全国通用五年级奥数试题-第五讲 乘法初识(含答案)
小学数学五年级奥数测试题及答案(K12教育文档)
(完整word)小学数学五年级奥数测试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)小学数学五年级奥数测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)小学数学五年级奥数测试题及答案(word版可编辑修改)的全部内容。
五年级奥数一、填空(每题2分)1、某数分别与两个相邻整数相乘,所得的积相差150,这个数是()2、每张方桌上放有12个盘子,每张圆桌上放有13个盘子。
若共有109个盘子,则圆桌有()张,方桌有( )张。
3、在1至1000这1000个整数中,既能被3整除有是7的倍数的整数有()个。
4、三个连续自然数的积是120,这三个数分别是( )、( )、( ).5、40人参加测验,答对第一题的有30人,答对第二题的有21人,两题都答对的有15人。
两题都答错的有()人。
6、今年八月一日是星期五,八月二十日是星期().7、有一排算式:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,2+19,3+21,…,那么()+()= 19948、节日之夜,广场上挂起了一排彩灯,共1999盏,排列的规律是:从头起每八盏为一组,每组的八盏灯依次为三盏红灯,二盏黄灯,三盏绿灯,那么最后一盏灯的颜色是()。
9、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,再自右至左每隔5厘米染一个红点,然后沿红点将木棍逐段锯开,那么长度是1厘米的木棍有( )条。
10、A、B、C、D四个数,每次去掉一个数,将其余3个数求平均数,这样算了4次,得到以下4个数:45、60、65、70,问原来四个数的平均数是().11、妈妈买3千克苹果2千克梨,共付款12元;李奶奶买同样价格的苹果3千克,梨5千克,共付款21元。
小学奥数基础教程含练习题和答案五年级讲全册版
第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
解:将5568质因数分解为5568=26×3×29。
由此容易知道,将 5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464, 16×348, 24×232,29×192, 32×174, 48×116。
显然,符合题意的只有下面一种填法:174×32=58×96=5568。
例3 在443后面添上一个三位数,使得到的六位数能被573整除。
分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。
由443000÷573=773 (71)推知, 443000+(573-71)=443502一定能被573整除,所以应添502。
五年级上册数学试题-奥数_计算定稿( ) 全国通用
目录1、找规律 (1)2、凑整法 (4)3、添括号去括号 (7)4、乘法分配律 (10)5、等差数列 (12)6、巧妙求和 (15)7、定义新运算 (19)8、数阵 (23)9、寻找突破口 (28)10、数字与数 (32)11、能力测试一 (36)12、能力测试二 (38)第一讲 找规律观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,是解题的关键。
在日常生活中,有一些按照一定的规律不断重复的现象,如:人的十二生肖,一年有春夏秋冬四个季节,一个星期七天等等。
像这样日常生活中常碰到的有规律的现象,我们称为简单周期问题。
例1. 先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1、4、7、10、( )、16、19像上面这样按照一定的顺序排列的一串数叫做数列。
在例1这个数列中,因为每相邻两个数的差都相等,所以叫做等差数列。
【试一试】1、先找出下列各列数的排列规律,并根据规律在括号里填上适当的数。
(1) 2、6、10、14、( )、22、26(2) 3、6、9、12、( )、18、21(3) 33、28、23、( )、13、( )、3(4) 55、49、43、( )31、( )、19例2.先找出规律,然后在括号里填上适当的数。
23、4、20、6、17、8、( )、( )、11、12【试一试】1、先找出规律,然后在括号里填上适当的数。
(1)1、6、5、10、9、14、13、( )、( )(2)13、2、15、4、17、6、( )、( )(3)3、29、4、28、6、26、9、23、( )、( )、18、14(4)21、2、19、5、17、8、( )、( )例3.先计算下面一组算式的第一题,然后找出其中的规律,并根据规律直接写出后几题的得数。
12345679×9= 12345679×18=12345679×54= 12345679×81=【试一试】找规律,写得数。
小学五年级奥数题试卷及答案 50题(K12教育文档)
小学五年级奥数题试卷及答案50题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学五年级奥数题试卷及答案50题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学五年级奥数题试卷及答案50题(word版可编辑修改)的全部内容。
小学五年级奥数题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件.当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵.单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
2022-2023学年小学五年级奥数(全国通用)测评卷05《算式谜》(解析版)
【五年级奥数举一反三—全国通用】测评卷05《算式谜》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2016•创新杯)加法算式中,七个方格中的数字和等于()A.51 B.56 C.49 D.48【分析】根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.即可求解.【解答】解:依题意可知:根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.14+18+18+1=51.故选:A.2.(2016•华罗庚金杯)在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是()A.1 B.2 C.4 D.6【分析】“”一定是111的倍数,表示为:111n=37×3×n,不同汉字代表不同的数字,所以n ≠1,然后根据n=2、3、4、5、6逐个筛选即可.【解答】解:根据分析可得,“”,表示为:111n=37×3×n,不同汉字代表不同的数字,所以n≠1,n=2,则“”=37×6(符合要求)或74×3(不符合要求),n=3,则“”=37×9(不符合要求),n=4,则“”=74×6(不符合要求),n=5,则“”=37×15(不符合要求),n=6,则“”=74×9(不符合要求),所以,“”=37×6=222,即“好”字代表的数字是2.故选:B.3.(2012•华罗庚金杯)在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立吋,贺+新+春=()A.24 B.22 C.20 D.18【分析】根据题干“放鞭炮”+“迎龙年”=“贺新春”,又因为1~9这9个数字的和是45,据此根据加法的计算法则,分别从十位与个位加法都进位,只有个位进位,只有十位进位和都不进位四个方面进行讨论分即可解答问题.【解答】解:(1)假设个位与十位相加都进位,则可得:炮+年=10+春,鞭+龙=10+新﹣1=9+新,放+迎=贺﹣1,则炮+年+鞭+龙+放+迎=10+春+9+新+贺﹣1=贺+新+春+18,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)+18=45,即贺+新+春=,不符合题意;(2)假设只有个位数字相加进位,则炮+年=10+春,鞭+龙=新﹣1,放+迎=贺,则炮+年+鞭+龙+放+迎=10+春+新﹣1+贺=贺+新+春+9,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)+9=45,即贺+新+春=18,符合题意;(3)假设只有十位数字相加进位,则炮+年=春,鞭+龙=10+新,放+迎=贺﹣1,则炮+年+鞭+龙+放+迎=春+10+新+贺﹣1=贺+新+春+9,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)+9=45,即贺+新+春=18,符合题意;(4)假设都不进位,则炮+年=春,鞭+龙=新,放+迎=贺,则炮+年+鞭+龙+放+迎=春+新+贺,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)=45,即贺+新+春=,不符合题意.综上所述,贺+新+春=18.故选:D.4.(2017•华罗庚金杯)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.2754【分析】根据特殊情况入手,结果中的数字2如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾,那么就是没有进位.根据已知数字进行分析没有矛盾的就是符合题意的.【解答】解:首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102×27=2754.故选:D.5.(2016•华罗庚金杯)如图,在5×5的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1 B.2 C.3 D.4【分析】首先根据排除法在第一宫格中必须有4,那么第二行的第二列的数字只能为4.继续使用排除法即可推理成功.【解答】解:依题意可知:首先根据在第一宫格中必须有4,那么第二行的第二列的数字只能为4.同理在第二行第四列的数字只能是1.继续推理可得:所以再五角星的空格位置填写1.故选:A.6.(2014•迎春杯)下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数是()A.21944 B.21996 C.24054 D.24111【分析】首先根据结果的数字4,利用末位分析法,尾数是4的符合题意的只有2×2或者2×7满足,如果是7不能满足第一个结果中的数字0,那么只能是2,再分析第一次的结果为200多,那么符合题意的有数字除数的十位数字是5.逐个分析即可求解.【解答】解:明显商的百位乘以除数是二百零几,如果是100多那么余数是三位数.2 乘以除数是三位数,所以商最大时,结果中个位数字是4.所有除数的个位是2 或7,要满足0 的话就只能为2,这时除数为52.商最大为42,因为最后一行只能为一百多,最大是52的3倍,所以商最大为423.这时被除数为21996÷52=423,符合条件故选:B.7.在如图所示的竖式里,四张小纸片各盖住了一个数字.被盖住的4个数字的总和是()A.14 B.24 C.23 D.25【分析】根据题意,由加法的计算方法进行推算:个位不能进位,可以有0+9=1+8=2+7=3+6=4+5,十位进位有5+9=6+8=7+7,由此选择进行解答即可.【解答】解:个位上,两个数字的和是9;十位上,两个数字和是14,那么,被盖住的4个数字的总和就是:9+14=23.故选:C.二.填空题(共12小题,满分32分)8.(2分)(2017•走美杯)24点游戏,用适当的运算符号(包括括号)把3,3,9,9这四个数组成一个算式,是结果等于24.3×9﹣9÷3=24.【分析】结合4个数字和24之间的关系进行试运算,可以联想24相关的加减乘除运算,据此解答.【解答】解:3+3+9+9=24,3×9﹣9÷3=24.故答案为:3+3+9+9=24,3×9﹣9÷3=24等.9.(2分)(2017•华罗庚金杯模拟)已知除法竖式如图:则除数是15,商是29.【分析】根据题意,由除法竖式的计算方法进行推算即可.【解答】解:根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,29.10.(2分)(2016•陈省身杯)在算式“2□3□7□5”的三个方框中分别填入“+”、“﹣”、“×”这三个运算符号各一次,使得填入符号之后的运算结果最大,这个最大的结果是34.【分析】根据加法、减法、乘法的意义可知,要使值最大,则就要使积尽量大,加数尽量大,减数尽量小,据此根据四则混合运算的运算顺序分析填空即可.【解答】解:要使值最大,就要把最大的两个数相乘,且最小的两个数相减,所以,这个最大的结果是:2﹣3+7×5=﹣1+35=34故答案为:34.11.(2分)(2018•迎春杯)在下列横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,且没有汉字代表7,“迎”、“春”、“杯”均不等于1,那么“迎”、“春”、“杯”所代表三个数字的和是15..【分析】确定不含5,为7的倍数,且不为49,考虑3,6,9的分配,即可得出结论.【解答】解:若含5,则必为“加”,此时=56,3和9各剩一个,无法满足,所以不含5,为7的倍数,且不为49,考虑3,6,9的分配.第一种情况,吧=9,则3,6在左侧,且不是3的倍数,则=14或28,无解;第二种情况,9在左侧,则3,6在右侧,可得1×2×4×9×7=63×8,所以“迎”、“春”、“杯”所代表三个数字的和是15.故答案为15.12.(2017•华罗庚金杯模拟)“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是94.【分析】本题考察凑数谜.【解答】解:根据“加数=和﹣另一个加数”,“华杯”=2004﹣1910=94.13.(2017•小机灵杯)在×=这个等式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么,=1207、1458、1729.【分析】根据式子的特点,我们可从“个位分析”入手,B×A的个位是B,可能分为:第一种,A=1,B为2﹣﹣9;第二种,A是奇数3、7、9,B=5;第三种,A为2、4、8,B没可取的值;第四种,A=6,B为2、4、8.然后用“枚举法”对第一、二、四种存在的情况一一检验,即可得出答案.【解答】解:因为B×A的个位是B,所以可能有下列4种情况:第一种,A=1,B为2﹣﹣9时,有12×21=252,13×31=403,14×41=574,15×51=765,16×61=976均不符合舍去而17×71=1207,18×81=1458,19×91=1729这三个都符合;第二种,A是奇数3、7、9,B=5时,有35×53=1855,75×57=4275,95×59=5605均不符合,舍去;第三种,A为2、4、8,B直接没有可取得值,所以舍去;第四种,A=6,B为2、4、8时,62×26=1612,64×46=2944,68×86=5848均不符合舍去.综上可得符合的有:17×71=1207,18×81=1458,19×91=1729故:ACDB=1207、1458、1729.14.(2018•陈省身杯)在下面的算式中,“陈”、“省”、“身”、“杯”、“好”分别代表一个不同偶数数字,则三位数“”=246.×杯+=2018【分析】“陈”、“省”、“身”、“杯”、“好”分别代表一个不同偶数数字,则只能是0、2、4、6、8,所以最大等于58,最小等于50,即×杯的值应在1960~1968范围内;由于每个汉字代表一个不同偶数数字,所以“陈=2”,“省=4”“杯=8”;因为最后的得数是2018,据此然后确定“身”和“好”即可.【解答】解:“陈”、“省”、“身”、“杯”、“好”分别代表一个不同偶数数字,则只能是0、2、4、6、8,所以最大等于58,最小等于50,那么,2018﹣58=1960,2018﹣50=1968即×杯的值应在1960~1968范围内;由于每个汉字代表一个不同偶数数字,所以“陈=2”,“省=4”“杯=8”;相应的可以确定,“身=6”和“好=0”,所以,246×8+50=2018,所以=246;故答案为:246.15.(2018•陈省身杯)在如图的方框中各填入一个数字,使得乘法竖式成立,则两个乘数之和为130.【分析】第一次乘得的积是三位数,且积的十位数字是1(125×8=1000),所以第一个因数只能是102;又由于最后的积是2千多,第一个因数的最高位是1,所以第二个因数的最高位只能是2,即第二个因数是28;那么乘法算式是102×28=2856;据此填数即可.【解答】解:根据分析可得,乘法算式是102×28=2856;则两个乘数之和为:102+28=130故答案为:130.16.(2018•迎春杯)如图,在每个方框中填入一个数字,使得算式成立,则乘积为26961.【分析】本题考察凑数谜.先从万位上的空格填1还是填2进行讨论,得出只能填2后,即可推出第一个因数的百位是2,十位是0,第二个因数的首位是1,接着依据两个因数的个位相乘,结果是一个比80大的数,得到9×9=81,最后根据209×口=口1口推出第二个因数的十位上为2,至此得出答案209×129=26961.【解答】解:如果万位上的空格填1,则第一个因数为10口,第二个因数为1口口,显然10口×口不可能得到四位数口口8口,所以万位上的空格填2,则第一个因数为20口,第二个因数为1口口,此时,结合20口×口=口口8口,可推出209×9=1818,则209×口=口1口,可推出209×2=418,至此,209×129=26961.故答案为:2696117.(2015•中环杯)如图算式中,最后的乘积为100855.【分析】首先找题中的特殊情况,发现黄金三角,只能是9+1=10.根据首位结果为9的三位数,进行讨论首位的值继续枚举即可.【解答】解:依题意可知:首先题中的特殊情况结果的进位为黄金三角只能是9+1=10.首位数字a×d结果是8加上进位正好是9.组合可是2×4或者1×8.根据竖式计算2+p有进位,那么p的值可以是7,8,9.根据上边两个数字都是0,那么e可以等于f.b可能是0.根据920多是数字必须有进位才行,所以b ≠0.那么就需要有进位才能构成的上面的数字0.当a=2,d=4时,f是小于4不为1的数字只有2和3.不能同时满足已知数字0,0,2的情况.当a=4,d=2时,f只能选择2,不满足进位相加为0.当a=8,d=1时,f只能是1,不满足数字0的情况.当a=1,d=8时,f为奇数,不是1和9,只能是3,5,7,经尝试只有115×877=100855满足条件.故答案为:100855.18.(2015•创新杯)如图所示,在□中填上适当的数,使除法竖式算式成立,那么被除数等于72.【分析】根据竖式的特点,正好能除尽,所以最后两行的积是:4×8=32,说明被除数的个位数字是2;因为被除数是两位数,所以十位数字比3多4,是3+4=7,所以被除数是72.【解答】解:根据分析可得:答:被除数等于72.故答案为:72.19.(2015•创新杯)在图中,分别将1﹣9这九个数字填入九个圆圈内,使两条直线上的五个数字和相等,那么中心处的圆圈内可以填入的数字是1、5、9.【分析】假设中间的数是a,每条叉线上的三个圆圈内的和相等是m,则有4m=1+2+3+4+5+6+7+8+9+3a,4m=45+3a,当a=1时,m=(45+3)÷4=12,1+2+9=1+3+8=1+4+7=1+5+6=12;当a=2、3、4时,m不是整数,无解;当a=5时,m=(45+15)÷4=15,5+1+9=5+2+8=5+3+7=5+4+6=15;当a=6、7、8时,m不是整数,无解;当a=9时,m=(45+27)÷4=18,9+1+8=9+2+7=9+3+6=9+4+5=18;即可得解.一共有3种不同的填法.【解答】解:把1~9填入图中,使每条线上5个数的和相等,有三种填法,如下图所示:所以,中心处的圆圈内可以填入的数字是1、5、9.故答案为:1、5、9.三.解答题(共10小题,满分47分)20.(4分)(2016•春蕾杯)请把0﹣9分别填入下面六个等式中,使等式成立.20×(9﹣8)=206÷2+17=203×8﹣4=20(4+8)÷12=14×5+0=2020×(7﹣2)=100.【分析】首先分析第一个数字是9,第二个数字是6,再分析除以12的结果只能是1.继续推理即可.【解答】解:依题意可知:20×(9﹣8)=206÷2+17=203×8﹣4=20(4+8)÷12=14×5+0=2020×(7﹣2)=10021.(4分)(2014•迎春杯)在下面4个8中间添上适当的运算符号和括号,使等式成立.8 8 8 8=1 8 8 8 8=2.【分析】本题可结合式中的数据根据四则混合运算的运算顺序进行尝试分析,添上适当的运算符号及括号使等式成立.【解答】解:(1)8÷8×8÷8=1(2)8÷8+8÷8=222.(4分)(2012•其他杯赛)在下面竖式中,已知道“数”字代表1,“学”字代表2,“生”字代表0,“赛”字代表5.你知道其他的汉字代表什么数字吗?【分析】多位数乘一位数的竖式计算,十位数乘一位数的结果是十一位数,且积的最高位是1,所以小只能是2或者是3,如果是2,竞就是1,那么在积的千位上无乱如何都得不到1,所以小只能是3,竞是6,报的右边一位是1,乘5不进位,所以报是偶数,但是报的左一位是2,和5相乘后个位是2,说明报与5乘积后加上进位的2才得到个位上是2,由此可知,报是4.此题的关键是有些数字在因数中出现了,在乘积中又以不同的顺序再次出现,这是关键中的关键.【解答】解:由题意知:如图:十位数乘一位数的结果是十一位数,且积的最高位是1,所以小只能是2或者是3,如果是2,竞就是1,那么在积的千位上无乱如何都得不到1,所以小只能是3,竞是6,报的右边一位是1,乘5不进位,所以报是偶数,但是报的左一位是2,和5相乘后个位是2,说明报与5乘积后加上进位的2才得到个位上是2,由此可知,报是4.如图:故答案为:竞=(6)报=(4)小=(3).23.(5分)(2017•华罗庚金杯模拟)把1,2,7,8,9,10,12,13,14,15填入图中的小圆内,使每个大圆圈上的六个数的和是60.【分析】数字之和为91,距120差29,则重复数字为14,15,把14和15填在中间重复计算的两个位置即可.剩下数字之和为62,则左右数字之和各为31.两组分配为:2、7、10、12;1、8、9、13.位置只分左右,顺序无所谓.分组还有几种,例如:1、8,10,12;2、7、9、13等等.【解答】解:填图如下:24.(5分)(2017•华罗庚金杯模拟)在下面16个6之间添上+、﹣、×、÷、(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997.【分析】本题考查填符号组算式.【解答】解:6×(6×6×6+6×6+6×6+6×6+6)+6+6+6﹣6÷6=6×(216+36+36+36+6)+18﹣1=6×330+17=1980+17=1997.25.(5分)(2017•希望杯模拟)在下面的算式里加上一对括号,使算式成立.1×2×3+4×5+6+7+8+9=100.【分析】将3+4括起来,即可得出结论.【解答】解:1×2×(3+4)×5+6+7+8+9=100.26.(5分)(2017•其他模拟)下面竖式中的两个乘数之和为多少.【分析】先根据竖式结构中的abc×4与abc×d积的位数推出d的取值是1、2、3;然后把d分3种情况进行推理(过程见解答),从而得出了两个乘数的具体值,最后把这两个乘数相加即可.【解答】解:为便于书写,用△代□.abc×4=,abc×d=⇒d<4,所以d的取值是1、2、3;若d=2时,和是2倍关系⇒40+2n和的十位数是1⇔2n的进位是7,n取1﹣﹣9的任何值,进位都不能是7,所以这不成立,舍去;若d=3时,和相差一个,即+=⇒b=8或9⇒×3或×3积十位上的数是2,c取1﹣﹣9任何值都无法成立,舍去;若d=1时,可得b是2,c×4进位是3⇒c是8或9⇒28×e或29×e积的十位数是0⇒c=9,e=7;×7积的个位数是3⇒1+f没有进位,m+0+n和个位数是8,n=c=9⇒m=9,即×4=⇒a =7.综上得:=729、=174729+174=903故:竖式中的两个乘数之和是903.27.(5分)(2014•迎春杯)趣味算式谜.【分析】第一题,根据余数是8,即可推出除数是9,再用“除数×商=被除数”便可解出问题;第二题,根据积的个位数是2,即可推出一位数的因数是8,用“积÷一个因数=另一个因数”便可解答;第三题,根据四位数×9积为四位数,没有进位,便可推出:我=1,然后再根据我=1,推出学=9,然后再根据我=1,学=9,则推出爱与数是0、8,即得出了本题的答案.【解答】解:(1)除法的余数是8,说明除数一定大于8;除数又是一位数,所以除数是9.被除数=36×9+8=332.整个解题过程如上图.(2)9乘一位数因数,积的个位是2.这可确定这个一位数的因数是8.因1832÷8=229,可知三位数的因数应是229,整个算式见上图.(3)①由“我爱数学”(四位数)×9(一位数)=学数爱我(四位数),说明式子中的“我”一定是1,如果是大于1的,积就变成五位数了,不符合要求了.②“学”与9的积个位是1,说明“学”一定是9.同时也说明“爱”与9的积不能进位,故“爱”一定小于2,即是1或0两种情况.又因“我”=1,所以“学”=0.③“数”×9+8(进位的)的个位是0,则“数”只能是8了.故综上得:我=1;爱=0;数=8;学=9.28.(5分)(2015•春蕾杯)在下⾯的式⾯中加上适当的括号,使等式成⾯.3×8+48÷8﹣5=163×8+48÷8﹣5=403×8+48÷8﹣5=72【分析】解答此题应根据数的特点,四则混合运算的运算顺序,进行尝试凑数即可解决问题.【解答】解:3×(8+48)÷8﹣5=163×8+48÷(8﹣5)=403×[8+48÷(8﹣5)]=7229.(5分)(2016•学而思杯)24点游戏:请用下面的4个数(每个数恰好用一次,可以调换顺序),以及“+、﹣、×、÷和小括号”凑出24.(1)7、12、9、12(2)3、9、5、9.【分析】此题可结合已给的数据,根据四则混合运算的运算顺序进行分析和试算,添上适当的运算符号及括号使等式成立即可.【解答】解:(1)9×12﹣7×12=24(2)(9﹣3)×(9﹣5)。
五年级下册数学试题-五升六讲义第5讲列方程解应用题(奥数版块)北师大版
第五讲 列方程解应用题一、等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、列方程解应用题列方程解应用题的主要步骤是:1、 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、 设这个量为x ,用含x 的代数式表示题目中的其他量;3、 找到题目中的等量关系,建立方程;4、 运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.板块一、解方程例1 解方程:3223x x -=+例2 解方程:6(31)214(34)x x -=--跟踪训练1. 解下列方程(1)1.2223.6x +=;(2)4.2 1.2x =÷;(3)3648x -=;(4)3 3.37.8x -=(5)1262616x ÷-=;(6)2516x ÷-=;(7)35375x ⨯+=;(8)87525x x +-=(9)22344134x x +⨯+=; (10)3626x x +-=;(11)745337x x ++-=; (12)4(10)2(7)122x x ++-=2. 解下列方程(1)35x x =+; (2)2184x x +=; (3)2.819.32 6.4x x =-;(4)5624x x +=+; (5)3558x x +=-; (6)607940x x -=+;(7)137520x x +=+; (8)218548x x -=-; (9)2462634x x +=-;(10)146108x x -=+;(11)83165x x x +-=+; (12)234(413)2x x -=-⨯板块二、列方程解和倍问题例3 有两盘苹果,如果从第一盘中拿2个放到第二个盘里,那么两盘的苹果数相同;如果从第二个盘中拿2个放到第一盘里,那么第一盘的苹果数是第二盘的2倍.第一盘有苹果多少个?巩固: 一个长方形的周长是36厘米,长是宽的2倍,这个长方形的面积是多少平方厘米?巩固: 5箱苹果和5箱葡萄共重75千克,每箱苹果是每箱葡萄重量的2倍。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
小学五年级奥数试题(三篇)
小学五年级奥数试题(三篇)导读:本文小学五年级奥数试题(三篇),仅供参考,如果觉得很不错,欢迎点评和分享。
【篇一】1.有人说:“任何7个连续整数中一定有质数.”请你举一个例子,说明这句话是错的.2.从小到大写出5个质数,使后面的数都比前面的数大12.3.9个连续的自然数,它们都大于80,那么其中质数最多有多少个?4.用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?5.已知一个两位数除1477,余数是49.求满足这样条件的所有两位数.6.某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?7.在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?8.已知两个数的和被5除余1,它们的积是2924,那么它们的差等于多少?9.在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数各是多少?10.一个长方体的长、宽、高都是整数厘米,它的体积是1998立方厘米,那么它的长、宽、高的和的最小可能值是多少厘米? 【篇二】1.小红和妈妈的年龄加在一起是40岁,妈妈年龄是小红年龄的4倍,小红有()岁,妈妈有()岁.2.生产队养公鸡、母鸡共404只,其中公鸡是母鸡的3倍,公鸡养了()只,母鸡养了()只.3.小明买大单和小单线共25本,其中大单线的本数比小单线的本数的2倍多4本,大单线的本数有()本,小单线的本数有()本.4.师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个;师、徒各生产()个?5.A、B两人同时从学校出发相背而行,2小时共行48千米,A的速度是B的2倍,A的速度是每小时()千米,B的速度是每小时()千米.6.一块长方形木板,长是宽的2倍,周长是54厘米.这个长方形木板的面积是()平方厘米.7.甲乙两个冷藏库原来共存肉92吨,从甲库运出28吨后,乙库存肉比甲库的4倍少6吨,甲库原来存肉()吨,乙库原来存肉()吨.8.两个粮仓共存粮2200千克,由乙仓运出210千克,甲仓存的粮食是乙仓的2倍少380千克,甲仓库原来存粮食()千克,乙仓库原来存粮食()千克.9.小红有30支铅笔,小兰有45支铅笔,小兰给小红()支后,小红的支数是小兰的2倍.10.姐姐有320元钱,弟弟有180元钱,弟弟给姐姐()钱后,姐姐的钱比弟弟的钱多3倍?【篇三】1.写出除109后余4的全部两位数。
数学奥数5年级试卷讲解【含答案】
数学奥数5年级试卷讲解【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2,5,8,那么第四项是?A. 9B. 10C. 11D. 12答案:D3. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 三角形答案:B4. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D5. 一个等比数列的前三项分别是2,6,18,那么第四项是?A. 54B. 56C. 58D. 60答案:A二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
(×)2. 一个等差数列的任意两项之和等于这个数列的两倍项。
(√)3. 两个等边三角形的面积相等。
(×)4. 一个数的立方根等于这个数的平方根。
(×)5. 两个等比数列的乘积仍然是等比数列。
(√)三、填空题(每题1分,共5分)1. 一个等差数列的前三项分别是3,7,11,那么这个数列的公差是______。
(4)2. 一个等比数列的前三项分别是2,6,18,那么这个数列的公比是______。
(3)3. 一个正方形的边长是10厘米,那么这个正方形的面积是______平方厘米。
(100)4. 两个质数的最小公倍数是这两个质数的乘积。
(√)5. 一个等差数列的第10项是50,那么这个数列的第1项是______。
(2)四、简答题(每题2分,共10分)1. 什么是质数?请举例说明。
答案:质数是指只能被1和它本身整除的数,例如2,3,5,7等。
2. 什么是等差数列?请举例说明。
答案:等差数列是指相邻两项之差相等的数列,例如2,4,6,8等。
3. 什么是等比数列?请举例说明。
答案:等比数列是指相邻两项之比相等的数列,例如2,4,8,16等。
4. 什么是平行四边形?请举例说明。
答案:平行四边形是指有两对对边分别平行的四边形,例如长方形,正方形等。
人教版五年级奥数试卷及答案_五年级奥数试卷及答案
人教版五年级奥数试卷及答案_五年级奥数试卷及答案一、填空。
(每小题5分,合计70分)1.简算:89.6×3.68+8.96×63.2=×74-×48=2.五1班存有学生60人,出席语文兴趣小组的存有20人,出席数学兴趣小组的存有28人。
语、数小组都出席的存有10人,这两个兴趣小组都没出席的存有()人。
3.用20个棱长1厘米的正方体可以摆成()种形状不同的长方体。
4.如果把一根木料锯成3段必须用6分钟,那么用同样的速度把这根木料锯成6段必须用()分钟。
5.五年级同学排成一个方阵,最外一层的人数为60人,这个方阵共有()人。
6.小聪就是个数学爱好者,出席全市初中数学竞赛,他的好友问:“这次数学竞赛,你得多少分后?荣获第几名?”小聪说道:“我的名次与我的岁数与我的分数连乘积就是,你猜猜我的成绩就是()分后,名次就是第()名。
”7.有一批砖,每块长45厘米,宽30厘米,至少要用()块这样的砖才能铺成一个正方形的地面。
8.一把钥匙就可以上开一把锁,现有5把钥匙和5把门锁搅乱了,最多吕弗克()次就能够确认哪把钥匙上开哪把门锁。
9.从0、2、3、5、7、8中选出四个数字,排成能被2、3、5整除的四位数,其中最大的是(),最小的是()。
10.一次智力竞赛存有20题,规定每答错一题些5分后,每答对一题翻开2分后。
小华请问全然部题得了72分后。
小华答错了()题。
11.把3÷70化成小数,小数点后面第位的数字是()。
12.父亲比儿子小30岁,明年父亲的年龄就是儿子的3倍。
那么今年儿子就是()岁。
13.王大妈家里原来有30个鸡蛋,而且还养了一只一天能下一个蛋的母鸡。
王大妈一天要吃3个鸡蛋,家里的鸡蛋可以连续吃()天。
14.一个分数,如果分子加之1,分母维持不变,则分后数值为23;如果分母加之1,分子维持不变,则分后数值为12。
原来这个分数就是()。
二、解决问题。
(每小题6分,合计30分)1、水果店里旧有水果千克,每天白天买进千克,晚上又发货千克。
五年级奥数2020试卷和解析——人教版
五年级奥数2020试卷和解析——人教版第一部分:试卷
1. 问题: 请问下列哪个数是一个完全平方数?
- A. 36
- B. 49
- C. 64
- D. 81
答案: A、B、C和D都是完全平方数。
2. 问题: 请问下列哪个数是一个质数?
- A. 10
- B. 15
- C. 20
- D. 25
答案: 选项A、B、C和D都不是质数。
3. 问题: 请计算下列各数的和:12 + 28 + 15 + 9。
答案: 12 + 28 + 15 + 9 = 64。
4. 问题: 请找出下一个数的规律:1, 4, 9, 16, 25, ...
答案: 下一个数为36,规律是每个数都是前一个数的平方。
5. 问题: 请计算下列等式的值:8 × (3 + 4) ÷ 2。
答案: 8 × (3 + 4) ÷ 2 = 28。
第二部分:解析
1. 第一题中,A、B、C和D都是完全平方数,因为它们的平方根分别是6、7、8和9。
2. 第二题中,选项A、B、C和D都不是质数,因为它们都有除了1和自身之外的因数。
3. 第三题中,我们将给定的数相加得到64。
4. 第四题中,下一个数是36,因为它是25的平方。
5. 第五题中,我们按照先乘除后加减的原则计算得到28。
以上是五年级奥数2020试卷和解析的内容,希望对你有帮助。
(完整word版)小学数学五年级奥数测试题及答案
五年级卷一、填空(每题2分)1、某数分别与两个相邻整数相乘,所得的积相差150,这个数是()2、每张方桌上放有12个盘子,每张圆桌上放有13个盘子。
若共有109个盘子,则圆桌有()张,方桌有()张。
3、在1至1000这1000个整数中,既能被3整除有是7的倍数的整数有()个。
4、三个连续自然数的积是120,这三个数分别是( )、( )、( )。
5、40人参加测验,答对第一题的有30人,答对第二题的有21人,两题都答对的有15人。
两题都答错的有()人。
6、今年八月一日是星期五,八月二十日是星期()。
7、有一排算式:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,2+19,3+21,…,那么()+()= 19948、节日之夜,广场上挂起了一排彩灯,共1999盏,排列的规律是:从头起每八盏为一组,每组的八盏灯依次为三盏红灯,二盏黄灯,三盏绿灯,那么最后一盏灯的颜色是()。
9、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,再自右至左每隔5厘米染一个红点,然后沿红点将木棍逐段锯开,那么长度是1厘米的木棍有()条。
10、A、B、C、D四个数,每次去掉一个数,将其余3个数求平均数,这样算了4次,得到以下4个数:45、60、65、70,问原来四个数的平均数是()。
11、妈妈买3千克苹果2千克梨,共付款12元;李奶奶买同样价格的苹果3千克,梨5千克,共付款21元。
买1千克苹果付款()元和1千克梨付款()元。
12、有10枚伍分硬币,“伍分”的面朝上放在桌子上。
现在每次翻动其中的9枚,翻动()次,使“国徽”面全部朝上。
13、每张方桌上放有12个盘子,每张圆桌上放有13个盘子。
若共有109个盘子,则圆桌有()张,方桌有()张。
14、一座大桥长6700米,一列火车以每分钟1000米的速度通过大桥,从车头上桥到车尾离桥共用了7分钟,这列火车长()米。
15、小明把节省下来的硬币按四个1分、三个2分、两个5分的顺序排列,那么他排的第111个是()分的硬币,这111个硬币共()元。
五年级奥数试卷及答案【含答案】
五年级奥数试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 21B. 34C. 57D. 462. 一个正方形的边长是4厘米,它的面积是?A. 16平方厘米B. 8平方厘米C. 4平方厘米D. 2平方厘米3. 下列哪个数是质数?A. 22B. 23C. 24D. 254. 1千米等于多少米?A. 100米B. 1000米C. 10米D. 10000米5. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 三角形D. 圆形二、判断题(每题1分,共5分)1. 5的倍数都是奇数。
()2. 0是最小的自然数。
()3. 1是最大的质数。
()4. 1米等于100厘米。
()5. 所有的偶数都是2的倍数。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 1千米等于______米。
3. 一个正方形的边长是5厘米,它的面积是______平方厘米。
4. 下列哪个数既是偶数又是质数?______5. 下列哪个图形是四边形?______四、简答题(每题2分,共10分)1. 请列举出前5个质数。
2. 请解释什么是偶数。
3. 请解释什么是平行四边形。
4. 请解释什么是因数。
5. 请解释什么是方程。
五、应用题(每题2分,共10分)1. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
2. 一个数加上30等于80,求这个数。
3. 一个数乘以5等于35,求这个数。
4. 一个正方形的边长是6厘米,求这个正方形的周长。
5. 一个数是9的倍数,且这个数是两位数,求这个数。
六、分析题(每题5分,共10分)1. 请分析并解答下列方程:2x + 3 = 11。
2. 请分析并解答下列方程:4x 7 = 9。
七、实践操作题(每题5分,共10分)1. 请画出一个边长为5厘米的正方形,并计算它的面积。
2. 请画出一个长为8厘米,宽为4厘米的长方形,并计算它的周长。
八、专业设计题(每题2分,共10分)1. 设计一个简单的加法游戏,要求玩家输入两个数字,程序输出它们的和。