高中物理生活中的圆周运动解题技巧及练习题(含答案)及解析.docx
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:
(1)盘的转速ω0多大时,物体A开始滑动?
(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?
【答案】(1)
g
l
μ
(2)
3
4
mgl
kl mg
μ
μ
-
【解析】
【分析】
(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.
(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.
【详解】
若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.
(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:
μmg=mlω02,
解得:ω0=
g l μ
即当ω0=
g
l
μ
A开始滑动.
(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,
r=l+△x
解得:
3
4
mgl x
kl mg
μ
μ
-
V=
【点睛】
当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:
(1)子弹射入小球的过程中产生的内能;
(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;
(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.
【答案】(1)2038mv (2) 2
164mv mg R
+
(3)042v gR ≤或04582gR v gR ≤≤【解析】
本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111
422
Q mv mv =-⨯ 代入数值解得:2038
Q mv =
(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式
得2
11(3)(3)m m v F m m g R
+-+=
以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2
木板对水平面的压力的大小20
2164mv F mg R
=+
(3)小球不脱离圆形轨有两种可能性:
高考物理生活中圆周运动常见题型及答题技巧及练习题(含答案)含解析
高考物理生活中的圆周运动常有题型及答题技巧及练习题( 含答案 ) 含分析
一、高中物理精讲专题测试生活中的圆周运动
1.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴
O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:
(1)盘的转速ω多大时,物体 A 开始滑动?
(2)当转速迟缓增大到 2 ω时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?
【答案】( 1)g
3mgl ( 2)
4 mg
l kl
【分析】
【剖析】
(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转
速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0 .(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定
律求解弹簧的伸长量△x.
【详解】
若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供
给向心力.
(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则
有:
μmg= mlω02,
解得:ω0=g .
l
即当ω0
g
时物体 A 开始滑动.=l
(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,
r=l+△x
解得: Vx=
高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析
高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析
一、高中物理精讲专题测试生活中的圆周运动
1.已知某半径与地球相等的星球的第一宇宙速度是地球的
1
2
倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:
(1)星球表面的重力加速度?
(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?
【答案】(1)01=4g g 星 (2)0
024
g s
v H L
=
-201[1]42()s T mg H L L =+
- 【解析】 【分析】 【详解】
(1)由万有引力等于向心力可知2
2Mm v G m R R =
2Mm
G
mg R
= 可得2
v g R
=
则014
g g 星=
(2)由平抛运动的规律:21
2
H L g t -=
星 0s v t =
解得0
024g s v H L
=
- (3)由牛顿定律,在最低点时:2
v T mg m L
-星=
解得:
2
0 1
1
42()
s
T mg
H L L
⎡⎤
=+
⎢⎥
-
⎣⎦
【点睛】
本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.
2.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
一、高中物理精讲专题测试生活中的圆周运动
1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:
(1)盘的转速ω0多大时,物体A开始滑动?
(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?
【答案】(1)
g
l
μ
(2)
3
4
mgl
kl mg
μ
μ
-
【解析】
【分析】
(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.
(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.
【详解】
若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.
(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:
μmg=mlω02,
解得:ω0=
g l μ
即当ω0=
g
l
μ
A开始滑动.
(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,
r=l+△x
解得:
3
4
mgl x
kl mg
μ
μ
-
V=
【点睛】
当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.
高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)及解析(20211111000408)
高考物理生活中的圆周运动解题技巧解说及练习题( 含答案 ) 及分析
一、高中物理精讲专题测试生活中的圆周运动
1.如下图,竖直圆形轨道固定在木板 B 上,木板 B 固定在水平川面上,一个质量为3m 小球 A 静止在木板 B 上圆形轨道的左边.一质量为m 的子弹以速度v0水平射入小球并停
留在此中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径
为 R,木板 B 和圆形轨道总质量为12m,重力加快度为g,不计小球与圆形轨道和木板间
的摩擦阻力.求:
(1)子弹射入小球的过程中产生的内能;
(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;
(3)为保证小球不离开圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.
32mv02
4 2gR 或 45gR v0 8 2gR
【答案】 (1)mv0(2) 16mg(3) v0
84R
【分析】
本题观察完好非弹性碰撞、机械能与曲线运动相联合的问题.
(1)子弹射入小球的过程,由动量守恒定律得:mv0 (m3m)v1
由能量守恒定律得:Q 1
mv02
1
4mv12 22
代入数值解得: Q3mv02
8
(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式
(m3m)v12
得
F1(m3m) g
R
以木板为对象受力剖析得F212mg F1
依据牛顿第三定律得木板对水平的压力大小为F2
木板对水平面的压力的大小F216mg mv02
4R
(3)小球不离开圆形轨有两种可能性:
① 若小球滑行的高度不超出圆形轨道半径R
由机械能守恒定律得:1m 3m v12m 3m gR
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
一、高中物理精讲专题测试生活中的圆周运动
1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:
(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;
(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】
(1)根据机械能守恒定律 E p =211m ?2
v ① v 12Ep
m
=7m/s ② (2)由动能定理得-mg ·2R -W f =
22
211122
mv mv - ③ 小球恰能通过最高点,故22
v mg m R
= ④ 由②③④得W f =24 J
(3)根据动能定理:
2
2122
k mg R E mv =-
解得:25k E J =
故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】
(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;
(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小
高中物理生活中的圆周运动解题技巧讲解及练习题(含答案)及解析
高中物理生活中的圆周运动解题技巧讲解及练习题(含答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)
(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;
(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;
(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;
(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。 【解析】 【详解】
(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2D
mv mg R
高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析
高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析
一、高中物理精讲专题测试生活中的圆周运动
1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:
(1)盘的转速ω0多大时,物体A开始滑动?
(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?
【答案】(1)
g
l
μ
(2)
3
4
mgl
kl mg
μ
μ
-
【解析】
【分析】
(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.
(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.
【详解】
若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.
(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:
μmg=mlω02,
解得:ω0=
g l μ
即当ω0=
g
l
μ
A开始滑动.
(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,
r=l+△x
解得:
3
4
mgl x
kl mg
μ
μ
-
V=
【点睛】
当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.
高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析
高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图所示,BC 为半径r 2
25
=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过
9
8
s 再次回到C 点。(g =10m/s 2)求:
(1)小球从O 点的正上方某处A 点水平抛出的初速度v 0为多大? (2)小球第一次过C 点时轨道对小球的支持力大小为多少?
(3)若将BC 段换成光滑细圆管,其他不变,仍将小球从A 点以v 0水平抛出,且从小球进入圆管开始对小球施加了一竖直向上大小为5N 的恒力,试判断小球在BC 段的运动是否为匀速圆周运动,若是匀速圆周运动,求出小球对细管作用力大小;若不是匀速圆周运动则说明理由。
【答案】(1)2m/s (2)20.9N (3)2N 【解析】 【详解】
(1)小球从A 运动到B 为平抛运动,有:r sin45°=v 0t 在B 点有:tan45°0
gt v =
解以上两式得:v 0=2m/s (2)由牛顿第二定律得: 小球沿斜面向上滑动的加速度: a 14545mgsin mgcos m μ︒+︒
=
=g sin45°+μg cos45°=22
小球沿斜面向下滑动的加速度: a 24545mgsin mgcos m
μ︒-︒
=
=g sin45°﹣μg cos45°=2m/s 2
高考物理生活中的圆周运动解题技巧及练习题(含答案)含解析
高考物理生活中的圆周运动解题技巧及练习题(含答案)含解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:
(1)子弹射入小球的过程中产生的内能;
(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;
(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.
【答案】(1)2038mv (2) 20164mv mg R
+ (3)042v gR ≤或04582gR v gR ≤≤【解析】
本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题.
(1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =
-⨯ 代入数值解得:2038
Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R
+-+= 以木板为对象受力分析得2112F mg F =+
根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小202164mv F mg R
=+ (3)小球不脱离圆形轨有两种可能性:
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为0
45的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为
1m kg =,210/g m s =,求:
(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】
(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;
(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】
(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s
水平分速度v x =v y tan450=10m/s
则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点
N B +mg=m 2
v R
解得 N B =50N
根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】
该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.
高考物理生活中的圆周运动及其解题技巧及练习题(含答案)及解析
高考物理生活中的圆周运动及其解题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:
(1)盘的转速ω0多大时,物体A开始滑动?
(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?
【答案】(1)
g
l
μ
(2)
3
4
mgl
kl mg
μ
μ
-
【解析】
【分析】
(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.
(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.
【详解】
若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.
(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:
μmg=mlω02,
解得:ω0=
g l μ
即当ω0=
g
l
μ
A开始滑动.
(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,
r=l+△x
解得:
3
4
mgl x
kl mg
μ
μ
-
V=
【点睛】
当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.
【物理】高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析
【物理】高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为
b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的
c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;
(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)
【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】
(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:2
12
r gt = 解得:a v gr =
小滑块在a 点飞出的动能211
22
k a E mv mgr =
= (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:
2211
222
m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2
m mv F mg r
-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg
(3)bd 之间长度为L ,由几何关系得:()
221L r =
从d 到最低点e 过程中,由动能定理21
cos 2
m
mgH mg L mv μα-⋅= 解得42
14
μ-=
2.如图所示,BC 为半径r 2
25
=
m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过
高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析
高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=
3
5
,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:
(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR
(223m gR (3355R g 【解析】
试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.
解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有
tan F mg
α=① 2220()F mg F =+②
设小球到达C 点时的速度大小为v ,由牛顿第二定律得
2
v F m R
=③
由①②③式和题给数据得
03
4
F mg =④
5gR
v =
(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥
(1cos CD R α=+)⑦
由动能定理有
220111
22
mg CD F DA mv mv -⋅-⋅=-⑧
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析
高中物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 ) 含分析
一、高中物理精讲专题测试生活中的圆周运动
1.如下图,在水平桌面上离桌面右边沿 3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F=1.0N 作用于铁球,作用一段时间后撤去。铁球持续运动,抵达水平桌面边沿 A 点飞出,恰巧落到竖直圆弧轨道 BCD的 B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰巧能经过圆弧轨道的最
高点 D.已知∠ BOC=37°, A、 B、 C、 D 四点在同一竖直平面内,水平桌面离 B 端的竖直高度 H=0.45m ,圆弧轨道半径R=0.5m ,C 点为圆弧轨道的最低点,求:(取sin37 °=0.6,cos37 =0°.8)
(1)铁球运动到圆弧轨道最高点 D 点时的速度大小v D;
(2)若铁球以 v C=5.15m/s 的速度经过圆弧轨道最低点C,求此时铁球对圆弧轨道的压力大小
F C;(计算结果保存两位有效数字)
(3)铁球运动到 B 点时的速度大小v B;
(4)水平推力 F 作用的时间t 。
【答案】 (1)铁球运动到圆弧轨道最高点 D 点时的速度大小为 5 m/s;
(2)若铁球以 v C=5.15m/s 的速度经过圆弧轨道最低点C,求此时铁球对圆弧轨道的压力大小
为 6.3N;
(3)铁球运动到 B 点时的速度大小是5m/s ;
(4)水平推力 F 作用的时间是0.6s。
【分析】
【详解】
(1)小球恰巧经过 D 点时,重力供给向心力,由牛顿第二定律可得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理生活中的圆周运动解题技巧及练习题( 含答案 ) 及解析
一、高中物理精讲专题测试生活中的圆周运动
1.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,通过竖直平面的圆形轨道
后,停在右侧水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不相互重叠,求:
(1)物块经过 B 点时的速度大小 v B;
(2)物块到达 C 点时的速度大小 v C;
(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q
【答案】 (1)11m / s (2)9m / s(3) 72J
【解析】
【分析】
【详解】
(1)物块从 A 到 B 运动过程中,根据动能定理得:mgL11
mv B2
1
mv02 22
解得: v B11m / s
(2)物块从 B 到 C 运动过程中,根据机械能守恒得:1
mv B2
1
mv C2mg·2R 22
解得: v C9m / s
(3)物块从 B 到 D 运动过程中,根据动能定理得:mgL201
mv B2 2
解得: L230.25m
对整个过程,由能量守恒定律有:Q 1
mv020 2
解得: Q=72J
【点睛】
选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知
道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.
2.如图所示,竖直平面内有一光滑的直角细杆MON ,其中 ON 水平, OM 竖直,两个小物
块 A 和 B 分别套在 OM 和 ON 杆上,连接 AB 的轻绳长为 L=0.5m ,.现将直角杆 MON 绕过
2
OM 的轴 O 1O 2 缓慢地转动起来.已知
A 的质量为 m 1=2kg ,重力加速度 g 取 10m/s 。
( 1)当轻绳与 OM 的夹角 θ=37°时,求轻绳上张力 F 。 ( 2)当轻绳与 OM 的夹角 θ=37°时,求物块 B 的动能 E kB 。
( 3)若缓慢增大直角杆转速,使轻绳与 OM 的夹角 θ由 37°缓慢增加到 53°,求这个过程中直角杆对 A 和 B 做的功 W A 、 W B 。 【答案】( 1) F
25N ( 2) E kB 2.25J ( 3) W A 0 , W B
61 J
12
【解析】
【详解】
(1)因 A 始终处于平衡状态,所以对 A 有
F cos
m 1 g 得 F
25N
(2)设 B 质量为 m 2 、速度为 v 、做圆周运动的半径为 r ,对 B 有
F sin
m v 2
2 r
r L sin
E
kB
1
m 2v 2
2
得
E kB
m 1gL sin 2
2cos
E
kB
2.25J
(3)因杆对 A 的作用力垂直于 A 的位移,所以 W A
由( 2)中的 m 1gL sin 2
53 时, B 的动能为 E kB
16 E kB
知,当
J
2cos
3
杆对 B 做的功等于 A 、 B 组成的系统机械能的增量,故
W B
E
kB
E kB m 1 gh ①
其中 h
L cos37 L cos53 ② 得 W B
61
J
12
3. 如图甲所示,粗糙水平面与竖直的光滑半圆环在 N 点相切, M 为圈环的最高点,圆环
半径为 R=0.1m ,现有一质量 m=1kg 的物体以 v 0=4m/s 的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取 g=10m/s 2,求:
(1)物体能从 M 点飞出,落到水平面时落点到
N 点的距离的最小值 X m
(2)设出发点到 N 点的距离为 S ,物体从 M 点飞出后,落到水平面时落点到 N 点的距离
为 X ,作出 X 2 随 S 变化的关系如图乙所示,求物体与水平面间的动摩擦因数
μ
(3)要使物体从某点出发后的运动过程中不会在
N 到 M 点的中间离开半固轨道,求出发
点到 N 点的距离 S 应满足的条件
【答案】( 1) 0.2m ;( 2) 0.2;( 3) 0≤ x ≤ 2.75m 或 3.5m ≤ x < 4m .
【解析】
【分析】
( 1)由牛顿第二定律求得在 M 点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;
(2)根据动能定理得到
M 点速度和 x 的关系,然后由平抛运动规律得到 y 和 M 点速度的
关系,即可得到 y 和 x 的关系,结合图象求解;
( 3)根据物体不脱离轨道得到运动过程,然后由动能定理求
解.【详解】
(1)物体能从 M 点飞出,那么对物体在
M 点应用牛顿第二定律可得:
mv M
2
mg ≤
,所
R
以, v M ≥ gR = 1m/s ;
物体能从 M 点飞出做平抛运动,故有:
2R =
1
gt 2,落到水平面时落点到
N 点的距离 x =
2
v M t ≥ gR 2
R
=
2R =0.2m ;
g
故落到水平面时落点到 N 点的距离的最小值为 0.2m ;
(2)物体从出发点到
M 的运动过程作用摩擦力、重力做功,故由动能定理可得:
1
2
-
1 2
;
- μmgx-2 mgR =
mv M
mv 0
2
2
物体从 M 点落回水平面做平抛运动,故有:
2R = 1
g t 2 ,
2
y = v M t = v M 2 4R
(v 0 2 2 gx
4gR) 4R
0.48 0.8 x ;
g
g 由图可得: y 2=0.48-0.16x ,所以, μ= 0.16 = 0.2;
0.8
(3)要使物体从某点出发后的运动过程中不会在 N 到 M 点的中间离开半圆轨道,那么物
体能到达的最大高度 0< h ≤R 或物体能通过 M 点;
物体能到达的最大高度 0< h ≤R 时,由动能定理可得: - μmgx- mgh = 0-
1
mv 02
,
2
1 mv 0 2
mgh v 0 2
h ,
所以,
x = 2
mg = g
2 所以, 3.5m ≤x< 4m ;
物体能通过 M 点时,由( 1)可知 v M ≥ gR = 1m/s , 由动能定理可得: - μmgx-2 mgR =
1
mv M 2 - 1 mv 02;
2
2
1
mv 0 2
1
mv M 2
2mgR
2
2
所以
x = 2
2 mg
v 0
v M 4gR ,
2 g
所以, 0≤x ≤2.75m ;
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛