19.1.1 平行四边形的定义及性质
19.1.1平行四边形的性质(1)
(3)用简洁的语言刻画这个图形的特征,并与同伴交流.?
民 间 手 工 制 作
• 通过本节课的学习,你有什么收获?
1.两组对边分别平行的四边形叫做平行四边形. 2.平行四边形的性质:对边平行
对边相等
对角相等
邻角互补
3.解决平行四边形的有关问题经常连结对角线转 化为三角形。
授课教师:张利恒
欢迎各位领导提出宝贵意见, 再见!
学校买了四棵树,准备栽在花园里,已经栽 了三棵(如图),现在学校希望这四棵树能 组成一个平行四边形,你觉得第四棵树应该 栽在哪里?
A1
A C
A3
A2
B
3.如图,在 ABCD中,若BE平分∠ABC, 则ED= 4cm .
A
5cm 3
E 4cm
D
A E
D
5cm
B
1 2 9cm
C
5cm
B C
4.如图,在平行四边形ABCD中,CE⊥AB,点E为 垂足,如果∠A=125°,则∠BCE的度数为多少?
4 1 2 3
∴AB=CD,BC=DA, ∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
定理1:平行四边形的两组对边分别相等 定理2:平行四边形的两组对角分别相等
D C
几何语言:
∵ 四边形ABCD是平行四边形 ∵ 四边形ABCD是平行四边形
∴ ∠A= ∠C, ∠B= ∠D(平行四边形的对角相等)
平行四边形及其性质
19.1.1 平行四边形及其性质(一)教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析例1是教材P93的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P93例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:(1)在ABCD中,∠A=,则∠B= 度,∠C= 度,∠D= 度.(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().(A)对角相等(B)对角互补(C)邻角互补(D)内角和是2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.19.1.1 平行四边形的性质(二)教学目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:(1)本节课的主要内容是平行四边形的性质3,它是通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分的性质.这一节综合性较强,教学中要注意引导学生.要注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.(2)教学时要讲明线段互相平分的意义和表示方法.如图,设四边形ABCD的对角线AC、BD相交于点O,若AC与BD互相平分,则有OA=OC,OB=OD.(3)在平行四边形中,从一条边上的任意一点,向对边画垂线,这点与垂足间的距离(或从这点到对边垂线段的长,或者说这条边和对边的距离),叫做以这条边为底的平行四边形的高.这里所说的“底”是相对高而言的.在平行四边形中,有时高是指垂线段本身,如作平行四边形的高,就是指作垂线段.所以平行四边形的高,在作图时一般是指垂线段本身.在进行计算时,它的意义是距离,即长度.(4)平行四边形的面积等于它的底和高的积,即=a·h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高,如图(1).要避免学生发生如图(2)的错误.为了区别,有时也可以把高记成、,表明它们所对应的底是a或AB.(5)学完本节后,归纳总结一下平行四边形比一般四边形多哪些性质,平行四边形有哪些性质.可以按边、角、对角线进行总结.通过复习总结,使学生掌握这些知识,也培养学生随时复习总结的习惯,并提高他们归纳总结的能力.三、例题的意图分析本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.例2是教材P94的例2,这是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.四、课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.五、例习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(ASA).∴OE=OF,AE=CF(全等三角形对应边相等).∵ABCD,∴AB=CD(平行四边形对边相等).∴AB—AE=CD—CF.即BE=FD.※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.解略例2(教材P94的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC ⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算解略(参看教材P94).六、随堂练习1.在平行四边形中,周长等于48,①已知一边长12,求各边的长②已知AB=2BC,求各边的长③已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是____ ___cm.3.ABCD一内角的平分线与边相交并把这条边分成,的两条线段,则ABCD的周长是__ ___.七、课后练习1.判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2.在ABCD中,AC=6、BD=4,则AB的范围是__ ______.3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.19.1.2(一)平行四边形的判定一、教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点4.重点:平行四边形的判定方法及应用.5.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三、例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四、课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
(完整版)平行四边形基本知识点总结
(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。
以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。
性质
1. 对边平行性质:平行四边形的两组对边分别平行。
2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。
3. 内角和性质:平行四边形的内角的和为180度。
4. 外角性质:平行四边形的外角的和为360度。
5. 对边长度性质:平行四边形的对边长度相等。
6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。
7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。
判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。
2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。
特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。
2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。
相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。
2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。
以上是关于平行四边形的基本知识点总结。
通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。
19.1.1平行四边形的性质.ppt
A
4 1
D
B
2
3
C
例 题 教 学 解:
在 ABCD中,已知∠A=52 ° ,求其 余三个角的度数。
A D 52°
∵四边形ABCD是平行四边形 且∠A=52°(已知)
性质2:平行四边形的对角相等。
O B D
A
C
∵四边形ABCD是平行四边形
∠A=∠C,∠B=∠D.
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
证明:连结AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABC和 CDA中
∠1=∠2,AC=CA,∠3=∠4
画一个平行四边形,观察它的边之间还有什么关系?
A D
平行四边形的对边平行.
∵四边形ABCD是平行四边形 ∴AB ∥ CD,BC ∥ AD.
B
C
A D
平行四边形的对边相等.
∵四边形ABCD是平行四边形 ∴AB=CD,BC=AD.
B
C
性质1:平行四边形的对边平行。 性质2:平行四边形是中心对称图形。 (C) (B) A D
B
C
∴ ∠A=∠C=52°(平行四边形的对角相等) 又∵AD∥BC(平行四边形的对边平行)
∴∠A+∠B=180°(两直线平行,同旁内角互补)
∴∠B=∠D= 180 °-∠A= 180º 52°=128 ° -
变式练习:
A 如图: 在 ABCD中,∠A+∠C=200° 则:∠A= 100 ° ,∠B= 80 ° . D C B
平行四边形的性质平行四边形的性质与判断方法
平行四边形的性质平行四边形的性质与判断方法平行四边形是一种特殊的四边形,它具有一些独特的性质和判断方法。
在本文中,我们将深入探讨平行四边形的性质,并介绍如何通过这些性质来判断一个四边形是否为平行四边形。
一、平行四边形的定义平行四边形是指四边形的对边两两平行的四边形。
四边形的对边是指相对的两条边,而平行的定义是指两条直线或线段在同一平面内永不相交。
二、平行四边形的性质1. 对角线互相平分平行四边形的两条对角线互相平分。
也就是说,连接平行四边形相对顶点的线段,其交点即为对角线的中点。
2. 对边等长平行四边形的对边长度相等。
即平行四边形的相对边长相等。
3. 内角和为180度平行四边形的内角和等于180度。
也就是说,平行四边形的内角之和是一个定值,无论其角度大小如何变化,内角之和始终等于180度。
4. 任意一组相邻内角补角为180度对于平行四边形来说,任意一组相邻内角的补角等于180度。
两条平行线被一条横切线所交,形成的内角和为180度。
5. 对角线等长平行四边形的对角线长度相等。
也就是说,连接平行四边形相对顶点的对角线长度相等。
三、判断平行四边形的方法1. 观察边长关系判断一个四边形是否为平行四边形,可以通过观察其边长关系。
如果四边形的对边长度相等,则可以判断为平行四边形。
2. 观察角度关系通过观察四边形的角度关系,也可以判断是否为平行四边形。
如果四边形的内角之和为180度,并且任意一组相邻内角的补角为180度,那么可以确定该四边形是平行四边形。
3. 观察对角线若一个四边形的对角线相等,则可证明该四边形为平行四边形。
这是因为平行四边形的对角线互相平分,所以如果四边形的对角线相等,那么可以得出结论它是平行四边形。
4. 使用截线定理截线定理是一种判断平行四边形的方法。
当一条直线与两条平行线相交时,它所切分的线段比例相等。
如果在一个四边形中,两组相邻边分别满足这个比例关系,那么可以得出结论该四边形是平行四边形。
平行四边形的概念
平行四边形的概念平行四边形是几何学中的一个基本概念,指的是具有两组平行边的四边形。
在本文中,我将详细介绍平行四边形的定义、性质以及相关定理。
一、定义平行四边形是指具有两组平行边的四边形。
其中,两对相对的边互相平行,并且两对相对的角相等。
根据这个定义,我们可以得出平行四边形的一些特点。
二、性质1. 对角线平行四边形的对角线互相平分,并且交点将对角线分成两条相等的线段。
这意味着平行四边形的对角线长度相等。
2. 边长平行四边形的相对边是平行的,因此相对边的长度相等。
如果一个平行四边形的两组对边长度分别为a、b和c、d,那么a=c,b=d。
3. 内角相对的内角是相等的,也就是说,平行四边形的内角和为360度。
4. 外角平行四边形的相对外角互补,也就是说,相对外角的和为180度。
5. 高度平行四边形的高度是指从底边到顶边的距离,对于一个平行四边形而言,底边与顶边之间的距离是相等的。
三、定理1. 平行四边形的三条特殊线段(中位线、高度、角平分线)互相平行,且等于底边的长度。
2. 平行四边形的对边平方和等于对角线平方和。
即:AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2。
3. 平行四边形的对边互补。
即:∠A + ∠C = 180°,∠B + ∠D = 180°。
四、例题解析假设ABCD是一个平行四边形,AB = 6 cm,BC = 8 cm,对角线AC = 10 cm。
求该平行四边形的周长和面积。
解:根据定理2,我们可以列出方程:AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2。
代入已知条件:10^2 + BD^2 = 6^2 + 8^2 + CD^2 + DA^2。
化简得:BD^2 = 100 - 100 = 0,CD^2 + DA^2 = 36 + 64 = 100。
由此可知BD = 0,CD^2 + DA^2 = 100,即CD = DA = 10。
平行四边形及其性质
平行四边形及其性质平行四边形是几何学中的一个重要概念。
它具有独特的性质和特点,对于解决几何问题和应用数学都有着重要的意义。
在本文中,我们将介绍平行四边形的定义、性质以及一些相关的定理。
定义平行四边形是由四条平行的边所构成的四边形。
它的定义可以简单地表述为:具有两组平行边的四边形。
性质1. 对角线性质平行四边形的一条性质是它的对角线互相平分。
也就是说,一个平行四边形的两条对角线互相平分,并且对角线的交点恰好是对角线长度的一半。
2. 对边性质平行四边形的另一个性质是它的对边相等。
也就是说,平行四边形的对边长度相等。
3. 同位角性质平行四边形的同位角是指在两组平行边之间相对位置相同的角。
根据同位角的定义,平行四边形的同位角互相相等。
4. 内角性质平行四边形的内角和为360度。
这是因为平行四边形可以被划分为两个相似的三角形,对于这两个三角形的内角和都是180度,因此平行四边形的内角和为360度。
5. 对角线长度性质平行四边形的对角线长度之间具有一定的关系。
设平行四边形的两条对角线分别为d1和d2,则有以下关系成立:d1^2 + d2^2 = 2(a^2 + b^2),其中a和b分别为平行四边形相邻边的长度。
定理平行四边形还有许多与其相关的重要定理。
下面我们将介绍几个常见的定理。
1. 平行四边形的对角线互相平分定理:平行四边形的两条对角线互相平分。
证明:设平行四边形的两条对角线为AC和BD。
我们需要证明AC平分BD,也就是证明AC与BD的交点O是BD的中点。
由于平行四边形中,相邻角补角为180度,因此∠BOC + ∠AOD = 180度。
又由于平行四边形的同位角相等,可得∠BOC = ∠AOD。
因此,得到∠BOC = ∠AO D = 90度。
根据直角三角形定义,如果AC和BD是平行四边形的对角线并且交于点O,则AO = CO,BO = DO。
因此,我们可以得出结论:AC平分BD,即AC与BD的交点O是BD的中点。
小学数学知识点认识平行四边形的特征与性质
小学数学知识点认识平行四边形的特征与性质小学数学知识点:认识平行四边形的特征与性质在学习数学的过程中,我们经常会遇到各种形状的图形。
而平行四边形是一种常见的四边形,它具有一些特征和性质,掌握了这些特征和性质,对我们解题和分析图形都有很大的帮助。
接下来,本文将介绍小学数学中关于平行四边形的认识、特征与性质。
一、平行四边形的定义平行四边形是一种具有特定特征的四边形。
它是指四边形的对边都是平行的。
也就是说,如果一个四边形的对边都是平行的,那么这个四边形就是平行四边形。
例如,ABCD四边形的对边AB与CD是平行的,对边AD与BC也是平行的,那么ABCD四边形就是一个平行四边形。
二、平行四边形的特征除了对边平行的特征外,平行四边形还有一些其他的特征。
我们来了解一下:1. 两组对边相等平行四边形的两组对边是相等的。
也就是说,如果一个四边形的对边AB与CD相等,对边AD与BC也相等,那么这个四边形就是一个平行四边形。
这个特征可以方便我们判断一个四边形是否为平行四边形。
2. 对角线互相平分平行四边形的对角线互相平分。
也就是说,如果一个四边形的对角线AC和BD互相平分,那么这个四边形就是一个平行四边形。
这个特征可以帮助我们在解题过程中判断一个图形是否为平行四边形。
三、平行四边形的性质在认识平行四边形的特征之后,我们还需要了解一些和平行四边形相关的性质。
1. 对边相等平行四边形的对边是相等的。
也就是说,如果一个四边形的对边AB与CD相等,对边AD与BC也相等,那么这个四边形就是一个平行四边形。
2. 对角线长短相等平行四边形的对角线长短相等。
也就是说,如果一个四边形的对角线AC和BD相等,那么这个四边形就是一个平行四边形。
3. 任意两个相邻内角之和为180度平行四边形的任意两个相邻内角之和为180度。
也就是说,如果一个四边形的相邻内角A和C之和为180度,相邻内角B和D之和也为180度,那么这个四边形就是一个平行四边形。
初中数学 平行四边形有哪些特点和性质
初中数学平行四边形有哪些特点和性质平行四边形是一个四边形,具有一些特点和性质,下面将详细介绍平行四边形的特点和性质。
1. 对边平行性质:平行四边形的对边是平行的。
具体来说,平行四边形的相对边是平行的。
例如,如果ABCD是一个平行四边形,那么AB || CD,AD || BC。
2. 对角线性质:平行四边形的对角线彼此平分,即对角线互相垂直且长度相等。
具体来说,平行四边形的两条对角线相等且互相垂直。
例如,如果ABCD是一个平行四边形,那么AC = BD,且AC ⊥ BD。
3. 同位角性质:平行四边形的同位角是相等的。
具体来说,平行四边形的同位角是指位于相同边的两个内角或外角。
如果ABCD是一个平行四边形,那么⊥A = ⊥C,⊥B = ⊥D。
4. 交替内角性质:平行四边形的交替内角是相等的。
具体来说,平行四边形的交替内角是指位于不同边的两个内角。
如果ABCD是一个平行四边形,那么⊥A = ⊥C,⊥B = ⊥D。
5. 互补性质:平行四边形的内角和为180°。
具体来说,平行四边形的两个对角线相交处的内角和为180°。
如果ABCD是一个平行四边形,那么⊥A + ⊥B + ⊥C + ⊥D = 180°。
6. 对边长度性质:平行四边形的对边长度相等。
具体来说,平行四边形的相对边长度相等。
如果ABCD是一个平行四边形,那么AB = CD,AD = BC。
7. 长方形和菱形的特殊情况:长方形是具有相等对边且内角为90°的平行四边形。
菱形是具有相等对边且内角为60°或120°的平行四边形。
8. 面积性质:平行四边形的面积可以通过底边长度和高的乘积来计算。
具体来说,平行四边形的面积等于底边长度乘以相应的高。
例如,如果ABCD是一个平行四边形,底边为AB,高为h,则平行四边形的面积为S = AB * h。
9. 平行四边形的性质可以用来解决几何问题和证明。
通过运用平行四边形的特点和性质,我们可以证明一些关于角度、长度、面积和比例的性质。
19.1.1平行四边形的性质判定(共5课时)
对角线互相平分的四边形是平行四边形。 这些逆命题是不是真命题呢?
平行四边形判定定理
• 1. 两组对边分别平行的四边形是平行四边形。
A B C
D
数学语言表示为:
∵AB∥CD,AD∥BC(已知)
∴四边形ABCD是平行四边形 (两组对 边分别平行的四边形 是平行四边形。)
将两长两短的四根细木条用小钉绞合在一起,做 成一个四边形,使等长的木条成为对边.转动这个 四边形,使它形状改变,在图形变化的过程中,它一 直是一个平行四边形吗?
A 30cm B
124°
32cm
56° 124°
D
30cm
56°
32cm
C
(例1)
如图 小明用一根36m长的绳子围成了一个平行四边形 的场地,其中一条边AB长为8m,其他三条边各长多少?
A 8cm B C D 解:∵ 四边形ABCD是平行四边形
∴AB=CD, AD=BC
∵AB=8m ∴CD=8m 又AB+BC+CD+AD=36, ∴ AD=BC=10m
A E ●
D
●
A
●
D
●
E
O
●
O
F
●
F
B
(1)
C
B
(2)
C
在上述问题中,若将直线EF绕点O旋转至下 图(3)的位置时,上述结论是否仍然成立?
若此时再与两边延长线相交呢?
●
E
A E
E
●
D
A
E
●
D
●
O
F
●
O
B B (3) (1) F C C 小结:经过平行四边形的对角线交点作直线与平行四边形的一组 (4) (3) (4) F 对边或对边的延长线相交,得到线段总相等;且这条直线平分这个 F● 平行四边形的面积。另外,这条直线把这个平行四边形分得的两 个梯形全等。
平行四边形的定义,性质与判定
平行四边形的定义、性质及判定
一
1.两组对边平行的四边形是平行四边形.
2.性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分.
3.判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
4.对称性:平行四边形是中心对称图形.
二
平行四边形定义:两组对边分别平行的四边形叫做平行四边形.
性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分 .
判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
三
1.平行四边形定义:在同一个平面内,由两组平行线段组成的闭合图形,称为平行四边形。
2.平行四边形判定定理:两组对边分别平行且相等的四边形是平行四边形。
3.两组对角分别相等的四边形是平行四边形。
4.对角线互相平分的四边形是平行四边形。
平行四边形的定义及特殊四边形的性质及判定
平行四边形的定义及特殊四边形的性质及判定平行四边形是指四边形的对边两两平行,且对边相等的四边形。
其特殊性质有以下几点:1. 对边平行:平行四边形的定义中已经提到,其对边两两平行。
这意味着它有两对平行的边,且它的对边相等。
2. 对角线平分:平行四边形的两条对角线互相平分。
这意味着从顶点到顶点的线段长相等。
且对角线长度之和等于两倍的中线长度。
3. 内角和为360度:平行四边形的内部角度之和为360度。
这是由于它可以看作是一个由两个相反的等腰三角形组成的四边形。
4. 相邻角互补:平行四边形相邻两个角互补。
即相邻的两个内角之和为180度。
5. 对角线重心:平行四边形的对角线的交点是平行四边形的重心。
这意味着,从平行四边形的任意一个顶点出发,连接对角线交点的线段长度均相等。
如何判定是否是平行四边形?为了判定一个四边形是否为平行四边形,我们需要注意以下几点:1. 同位角是否相等:如果四边形的对边相等,且同位角相等,则它是一个平行四边形。
2. 对角线是否互相平分:如果四边形的对角线互相平分,则它是一个平行四边形。
3. 内角是否和为360度:如果四边形的内角和为360度,则它是一个平行四边形。
4. 相邻角是否补角:如果四边形的相邻两个角互补,则它是一个平行四边形。
总之,平行四边形不仅有着独特的特性,而且在日常生活中随处可见。
我们可以通过了解它的性质和判定方法,来更好地理解和应用它在实际问题中的作用。
平行四边形在几何中的重要性不言而喻。
它具有许多基本的性质,在解决几何问题时能够发挥重要的作用。
因此,对于学习者来说,理解和掌握平行四边形及其相关性质是非常重要的。
首先,平行四边形经常用于测量和设计。
例如,平面中的平行线和平行四边形常常被用来构建建筑和道路。
在测量中,以平行四边形为基础可以利用三角函数法求其面积。
当然,求解时需要知道两个相邻的边长和它们之间夹角的大小。
这也是平行四边形的另一个重要性质,它的相邻角互补。
其次,平行四边形经常用于计算图形的重心及其他几何量。
19.1.1平行四边形及其性质
19.1平行四边形及其性质第一课时一、教学目标知识与技能理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.过程与方法会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.情感、态度与价值观培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点难点重点: 平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点: 运用平行四边形的性质进行有关的论证和计算.三、教学准备多媒体课件。
四、教学方法自主、合作、探究法。
五、教学过程(一)复习导入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC (性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.探究:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC 和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.(二)新课教授例1.(教材P93例1)例2.(补充)如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .分析:要证AF=CE ,需证△ADF ≌△CBE ,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC ,AB=CD ,又AE=CF ,根据等式性质,可得BE=DF .由“边角边”可得出所需要的结论.证明略.例3.如图所示,小明用一根36米长的绳子围成了一个平行四边形场地,其中一条边AB 长为8米,其他三边各长多少?师生共析:利用“平行四边形对边相等”。
19.1.1平行四边形的性质(1)
(2)表示:平行四边形用符号“ ”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.
知识点二平行四边形的性质
【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.
四、课堂梳理小结作业说明
小结具体内容
平行四边形的性质及应用
详细分层作业
布置要求说明
必做:书P84练习1、2(本上)导航P38随堂练习
选作:导航P39课后演练
初二学案记录学科八下数学时间月日
课题
19.1.1平行四边形的性质(1)
课型
新授
课时
1
一、课堂导入知识点衔接
复习内容重点
回忆小学时,学习的平行四边形的概念及相关知识
具体衔接点
1、已知的平行四边形的相关知识
2、平行线的相关性质二、本课知点强调说明本课重点难点
1、四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用
针对性练习:1:、 ABCD中,AB=10,BC=6,则它的周长是____
2、如右图,在 ABCD中, ,如果∠A=125°
那么∠BCE的度数为()A 55°B 35°C 25°D 30°
例2如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
练习:
如图4.3-9,在 ABCD中,AC为对角线,BE⊥AC,
DF⊥AC,E、F为垂足,求证:BE=DF.
随堂练习
1、(1)在 ABCD中,∠A= ,则∠B=度,∠C=度,∠D=度.
平行四边形的性质
又 A B B C C A D 3 D 6
A D B C 1(m 0) 答:其它三边的长为 分10别m,8m,10m.
例2.已知: ABCD中,∠A=100°, 求其他各角的度数.
A
D
B
C
3、已知一个平行四边形的两个内角之比 为1︰2,你能求出平行四边形每个内角的度 数吗?
D
C
A
A
E
D
3 4
O
B
F 7
C
练一练
第十九章 四边形
: □ ABCD的对角线AC、BD相交于点
O,AC =16㎝,BD =12㎝,BC =10㎝,
则□ABCD 的周长是__4_0c_m___,
□ ABCD的面积是___9_6_c_m____。
D
C
6
10
O
10
8
A
B
练一练
第十九章 四边形
3、在 ABCD中,∠A:∠B:∠C:∠D的值可能是( )
B
21
3 4
C
证明:连接AC
在 ABC和 CDA中
∵四边形ABCD是
∠4=∠1
∴ AD ∥BC, AB ∥CD
AC=CA
则 ∠2=∠3 ,∠4=∠1 ∴∠2+∠1=∠3 +∠4 即 ∠BAD= ∠BCD
∠2=∠3 ABC≌ CDA(ASA)
∴ AB=CD、BC=AD
∠B=∠D
平行四边形的性质
①平行四边形的两组对边分别平行且相等; 几何语言:
(3)由(2),你得出什么结论?
A
D
o
B
C
第十九章 四边形
平行四边形的性质
③平行四边形的对角线相互平分。
平行四边形的认识与性质
平行四边形的认识与性质平行四边形是几何学中的一个重要概念,它具有独特的性质和特点。
本文将围绕平行四边形的定义、性质和应用等方面展开论述,帮助读者更好地理解和认识平行四边形。
一、平行四边形的定义在几何学中,平行四边形是指具有两对对边分别平行的四边形。
换句话说,如果一个四边形的对边两两平行,则该四边形就是平行四边形。
例如:ABCD是一个四边形,且AB∥CD,AD∥BC,则ABCD为平行四边形。
二、平行四边形的性质1. 对边性质:平行四边形的对边相等。
即AB = CD,AD = BC。
2. 对角线性质:平行四边形的对角线相互平分,且交点连线是对角线的中点。
即AC和BD互相平分,且交于O点,AO = CO,BO = DO。
3. 同位角性质:平行四边形的同位角相等。
即∠A = ∠C,∠B =∠D。
4. 内角性质:平行四边形的内角和为180度。
即∠A + ∠B + ∠C +∠D = 180°。
5. 对边角性质:平行四边形的对边角相等。
即∠A + ∠C = 180°,∠B + ∠D = 180°。
6. 中点连线性质:平行四边形的中点连线是平行四边形的对角线。
即AC∥BD。
7. 对角线长度性质:平行四边形的对角线长度相等。
即AC = BD。
三、平行四边形的应用1. 平行四边形的面积计算:平行四边形的面积可以通过底边长度和高的乘积来计算。
即S = 底边长度 ×高。
2. 平行四边形的性质应用:平行四边形的性质在解题过程中经常被应用。
例如,利用平行四边形的对边性质可以求解边长或角度的问题;利用对角线性质可以证明两个平行四边形相等等。
四、平行四边形的例题分析为了更好地理解平行四边形的性质和应用,以下为两个与平行四边形相关的例题分析:例题1:已知平行四边形ABCD中,AB = 8cm,BC = 6cm,∠A = 60°,求AD的长度。
解析:根据平行四边形的对边性质,AB = CD,BC = AD。
平行四边形的性质和判定
平行四边形的性质和判定平行四边形是初中数学中的重要概念之一,它具有独特的性质和判定方法。
本文将围绕平行四边形展开,通过举例、分析和说明,详细介绍平行四边形的性质和判定方法,以帮助中学生和他们的父母更好地理解和应用这一知识点。
1. 平行四边形的定义和性质平行四边形是指具有两对对边分别平行的四边形。
根据这个定义,我们可以得出平行四边形的几个重要性质。
首先,平行四边形的对边相等。
即平行四边形的对边长度相等,例如AB = CD,AD = BC。
其次,平行四边形的对角线互相平分。
平行四边形的对角线AC和BD互相平分,即AC = BD。
最后,平行四边形的内角和为180度。
平行四边形的内角A、B、C、D满足A + B + C + D = 180度。
通过这些性质,我们可以更好地理解平行四边形的特点,并在解题过程中灵活运用。
2. 平行四边形的判定方法在判定一个四边形是否为平行四边形时,我们可以运用以下几种方法。
首先,判定对边是否平行。
如果四边形的对边AB和CD平行,并且对边AD和BC也平行,那么这个四边形就是平行四边形。
其次,判定对角线是否相等。
如果四边形的对角线AC和BD相等,那么这个四边形就是平行四边形。
最后,判定内角和是否为180度。
如果四边形的内角A、B、C、D满足A + B + C + D = 180度,那么这个四边形就是平行四边形。
通过这些判定方法,我们可以快速准确地判断一个四边形是否为平行四边形,为解题提供了有效的工具。
3. 平行四边形的应用举例平行四边形的性质和判定方法在实际问题中有广泛的应用。
以下是一些具体的例子。
例1:在一个矩形ABCD中,如果AD = BC,那么这个矩形是否为平行四边形?解析:根据矩形的定义,我们知道矩形的对边是平行的,所以AD和BC是平行的。
又因为矩形的对边相等,所以AD = BC。
根据平行四边形的判定方法,我们可以得出结论:这个矩形是平行四边形。
例2:在一个四边形ABCD中,如果AC = BD,那么这个四边形是否为平行四边形?解析:根据四边形的定义,我们知道四边形的对角线不一定相等,所以AC = BD并不能直接判定这个四边形为平行四边形。
19.1.1 平行四边形的定义及性质
A 4 B 5 C 3
D
小组抢答!
如图,在 ABCD中,BE平分∠ABC交AD于 E,BC=8㎝,CD=6㎝, ∠D=60°,则下列 说法中错误的是( D ) A. ∠C=120° B. AE=6 ㎝ C. AD=8 ㎝ D. ∠BED=140 °
A 6 B 8 C 6 E D
60°
6
取出两张全等的三角形纸片拼平行四 边形,你能拼出几种不同的平行四边形?
平行四边形相对的两边有怎样的位置关系?
本课小结
定 义
A
B
C
D
两组对边分别平行的四边形叫做 平 行 四边形。其不
相邻的两个顶点连成的线段叫它的对角线。 表示方法 平行四边形ABCD, 记为“□ABCD”, 读作“平行 四边形ABCD”, 其中线段AC, BD称为对角线。 性 质 1、边:对边平行且相等; 2、角:对角相等, 邻角互补; 3、对角线:对角线互相平分; 4、对称性:是中心对称图形,对称中心 是对角线的交点。
发现了什么? (C) A AD=BC AB=CD 对边相等 B (D) O
D (B) ∠BAD=∠DCB ∠ABC=∠CDA 对角相等
C(A)
对角线互相平分 思考:平行四边形的邻角有什么关系呢? 邻角互补
1 1 O A = O C = A C 、O B = O D = B D 2 2
A O ● B C
3、如图,四边形ABCD是平行四边形,
AB=10,AD=8,AC⊥BC,求BC,CD,AC,OA 的长及 ABCD 的面积.
解:∵四边形ABCD是平行四边形 ∴BC=AD=8 CD=AD=10 又∵AC⊥BC ∴⊿ABC是直角三角形
B
A
10 8
D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
证明:连接AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 △ABC和△CDA中 猜想:平行四边形的对边相
A
41Leabharlann D2 3等、对角相等。如何证明? ∠ 1=∠2,AC=CA,∠3=∠4
D
AC=BD吗?
1、已知一个平行四边形的两个内角之比为
1︰2,你能求出平行四边形每个内角的度数吗? 解:∵四边形ABCD是平行四边形 D
∴∠A+∠B=180° ∠A=∠C ∠B=∠D A B 又∵∠A :∠B=1:2 ∴∠B= 2∠A ∴∠A+2∠A=180° ∴∠A=60° ∴∠B=120° ∴∠C=∠A=60° ∠D=∠B=60°
相邻的角称为邻角。
3、平行四边形不相邻的两个顶点连成的线段 叫它的对角线。
自学提纲
自学课本P83-85,讨论解决以下问题: 1、什么是平行四边形?如何表示一个平行 四边形?用几何语言描述平行四边形; 2、平行四边形有哪些性质?为什么? 3、小组合作:看懂P84例1和 P85例2
A
D O ●
B
C
ABCD绕它的中心O旋转180°后与自身重合, 这时我们说 ABCD是中心对称图形,点O叫对称 中心。 一个图形绕一个点O旋转180°后与自身重合,这 时我们说这个图形是中心对称图形,点O叫对称中心。
证明:∵AE⊥BD,CF ⊥ BD ∴∠AEB=90°,∠CFD=90° ∴∠ AEB=∠CFD 又四边形ABCD是平行四边形 A B D E F C
∴ AB=CD,∠ABE=∠CDF
∴ ⊿ABE≌⊿CDF
∴ BE=DF
ABCD中,∠A=150°,AB=8cm, BC=10cm, 求:四边形ABCD的面积
A 4 B 5 C 3
D
小组抢答!
如图,在 ABCD中,BE平分∠ABC交AD于 E,BC=8㎝,CD=6㎝, ∠D=60°,则下列 说法中错误的是( D ) A. ∠C=120° B. AE=6 ㎝ C. AD=8 ㎝ D. ∠BED=140 °
A 6 B 8 C 6 E D
60°
6
取出两张全等的三角形纸片拼平行四 边形,你能拼出几种不同的平行四边形?
B
E
C
∴AE=CF (全等三角形的对应边相等)
选择题:
1、 ABCD中,∠A比∠B大20°则∠C的度数(
C)
A、60 ° B、80 ° C、100° D、120° 2、 ABCD的周长为40cm,⊿ABC的周长为25cm,则对 角 线AC长为 ( A )
A、5cm
B、 15cm
C、 6cm
D、 16cm
19
四边形
作
P84练习题
业
1、2、 1、2
P86练习题
在数学的天地里,重要的不是我们知道 什么,而是我们怎么知道什么。
-------毕达哥拉斯
已知平面上任意三点A、B、C,是否 存在一点D,使A、B、C、D四点围成一个 平行四边形。若存在,请你作出图形;若 不存在,请说明理由。
1、在本子上画一个平行四边形,并把它 表示出来。 2、画出平行四边形的两条对角线。 3、用一张半透明的纸复制你刚才画的平 行四边形,并将复制后的平行四边形绕对角 线的交点旋转180度,你有什么发现?
发现了什么? ( C) A AD=BC AB=CD 对边相等 B (D) O
D ( B) ∠BAD=∠DCB ∠ABC=∠CDA 对角相等
C(A)
对角线互相平分 思考:平行四边形的邻角有什么关系呢? 邻角互补
1 1 O A = O C = A C 、O B = O D = B D 2 2
A O ● B C
C
2、如图,小明用一根36m长的绳子围成了一个平行 四边形的场地,其中一条边AB长为8m,其他三条边 各长多少?
解: 四边形ABCD是平行四边形 AB CD;AD BC
AB 8, CD 8(m) 又 AB BC CD AD 36
AD BC 10(m)
平行四边形的性质2:
平行四边形的对角相等;邻角互补。
∵四边形ABCD是平行四边形 ∴∠A=∠C ∠B=∠D ∠A+∠B=180°∠B+∠C=180°…
平行四边形的性质3:
平行四边形的对角线互相平分
符号语言: 如图,∵ ABCD
∴ OA OC
1 AC 2 1 OB OD BD 2
A O B C
1、定义: 有两组对边分别平行的四边形 叫做平行四边形。 2、记作: ABCD
B
A
D
3、读作:平行四边形ABCD 4、几何语言:
C
AB∥CD AD∥BC
四边形ABCD是平行四边形
平行四边形的有关概念:
1、平行四边形中相对的边称为对边, 相对的角称为对角。
2、平行四边形中相邻的边称为邻边,
B
A
D
C
☞
3、什么叫四边形? 四条线段首尾顺次相接所组成的图形叫四边形。
4、什么叫平行四边形? 两组对边分别平行的四边形叫平行四边形。
☞
A
D
A
D
B
C
B
C
今天我们来探究平行四边形有哪些性质!
自学提纲
自学课本P83,讨论解决以下问题: 1、什么是平行四边形?如何表示一个平行 四边形?用几何语言描述平行四边形;
∴S
ABC D
= B C ·A C = 8×6 = 48
4、已知如图,在 ABCD中, E、F分别是边BC和 AD上的点,且BE=DF。求证:①△ABE≌△CDF A F D ②AE=CF
解:∵四边形ABCD是平行四边形 ∴AB=CD,AD=BC,∠B=∠D ∵BE=DF
∴ △ABE≌△CDF(SAS)
证明: ∵AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4
又∵ AD=BC,
(平行四边形的对边相等)
∴ △AOD≌△BOC(ASA) ∴OA=OC,OB=OD 即平行四边形对角线互相平分
平行四边形的性质1:
平行四边形的对边平行且相等;
∵四边形ABCD是平行四边形 ∴AB∥CD AD∥BC
∴ △ABC≌△CDA(ASA) ∴AB=CD,BC=DA,∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
B
C
已知:
猜想:平行四边形的对角线 AC、BD相交于点O。 互相平分。如何证明?
求证:OA=OC,OB=OD
ABCD中(如图)对角线
A
1
3
D
O
4 2
B
C
§19.1 .1平行四边形的定义、性质(1)
平行四边形
北京市剑桥中学
姬红喜
学习目标:
1、理解什么是平行四边形及其表示方法; 2、探索平行四边形的性质; 3、能利用平行四边形的性质解决问题。 学习重点: 平行四边形的性质探究. 学习难点:
应用平行四边形的性质解决问题。
知识回忆
☞ 1、平行线有哪些性质?
(1)两直线平行,同位角相等、内错角相等、同旁内角互补。 (2)平行于同一条直线的两条直线平行。 (3)垂直于同一条直线的两条直线平行。
☞2、 平行线的判定方法有哪些?
(1)根据定义:在同一平面内,不相交的两条直线是平行线(不常用) (2)同位角相等,两直线平行。 (3)内错角相等,两直线平行。 (4)同旁内角互补,两直线平行。 (5)平行于同一条直线的两条直线平行。 (6)垂直于同一条直线的两条直线平行。
∴∠BEO=∠DFO( 两直线平行,内错角相等 )
∵四边形ABCD是平行四边形
∴OB=OD (平行四边形的对角线互相平分 )
又∠BOE=∠DOF ∴⊿BOE≌⊿DOF ( SAS
)
∴BE=DF (全等三角形的对应边相等 )
5、已知 ABCD中,AE⊥BD, AF⊥BD, 垂足为E、F, 求证:EB=DF
解:过点A作AE ⊥ BC交BC于E。 B
A
E C
D
∵四边形ABCD是平行四边形,
∴AD∥BC ∴∠BAD+∠B=180° ∵ ∠BAD=150 ° ∴∠B=30 °
1 ∴AE= AB=4, ∴ S ABCD=4×10=40(cm) 2
在Rt⊿ABE中,∠B=30 °
如图,在 ABCD中,AC=4 ㎝ ,CD =3 ㎝ ,BC=5 ㎝ ,则 ABCD的面积 12㎝2 为 ________ .
平行四边形相对的两边有怎样的位置关系?
本课小结
定 义
A
B D
C
两组对边分别平行的四边形叫做 平 行 四边形。其不
相邻的两个顶点连成的线段叫它的对角线。 表示方法 平行四边形ABCD, 记为“□ABCD”, 读作“平行 四边形ABCD”, 其中线段AC, BD称为对角线。 性 质 1、边:对边平行且相等; 2、角:对角相等, 邻角互补; 3、对角线:对角线互相平分; 4、对称性:是中心对称图形,对称中心 是对角线的交点。
3、 ABCD中, ∠ A=43 ° ,过点A作BC和CD的垂线, 那么这两条垂线的夹角度数为 ( C ) A、113° B、115 ° C、137° D、90°
4、已知如下图,在 ABCD中,AC与BD相交于点O, A 点E、F在AC上,且BE∥DF。 E
求证:BE=DF 证明:∵BE∥DF
B O D F C
3、如图,四边形ABCD是平行四边形,
AB=10,AD=8,AC⊥BC,求BC,CD,AC,OA 的长及 ABCD 的面积.
解:∵四边形ABCD是平行四边形 ∴BC=AD=8 CD=AD=10 又∵AC⊥BC ∴⊿ABC是直角三角形