九下 第二章 二次函数第一节 教学设计 (于海峰)
二次函数教案 (第一课时)

二次函数教案 (第一课时)二次函数的教学设计一、教学内容二次函数(新人教版九年级下册第26.1.1节)二、教学目标1.知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。
2.教学思考学生能对具体情境中的数学息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。
3.解决问题体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程。
4.情感态度通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。
三、教学重点与难点1.教学重点认识二次函数,经历探索函数关系、归纳二次函数概念的过程。
2.教学困难根据函数解析式的结构特征,归纳出二次函数的概念。
第四,教学过程的安排教学活动流程活动1:温故知新,揭示课题活动内容和目的由回顾所学过的函数入手,引入函数大家庭中还会认识哪函数呢?然后从打篮球的例子引入二次函数。
学生能独立运用函数知识解决变量之间的关系。
2.活动:合作探究,获取新知识,制作探究环节,与学生互动,自主探索新知识,从而通过观察和归纳。
得到二次函数的解析式,获取新知。
本组题目是新知识的直接应用,目的是让学生能够区分。
活动3:小试身手,循序渐进认二次函数,循序渐进这一环节主要帮助学生处理解决问题,加深对二次函数的理解。
总结内容、应用、数学思维方法、获取知识的途径等。
活动四:回顾课堂,总结巩固方面,既总结知识,又提炼方法,让研究研究知识和运用知识都有很大的提升,方法就是学生讲收获。
活动5:课堂检测,测评反馈以测试的形式检测本节课的内容,检查学生的掌握程度,同时加深学生对知识的理解。
第五,教学过程的设计问题与情景【活动1】1.知识回顾:以问答式引起学生对知识的回忆。
2.揭示课题:以篮球为例。
九年级下册第二章二次函数教学设计

第二章2.1二次函数教学设计备课组:数学组主备人:审核人:本节通过对具体情境的分析,概括出二次函数的表达形式,明确二次函数的概念.通过例题和学生列举的实例可以丰富对二次函数的认识,理解二次函数的意义.一、教材分析本节通过对具体情境的分析,概括出二次函数的表达形式,明确二次函数的概念.通过例题和学生列举的实例可以丰富对二次函数的认识,理解二次函数的意义.二、学情分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要的数学概念,是研究现实世界变化规律的重要数学模型.学生曾在七年级下册、八年级上册学习过“变量之间的关系”和“一次函数”和九年级上册学习过“反比例函数”等内容,对函数已经有了深刻的认识,在此基础上讨论二次函数及其性质可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,这对后继学习会产生积极影响.三、学习目标1、结合具体实际问题和已有函数知识,发现并归纳出两个变量之间的关系;说出二次函数的表达式及其限制条件的必要性;2、能根据一些具有实际意义的问题,确定二次函数表达式;能辨析、区分一个函数是不是二次函数;3、结合例子说出表达式及自变量的范围并解决变式练习.重难点:会叙述二次函数的定义及一般形式,并作出正确的判断;能用数学符号表示简单变量之间的二次函数关系.四、评价设计1、结合具体例子,发现归纳出两个变量之间的关系(目标达成率100%);2、说出二次函数的表达式及限制条件(目标达成率98%);3、能辨析区分一个函数是不是二次函数(目标达成率95%);4、能根据已知条件列出二次函数的表达式及自变量的范围(目标达成率90%);5、解决变式练习(目标达成率85%).五、学习过程(一)知识准备说说什么是函数?我们学习过的函数有 ,(二)合作探究1、探究1:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(独立思考)①说一说问题中有哪些变量?其中哪些是自变量?哪些因变量?②设果园增种x棵橙子树,则果园共有棵橙子树,这时平均每棵树结个橙子③如果果园橙子的总产量为y个,请写出y与X之间的关系式:y= .化简得:y=2、探究2银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储存转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税)(交流展示)①本金:;②一年到期后,利息:;本息和;③两年到期后,本金;利息:;本息和;④请写出y与x之间的关系式:试试身手:请用适当的函数解析式表示下列问题中的两个变量 y 与 x 之间的关系:①某商店1月份的利润是2万元,2、3月份利润逐月增长,这两个月利润的月平均增长率为x,3月份的利润为y= 即:y=②用总长为60 m的篱笆围成矩形场地,矩形面积y (m2)与矩形一边长x(m)之间是函数关系y= 即:y=③设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款是210元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).3、探究3:上面三个问题中的函数解析式具有哪些共同的特征?说一说二次函数的定义及一般形式呢?一般地形如的函数叫做x的二次函数.友情提示: 二次函数的特点(1)y=ax 2 --- (a ≠0,b=0,c=0).(2)y=ax ²+c --- (a ≠0,b=0,c ≠0)(3)y=ax ²+bx ---(a ≠0,b ≠0,c=0再试身手:下列函数中哪些是二次函数?( )①y=ax ²+bx+c ②y=2x ² ③y=-5x ²+6④ y=(x+1)(x-2) ⑤y=2x(x+1)²-2x ²⑥y=232--x x ⑦x y 2=⑧26xy = 活学活用:【例2】底面为正方形的长方体,已知底面边长是a ,长方体的高为5,体积为v ,(1)求v 与a 之间的函数表达式: , v 是a 的______函数,其中二次项系数为: 一次项系数为: 常数项为:(2)当a=2时,v=【例3】某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场每件提价x 元,请你得出每天销售利润y 与售价的函数表达式:化为一般式为: ,y 是x 的 函数. (三)巩固达标1.下列函数中,不是二次函数( )A.162+=x yB.261x y -= C.12+=x y )2)(1(-+=x x y D.2 .函数 y=(m-n)x 2+mx+n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数3.如果函数1232++=+-kx x y k k 是二次函数,则k 的值是______变式训练如果函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值是______4.半径为3的圆,如果半径增加2x ,面积S 与x 之间的函数表达式为:5.某公司1月份营业额100万元,三月份营业额为y 万元,如果每月的增长率为x ,则y 与x 的关系式为:6.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏,1)∠B= _2)用含有x 代数式分别表示:BC AD3)求梯形的面积y 与高x 的表达式.7.已知一张三角形纸片ABC ,面积为25,BC 边的长为10,∠A 和∠B 都是锐角,M 为AB 边上的一个动点,且M 不与点A 点B 重合),过点M 作MN ∥BC 交AC 于点N ,设MN=x,请用x 表示△ANM 的面积s.(四)课堂小结(五)能力提升1.一个菱形的边长为xcm ,它的面积为ycm .(1)当一个内角为60°时,则y 与x 之间的函数关系式(2)当一个内角为45°时,则 y 与x 之间的函数关系式2已知二次函数y=x²+px+q,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式.课题:2.1 二次函数教学目标:1.探索并归纳二次函数的定义.2.能够用二次函数表示简单的变量之间的关系.3. 从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,获得用二次函数表示变量之间关系的体验,并通过合作交流体验学习的乐趣.教学重、难点:重点:理解二次函数的概念.难点:经历探索,分析和建立两个变量之间的二次函数关系的过程.课前准备:多媒体课件.教学过程:一、复习回顾,创景导入1、温故知新(多媒体出示复习回顾问题)①回顾我们学过的知识,想一想我们用什么来描述两个变量之间的关系?②到目前为止我们学过了哪些函数?它们的关系式分别是怎样的?处理方式:先由学生独立思考,然后找学生口答上述问题,师生共同补充.2、情境引入问题①现有一根12m长的绳子,用它围成一个矩形,如何围法,才能使矩行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题②很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”.【教师板书课题:2.1 二次函数】设计意图:复习旧知识,为学习新知识奠定基础,设问质疑引出新知识,使学生产生强烈的求知欲望,充分调动了学生的学习积极性和主动性.二、合作探究,获取新知活动内容1:(多媒体出示)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.问题1:问题中有哪些变量?其中哪些是自变量?哪些是因变量?问题2:假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?问题3:如果果园橙子树的总产量为y个,那么请你写出y与x之间的关系式.处理方式:分步按顺序依次完成上述三个问题:找学生口答,然后师生共同补充;处理完这三个问题后,教师可继续提问:在上述问题中,增种多少棵橙子树,可以使果园的总产量最多?并引导学生合作探究.教师要鼓励学生大胆猜想,用自己的方法去解决问题,对学生的做法给予指导和肯定.再出基础上出示下表让学生填写,进而验证自己的猜想.设计意图:让学生数学活动过程中初步感受到这种“新”的函数在表现形式和函数值的增减性上与以前所学函数的差异,以及在解决最大值问题中的作用.活动内容2:(多媒体出示)设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).处理方式:先让学生自主独立探求,尝试写出y与x之间的函数表达式.在独立自主探求的基础上,小组进行合作交流,共同探讨.然后展示答案,教师对于解决问题有困难的学生从以下两个方面进行指导:⑴银行的储蓄利率是随时间的变化而变化的,利率是一个变量;⑵利息=本金×利率×期数(时间).设计意图:让学生通过解决实际生活中的数学问题,进一步了解掌握用函数表达式反应变量的变化过程.三、归纳总结,生成新知活动内容1:二次函数定义一般地,若两个变量x ,y 之间的对应关系可以表示成2y ax bx c =++(其中a ,b , c 是常数,0a ≠)的形式,则称y 是x 的二次函数(quadratic funcion) .其中x 是自变量,a 为二次项系数,2ax 叫做二次项,b 为一次项系数,bx 叫做一次项,c 为常数项.活动内容2:概念理解1、函数2y ax bx c =++ (其中a ,b ,c 是常数)当a ,b ,c 满足什么条件时 (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?2、下列函数中,哪些是二次函数? 2(1)y x =; 21(2)y x= ; 2(3)21y x x =-- ; (4)(1)y x x =- ; 2(5)(1)(1)(1)y x x x =--+- 2(6)y ax bx c =++3、分别说出下列二次函数的二次项系数、一次项系数和常数项:2(1)1y x =+ ; 2(2)3712y x x =+-; (3)2(1)y x x =-4.用总长为60m 的篱笆围成矩形场地,场地面积S(m ²)与矩形一边长a(m)之间的关系是什么?是函数关系吗?是哪一种函数?处理方式:先让学生自主独立思考,尝试解答,然后找学生口答;师生共同纠错.设计意图:进一步加深对二次函数概念的理解与认识,学会运用概念解决一些简单的数学问题.同时对二次函数的特征及注意事项进行强调:(1)等号左边是变量y ,右边是关于自 变量x 的整式;(2)a ,b ,c 为常数,且0a ≠;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项;(4)自变量x 的取值范围是任意实数.活动内容3:应用提升例 已知函数22(2)21m y m x x -=++-是二次函数,求m 的值.处理方式:先给学生两分钟时间独立思考尝试解答,然后找学生板演,学生评析,老师纠正并对二次项系数20m +≠重点做强调.四、回顾反思,提炼升华活动内容:通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高(多媒体出示)活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.1.函数2()y m n x mx n =-++是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数 2.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( )A .22(3)S x π=+B .9S x π=+C .22(3)S x π=+ D .24129S x x π=++ 3.下列函数关系中,可以看作二次函数y=ax 2+bx +c (a ≠0)模型的是( )A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系.4.下列函数中,二次函数是( )A .261y x =+B .61y x =+C .61y x =+D .261y x=+ 5.若函数m m x m y --=2)1(2为二次函数,则m 的值为 .6.在生活中,我们知道,当导线有电流通过时,就会发热,它们满足这样一个表达式:若导线电阻为R ,通过的电流强度为I ,则导线在单位时间所产生的热量Q=RI 2.若某段导线电阻为0.5欧姆,通过的电流为5安培,则我们可以算出这段导线单位时间产生的热量Q= .7.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售出价定为x元,每天所赚利润为y元,请你写出y与x之间的函数表达式?处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课堂延伸(多媒体出示)基础作业:课本 P30 习题2.1 第1题,第3题,第4题.拓展作业:助学P210 自主评价第1——6题.板书设计:课题:2.1 二次函数教学目标:1.探索并归纳二次函数的定义.2.能够用二次函数表示简单的变量之间的关系.3. 从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,获得用二次函数表示变量之间关系的体验,并通过合作交流体验学习的乐趣.教学重、难点:重点:理解二次函数的概念.难点:经历探索,分析和建立两个变量之间的二次函数关系的过程.课前准备:多媒体课件.教学过程:一、复习回顾,创景导入1、温故知新(多媒体出示复习回顾问题)①回顾我们学过的知识,想一想我们用什么来描述两个变量之间的关系?②到目前为止我们学过了哪些函数?它们的关系式分别是怎样的?处理方式:先由学生独立思考,然后找学生口答上述问题,师生共同补充.2、情境引入问题①现有一根12m长的绳子,用它围成一个矩形,如何围法,才能使矩行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题②很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”.【教师板书课题:2.1 二次函数】设计意图:复习旧知识,为学习新知识奠定基础,设问质疑引出新知识,使学生产生强烈的求知欲望,充分调动了学生的学习积极性和主动性.二、合作探究,获取新知活动内容1:(多媒体出示)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.问题1:问题中有哪些变量?其中哪些是自变量?哪些是因变量?问题2:假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?问题3:如果果园橙子树的总产量为y个,那么请你写出y与x之间的关系式.处理方式:分步按顺序依次完成上述三个问题:找学生口答,然后师生共同补充;处理完这三个问题后,教师可继续提问:在上述问题中,增种多少棵橙子树,可以使果园的总产量最多?并引导学生合作探究.教师要鼓励学生大胆猜想,用自己的方法去解决问题,对学生的做法给予指导和肯定.再出基础上出示下表让学生填写,进而验证自己的猜想.设计意图:让学生数学活动过程中初步感受到这种“新”的函数在表现形式和函数值的增减性上与以前所学函数的差异,以及在解决最大值问题中的作用.活动内容2:(多媒体出示)设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).处理方式:先让学生自主独立探求,尝试写出y与x之间的函数表达式.在独立自主探求的基础上,小组进行合作交流,共同探讨.然后展示答案,教师对于解决问题有困难的学生从以下两个方面进行指导:⑴银行的储蓄利率是随时间的变化而变化的,利率是一个变量;⑵利息=本金×利率×期数(时间).设计意图:让学生通过解决实际生活中的数学问题,进一步了解掌握用函数表达式反应变量的变化过程. 三、归纳总结,生成新知活动内容1:二次函数定义一般地,若两个变量x ,y 之间的对应关系可以表示成2y ax bx c =++(其中a ,b ,c 是常数,0a ≠)的形式,则称y 是x 的二次函数(quadratic funcion) .其中x 是自变量,a 为二次项系数,2ax 叫做二次项,b 为一次项系数,bx 叫做一次项,c 为常数项.活动内容2:概念理解1、函数2y ax bx c =++ (其中a ,b ,c 是常数)当a ,b ,c 满足什么条件时 (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?2、下列函数中,哪些是二次函数?2(1)y x =; 21(2)y x=; 2(3)21y x x =-- ; (4)(1)y x x =- ; 2(5)(1)(1)(1)y x x x =--+- 2(6)y ax bx c =++3、分别说出下列二次函数的二次项系数、一次项系数和常数项:2(1)1y x =+ ; 2(2)3712y x x =+-; (3)2(1)y x x =-4.用总长为60m 的篱笆围成矩形场地,场地面积S(m ²)与矩形一边长a(m)之间的关系是什么?是函数关系吗?是哪一种函数?处理方式:先让学生自主独立思考,尝试解答,然后找学生口答;师生共同纠错. 设计意图:进一步加深对二次函数概念的理解与认识,学会运用概念解决一些简单的数学问题.同时对二次函数的特征及注意事项进行强调:(1)等号左边是变量y ,右边是关于自 变量x 的整式;(2)a ,b ,c 为常数,且0a ≠;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项;(4)自变量x 的取值范围是任意实数.活动内容3:应用提升 例 已知函数22(2)21my m x x -=++-是二次函数,求m 的值.处理方式:先给学生两分钟时间独立思考尝试解答,然后找学生板演,学生评析,老师纠正并对二次项系数20m +≠重点做强调.四、回顾反思,提炼升华活动内容:通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识. 五、达标检测,反馈提高(多媒体出示)活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.1.函数2()y m n x mx n =-++是二次函数的条件是( ) A .m 、n 为常数,且m ≠0 B .m 、n 为常数,且m ≠n C .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数2.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( )A .22(3)S x π=+ B .9S x π=+ C .22(3)S x π=+ D .24129S x x π=++3.下列函数关系中,可以看作二次函数y=ax 2+bx +c (a ≠0)模型的是( ) A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系. 4.下列函数中,二次函数是( ) A .261y x =+ B .61y x =+ C .61y x =+ D .261y x=+ 5.若函数mm xm y --=2)1(2为二次函数,则m 的值为 .6.在生活中,我们知道,当导线有电流通过时,就会发热,它们满足这样一个表达式:若导线电阻为R ,通过的电流强度为I ,则导线在单位时间所产生的热量Q=RI 2.若某段导线电阻为0.5欧姆,通过的电流为5安培,则我们可以算出这段导线单位时间产生的热量Q= .7.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售出价定为x元,每天所赚利润为y元,请你写出y与x之间的函数表达式?处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课堂延伸(多媒体出示)基础作业:课本 P30 习题2.1 第1题,第3题,第4题.拓展作业:助学P210 自主评价第1——6题.板书设计:。
九年级下册第二章《二次函数》第一节

课题:2.1 二次函数一、课标要求:(一)内容标准:通过对实际问题的分析,体会二次函数的意义。
(二)能力目标:通过分析实际问题,获得用二次函数表示变量之间关系的体验,引出二次函数的概念,并能利用尝试求值的方法解决实际问题。
体会函数的建模思想。
十大核心概念在本节课中突出培养的是应用意识、模型思想。
二、教材与学情分析:(一)教材分析:本节课是九年级下册第二章《二次函数》第一节,属于“数与代数”领域中的“函数”。
二次函数是一种基本初等函数,是描述现实世界变量之间关系的重要模型。
学生已经学习了函数,一次函数和反比例函数。
研究函数已经有很好的基础和经验。
二次函数是初中阶段所学的函数知识的重点内容之一,是对函数及其应用知识学习的深化和提高。
二次函数的学习为学生进一步学习函数,进而体会函数的思想奠定基础,积累经验,同时为第四节二次函数的应用做好铺垫有着承上启下的作用。
本节的重点是通过实际情境,引出二次函数的概念,并从中体会函数的模型思想。
(二)学情分析一、学习条件和起点能力分析:1.学习条件分析:(1)必要条件:学生之前已经学习过变量、自变量、因变量、函数等概念,具备了一定的函数方面的基础知识、基本技能,会利方程解决一些实际问题。
(2)支持性条件:在相关知识的学习过程中,学生已经经历了一些利用函数解决实际问题的活动,感受到了函数是描述现实世界变量之间关系的重要模型;经历过合作学习的过程,具有一定的合作与交流能力。
2.起点能力分析学生能够表示出比较简单的具体问题中各个量之间的关系。
二、学生可能达到的程度和存在的普遍性问题:本节课通过自主学习与合作交流,少数学生能用二次函数表示简单变量之间的关系,多数学生能判断是否是二次函数、能够用尝试求值的方法解决实际问题。
多数学生在解决问题时由于实现数学化方面存在学习障碍,因此分析和建立两个变量之间的二次函数关系仍有困难,针对这一问题,采取策略:从学生感兴趣的且较简单的实际问题入手,使学生积极参与数学学习活动,把数学问题和实际问题相联系,同时使学生体会数学与人类生活的密切联系及对人类历史发展的作用,增强对数学的好奇心和求知欲。
九年级《二次函数》全章教案

教学目标:1.了解二次函数的概念及特点。
2.掌握二次函数的图像、顶点、轴对称、零点等基本性质。
3.学会利用函数图像解决实际问题。
教学重点:1.理解二次函数的相关概念。
2.掌握二次函数图像的绘制方法。
3.能够运用二次函数解决实际问题。
教学难点:1.掌握二次函数的顶点和轴对称的概念及求解方法。
2.学会利用函数图像解决实际问题。
教学准备:1.教材《二次函数》的教学课件及习题。
2.计算器、直尺、笔记本等教学工具。
3.多媒体设备及相关教学资源。
教学过程:一、导入(10分钟)1.通过展示一副二次函数的图像和实际应用问题,引起学生兴趣。
2.复习一次函数的相关内容,引出二次函数的定义及特点。
二、概念讲解与示例演示(25分钟)1.讲解二次函数的定义,即形如f(x)=ax²+bx+c(a≠0)的函数。
2.介绍二次函数图像的最简形式,即顶点形式f(x)=a(x-h)²+k。
3.示例演示:给出一个二次函数式,通过变换得到最简形式,并通过求顶点等方式解决具体问题。
三、绘制二次函数图像(40分钟)1.讲解如何绘制二次函数图像的步骤,包括求顶点、确定轴对称、绘制图像等。
2.分组活动:将学生分成小组,每组选择一道习题,并利用求顶点和绘图方法解答。
3.展示小组成果,让每个小组派学生来展示解题过程和图像结果。
四、实际应用问题(30分钟)1.引导学生思考如何利用二次函数图像解决实际问题。
2.提供一些实际应用问题,如物体抛射问题、面积最大问题等,让学生结合所学知识进行求解。
3.组织学生进行小组合作讨论,并将解题思路和结果展示给全班。
五、拓展与总结(15分钟)1.通过讨论、展示和总结,让学生理解二次函数的基本性质和应用方法。
2.布置课后作业,要求学生进一步巩固所学知识,并解决一些拓展问题,如不等式问题、复合函数问题等。
3.回顾本节课的主要内容和思路,澄清学生对二次函数的理解和掌握程度。
教学反思:通过本节课的教学,学生对二次函数的定义和特点有了更深入的了解。
九下 第二章 二次函数 教学设计 (于海峰)

第二章 二次函数第二节 二次函数的图像复习:1、二次函数的一般式 。
注意: 。
2、函数的三种表达方式 , , 。
3、作函数图像的步骤 , , 。
做一做:1、作2x y =的图像2、作2x y -=的图像3、作22x y =的图像4、作22x y -=的图像观察图像,总结性质:一、图形形状:二、开口方向:a ;a 三、对称性: 对称图形,关于 对称四、增减性: ⎩⎨⎧<0a⎩⎨⎧>0a五、最值:(1)、a 时有 值,当X = Y =(2)、a 时有 值,当X = Y = 六、与X 轴交点的情况。
若图像向上平移将出现几个交点? 若图像向下平移将出现几个交点? 思考:1、2x y =的图像和2x y -=图像有什么关系?2、22x y =的图像和22x y -=图像有什么关系?3、总结2ax y =的图像和2ax y -=图像有什么关系?4、2x y =的图像和22x y =图像位置有什么关系?5、2x y -=的图像和22x y -=图像位置有什么关系?6、总结:21x a y =的图像和22x a y =(其中21a a >)图像位置有什么关系?7、点A (2,4)在二次函数2x y =的图像上吗?写出点A 关于x 轴对称点B 坐标、关于关于y 轴对称点C 坐标,及关于原点对称点D 坐标,判断B,C,D 点在函数2x y =的图像上吗?你用了那些方法?再判断B,C,D 点在函数2x y -=的图像上吗?你用了那些方法?【例1】求出函数y=x+2与函数y=x2的图象的交点坐标.反思分析:(1)、函数交点坐标的求法——把两个函数关系式,先求出坐标值,再。
(2)、根据大致图像判断交点情况【例2】已知a<-1,点(a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3反思分析:(1)利用二次函数性质如何解决这个问题。
[初三数学]《二次函数》第1课时教学设计
![[初三数学]《二次函数》第1课时教学设计](https://img.taocdn.com/s3/m/b7c689b3be23482fb5da4c02.png)
让学生充分发表意见,提出各自看法。
教师归纳总结:上述三个函数解析式经化简后都具y=ax²+bx+c (a,b,c是常数, a≠0)的形式.
板书:我们把形如y=ax²+bx+c(其中a,b,C是常数,a≠0)的函数叫做二次函数(quadratic funcion)
称a为二次项系数,b为一次项系数,c为常数项,
请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项。
注意:切不可忽视a≠0.
学生思考问题,列出关系式。
学生小组合作交流。
学生发表自己的见解,总结归纳二次函数的定义。
让学生体会引入二次函数概念的显示背景,感受其实际意义,激发学生的学习兴趣。
通过归纳、分析,使学生明白二次函数的特征,理解其解析的特点。
(1) (2) (3)
3、若函数 为二次函数,则m的值为。
(二)实际问题中的二次函数:
1、如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分)。设AE=BF=CG=DH=x(cm) ,四边形EFGH的面积为y(cm2),求:
(1)y关于x的函数解析式和自变量x的取值范围。
二次函数(第1课时)教学设计
教师行为
学生学习活动
设计意图
活动1:创设情境,导入新课:
问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?
问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?
3、如果函数y=(k+2)xk²-2是y关于x的二次函数,则k值为多少?
北师大版九年级数学下册:2.1《二次函数》教学设计2

北师大版九年级数学下册:2.1《二次函数》教学设计2一. 教材分析《二次函数》是北师大版九年级数学下册第2章第1节的内容。
本节课主要介绍了二次函数的定义、性质及其图象。
二次函数是中学数学的重要内容,它在实际生活中有着广泛的应用。
通过学习二次函数,学生可以更好地理解函数的概念,提高解决问题的能力。
本节课的内容为学生后续学习二次方程、二次不等式等知识打下基础。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备了一定的函数知识基础。
但是,对于二次函数的理解和应用,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习差异,针对性地进行教学,提高学生的学习兴趣和自信心。
三. 教学目标1.知识与技能:让学生掌握二次函数的定义、性质及其图象,能够熟练运用二次函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生探究问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生树立克服困难的信心。
四. 教学重难点1.重点:二次函数的定义、性质及其图象。
2.难点:二次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生了解二次函数的实际意义。
2.启发式教学法:教师提问,学生思考,共同探讨问题,培养学生的问题解决能力。
3.小组合作学习:学生分组讨论,共同完成任务,提高学生的团队合作精神。
六. 教学准备1.教学课件:制作涵盖二次函数定义、性质、图象等方面的课件。
2.实例素材:收集与二次函数相关的实际问题,用于课堂讲解和练习。
3.练习题:准备适量的练习题,巩固学生对二次函数的理解。
七. 教学过程1.导入(5分钟)利用实例引入二次函数的概念,如抛物线跳跃高度等问题,激发学生的兴趣。
2.呈现(10分钟)展示二次函数的定义、性质及其图象,引导学生观察、分析,总结二次函数的特点。
3.操练(10分钟)让学生分组讨论,运用二次函数解决实际问题,如抛物线与坐标轴的交点问题等。
北师大版九年级数学下册:第二章 2.1《二次函数》精品教学设计

北师大版九年级数学下册:第二章 2.1《二次函数》精品教学设计一. 教材分析北师大版九年级数学下册第二章《二次函数》是整个初中数学的重要内容,也是九年级数学的教学难点。
本节内容主要介绍二次函数的定义、性质以及图象。
通过学习,使学生能够理解二次函数的概念,掌握二次函数的图象特征,能够运用二次函数解决实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数有一定的了解。
但在二次函数的图象和性质方面,学生可能还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握二次函数的知识。
三. 教学目标1.理解二次函数的概念,掌握二次函数的图象特征。
2.能够运用二次函数解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.二次函数的定义和性质。
2.二次函数图象的特征。
3.运用二次函数解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实际问题,引发学生对二次函数的兴趣,培养学生运用数学知识解决实际问题的能力。
2.数形结合法:通过二次函数图象的展示,使学生直观地理解二次函数的性质。
3.小组合作学习法:引导学生分组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教学课件:制作二次函数的定义、性质和图象的课件,以便进行直观展示。
2.练习题:准备一些有关二次函数的练习题,以便进行课堂练习和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题,如抛物线跳跃游戏,引发学生对二次函数的兴趣。
引导学生思考:抛物线的形状是由什么因素决定的?2.呈现(15分钟)利用课件展示二次函数的定义和性质,让学生直观地了解二次函数的基本概念和图象特征。
同时,通过举例说明二次函数在实际生活中的应用。
3.操练(15分钟)让学生分组讨论,每组选择一个二次函数,分析其图象特征,并总结出二次函数的性质。
然后,进行小组间的分享和交流。
4.巩固(10分钟)针对刚才的学习内容,进行一些相关的练习题,检查学生对二次函数知识的掌握程度。
北师大版数学九下《第二章二次函数》word教案

第二章 二次函数第1节 二次函数所描述的关系本节内容:二次函数的定义 列函数关系式(重点)一般地,形如的二次函数。
的函数叫做是常数,x a c b a c bx ax y )0,,(2≠++= 例如:的二次函数。
等等都是x x y x x y x x y 13,2,32222+-=+=--= 在理解二次函数的定义时,应注意以下几点:(1)任何一个二次函数的关系式都可以化成)0,,(2≠++=a c b a c bx ax y 是常数,的形式,因此,把)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式,其中c bx ax 、、2分别是二次项、一次项和常数项。
(2)二次函数)0(2≠++=a c bx ax y 中,y x 、是变量,c b a 、、是常量。
自变量x 的取值范围是全体实数,b 和c 可以是任意实数,要特别注意a 必须是不等于0的实数。
因为当a =0时,c bx ax y ++=2就是c bx y +=,若0≠b ,则c bx y +=是一次函数;若0=b ,则c y =,就是一个常数函数。
(3)二次函数)0(2≠++=a c bx ax y 与一元二次方程)0(02≠=++a c bx ax 有密切联系,如果将变量y 换成一个常数,那么这个二次函数就是一个一元二次方程。
A .012=++y x B.2)1()1)(1(---+=x x x yC.242x y ++=D.022=-+y x 函数关系式其实是一个等式,左边字母表示的量随右边的字母变化而变化,所以左边的字母(因为右边的的字母变化它才变化)叫因变量,右边的字母是自己不断的变化,所以叫自变量。
(1)在实际问题中,要表示两个变量间的关系,需找到问题中的等量关系,列出含有这两个变量的二元方程,再按要求化成用含一个变量的式子表示另一个变量的形式。
(2)用尝试求值的方法解决实际问题,可以列出表格,依次对自变量取值,求出它们对应的函数值,然后取得符合题意的值。
九年级数学《二次函数(第一节)》教学设计

本节从复习引入,新课探究,巩固提高,课后拓展,所有问题的展开充分考虑到学生的主动参与为根本是本节课最大特点,注重学生学习的选择性和创造性,树立起“学生即目的”新理念.让他们主动地参与动眼观察、动耳听、动笔记、动脑思考、动手操作、动口讨论。调动学生的学习积极性,使课堂教学焕发生命活力
三、教学策略设计注重情境建构
本教学情境的设计主要有以下两个方面特点,一是创设真实的情境,学生在实践中学习知识;二是问题情境,激起学生的求知欲和好奇心,使他们积极主动地探索问题、解决问题,从而获得分析问题、解决问题的能力,并形成良好的学习态度。
四、动态生成的教学设计观
本节注重了课程重组,师生共同实施、开发和创造课程贯穿于全课.使课程内容持续生成与转化、不断建构与提升体现于全课.
课外探究:
1.已知二次函数 ,当x=3时,y=-5;当x=-5时,y=?你能通过列表、描点、连线画出它的图像吗?
2.思考:研究函数的一般步骤是什么?一次函数的图象是直线,反比例函数的图象是双曲线。二次函数图像的形状会怎样?
【教师活动】
1、教师展示题组一,学生口答,教师适当点评,重在把握二次函数的三个要点.
九、教学过程设计:
问题与情境
师生互动
媒体应用与
设计意图
活动一创设情境,导入新课(6分钟)
【问题一】
1.举例说明一次函数、反比例函数分别是怎样定义的?这两种函数的图象分别是什么?
2.研究函数的一般方法步骤是什么?
3.思考:(函数是描述变化的一种数学工具,一次函数与反比例函数可以表示某些问题中的变量关系),请看下面问题:①如果设圆的半径为r,面积为S,那么S会随着r的变化而变化,S与r之间有什么关系?②如果改变正方体的棱长x,那么正方体的表面积y会随之改变,y与x之间有什么关系?(表示问题①②中变量之间关系的函数是前面学过的函数吗?这种函数有哪些性质?它的图象是什么样的?它与以前学习的函数、方程有哪些联系?这就是本章要研究的内容)
北师大版九年级下册第二章二次函数2.2 二次函数的图象与性质(第1课时) 教学设计-学习文档

第二章 二次函数《二次函数的图象与性质(第1课时)》一、学生知识状况分析学生的知识技能基础:学生在前面已经学习过一次函数、反比例函数,经历过探索、分析和建立两个变量之间的一次函数、反比例函数关系的过程,并学会了用描点法画函数图象的方法.在本章第一节课中,又学习了二次函数的概念,经历了探索和表示二次函数关系的过程,获得了用二次函数表示变量之间关系的体验.学生活动经验基础:在学习一次函数、反比例函数过程中,学会了用描点法画函数图象的方法,学生已具备了一定的作图能力,并经历了利用一次函数、反比例函数图象探索函数性质的活动,解决了一些简单的现实问题,感受到了数形结合的必要性和重要性,获得了一些探究函数图象和性质的数学活动经验基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析教科书基于学生对二次函数的概念认识,提出了本课的具体学习任务:能利用描点法画函数2x y ±=的图象,并能根据图象认识和理解二次函数2x y ±=的性质.为此,本节课的教学目标是:知识与技能1.能够利用描点法画函数2x y =的图象,能根据图象认识和理解二次函数2x y =的性质.2.猜想并能作出2x y -=的图象,能比较它与2x y =的图象的异同. 过程与方法1.经历探索二次函数2x y =的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2.由函数2x y =的图象及性质,对比地学习2x y -=的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.情感与态度1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.教学重点:作出函数2x ±的图象,并根据图象认识和理解二次函数2x y ±=的性质.教学难点:由2x y =的图象及性质对比地学习2x y -=的图象及性质,并能比较出它们的异同点.教学过程分析(一)创设问题情境,引入新课[师]我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是过原点的一条直线.一般地一次函数的图象是不过原点的一条直线,反比例函数的图象是双曲线.上节课我们学习了二次函数的一般形式为c bx ax y ++=2(其中c b a 、、均为常数且0≠a ).那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.(二)新课讲解1、作函数2x y =的图象[师]一次函数的图象是一条直线.二次函数的图象是什么形状呢?让我们先看最简单的二次函数2x y =.大家还记得画函数图象的一般步骤吗?[生]记得. 列表,描点,连线.[师]非常正确,下面就请同学们跟我按上面的步骤作出2x y =的图象.(1)列表:(2)在直角坐标系中描点.(3)用光滑的曲线连结各点,便得到函数图象.[师]同学们有没有什么疑惑?们都是直接用直线来连接各点的,我这里画出的是折线图,难道不对吗?[师]这个问题提得好.二次函数图象是到底用直线连接还是用光滑的曲线来连接更为合理呢?不知同学们考虑这个问题没有:列表时我们取的点都是整数点,在整数点之间还有许多小数的点并未取,如自变量1与2之间还有无数个小数,假设我们把点取得更多一些我们就能看出二次函数图象的真正面貌了.不妨取20个点试试,再取50个点试试.[生]老师,我明白了,取的点足够多时我们就能看出其本来面貌的.2、议一议对于二次函数2x y =的图象,(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x 轴有交点吗?如果有,交点坐标是什么?(3)当0<x 时,随着值的增大,的值如何变化?当0>x 时呢?(4)当x 取什么值时,y 的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请找出几对对称点,并与同伴进行交流.[生](1)图象的形状是一条曲线,就像抛出的物体所进行的路线的倒影.(2)图象与x 轴有交点,交于原点,交点坐标就是(0,0).(3)当0<x 时,图象在y 轴的左侧随着x 值的增大,y 的值逐渐减小;当0>x 时,图象在y 轴的右侧,随着x 值的增大,y 的值逐渐增大.(4)观察图象可知,当x=0时,y 的值最小,最小值为0.(5)观察图象是轴对称图形,它的对称轴是y 轴,从刚才的列表中可找到对应点(-1,1)和(1,1);(-2,4)和(2,4);(-3,9)和(3,9).[师]大家分析判断能力很棒,下面我们系统地总结一下.3、2x y =的图象的性质[师]二次函数________2的图象是一条x y =,它的开口________,且关于______对称.对称轴与抛物线的交点是抛物线的________,它是图象的_________.同学们在补充一下:[生](1)最低点坐标是(0,0).(2)在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随着x 的增大而增大.(3)图象与x 轴有交点,这个交点也是对称轴与抛物线的交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).(4)因为图象有最低点,所以函数有最小值,当x =0时,y 最小值=0.4、做一做PPT 显示:2x y -=二次函数图象是什么形状?先想一想,然后作出它的图象.它与二次函数2x y =的图象有什么关系?与同伴进行交流.[师]请大家按照画图的步骤作出函数2x y -=的图象.[生]2x y -=的图象如右图:形状还是抛物线,只是它的开口方向向下,它与2x y =的图象形状相同,方向相反,这两个图形可以看作是关于x[师]下面我们试着讨论2x y -=的图象的性质.[生](1)抛物线的开口方向是向下.(2)它的图象有最高点,最高点坐标是(0,0).(3)它是轴对称图形,对称轴是y 轴.在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随着x 的增大而减小.(4)图象与x 轴有交点,称为抛物线的顶点,同时也是图象的最高点,坐标为(0,0).(5)因为图象有最高点,所以函数有最大值,当0=x 时,y 最大值=0.[师]大家总结得非常棒.5、2x y =函数与的2x y -=图象的比较.我们观察函数2x y =与2x y -=的图象,并对图象的性质作系统的研究,现在我们再来比较一下它们的图象的异同点.(1)、开口方向不同,2x y =开口向上,2x y -=开口向下.(2)、函数值随自变量增大的变化趋势不同,在2x y =图象上,在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随x 着的增大而减小,在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而增大.在2x y -=的图象上正好相反.(3)、在2x y =中y 有最小值,即0=x 时,y 最小值=0;在2x y -=中,y 有最大值.即当0=x 时,y 最大值=0.(4)、2x y =有最低点,2x y -=有最高点.相同点:(1)、图象都是抛物线.(2)、图象都与x 轴交于点(0,0).(3)、图象都关于y 轴对称.联系:它们的图象关于x 轴对称.6、思考拓展.[师]从上面的比较中,还有没有什么问题要提出来?[生]从2x y =和2x y -=两个二次函数的解析式来比较,只是相差一个符号,而图象的张口方向却正好相反.那么二次函数的图象的开口方向到底跟什么有关呢?[师]很善于思考.我们现在来看这几个二次函数的图象22x y =、23x y =(二次项系数均为正值),再来看另几个二次函数图象22x y -=、23x y -=(二次项系数均为负值),你们发现了什么规律?[生1]原来二次项系数为正时,抛物线开口朝上,二次项系数为负时,抛物线开口朝下.[生2]老师,我还发现从二次项系数的绝对值来看,绝对值越大,开口越小,绝对值越小,开口越大.[师]说得非常好,对于2ax y =这类二次函数来说,a 与其张口大小、张口方向都有关系.(并就本节整体内容进行总结,并给学生以感想的时间.)(三)布置作业设计思路:先通过列表描点连线初步得到2x y =的图象,进而通过增加满足函数的点数感悟此函数的真正图象,并通过观察图象来了解2x y =函数图象的性质特征.利用相同办法同时研究2x y -=图象的性质,并对两函数进行对比,体会造成图象不同的原因,并进而引发学生产生是不是二次函数二次项系数a 为正开口向上、二次项系数为负开口向下的疑问并画图验证,而由此又生发出a 的绝对值对其张口大小的思考,教师通过课件解惑并归纳.。
北师大版数学九年级下册第二章《二次函数》教案

本课的具体学习任务:本节课要学习的内容是二次函数所描述的关系,重点是通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系,并能利用尝试求值的方法解决实际问题.让学生通过分析实际问题(探究橙子的数量与橙子树之间的关系),从学生感兴趣的问题入手,并广泛联系多学科问题,使学生好奇而愉快地感受二次函数的意义,感受数学的广泛联系和应用价值.在教学中,让学生通过观察、思考、合作,交流,归纳出二次函数的概念,并从中体会函数的建模思想。
第二章二次函数
1.二次函数所描述的关系
一、学生知识状况分析
学生的知识技能基础:学生在之前已经学习过变量、自变量、因变量、函数等概念,对一次函数、反比例函数的相关知识如:各种变量、函数的一般形式、图像、增减性等知识有一定基础,相关应用也较常见,学生在学二次函数前具备了一定函数方面的基础知识、基本技能。
一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数(quadratic function).
提ቤተ መጻሕፍቲ ባይዱ:
1.上述概念中的a为什么不能是0?
2.对于二次函数y=ax2+bx+c中的b和c可否为0?若b和c各自为0或均为0,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?
活动目的:让学生作主,在生活情景中学习数学,带着兴趣学数学,体验每个人都学有用的数学。用统计的方法得到关于最大产量的一种猜想,问题的最后解决留在以后。从上面的活动中,使学生初步了解新函数的增减性的与众不同和新函数的重要应用(求最值)。
第四环节做一做
活动内容:投影片:(§2.1B)
人教新课标版初中九下26.1二次函数(1)教案

26.1二次函数(1)教学内容本节课主要学习二次函数相关概念.教学目标知识技能能够表示简单变量间的二次函数关系.理解二次函数的意义与特征,提升学生的分析,概括的水平.数学思考逐个探求不同实例中两个变量之间的关系,后总结、概括,得出二次函数的定义,获得用二次函数来表示变量之间关系的体验。
解决问题进一步增强用数学方法解决实际问题的水平,体会二次函数在广泛应用中的作用.情感态度注重学生参与,联系实际,丰富学生的感性理解,培养学生的良好的学习习惯,体会通过探究得到发现的乐趣。
重难点、关键重点:二次函数实例分析、二次函数定义的理解难点:通过学习使学生体会建立二次函数模型的思想。
关键:从实例中抽象出二次函数的定义,会分析实例中的二次函数关系。
教学准备教师准备:制作课件,精选习题学生准备:复习相关知识,预习本节课内容教学过程一、情境引入观察喷泉水的流动弧线,篮球运动的路线……探究这些优美的弧线与什么函数相关呢?【活动方略】学生观察图片,教师引出课题.【设计意图】创设问题情境,让学生从生活中发现数学问题,激发学生学习的兴趣.二、探索新知1.用自变量的二次式表示函数关系【想一想】①正方体的棱长为x,表面积为y,则y= 6x2.(用含x的代数式表示)②圆的面积为S,半径为R,则S = лr2(用含 R 的代数式表示)【探究 l】多边形的对角线d与边数n有什么关系?【思路分析】从多边形的一个顶点出发,能够作多少条对角线?从n个顶点出发,又能够作多少条对角线?【答案】从多边形的一个顶点出发,能够作(n-3)条对角线,从n个顶点出发,能够作12·n·(n-3)条对角线.即d=12·n·(n-3).【点评】思路是从简单到复杂.【易错点】对关系式中12不很理解.【探究2】某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍那么,两年后这种产品的产量y将随计划所定的x的值而确定.y 与x之间的关系应怎样表示?【解析】一年后的产量为20(1+x).再过一年后的产量为20(1+x)2.即两年后的产量为20(1+x)2.【答案】y=20(1+x)2【点评】此题必须理解每一年的产量.2.二次函数的定义观察比较以下关系式①y=6x2;②d=12n·(n-3)即21322y n n=-;③y=20(1+x)2即y=20x2+40x+20函数①②③有什么共同点与不同点.共同点:A. 等式的左边为函数,等式的右边为自变量的二次式B.等式的右边可统一为“a x2+bx+c”的形式.二次函数:一般地,形如y=ax2+bx+c (a, b,c是常数,a≠0)的函数,叫二次函数.【注意】①函数y=a x2+bx+c中,a≠0是必要条件,切不可忽视.而b,c的值能够为任何实数.②定义是关于x的二次整式(切不可把“y=x2+1x+3,也当成二次函数)三、范例点击例1下列函数是二次函数的有A.y=8x 2+1B.y=2x-3C.y=3x 2+21xD.y=3x【解析】A 符合二次函数定义,故它是二次函数. B.是一次函数. C,D 都出现分式,故C,D 都不是二次函数.【答案】A【点评】紧扣定义中的两个特征:①a ≠0;②a x 2+bx+c 是整式(二次三项式). 变式题 若y=(b-1)x 2+3是二次函数,则b ≠1.类型之一 实际问题中的二次函数例2 一个正方形的边长是12cm.若从中挖去一个长为2xcm ,宽为(x+1)cm 的小长方形.剩余的部分的面积为yc m 2.(1)写出y 与x 之间的函数关系式,并指出y 是x 的什么函数.(2)当小长方形的长中x 的值为2,4时,相对应的剩余部分面积是多少?【分析】可画出示意图,剩余面积=正方形面积-小长方形面积.解:(1)y=122-2x(x+1),即y=-2x 2-2x+144∴y 是x 的二次函数.(2)当x=2,4时,相对应的y 的值分别为132cm2,104cm2.【点评】几何图形的面积一般需要画图分析,相关线段必须先用x 的代数式表示出来. 变式题 一个圆柱的高等于底面半径,写出它的表面积S 与半径r 之间的关系式.【分析】S 表=S 侧+2S 底解:S 侧=2лr·r=2лr 2,S 底=лr 2,∴S 表=2 S 底+ S 侧=2лr 2+2лr 2=4лr 2.【点评】S 侧=Ch=2лr ·h.此公式易记错,需借助侧面展开图增强理解.例3 n 支球队参加比赛,每两队之间实行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式.【分析】将n 支球队看作是平面内的n 各点(任意三点不在同一直线),再将任意两点作为线段的端点连接起来,找出共有多少条线段即可.解:m=12n ·(n-1),即m=12n 2-12n. 【点评】这类问题可用数形结合的方法来研究,很直观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章二次函数
第一节二次函数概念以及表示方法
想一想:并把结果写在下面相应的横线上
1、正方形边长用x表示,面积用y表示,如何用x表示y?
2、圆半径用x表示,面积用y表示,如何用x表示y?
3、圆半径为1,若半径再增加x,那么增加的面积用y表示,如何用x 表示y?
4、一个数平方的2倍,再加这个数,再减少1得到另一个数,若第一个
数用x表示,得到的这个数用y表示,如何用x表示y?
(1)
(2)
(3)
(4)
5、果园有橙子树100棵时每棵树平均能结橙子600个,若多种一棵,导
致平均每棵树少结5个橙子。
(1)问题中变量有那些。
(2)设增种了x棵树,则总共有棵树,导致每棵少结个橙子,那么平均每棵结橙子个
(3)设总产量为y,则x和y的关系式表示为
(4)列表计算
总结:
二次函数概念:
一般地,若对于两个变量x和y,y可以用x表示成c
bx
ax
y+
+
=2的形式(c
b
a,
,是常数,且0
≠
a),我们把y叫做x的二次函数。
二次函数特征:
(1)x的最高次数
(2)二次项为,二次项的系数为
(3)看分母,它是一个方程
自己写几个二次函数:
(1)(2)
(3)(4)
设银行年利率为x,若存款额为100元,两年后本息合计为y 元,则如何用x表示y?(注第一年利息计入下年本金)
随堂练习:
【例1】 函数y=(m +2)x 2
2-m +2x -1是二次函数,则m= . 【例2】 下列函数中是二次函数的有( )
①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x2;④y=2
1
x +x .
A .1个
B .2个
C .3个
D .4个
【例3】正方形的边长是5,若边长增加x ,面积增加y ,求y 与x 之间的函数表达式.
1、 已知正方形的周长为20,若其边长增加x ,面积增加y ,求y 与x 之间的表达式.
2、 已知正方形的周长是x ,面积为y ,求y 与x 之间的函数表达式.
3、已知正方形的边长为x ,若边长增加5,求面积y 与x 的函数表达式.
【例4】如果人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存,到期支取时,银行将扣除利息的20%作为利息税.请你写出两年后支付时的本息和y (元)与年利率x 的函数表达式. 【例5】某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式.
【例6】如图2-1-1,正方形ABCD 的边长为4,P 是BC 边上一点,QP ⊥AP 交DC 于Q ,如果BP=x ,△ADQ 的面积为y ,用含x 的代数式表示y .
【例6】如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:
(1)在第n 个图中,第一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);
(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数表达式(不要求写出自变量n 的取值范围);
(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值;
(4)若黑瓷砖每块4元,白瓷砖每块3元,在问题(3)中,共需花多少元购买瓷砖? (5)是否存在黑瓷砖与白瓷砖相等的情形?请通过计算说明为什么? 课后练习:
1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数.
2.当m 时,y=(m -2)x
2
2-m 是二次函数.
3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.
4.已知:一等腰直角三角形的面积为S ,请写出S 与其斜边长a 的关系表达式,并分别求出a=1,a=2,a=2时三角形的面积.
5.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=2
1mv
2
(m 为定值).
(1)若物体质量为1,填表表示物体在v 取下列值时,E 的取值:
(2 6.下列不是二次函数的是( )
A .y=3x 2
+4 B .y=-3
1x 2
C .y=52-x
D .y=(x +1)(x -2)
7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )
A .m 、n 为常数,且m ≠0
B .m 、n 为常数,且m ≠n
C .m 、n 为常数,且n ≠0
D .m 、n 可以为任何常数
8.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( ) A .S=2π(x +3)2 B .S=9π+x C .S=4πx 2+12x +9 D .S=4πx 2+12x +9π 9.下列函数关系中,可以看作二次函数y=ax 2+bx +c (a ≠0)模型的是( ) A .在一定的距离内汽车的行驶速度与行驶时间的关系
B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系
C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)
D .圆的周长与圆的半径之间的关系. 10.下列函数中,二次函数是( )
A .y=6x 2
+1 B .y=6x +1 C .y=x 6+1 D .y=26
x
+1
11.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为
30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.
12.在生活中,我们知道,当导线有电流通过时,就会发热,它们满足这样一个表达式:若导线电阻为R ,通过的电流强度为I ,则导线在单位时间所产生的热量Q=RI 2.若某段导线电阻为0.5欧姆,通过的电流为5安培,则我们可以算出这段导线单位时间产生的热量Q= .
13.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售出价定为x 元,每天所赚利润为y 元,请你写出y 与x 之间的函数表达式?
14.某工厂计划为一批正方体形状的产品涂上油漆,若正方体的棱长为a (m ),则正方体需要涂漆的表面积S (m 2)如何表示?
15.⑴已知:如图菱形ABCD 中,∠A=60°,边长为a ,求其面积S 与边长a 的函数表达式.
⑵菱形ABCD ,若两对角线长a :b=1:3,请你用含a 的代数式表示其面积S . ⑶菱形ABCD ,∠A=60°,对角线BD=a ,求其面积S 与a 的函数表达式.
16.如图,在矩形ABCD 中,AB=6cm ,BC=12cm .点P 从点A 开始沿AB 方向向点B 以1cm/s 的速度移动,
同时,
点
Q
从点
B 开始沿
BC 边向C 以2cm/s 的速度移动.如果P 、Q 两点分别到达B 、C 两点停止移动,设运动开始后第t 秒钟时,五边形APQCD 的面积为Scm 2,写出S
与t 的函数表达式,并指出自变量t 的取值范围.
17.已知:如图,在Rt △ABC 中,∠C=90°,BC=4,AC=8.点D 在斜边AB 上,分别作
DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF .设DE=x ,DF=y .
(1)AE 用含y 的代数式表示为:AE= ;
(2)求y 与x 之间的函数表达式,并求出x 的取值范围;
(3)设四边形DECF 的面积为S ,求S 与x 之间的函数表达式.。