看上去像形成了一个球,说明“面动成体”,故答案为:面动成体.【点评】本题考查点、线、面、体,理解点、线、面、体的关系,掌握“点动成线,线动成面,面动成体”是正确判断的前提.四.解答题(共4小题)17.(2021秋•仁寿县期末)如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按图中虚线折叠四边使其成为一个有底无盖的长方体盒子.(1)用含x的代数式表示长方体盒子的底面积.(2)当x=1cm时,求长方体盒子的体积.【考点】认识立体图形;列代数式;代数式求值.【专题】展开与折叠;运算能力.【分析】(1)根据题目的已知可得,长方体的底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,然后利用长方形的面积公式计算即可解答;(2)利用长方体的体积公式进行计算即可.【解答】解:(1)由题意得:(10﹣2x)(6﹣2x)=60﹣20x﹣12x+4x2=4x2﹣32x+60(平方厘米),答:长方体盒子的底面积为(4x2﹣32x+60)平方厘米;(2)当x=1cm时,长方体盒子的体积为:x(10﹣2x)(6﹣2x)=1×8×4=32(立方厘米),答:长方体盒子的体积为32立方厘米.【点评】本题考查了认识立体图形,列代数式,代数式求值,熟练掌握长方体的体积公式是解题的关键.18.(2021秋•广丰区期末)如图,有一个零件,由三部分组成,底座是一个长方体,底面正方形边长为2Rcm,高为3cm,中间部分是底面半径为Rcm,高为3cm的圆柱,上部是底面半径为rcm,高为2cm的圆柱,计算它的体积.【考点】认识立体图形;列代数式.【专题】几何图形;运算能力.【分析】先分别计算每个几何体体积,再相加.【解答】解:由题意得:体积V=(2R)2×3+πR2×3+πr2×2=(12R2+3πR2+2πr2)cm3.答:该几何体的体积是(12R2+3πR2+2πr2)cm3.【点评】本题考查几何体体积的计算,掌握各个几何体体积计算公式是求解本题的关键.19.(2021秋•朝阳区校级期末)求如图的体积(不用写单位,π取3.14).【考点】认识立体图形.【专题】展开与折叠;运算能力.【分析】利用高为2,底面直径为2的圆柱体积的一半加上高为4,底面直径为2的圆柱体积即可解答.【解答】解:由题意得:π×()2×4+×π×()2×(6﹣4)=4π+π=5π,答:上图的体积为:5π.【点评】本题考查了认识立体图形,结合图形去分析是解题的关键.20.(2021秋•吴兴区期末)如图1所示,爱心农场的一个长、宽、高分别为12分米、8分米、20分米的长方体鱼池内装有高度为9分米的水.某项目化学习小组需要将一长方体基座(足够高)放置在鱼池内.若基座竖直放置在鱼池底部,如图2所示,则池内水面上升3分米.(1)求基座的底面积;(2)在安装过程中,先将基座吊起,使得基座的底部与水面齐平,如图3所示,然后将基座以每分钟2分米的速度下降,设下降的时间为t分钟.求当t=2时,水面上升的高度;(3)在(2)的条件下,求下降过程中,基座的底面把池中水深分成1:2的两部分时t 的值.【考点】认识立体图形;列代数式;代数式求值.【专题】展开与折叠;运算能力.【分析】(1)设底面积为S平方分米,根据体积公式计算即可;(2)设水面上升x分米,根据公式可列方程,求解可得答案;(3)利用代数式分别表示出水面上升高度、基座底面到池底、基座底面到水面,根据题意列出方程,求解答案.【解答】解:(1)设底面积为S平方分米,12×8×3=S×(9+3),解得S=24,答:底面积为24平方分米;(2)设水面上升x分米,24×(2×2+x)=12×8x,解得x=,答:水面上升分米;(3)水面上升高度分米,基座底面到池底:(9﹣2t)分米,基座底面到水面:2t+分米,或,解得t=或,答:t的值为或.【点评】此题考查的是立体图形、列代数式、求代数式的值,掌握有关体积公式是解决此题关键.。

七年级上册几何图形初步单元试卷(word版含答案)

七年级上册几何图形初步单元试卷(word版含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.2.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=________秒时,OM平分∠AOC?(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【答案】(1)2.25;45(2)解:∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°(3)3(4)解:②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM= =22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;·(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM= AOC,∴10t= (45°+5t),∴t=3秒,故答案为:3.【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.3.根据下图回答问题:(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.【答案】(1)∵CM平分∠ACD,AM平分∠BAC,∴∠BAC=2∠MAC,∠ACD=2∠ACM,∵∠MAC+∠ACM=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;(2)∠BAM+∠MCD=90°,理由:如图,过M作MF∥AB,∵AB∥CD,∴MF∥AB∥CD,∴∠BAM=∠AMF,∠FMC=∠DCM,∵∠M=90°,∴∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH.理由:过点G作GP∥AB,∵AB∥CD∴GP∥CD,∴∠BAC=∠PGC,∠CHG=∠PGH,∴∠PGC=∠CHG+∠CGH,∴∠BAC=∠CHG+∠CGH.【解析】【分析】(1)已知CM平分∠ACD,AM平分∠BAC,根据角平分线的定义可得∠BAC=2∠MAC,∠ACD=2∠ACM,再由∠MAC+∠ACM=90°,即可得∠BAC+∠ACD=180°,根据同旁内角互补,两直线平行即可得AB∥CD;(2)∠BAM+∠MCD=90°,过M作MF∥AB,即可得MF∥AB∥CD,根据平行线的性质可得∠BAM=∠AMF,∠FMC=∠DCM,再由∠M=90°,即可得∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH,过点G作GP∥AB,即可得GP∥CD,根据平行线的性质可得∠BAC=∠PGC,∠CHG=∠PGH,所以PGC=∠CHG+∠CGH,即可得∠BAC=∠CHG+∠CGH.4.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(4)探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:▲ .【答案】(1)解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;(2)探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠ACD,=180°- (∠ADC+∠ACD),=180°- (180°-∠A),=90°+ ∠A;(3)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠BCD,=180°- (∠ADC+∠BCD),=180°- (360°-∠A-∠B),= (∠A+∠B);(4)探究四:六边形ABCDEF的内角和为:(6-2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°-∠PDC-∠PCD=180°- ∠EDC- ∠BCD=180°- (∠EDC+∠BCD)=180°- (720°-∠A-∠B-∠E-∠F)= (∠A+∠B+∠E+∠F)-180°,即∠P= (∠A+∠B+∠E+∠F)-180°.【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.5.已知:直线EF//MN,点A、B分别为EF,MN上的动点,且∠ACB= a,BD平分∠CBN交EF于D.(1)若∠FDB=120°,a=90°.如图1,求∠MBC与∠EAC的度数?(2)延长AC交直线MN于G,这时a =80°,如图2,GH平分∠AGB交DB于点H,问∠GHB是否为定值,若是,请求值.若不是,请说明理由?【答案】(1)解:如图1,过C作CP∥EF.∵EF∥MN,∴EF∥MN∥CP.∵EF∥MN,∴∠NBD=180°-∠FDB=180°-120°=60°.∵BD平分∠CBN,∴∠CBD=∠NBD=60°,∴∠MBC=180°-∠CBD-∠NBD=180°-60°-60°=60°.∵CP∥MN,∴∠PCB=∠MBC=60°,∴∠ACP=∠ACB-∠BCP=90°-60°=30°.∵EF∥CP,∴∠EAC=∠ACP=30°(2)解:∠GHB为定值50°.理由如下:∵∠CBN是△CBG的外角,∴∠BCG=∠CBN﹣∠AGB.∵GH平分∠AGB,BD平分∠CBN,∴∠HGB∠AGB,∠DBN∠CBN.∵∠DBN是△HGB的外角,∴∠GHB=∠DBN﹣∠HGB∠CBN∠AGB(∠CBN ﹣∠AGB)∠BCG(180°-80°)=50°,故∠GHB是定值50°.【解析】【分析】(1)过C作CP∥EF,进而得到EF∥MN∥CP,根据平行线的性质,求出∠DBN的度数,进而求出∠MBC、∠EAC的度数;(2)根据∠CBN是△CBG的外角,得到∠BCG=∠CBN﹣∠AGB.根据角平分线的定义得到∠HGB∠AGB,∠DBN∠CBN.由三角形外角的性质得到∠GHB=∠DBN﹣∠HGB∠CBN∠AGB(∠CBN﹣∠AGB)∠BCG,即可得出结论.6.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.【答案】(1)证明:∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)解:①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)解:有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=()°,∠PBG=()°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=( +25)°=()°,∴∠ABM:∠PBM=()°:25°= ;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(﹣25)°=()°,∴∠ABM:∠PBM=()°:25°= ;综上,∠ABM:∠PBM的值是或.【解析】【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM的值即可.7.问题情境:如图1,AB∥CD,∠PAB=125°,∠PCD=135°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为________度。

七年级上册数学几何图形初步好题附答案

七年级上册数学几何图形初步好题附答案

七年级上册数学几何图形初步好题附答案评卷人得分一.选择题(共17小题)1.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.2.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来3.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利5.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或66.如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB 的长度为()A.4 B.6 C.8 D.107.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm9.如图,在直线l上有A、B、C三点,则图中线段共有()A.1条 B.2条 C.3条 D.4条10.如图,共有线段()A.3条 B.4条 C.5条 D.6条11.下列说法中,正确的有()个①过两点有且只有一条直线②连接两点的线段叫做两点间的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点⑤射线AB和射线BA是同一条射线⑥直线有无数个端点.A.2个 B.3个 C.4个 D.5个12.下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两点间的长度叫两点间的距离13.下列说法中错误的是()A.A、B两点之间的距离为3cmB.A、B两点之间的距离为线段AB的长度C.线段AB的中点C到A、B两点的距离相等D.A、B两点之间的距离是线段AB14.下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A.1个 B.2个 C.3个 D.4个15.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6 B.12 C.15 D.3016.如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示17.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB 的方向角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°评卷人得分二.填空题(共2小题)18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为.19.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为.评卷人得分三.解答题(共21小题)20.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.21.如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB 的中点,求DE的长.22.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.23.如图,点C、D在线段AB上,D是线段AB的中点,AC=AD,CD=4,求线段AB的长.24.如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.25.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.26.已知:如图,B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD 的中点,CD=6cm,求线段MC的长.27.如图,已知线段AD=10cm,线段AC=BD=6cm.E、F分别是线段AB、CD的中点,求EF的长.28.观察图①,由点A和点B可确定条直线;观察图②,由不在同一直线上的三点A、B和C最多能确定条直线;(1)动手画一画图③中经过A、B、C、D四点的所有直线,最多共可作条直线;(2)在同一平面内任三点不在同一直线的五个点最多能确定条直线、n 个点(n≥2)最多能确定条直线.29.如图所示,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+ =cm.∵D是AC的中点,∴AD==cm.∴BD=AD﹣=cm.30.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若点C为线段AB上任意一点,且满足AC+BC=a,请直接写出线段MN的长;(3)若点C为线段AB延长线上任意一点,且满足AC﹣CB=b,求线段MN的长.31.已知如图(1)如图(1),两条直线相交,最多有个交点.如图(2),三条直线相交,最多有个交点.如图(3),四条直线相交,最多有个交点.如图(4),五条直线相交,最多有个交点;(2)归纳,猜想,30条直线相交,最多有个交点.32.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.33.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.34.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N 为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.35.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?36.已知线段AB上顺次有三个点C、D、E,把线段AB分成2:3:4:5四部分,且AB=56cm.(1)求线段AE的长;(2)若M、N分别是DE、EB的中点,求线段MN的长度.37.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有条线段;(2)如果线段AB上有9个点,则图中共有条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).38.如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有条.39.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC的长.40.已知数轴上点A、B、C所表示的数分别是﹣3,+7,x.(1)求线段AB的长;(2)若AC=4,①求x的值;②若点M、N分别是AB、AC的中点,求线段MN 的长度.七年级上册数学几何图形初步好题附答案参考答案与试题解析一.选择题(共17小题)1.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选A.2.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选D.3.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【解答】解:如图所示:这个几何体是四棱锥.故选:A.4.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“利”是相对面.故选C.5.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB 外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.6.如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB 的长度为()A.4 B.6 C.8 D.10【解答】解:∵C为AB的中点,∴AC=BC=AB=×12=6,∵AD:CB=1:3,∴AD=2,∴DB=AB﹣AD=12﹣2=10(cm).故选D.7.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm【解答】解:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=6cm,又点D是AC的中点,∴AD=AC=3cm,答:AD的长为3cm.故选:B.8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm【解答】解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5.综合上述情况,线段MN的长度是5cm.故选D.9.如图,在直线l上有A、B、C三点,则图中线段共有()A.1条 B.2条 C.3条 D.4条【解答】解:图中线段有AB、AC、BC这3条,故选:C.10.如图,共有线段()A.3条 B.4条 C.5条 D.6条【解答】解:线段AB、AC、AD、BC、BD、CD共六条,也可以根据公式计算,=6,故选D.11.下列说法中,正确的有()个①过两点有且只有一条直线②连接两点的线段叫做两点间的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点⑤射线AB和射线BA是同一条射线⑥直线有无数个端点.A.2个 B.3个 C.4个 D.5个【解答】解:①过两点有且只有一条直线,正确,②连接两点的线段叫做两点间的距离,不正确,应为连接两点的线段的长度叫做两点间的距离,③两点之间,线段最短,正确,④若AB=BC,则点B是线段AC的中点,不正确,只有点B在AC上时才成立,⑤射线AB和射线BA是同一条射线,不正确,端点不同,⑥直线有无数个端点.不正确,直线无端点.共2个正确,故选:A.12.下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两点间的长度叫两点间的距离【解答】解:A、射线,直线都是可以无限延长的,无法测量长度,错误;B、两点确定一条直线,是公理,正确;C、经过不在一条直线的三点能作三条直线,错误;D、两点间线段的长度叫两点间的距离,错误;故选B.13.下列说法中错误的是()A.A、B两点之间的距离为3cmB.A、B两点之间的距离为线段AB的长度C.线段AB的中点C到A、B两点的距离相等D.A、B两点之间的距离是线段AB【解答】解:A、A、B两点之间的距离为3cm,故A选项说法正确;B、A、B两点之间的距离为线段AB的长度,故B选项正确;C、线段AB的中点C到A、B两点的距离相等,故C选项正确;D、A、B两点之间的距离是线段AB,应为AB的长度,故D选项错误.故选:D.14.下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A.1个 B.2个 C.3个 D.4个【解答】解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确的有2个.故选:B.15.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6 B.12 C.15 D.30【解答】解:∵从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,∴一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制2×(5+4+3+2+1)=30种车票,故选D.16.如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示【解答】解:A、∠1与∠AOB表示同一个角,正确,故本选项错误;B、∠β表示的是∠BOC,正确,故本选项错误;C、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选项错误;D、∠AOC不能用∠O表示,错误,故本选项正确;故选D.17.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB 的方向角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°【解答】解:∵射线OB与射线OA垂直,∴∠AOB=90°,∴∠1=90°﹣30°=60°,故射线OB的方向角是北偏西60°,故选:B.二.填空题(共2小题)18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为6.【解答】解:∵平面内不同的两点确定1条直线,;平面内不同的三点最多确定3条直线,即=3;平面内不同的四点确定6条直线,即=6,∴平面内不同的n点确定(n≥2)条直线,∴平面内的不同n个点最多可确定15条直线时,=15,解得n=﹣5(舍去)或n=6.故答案为:6.19.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm.【解答】解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.三.解答题(共21小题)20.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.21.如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB 的中点,求DE的长.【解答】解:∵AC=12cm,CB=AC,∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵E为AB的中点,∴AE=BE=9cm,∵D为AC的中点,∴DC=AD=6cm,所以DE=AE﹣AD=3cm.22.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.23.如图,点C、D在线段AB上,D是线段AB的中点,AC=AD,CD=4,求线段AB的长.【解答】解:∵AC=AD,CD=4,∴CD=AD﹣AC=AD﹣AD=AD,∴AD=CD=6,∵D是线段AB的中点,∴AB=2AD=12;24.如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.【解答】解:(1)∵AC=6cm,M是AC的中点,∴AM=MC=AC=3cm,∵MB=10cm,∴BC=MB﹣MC=7cm,∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+CN=6.5cm;(2)如图,∵M是AC中点,N是BC中点,∴MC=AC,NC=BC,∵AC﹣BC=bcm,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=b(cm).25.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.26.已知:如图,B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD 的中点,CD=6cm,求线段MC的长.【解答】解:由AB:BC:CD=2:4:3,设AB=2xcm,BC=4xcm,CD=3xcm, (1)分则CD=3x=6,解得x=2.…2分因此,AD=AB+BC+CD=2x+4x+3x=18(cm).…4分因为点M是AD的中点,所以DM=AD=×18=9(cm).…6分MC=DM﹣CD=9﹣6=3(cm).…7分27.如图,已知线段AD=10cm,线段AC=BD=6cm.E、F分别是线段AB、CD的中点,求EF的长.【解答】解:∵AD=10,AC=BD=6,∴AB=AD﹣BD=10﹣6=4,∵E是线段AB的中点,∴EB=AB=×4=2,∴BC=AC﹣AB=6﹣4=2,CD=BD﹣BC=6﹣2=4,∵F是线段CD的中点,∴CF=CD=×4=2,∴EF=EB+BC+CF=2+2+2=6cm.答:EF的长是6cm.28.观察图①,由点A和点B可确定1条直线;观察图②,由不在同一直线上的三点A、B和C最多能确定3条直线;(1)动手画一画图③中经过A、B、C、D四点的所有直线,最多共可作6条直线;(2)在同一平面内任三点不在同一直线的五个点最多能确定10条直线、n 个点(n≥2)最多能确定n(n﹣1)条直线.【解答】解:①由点A和点B可确定1条直线;②由不在同一直线上的三点A、B和C最多能确定3条直线;经过A、B、C、D四点最多能确定6条直线;直在同一平面内任三点不在同一直线的五个点最多能确定10条线、根据1个点、两个点、三个点、四个点、五个点的情况可总结出n个点(n≥2)时最多能确定:条直线.故答案为:1;3,6,10,.29.如图所示,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+ BC=6cm.∵D是AC的中点,∴AD=AC=3cm.∴BD=AD﹣AB=1cm.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm,∵D为AC中点,∴AD=AC=3cm,∴BD=AD﹣AB=3cm﹣2cm=1cm,故答案为:BC,6,AC,3,AB,1.30.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若点C为线段AB上任意一点,且满足AC+BC=a,请直接写出线段MN的长;(3)若点C为线段AB延长线上任意一点,且满足AC﹣CB=b,求线段MN的长.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=CB,∴MN=MC+CN,=(AC+CB)=(8+6)=7;(2)∵若M、N分别是线段AC、BC的中点,∴AM=MC,CN=BN,AM+CM+CN+NB=a,2(CM+CN)=a,CM+CN=,∴MN=a;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=(AC﹣BC)=b.31.已知如图(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点;(2)归纳,猜想,30条直线相交,最多有435个交点.【解答】解:(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点.…n条直线相交,最多有个交点;(2)∴30条直线相交,∴最多有=435个交点.32.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【解答】解:点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短.33.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【解答】解:34.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N 为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.【解答】解:(1)∵A,B两点所表示的数分别为﹣2和8,∴0A=2,OB=8∴AB=OA+OB=l0.(5分)(2)线段MN的长度不发生变化,其值为5.分下面两种情况:①当点P在A、B两点之间运动时(如图甲).MN=MP+NP=AP+BP=AB=5(3分)②当点P在点A的左侧运动时(如图乙).MN=NP﹣MP=BP﹣AP=AB=5(3分)综上所述,线段MN的长度不发生变化,其值为5.(1分)35.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线OE上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?【解答】解:(1)18正好转3圈,3×6;17则3×6﹣1;“17”在射线OE上;(2)射线OA上数字的排列规律:6n﹣5射线OB上数字的排列规律:6n﹣4射线OC上数字的排列规律:6n﹣3射线OD上数字的排列规律:6n﹣2射线OE上数字的排列规律:6n﹣1射线OF上数字的排列规律:6n(3)2007÷6=334…3.故“2007”在射线OC上.36.已知线段AB上顺次有三个点C、D、E,把线段AB分成2:3:4:5四部分,且AB=56cm.(1)求线段AE的长;(2)若M、N分别是DE、EB的中点,求线段MN的长度.【解答】解:(1)设AC=2x,则CD、DE、EB分别为3x、4x、5x,由题意得,2x+3x+4x+5x=56,解得,x=4,则AC、CD、DE、EB分别为8cm、12cm、16cm、20cm,则AE=AC+CD+DE=36cm;(2)∵M是DE的中点,∴ME=DE=8cm,N是EB的中点,∴EN=EB=10cm,∴MN=ME+EN=18cm.37.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有10条线段;(2)如果线段AB上有9个点,则图中共有55条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).【解答】解:(1)1+2+3+4==10,故答案为:10.(2)1+2+3+4+5+6+7+8+9+10==55,故答案为:55.(3)1+2+3+4+…+n+1=,故答案为:.38.如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有6条.【解答】解:(1)(2)(3)图中有线段6条.39.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC的长.【解答】解:∵M为AB的中点,∴AM=BM=AB=3cm,∵N为MC的中点,∴MN=NC=8cm.∴BN=MN﹣BM=5cm,∴BC=BN+NC=5+8=13(cm).答:BC长为13cm.40.已知数轴上点A、B、C所表示的数分别是﹣3,+7,x.(1)求线段AB的长;(2)若AC=4,①求x的值;②若点M、N分别是AB、AC的中点,求线段MN 的长度.【解答】解:(1)AB=7﹣(﹣3)=10;(2)①∵AC=4,∴|x﹣(﹣3)|=4,∴x﹣(﹣3)=4或(﹣3)﹣x=4,∴x=1或﹣7;②当点A、B、C所表示的数分别是﹣3,+7,1时,∵点M、N分别是AB、AC的中点,∴点M表示的数为2,点N的坐标是﹣1,∴MN=2﹣(﹣1)=3;当点A、B、C所表示的数分别是﹣3,+7,﹣7时,∵点M、N分别是AB、AC的中点,∴点M表示的数为2,点N的坐标是﹣5,∴MN=2﹣(﹣5)=7;∴MN=7或3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档