函数的奇偶性

合集下载

函数的奇偶性

函数的奇偶性
2、函数奇偶性的判定方法:定义法、图像法
(1)利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域是否关于原点对称;②确定f(-x)与f(x)的关系;③作出相应结论:
若f(-x) =f(x)或f(-x)-f(x) = 0,则f(x)是偶函数;
若f(-x) =-f(x)或f(-x)+f(x) = 0,则f(x)是奇函数。
(14).设函数f(x)(x∈R)为奇函数,f(1)= ,f(x+2)=f(x)+f(2),则f(5)=()
A.0B.1C. D.5
(15).若 ,g(x)都是奇函数, 在(0,+∞)上有最大值5,
则f(x)在(-∞,0)上有( )
A.最小值-5 B.最大值-5 C.最小值-1 D.最大值-3
(16)定义在R上的函数f(x)满足:f(x)·f(x+2)=13,f(1)=2,则f(99)=( )
①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,定义域关于原点对称。
(2)利用图像判断函数奇偶性的方法:
图像关于原点对称的函数为奇函数,图像关于y轴对称的函数为偶函数,
(3)简单性质:
设 , 的定义域分别是 ,那么在它们的公共定义域上:
A.13B.2 C.13/2D.2/13
(17)定义在R上的函数f(x)满足:对于任意α,β∈R,总有f(α+β)-[f(α)+f(β)]=2010,则下列说法正确的是( )
A.f(x)-1是奇函数 B.f(x)+1是奇函数
C.f(x)-2010是奇函数 D.f(x)+2010是奇函数
(18)设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1)时,f(x)=log (1-x),则函数f(x)在(1,2)上( )

函数的奇偶性、单调性、周期性

函数的奇偶性、单调性、周期性

一. 函数的奇偶性
2.对函数奇偶性的理解 . (1)函数的奇偶性是函数在整个定义域上的性质,是函 )函数的奇偶性是函数在整个定义域上的性质, 数的整体性质. 数的整体性质 (2)函数奇偶性中对定义域内任意一个 ,都有 (-x) = )函数奇偶性中对定义域内任意一个x,都有f - f (x),f (-x) = -f (x)的实质是:函数的定义域关于原点 的实质是: , - 的实质是 对称,这是函数具备奇偶性的必要条件. 对称,这是函数具备奇偶性的必要条件 函数的奇偶性是 其相应图象特殊的对称性的反映. 其相应图象特殊的对称性的反映
A.关于原点对称 A.关于原点对称 C.关于y C.关于y轴对称 关于
B.关于直线y B.关于直线y=-x对称 关于直线 D.关于直线y D.关于直线y=x对称 关于直线
解析: 解析:
由于定义域为( 由于定义域为(-2,2)关于原点对称,又 关于原点对称,
f(x)=-f(-x),故函数为奇函数,图象关于原点对称. )=),故函数为奇函数,图象关于原点对称. 故函数为奇函数
例3:(2008·山东)函数y=ln cos x (2008·山东)函数y 山东
(−
π
2
<x<
π
2
)
的图象是 (A )
解析: 解析:
为偶函数, y=ln cos x为偶函数,且函数图象在 [ 0 , π )上单
2
调递减. 调递减.
若函数f 的导函数 若函数 (x)的导函数 f ′(x) 在D上的函数 上的函数
值为正,则称 上为增函数; 值为正 则称y = f (x)在D上为增函数; 则称 在 上为增函数
四.函数的单调性
2. 函数单调性的等价定义

高三数学函数的奇偶性

高三数学函数的奇偶性

[两函数的定义域D1 ,D2,D1∩D2要关于原点对称]
⑦对于F(x)=f[g(x)]: 若g(x)是偶函数,则F(x)是偶函数 若g(x)是奇函数且f(x)是奇函数,则F(x)是奇函数 若g(x)是奇函数且f(x)是偶函数,则F(x)是偶函数
; https:///
⑤奇函数 f (x)在 x 0有意义,则 f (0) 0
⑤若函数f(x)的定义域关于原点对称,则它可表示为 一个奇函数与一个偶函数之和
f (x) 1 f (x) f (x)] 1 [ f (x) f (x)]
2
2
⑥奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇
2.性质: ①函数具有奇偶性的必要条件是其定义域关于原点对称
②y=f(x)是偶函数 y=f(x)的图象关于y轴对称, y=f(x)是奇函数 y=f(x)的图象关于原点对称,
③偶函数在定义域内关于原点对称的两个区间上单调性 相反,奇函数在定义域内关于原点对称的两个区间上单 调性相同, ④偶函数无反函数,奇函数的反函数还是奇函数,
x)(x x)(x

0) 0)
④ f (x) 1 x2
x2 2
例2.定义在实数集上的函数f(x),对任意x,y∈R,有 f(x+y)+f(x-y)=2f(x)·f(y)且f(0)≠0
3.奇偶性的判断 一.定义法:①看定义域是否关于原点对称
②看f(x)与f(-x)的关系 二.图象法:作出图象,看是否关于原点对称
二.应用举例 (书)例1.判断下列函数的奇偶性
① f (x) x 1 x 1
②f (x) (x 1). 1 x
1 x

f
(x)

高考复习函数的奇偶性

高考复习函数的奇偶性

1.4函数的奇偶性(一) 主要知识: 1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数;2.奇偶函数的性质:()1函数具有奇偶性的必要条件是其定义域关于原点对称;()2()f x 是偶函数⇔()f x 的图象关于y 轴对称;()f x 是奇函数⇔()f x 的图象关于原点对称;()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.3.若奇函数()f x 的定义域包含0,则(0)0f =. (二)主要方法:1.判断函数的奇偶性的方法:()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x -=-或()()f x f x -=是否定义域上的恒等式;()2图象法: 观察图像是否符合奇、偶函数的对称性()3性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;②若某奇函数若存在反函数,则其反函数必是奇函数;12()()()()()3()()()()()()f x f x f x f x f x f x f x f x f x f x f x ⎧⎪-⎪⎪-=⇒⎧⎪⎪⎪-=-⇒⎨⎪⎨⎪-≠≠--⇒⎪⎪⎪⎪-=-=⇒⎩⎪⎪⎩()判断函数定义域是否关于原点对称()求出的表达式偶函数函数奇偶性判断:判断步骤奇偶函数()判断关系非奇非偶函数即是奇函数又是函数注:判断奇偶性先求出定义域判断其是否关于原点对称例1 判断下列函数的奇偶性 1)()()21f x x x =+ 2)()f x =3)()f x = 4)()2211021102x x f x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩例2 设()f x 是R 上是奇函数,且当[)0,x ∈+∞时()(1f x x =+,求()f x 在R 上的解析式例3 已知函数()538f x x ax bx =++-且()210f -=,求()2f 的值例4 设函数()f x 是定义域R 上的偶函数,且图像关于2x =对称,已知[2,2]x ∈-时,()21f x x =-+,求[]6,2x ∈--时()f x 的表达式。

函数的奇偶性(精辟讲解)

函数的奇偶性(精辟讲解)

[难点正本 疑点清源] 1.函数奇偶性的判断
判断函数的奇偶性主要根据定义:一般地,如果对于 函数 f(x)的定义域内任意一个 x,都有 f(-x)=f(x)(或 f(-x)=-f(x)),那么函数 f(x)就叫做偶函数(或奇函 数).其中包含两个必备条件: ①定义域关于原点对称,这是函数具有奇偶性的必要 不充分条件,所以首先考虑定义域有利于准确简捷地 解决问题; ②判断 f(x)与 f(-x)是否具有等量关系.在判断奇偶 性的运算中,可以转化为判断奇偶性的等价关系式 (f(x)+f(-x)=0(奇函数)或 f(x)-f(-x)=0(偶函数)) 是否成立.
2.函数奇偶性的性质 (1)奇函数在关于原点对称的区间上若有单调性,则其单 调性完全相同;偶函数在关于原点对称的区间上若有单 调性,则其单调性恰恰相反. (2)若 f(x)为偶函数,则 f(-x)=f(x)=f(|x|). (3)若奇函数 f(x)定义域中含有 0,则必有 f(0)=0. f(0)=0 是 f(x)为奇函数的既不充分也不必要条件. (4)定义在关于原点对称区间上的任意一个函数,都可表 示成“一个奇函数与一个偶函数的和(或差)”. (5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”. (6)既奇又偶的函数有无穷多个(如 f(x)=0,定义域是关 于原点对称的任意一个数集).
∴f(x)为偶函数.
题型二 函数的奇偶性与单调性
例 2 (1)已知 f(x)是 R 上的奇函数,且当 x>0 时,f(x) =x2-x-1,求 f(x)的解析式; (2)设 a>0,f(x)=eax+eax是 R 上的偶函数,求实数 a 的值;
(3)已知奇函数 f(x)的定义域为[-2,2],且在区间 [-2,0]内递减,求满足 f(1-m)+f(1-m2)<0 的实 数 m 的取值范围. 思维启迪 (1)f(x)是一个分段函数,当 x<0 时,转化为

高中数学函数的奇偶性(解析版)

高中数学函数的奇偶性(解析版)

1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。

函数的奇偶性

函数的奇偶性

函数的奇偶性第一部分 知识梳理1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数;2.函数奇偶性的判定方法①定义法:ⅰ)若函数的定义域不是关于原点对称的对称区域,则该函数既不是奇函数也不是偶函数;ⅱ)若函数的定义域关于原点对称,在判断()f x -是否等于()f x ±-,或判断()()f x f x ±-是否等于零,或判断()()f x f x -是否等于1±;判断函数奇偶性一般步骤:ⅰ)求函数的定义域,判断定义域是否关于原点对称ⅱ)用x -代替x ,验证()()f x f x -=-,奇函数;若()()f x f x -=,偶函数;否则,非奇非偶。

②图像法③性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍奇函数; 奇数个奇函数的积、商(分母不为零)为奇函数;一个偶函数与一个奇函数的乘积是奇函数3.奇偶函数图像的性质①()()()()0f x f x f x f x ⇔-=-⇔+-=奇函数⇔函数的图像关于中心原点对称;⇔偶函数()()()-()0f x f x f x f x -=⇔-=⇔函数的图像关于y 轴对称②若奇函数()f x 的定义域包含0,则(0)0f =.③()f x 为偶函数()()(||)f x f x f x ⇔=-=④奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.第二部分 精讲点拨考点1 奇偶函数的概念与性质1、下列说法错误的个数( )①图像关于坐标原点对称的函数奇函数 ②图象关于y 轴对称的函数是偶函数③奇函数的图像一定过坐标原点 ④偶函数的图像一定与y 轴相交.1A 个 .2B 个 .3C 个 .4D 个[].1EX (1)已知函数()y f x =是偶函数,其图像与x 轴有四个交点,则方程()0f x =的所有实根之和是( )A .4 B.2 C.1 D.0(2)已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >时,()f x 的图像如图,那么()f x 的值域是___________[].2EX (1)设奇函数()f x 的定义域为[]5,5-若当[]0,5x ∈时,()f x 的图象如右图,则不等式()0f x < 的解是____________(2)设()f x 是R 上的任意函数,则下列叙述正确的是 ( ).()()A f x f x -是奇函数 .()()B f x f x -是奇函数 .()()C f x f x --是偶函数 .()()D f x f x +-是偶函数(3)若函数(1)()y x x a =+-为偶函数,则a 等于( ).2A - .1B - .1C .2D(4)已知2()1x f x m x =++为奇函数,则(1)f -的值是________考点2 奇偶函数的判断判断下列函数的奇偶性(1)()f x = (2)()11f x x x =++- (3)()(f x x =-(4)23()f x x x =- (5)2223(0)()0(0)23(0)x x x f x x x x x ⎧-+>⎪==⎨⎪---<⎩考点3 函数奇偶性的应用(1) 已知53()8f x ax bx cx =++-,且()10f d =,求()f d -的值。

函数的奇偶性

函数的奇偶性

函数的奇偶性一、定义1、如果对于 A x ∈,都有 ,称()y f x =是偶函数。

2、如果对于 A x ∈,都有 ,称()y f x =是奇函数。

二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于 对称;2、整体性:奇偶性是函数的整体性质,对定义域内 一个x 都必须成立;3、可逆性: )()(x f x f =- ⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;4、等价性:)()(x f x f =-⇔0)()(=--x f x f ;)()(x f x f -=-⇔0)()(=+-x f x f5、奇函数的图像关于 对称,偶函数的图像关于 对称;6、奇+奇=奇;偶+偶=偶;奇*奇=偶;偶*偶=偶;奇*偶=奇7、一次函数为奇函数⇔ ;二次函数为奇函数⇔8、奇偶性与单调性 奇函数在对称区间(-b,-a)与(a ,b)上增减性相同;偶函数在对称区间(-b,-a)与(a ,b)上增减性相反应用一:奇偶性的理解例1、下面四个结论中,正确命题的个数是( )①偶函数的图象一定与y 轴相交;②函数()f x 为奇函数当且仅当(0)0f =;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数一定是0)(=x f )(R x ∈ A .1 B .2 C .3 D .4例2、对于定义在R 上的函数,下列说法正确的有 。

(1)f (x )为偶函数,则)2()2(f f =-。

(2)(2))2()2(f f =-,则f (x )为偶函数。

(3)),2()2(f f ≠-则f (x )不为偶函数。

(4))2()2(f f =-,则f (x )不为奇函数。

(5)既是奇函数又是偶函数的函数一定是R x y ∈=,0。

(6)()y f x =在]83,[+a a 上是奇函数,则2-=a 。

例3、关于函数的奇偶性的几个命题的判定。

1、 若函数为奇函数或偶函数,则其定义域关于原点对称。

( )2、 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。

函数的奇偶性

函数的奇偶性

函数的奇偶性【学习目标】1.理解函数的奇偶性定义;2.会利用图象和定义判断函数的奇偶性;3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念偶函数:假设对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:假设对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释:〔1〕奇偶性是整体性质; 〔2〕x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; 〔3〕f(-x)=f(x)的等价形式为:()()()0,1(()0)()f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠,; 〔4〕由定义不难得出假设一个函数是奇函数且在原点有定义,那么必有f(0)=0; 〔5〕假设f(x)既是奇函数又是偶函数,那么必有f(x)=0. 2.奇偶函数的图象与性质〔1〕如果一个函数是奇函数,那么这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,那么这个函数是奇函数.〔2〕如果一个函数为偶函数,那么它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,那么这个函数是偶函数.3.用定义判断函数奇偶性的步骤〔1〕求函数()f x 的定义域,判断函数的定义域是否关于原点对称,假设不关于原点对称,那么该函数既不是奇函数,也不是偶函数,假设关于原点对称,那么进行下一步;〔2〕结合函数()f x 的定义域,化简函数()f x 的解析式;〔3〕求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性.假设()f x -=-()f x ,那么()f x 是奇函数; 假设()f x -=()f x ,那么()f x 是偶函数;假设()f x -()f x ≠±,那么()f x 既不是奇函数,也不是偶函数;假设()f x -()f x =且()f x -=-()f x ,那么()f x 既是奇函数,又是偶函数要点二、判断函数奇偶性的常用方法〔1〕定义法:假设函数的定义域不是关于原点对称,那么立即可判断该函数既不是奇函数也不是偶函数;假设函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.〔2〕验证法:在判断()f x -与()f x 的关系时,只需验证()f x -()f x ±=0及()1()f x f x -=±是否成立即可.〔3〕图象法:奇〔偶〕函数等价于它的图象关于原点〔y 轴〕对称.〔4〕性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.〔5〕分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.在函数定义域内,对自变量x 的不同取值范围,有着不同的对应关系,这样的函数叫做分段函数.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.要点三、关于函数奇偶性的常见结论奇函数在其对称区间[a,b]和[-b ,-a]上具有相同的单调性,即()f x 是奇函数,它在区间[a,b]上是增函数〔减函数〕,那么()f x 在区间[-b ,-a]上也是增函数〔减函数〕;偶函数在其对称区间[a,b]和[-b ,-a]上具有相反的单调性,即()f x 是偶函数且在区间[a,b]上是增函数〔减函数〕,那么()f x 在区间[-b ,-a]上也是减函数〔增函数〕.【典型例题】类型一、判断函数的奇偶性 例1. 判断以下函数的奇偶性:(1)()(f x x =+ (2)f(x)=x 2-4|x|+3 ;(3)f(x)=|x+3|-|x-3|; (4)()f x =(5)22-(0)()(0)x x x f x x x x ⎧+≥⎪=⎨+<⎪⎩; (6)1()[()-()]()2f x g x g x x R =-∈【思路点拨】利用函数奇偶性的定义进行判断.【答案】〔1〕非奇非偶函数;〔2〕偶函数;〔3〕奇函数;〔4〕奇函数;〔5〕奇函数;〔6〕奇函数. 【解析】(1)∵f(x)的定义域为(]-1,1,不关于原点对称,因此f(x)为非奇非偶函数; (2)对任意x ∈R ,都有-x ∈R ,且f(-x)=x 2-4|x|+3=f(x),那么f(x)=x 2-4|x|+3为偶函数 ; (3)∵x ∈R ,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(4)[)(]2-1x 11-x 0 x -1,00,1x 0x -4x+22≤≤⎧≥⎧∴∴∈⋃⎨⎨≠≠≠±⎩⎩且()(2)-2f x x x∴==+(-)-()f x f x x∴===,∴f(x)为奇函数;(5)∵x ∈R ,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数; (6)11(-){(-)-[-(-)]}[(-)-()]-()22f xg x g x g x g x f x ===,∴f(x)为奇函数.【总结升华】判定函数奇偶性容易失误是由于没有考虑到函数的定义域.函数的定义域关于原点对称是函数具有奇偶性的前提条件,因此研究函数的奇偶性必须“坚持定义域优先〞的原那么,即优先研究函数的定义域,否那么就会做无用功.如在本例〔4〕中假设不研究定义域,在去掉|2|x +的绝对值符号时就十分麻烦.举一反三:【变式1】判断以下函数的奇偶性:(1)23()3xf x x =+;(2)()|1||1|f x x x =++-;(3)222()1x xf x x +=+;(4)22x 2x 1(x 0)f (x)0(x 0)x 2x 1(x 0)⎧+-<⎪==⎨⎪-++>⎩. 【答案】〔1〕奇函数;〔2〕偶函数;〔3〕非奇非偶函数;〔4〕奇函数. 【解析】(1)()f x 的定义域是R ,又223()3()()()33x xf x f x x x --==-=--++,()f x ∴是奇函数.〔2〕()f x 的定义域是R ,又()|1||1||1||1|()f x x x x x f x -=-++--=-++=,()f x ∴是偶函数. 〔3〕22()()()11f x x x x x -=-+-+=-+()()()()f x f x f x f x ∴-≠--≠且,∴()f x 为非奇非偶函数.〔4〕任取x>0那么-x<0,∴f(-x)=(-x)2+2(-x)-1=x 2-2x-1=-(-x 2+2x+1)=-f(x)任取x<0,那么-x>0 f(-x)=-(-x)2+2(-x)+1=-x 2-2x+1=-(x 2+2x-1)=-f(x) x=0时,f(0)=-f(0) ∴x ∈R 时,f(-x)=-f(x) ∴f(x)为奇函数. 【高清课堂:函数的奇偶性356732例2〔1〕】【变式2】f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数. 证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)那么 F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x) G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x) ∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数. 【高清课堂:函数的奇偶性356732例2〔2〕】 【变式3】设函数()f x 和g(x )分别是R 上的偶函数和奇函数,那么以下结论 恒成立的是 〔 〕.A .()f x +|g(x)|是偶函数B .()f x -|g(x)|是奇函数C .|()f x | +g(x)是偶函数D .|()f x |- g(x)是奇函数 【答案】A例2.函数(),f x x R ∈,假设对于任意实数,a b 都有()()()f a b f a f b +=+,判断()f x 的奇偶性. 【答案】奇函数【解析】因为对于任何实数,a b ,都有()()()f a b f a f b +=+,可以令,a b 为某些特殊值,得出()()f x f x -=-.设0,a =那么()(0)()f b f f b =+,∴(0)0f =. 又设,a x b x =-=,那么(0)()()f f x f x =-+,()()f x f x ∴-=-,()f x ∴是奇函数.【总结升华】判断抽象函数的单调性,可用特殊值赋值法来求解.在这里,由于需要判断()f x -与()f x 之间的关系,因此需要先求出(0)f 的值才行.举一反三:【变式1】 函数(),f x x R ∈,假设对于任意实数12,x x ,都有121212()()2()()f x x f x x f x f x ++-=⋅,判断函数()f x 的奇偶性.【答案】偶函数 【解析】令120,,x x x ==得()()2(0)()f x f x f f x +-=,令210,,x x x ==得()()2(0)()f x f x f f x +=由上两式得:()()()()f x f x f x f x +-=+,即()()f x f x -=∴()f x 是偶函数.类型二、函数奇偶性的应用(求值,求解析式,与单调性结合)例3. f(x),g(x)均为奇函数,()()()2H x af x bg x =++在()0,+∞上的最大值为5,那么()H x 在〔-,2∞〕上的最小值为 .【答案】 -1【解析】考虑到(),()f x g x 均为奇函数,联想到奇函数的定义,不妨寻求()H x 与()H x -的关系.()H x +()H x -=()()2()()2af x bg x af x bg x +++-+-+()(),()()f x f x g x g x -=--=-,()()4H x H x ∴+-=.当0x <时,()4()H x H x =--, 而0x ->,()5H x ∴-≤,()1H x ∴≥- ∴()H x 在(,0)-∞上的最小值为-1.【总结升华】本例很好地利用了奇函数的定义,其实如果仔细观察还可以发现()()af x bg x +也是奇函数,从这个思路出发,也可以很好地解决此题.过程如下:0x >时,()H x 的最大值为5,0x ∴>时()()af x bg x +的最大值为3,0x ∴<时()()af x bg x +的最小值为-3,0x ∴<时,()H x 的最小值为-3+2=-1.举一反三:【变式1】f(x)=x 5+ax 3-bx-8,且f(-2)=10,求f(2). 【答案】-26【解析】法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26 法二:令g(x)=f(x)+8易证g(x)为奇函数 ∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8 ∴f(2)=-f(-2)-16=-10-16=-26.【总结升华】此题要会对式进行变形,得出f(x)+8= x 5+ax 3-bx 为奇函数,这是此题的关键之处,从而问题(2)g 便能迎刃而解.例4. ()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.【答案】2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪==⎨⎪-++<⎩【解析】()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,当0x <时,0x ->,2()()()3()1f x f x x x ⎡⎤∴=--=--+--⎣⎦=231x x -++又奇函数()f x 在原点有定义,(0)0f ∴=.2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪∴==⎨⎪-++<⎩【总结升华】假设奇函数()f x 在0x =处有意义,那么必有(0)0f =,即它的图象必过原点〔0,0〕. 举一反三:【高清课堂:函数的奇偶性 356732 例3】 【变式1】〔1〕偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.〔2〕奇函数()g x 的定义域是R ,当0x >时2()21g x x x =+-,求()g x 的解析式.【答案】〔1〕2231(0)()31(0)x x x f x x x x ⎧+->⎪=⎨--≤⎪⎩;〔2〕2221(0)()0021(0)x x x g x x x x x ⎧+->⎪==⎨⎪-++<⎩ ()例5. 定义域在区间[-2,2]上的偶函数()g x ,当x ≥0时,()g x 是单调递减的,假设(1)()g m g m -<成立,求m 的取值范围.【思路点拨】根据定义域知1-m ,m ∈[―1,2],但是1―m ,m 在[―2,0],[0,2]的哪个区间内尚不明确,假设展开讨论,将十分复杂,假设注意到偶函数()f x 的性质:()()(||)f x f x f x -==,可防止讨论.【答案】1[1,)2-. 【解析】由于()g x 为偶函数,所以(1)(1)g m g m -=-,()(||)g m g m =.因为x ≥0时,()g x 是单调递减的,故|1|||(1)()(|1|)(||)|1|2||2m m g m g m g m g m m m ->⎧⎪-<⇔-<⇔-≤⎨⎪≤⎩,所以222121222m m m m m ⎧-+>⎪-≤-≤⎨⎪-≤≤⎩,解得112m -≤<.故m 的取值范围是1[1,)2-.【总结升华】在解题过程中抓住偶函数的性质,将1―m ,m 转化到同一单调区间上,防止了对由于单调性不同导致1―m 与m 大小不明确的讨论,从而使解题过程得以优化.另外,需注意的是不要忘记定义域.类型三、函数奇偶性的综合问题例6. ()y f x =是偶函数,且在[0,+∞〕上是减函数,求函数2(1)f x -的单调递增区间.【思路点拨】此题考查复合函数单调性的求法。

高三数学函数的奇偶性

高三数学函数的奇偶性
⑤奇函数 f (x)在 x 0有意义,则 f (0) 0
⑤若函数f(x)的定义域关于原点对称,则它可表示为 一个奇函数与一个偶函数之和
f (x) 1 [ f (x) f (x)] 1 [ f (x) f (x)]
2
2
⑥奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇
3.奇偶性的判断 一.定义法:①看定义域是否关于原点对称
②看f(x)与f(-x)的关系 二.图象法:作出图象,看是否关于原点对称
二.应用举例 (书)例1.判断下列函数的奇偶性
① f (x) x 1 x 1
②f (x) (x 1). 1 x
1 x

f
(x)

x(1 x(1
[两函数的定义域D1 ,D2,D1∩D2要关于原点对称]
⑦对于F(x)=f[g(x)]: 若g(x)是偶函数,则F(x)是偶函数 若g(x)是奇函数且f(x)是奇函数,则F(x)是奇函数 若g(x)是奇函数且f(x)是偶函数,则F(x)是偶函数
;舟山包船捕鱼 舟山包船捕鱼
2.性质: ①函数具有奇偶性的必要条件是其定义域关于原点对称
②y=f(x)是偶函数 y=f(x)的图象关于y轴对称, y=f(x)是奇函数 y=f(x)的图象关于原点对称,
③偶函数在定义域内关于原点对称的两个区间上单调性 相反,奇函数在定义域内关于原点对称的两个区间上单 调性相同, ④偶函数无反函数,奇函数的反函数还是奇函数,
x)(x x)(x

0) 0)
④ f (x) 1 x2
x2 2
例2.定义在实数集上的函数f(x),对任意x,y∈R,有 f(x+y)+f(x-y)=2f(x)·f(y)且f(0)≠0

了解函数的基本奇偶性

了解函数的基本奇偶性

了解函数的基本奇偶性函数的奇偶性是数学中一个非常重要的概念,它与函数的图像、方程和性质密切相关。

了解函数的基本奇偶性对于理解和解决许多数学问题至关重要。

本文将介绍函数的奇偶性及其应用。

一、函数的奇偶性定义在数学中,任何一个函数都可以判断其奇偶性。

对于定义在实数域上的函数f(x),如果对于任意实数x,有f(-x)=f(x),则函数f(x)是偶函数;如果对于任意实数x,有f(-x)=-f(x),则函数f(x)是奇函数;如果函数既不满足偶性也不满足奇性,则称其为一般函数或无奇偶性函数。

二、奇偶性函数的性质1. 偶函数的性质(1)奇次幂的多项式函数是奇函数;偶次幂的多项式函数是偶函数。

(2)偶函数关于y轴对称,即其图像与y轴关于原点对称。

(3)偶函数在原点处有对称轴,即原点是其对称轴的一部分。

(4)偶函数乘以偶函数还是偶函数,偶函数乘以奇函数还是奇函数。

2. 奇函数的性质(1)奇次幂的多项式函数是奇函数;偶次幂的多项式函数是偶函数。

(2)奇函数关于原点对称,即其图像与原点关于原点对称。

(3)奇函数在原点处有旋转对称性。

(4)奇函数乘以奇函数还是偶函数,奇函数乘以偶函数还是奇函数。

三、奇偶性函数的应用1. 确定函数的奇偶性可以简化一些数学计算,特别是在求导、积分和解方程等问题中。

对于奇函数,若其在原点处取值为零,则其他与原点对称的点也为零;对于偶函数,若其在原点处取值为零,则关于原点对称的点也为零。

2. 函数的奇偶性可以帮助我们确定函数的对称性,以及函数图像在平面上的分布情况。

3. 偶函数的性质常用于解决对称性相关的问题,如求曲线的对称轴等;奇函数的性质常用于解决旋转对称性相关的问题,如求曲线的旋转中心等。

4. 在解方程中,可以利用奇偶性来帮助我们简化问题,特别是当方程中包含奇偶函数时。

四、总结了解函数的基本奇偶性对于数学的学习和问题求解至关重要。

通过分析函数的奇偶性可以简化计算,确定图像的对称性,解决对称性相关问题,并提供更多的数学思路和方法。

函数的奇偶性

函数的奇偶性

1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【知识拓展】1.函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f (x +a )=-1f (x ),则T =2a (a >0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( × )(2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ )(3)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( √ ) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.( √ ) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.( √ )1.(教材改编)下列函数为偶函数的是( ) A .f (x )=x -1 B .f (x )=x 2+x C .f (x )=2x -2-xD .f (x )=2x +2-x答案 D解析 D 中,f (-x )=2-x +2x =f (x ), ∴f (x )为偶函数.2.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .2 答案 A解析 f (-1)=-f (1)=-(1+1)=-2.3.已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),则f (8)的值为( ) A .-1 B .0 C .1 D .2 答案 B解析 ∵f (x )为定义在R 上的奇函数,∴f (0)=0, 又f (x +4)=f (x ),∴f (8)=f (0)=0.4.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则当x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ). 又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).5.(2016·四川)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (2)=________. 答案 -2解析 ∵f (x )为定义在R 上的奇函数,∴f (0)=0, 又0<x <1时,f (x )=4x , ∴f (12)=124=2,∴f ⎝⎛⎭⎫-52+f (2)=-f ⎝⎛⎭⎫52+f (2)=-f ⎝⎛⎭⎫12+f (0) =-2+0=-2.题型一 判断函数的奇偶性例1 (1)下列函数为奇函数的是( ) A .f (x )=2x -12xB .f (x )=x 3sin xC .f (x )=2cos x +1D .f (x )=x 2+2x答案 A解析 选项A 中,函数f (x )的定义域为R , 又f (-x )=2-x -12-x =12x -2x =-f (x ),∴f (x )为奇函数.(2)判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0的奇偶性.解 当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞),均有f (-x )=-f (x ). ∴函数f (x )为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)(2016·北京海淀区模拟)下列函数中为偶函数的是( )A .y =1xB .y =lg|x |C .y =(x -1)2D .y =2x(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )的奇偶性是( ) A .F (x )是奇函数,G (x )是奇函数 B .F (x )是偶函数,G (x )是奇函数 C .F (x )是偶函数,G (x )是偶函数 D .F (x )是奇函数,G (x )是偶函数 答案 (1)B (2)B解析 (1)选项B 中,函数y =lg|x |的定义域为{x |x ≠0}且lg|-x |=lg|x |, ∴函数y =lg|x |是偶函数.(2)F (x ),G (x )的定义域均为(-2,2), 由已知F (-x )=f (-x )+g (-x ) =log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x )=-G (x ), ∴F (x )是偶函数,G (x )是奇函数. 题型二 函数的周期性例2 (1)(2016·宝鸡模拟)已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 017)+f (2 019)的值为( ) A .-1 B .1 C .0 D .无法计算(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______. 答案 (1)C (2)2.5解析 (1)由题意,得g (-x )=f (-x -1),又∵f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数, ∴g (-x )=-g (x ),f (-x )=f (x ), ∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4), ∴f (x )的周期为4,∴f (2 017)=f (1),f (2 019)=f (3)=f (-1), 又∵f (1)=f (-1)=g (0)=0, ∴f (2 017)+f (2 019)=0.(2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5. 引申探究本例(2)中,若将f (x +2)=-1f (x )改为f (x +2)=-f (x ),其他条件不变,求f (105.5)的值. 解 f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴函数的周期为4(下同例题).思维升华 函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 018)=________. 答案 339解析 ∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1, f (4)=f (-2)=0,f (5)=f (-1)=-1, f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+f (3)+…+f (2 015)+f (2 016)=1×2 0166=336.又f (2 017)=f (1)=1,f (2 018)=f (2)=2, ∴f (1)+f (2)+f (3)+…+f (2 018)=339. 题型三 函数性质的综合应用 命题点1 解不等式问题例3 (1)(2017·沈阳质检)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( ) A .(13,23)B .[13,23)C .(12,23)D .[12,23)(2)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A .(-1,4) B .(-2,0) C .(-1,0) D .(-1,2)答案 (1)A (2)A解析 (1)因为f (x )是偶函数,所以其图象关于y 轴对称, 又f (x )在[0,+∞)上单调递增, f (2x -1)<f (13),所以|2x -1|<13,所以13<x <23.(2)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4,故选A. 命题点2 求参数问题例4 (1)(2016·北京西城区模拟)函数f (x )=lg(a +21+x )为奇函数,则实数a =________.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 (1)-1 (2)-10解析 (1)根据题意得,使得函数有意义的条件为a +21+x>0且1+x ≠0,由奇函数的性质可得f (0)=0.所以lg(a +2)=0,即a =-1,经检验a =-1满足函数的定义域. (2)因为f (x )是定义在R 上且周期为2的函数, 所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12且f (-1)=f (1), 故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12, 从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题. (2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11)答案 (1)-32(2)D解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax ,即1+e 3x e 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数, 所以f (-1)<f (0)<f (1). 所以f (-25)<f (80)<f (11).2.抽象函数问题考点分析 抽象函数问题在高考中也时常遇到,常常涉及求函数的定义域,由函数的周期性求函数值或判断函数的奇偶性等.一般以选择题或填空题来呈现,有时在解答题中也有所体现.此类题目较为抽象,易失分,应引起足够重视. 一、抽象函数的定义域典例1 已知函数y =f (x )的定义域是[0,8],则函数g (x )=f (x 2-1)2-log 2(x +1)的定义域为________.解析 要使函数有意义, 需使⎩⎪⎨⎪⎧0≤x 2-1≤8,x +1>0,2-log 2(x +1)≠0,即⎩⎪⎨⎪⎧1≤x 2≤9,x >-1,x ≠3,解得1≤x <3,所以函数g (x )的定义域为[1,3). 答案 [1,3)二、抽象函数的函数值典例2 若定义在实数集R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x ),对任意x ∈R 恒成立,则f (2 019)等于( ) A .4 B .3 C .2 D .1 解析 因为f (x )>0,f (x +2)=1f (x ), 所以f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ),即函数f (x )的周期是4,所以f (2 019)=f (505×4-1)=f (-1). 因为函数f (x )为偶函数, 所以f (2 019)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).即f (1)=1,所以f (2 019)=f (1)=1. 答案 D三、抽象函数的单调性与不等式典例3 设函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).若f (3)=1,且f (a )>f (a -1)+2,求实数a 的取值范围. 规范解答解 因为f (xy )=f (x )+f (y )且f (3)=1, 所以2=2f (3)=f (3)+f (3)=f (9).又f (a )>f (a -1)+2,所以f (a )>f (a -1)+f (9). 再由f (xy )=f (x )+f (y ),可知f (a )>f [9(a -1)], 因为f (x )是定义在(0,+∞)上的增函数, 从而有⎩⎪⎨⎪⎧a >0,9(a -1)>0,a >9(a -1),解得1<a <98.故所求实数a 的取值范围是(1,98).1.(2017·石家庄质检)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =(12)ln x答案 B解析 对于A ,y =1x 为奇函数;对于C ,y =lg x 的定义域为(0,+∞); 对于D ,y =(12)ln x 的定义域为(0,+∞).2.(2016·兰州模拟)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C .-12 D.12答案 B解析 依题意得f (-x )=f (x ), ∴b =0,又a -1=-2a ,∴a =13,∴a +b =13,故选B.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)等于( )A .-2B .2C .-98D .98 答案 B解析 由f (x +4)=f (x )知,f (x )是周期为4的周期函数, f (2 019)=f (504×4+3)=f (3), 又f (x +4)=f (x ),∴f (3)=f (-1), 由-1∈(-2,0)得f (-1)=2, ∴f (2 019)=2.4.已知f (x )=lg(21-x +a )为奇函数,则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(-1,0)C .(0,1)D .(-∞,0)∪(1,+∞)答案 B解析 由f (x )+f (-x )=0,即lg(21-x +a )+lg(21+x +a )=lg (2+a )2-a 2x 21-x 2=lg 1=0可得a =-1,所以f (x )=lg1+x 1-x ,解得0<1+x1-x<1,可得-1<x <0. 5.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎩⎪⎨⎪⎧cos π6x (0<x ≤8),log 2x (x >8),则f (f (-16))等于( )A .-12B .-32 C.12 D.32答案 C解析 由题意f (-16)=-f (16)=-log 216=-4, 故f (f (-16))=f (-4)=-f (4)=-cos4π6=12. *6.(2016·天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( ) A.⎝⎛⎭⎫-∞,12 B.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫32,+∞ C.⎝⎛⎭⎫12,32 D.⎝⎛⎭⎫32,+∞答案 C解析 因为f (x )是定义在R 上的偶函数且在区间(-∞,0)上单调递增,所以f (-x )=f (x )且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32. 7.(2016·湖南四校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g (x ),x <0,若f (x )为奇函数,则g (-14)=________. 答案 2解析 g (-14)=f (-14)=-f (14) =-log 214=-log 22-2=2. 8.(2016·济南模拟)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1+x ),则f (-52)=________.答案 -32解析 因为f (x )是周期为2的奇函数,所以f (-52)=-f (52)=-f (12)=-[2×12(1+12)]=-32. 9.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1.10.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有:①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.答案 ①②解析 在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知,f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1且f(x)是周期为2的周期函数,∴f(x)的最大值是2,最小值是1,故③错误.。

函数的基本性质(奇偶性、单调性、周期性、对称性)

函数的基本性质(奇偶性、单调性、周期性、对称性)

函数的基本性质(奇偶性、单调性、周期性、对称性)函数的性质(奇偶性、单调性、周期性、对称性)“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。

1. 奇偶性f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称(2)若定义域不关于原点对称⾮奇⾮偶例如:3x y =在)1,1[-上不是奇函数常⽤性质:1.0)(=x f 是既奇⼜偶函数;2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满⾜)()()(x f x f x f =-=;4.奇函数图象关于原点对称,偶函数图象关于y 轴对称;5.0)(=x f 除外的所有函数的奇偶性满⾜:(1)奇函数±奇函数=奇函数偶函数±偶函数=偶函数奇函数±偶函数=⾮奇⾮偶(2)奇函数×奇函数=偶函数偶函数×偶函数=偶函数奇函数×偶函数=奇函数 6.任何函数)(x f 可以写成⼀个奇函数2)()()(x f x f x --=和⼀个偶函数2)()()(x f x f x -+=ψ的和。

2. 单调性定义:函数定义域为A ,区间,若对任意且①总有则称在区间M 上单调递增②总有则称在区间M 上单调递减应⽤:(⼀)常⽤定义法来证明⼀个函数的单调性⼀般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论(⼆)求函数的单调区间定义法、图象法、复合函数法、导数法(以后学) 注:常⽤结论(1)奇函数在对称区间上的单调性相同(2)偶函数在对称区间上的单调性相反(3)复合函数单调性-------同增异减3. 周期性(1)⼀般地对于函数内⼀切值时总有,那么叫做周期函数,T 叫做周期,kT (T 的整数倍)也是它的周期(2)如果周期函数在所有周期中存在⼀个最⼩正数,就把这个最⼩正数叫最⼩正周期。

函数的奇偶性与对称性

函数的奇偶性与对称性

函数的奇偶性与对称性在数学中,函数的奇偶性与对称性是一些基本概念。

了解这些概念能够帮助我们更好地理解和分析函数的性质。

本篇文章将详细介绍函数的奇偶性与对称性,并讨论它们在数学中的应用。

一、函数的奇偶性函数的奇偶性是指函数在坐标系中的对称性。

一个函数如果满足$f(x) = f(-x)$,则称该函数为偶函数;如果满足$f(x) = -f(-x)$,则称该函数为奇函数。

偶函数的图像在坐标系中具有关于y轴的对称性,即左右对称。

例如,$f(x) = x^2$是一个典型的偶函数。

我们可以观察到,对于函数图像上的任意一点$(x, y)$,如果存在另一个点$(-x, y)$也在图像上,那么这个函数就是偶函数。

奇函数的图像在坐标系中具有关于原点的对称性,即中心对称。

例如,$f(x) = x^3$是一个典型的奇函数。

我们可以观察到,在函数图像上,原点为中心,任意一点$(x, y)$和$(-x, -y)$对称。

二、函数的对称性除了奇偶性,函数还可以具有其他形式的对称性,如轴对称和中心对称。

轴对称是指函数图像具有关于某条垂直或水平直线的对称性。

例如,函数$y = f(x)$具有关于y轴对称性,而函数$x = f(y)$具有关于x轴对称性。

轴对称的性质对于解方程和图形绘制等问题具有重要意义。

中心对称是指函数图像具有关于坐标系原点的对称性。

例如,函数$y = \frac{1}{x}$具有关于原点的中心对称性。

中心对称和轴对称在几何和物理学等领域有广泛应用。

三、奇偶函数的性质奇函数和偶函数具有一些特殊的性质,这些性质可以帮助我们更好地理解和求解函数问题。

1. 偶函数的性质:- 偶函数在定义域内关于y轴对称,因此只需研究正半轴上的取值。

- 偶函数的图像关于y轴对称,即$(x, y)$在图像上,则$(-x, y)$也在图像上。

- 偶函数的奇数次幂为奇函数,偶数次幂为偶函数。

2. 奇函数的性质:- 奇函数在定义域内关于原点对称,因此只需研究第一象限上的取值。

函数的奇偶性

函数的奇偶性

函数的奇偶性基础知识扫描:1、如果对于函数f(x)的定义域内的任意一个x ,都有f (-x )=f (x ),那么f(x)就叫做偶函数.偶函数的图象关于 对称, 反过来,如果一个函数的图象关于 对称,那么这个函数为偶函数2、如果对于函数f(x)的定义域内的任意一个x ,都有f (-x )= - f (x ),那么f (x )就叫做奇函数. 奇函数的图象关于 对称;反过来,如果一个函数的图象关于 对称,那么这个函数为奇函数.3、如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性.4、函数具有奇偶性的前提是:定义域关于原点对称。

知识点一 利用定义判断函数的奇偶性判断函数奇偶性的步骤:(1)首先判断定义域. (2)计算()x f -与()x f 的关系,有时判定 f (-x )=±f (x ) 比较困难, 可考虑判定 f (-x ) ± f (x )=0 或判定f (-x ) /f (x )=±1. (3)结论.注意:(1)函数中有奇函数,也有偶函数,但是还有些函数既不是奇函数也不是偶函数,只有f (x )=0 (x ∈R 或x ∈(-a ,a ),a >0)既是奇函数又是偶函数.(2)从函数奇偶性的定义可以看出,具有奇偶性的函数,首先其定义域关于原点对称,其次f (-x )=f (x )或f (-x )=-f (x )必有一成立.例1、判断下列各函数是否具有奇偶性⑴、x x x f 2)(3+= ⑵、2432)(x x x f += ⑶、1)(23--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-=解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数知识点二 利用定义判断分段函数的奇偶性例2、判断函数⎩⎨⎧<≥-=)0()0()(22x x x x x f 的奇偶性。

判断函数奇偶性的三种方法

判断函数奇偶性的三种方法

判断函数奇偶性的三种方法函数的奇偶性是指函数关于原点的对称性。

当函数在原点对称时,我们称其为偶函数;当函数关于原点对称时,我们称其为奇函数。

判断函数奇偶性的三种方法分别是函数表达式的法则、函数图像的法则和函数的性质法则。

一、函数表达式的法则:设函数表达式为f(x),则有以下判断准则:1.当f(x)=f(-x)时,函数为偶函数。

如f(x)=x^2,f(-x)=(-x)^2=x^2,因此函数f(x)=x^2是偶函数。

2.当f(x)=-f(-x)时,函数为奇函数。

如f(x)=x^3,f(-x)=(-x)^3=-x^3,因此函数f(x)=x^3是奇函数。

通过观察函数表达式中的幂指数的奇偶来判断函数的奇偶性,奇次幂代表奇函数,偶次幂代表偶函数。

二、函数图像的法则:函数图像关于y轴对称时,函数为偶函数;函数图像关于原点对称时,函数为奇函数。

通过绘制函数的图像来观察图像的对称性,从而判断函数的奇偶性。

如果图像关于y轴对称,则函数为偶函数;如果图像关于原点对称,则函数为奇函数。

三、函数的性质法则:对于连续函数,可以通过计算函数的导数来判断函数的奇偶性。

1.对于偶函数,其导函数也为偶函数。

如果函数f(x)是偶函数,则f'(x)=0,即f'(-x)=0。

因此,函数f(x)的导函数f'(x)也是偶函数。

例如f(x)=x^2,f'(x)=2x,f'(-x)=2(-x)=-2x,f'(x)也是偶函数。

2.对于奇函数,其导函数也为奇函数。

如果函数f(x)是奇函数,则f'(x)=-f'(-x)。

因此,函数f(x)的导函数f'(x)也是奇函数。

例如f(x)=x^3,f'(x)=3x^2,f'(-x)=3(-x)^2=3x^2,f'(x)也是奇函数。

综上所述,判断函数的奇偶性主要有三种方法:函数表达式的法则、函数图像的法则和函数的性质法则。

函数的奇偶性

函数的奇偶性

函数的奇偶性xx年xx月xx日CATALOGUE目录•奇偶性的定义和分类•奇偶性的判断和性质•与函数奇偶性相关的拓展内容•函数奇偶性的应用举例•总结与展望01奇偶性的定义和分类对于函数f(x),如果对于任意实数x,都有f(-x)=-f(x),那么函数f(x)就称为奇函数。

定义奇函数的图像关于原点对称,即对于任意实数x,都有f(-x)=-f(x)。

特性奇函数定义对于函数f(x),如果对于任意实数x,都有f(-x)=f(x),那么函数f(x)就称为偶函数。

特性偶函数的图像关于y轴对称,即对于任意实数x,都有f(-x)=f(x)。

偶函数02奇偶性的判断和性质1判断奇偶性的方法23根据函数的定义域,判断其是否满足对于定义域内的任意x,都有f(-x)=f(x)或f(-x)=-f(x)。

定义法根据函数的图像,观察其是否关于y轴对称。

图像法根据函数的性质,如加减、乘除等,判断其是否具有奇偶性。

性质法奇偶性的性质奇函数对于定义域内的任意x,都有f(-x)=-f(x),那么函数f(x)就是奇函数。

偶函数对于定义域内的任意x,都有f(-x)=f(x),那么函数f(x)就是偶函数。

既不是奇函数也不是偶函数的函数定义域不关于原点对称,或者不满足奇偶性的定义。

奇偶性是数学中一个很重要的概念,可以帮助我们更好地理解函数的性质和行为。

在数学领域奇偶性也常常被用来描述物理量或者物理现象的性质和行为。

在物理学中奇偶性也被广泛地应用于数据结构、算法设计等领域。

在计算机科学中奇偶函数的应用03与函数奇偶性相关的拓展内容原函数与其反函数的奇偶性关系如果一个函数f(x)是偶函数,则其反函数f^{-1}(x)也是偶函数;如果一个函数f(x)是奇函数,则其反函数f^{-1}(x)也是奇函数。

证明因为原函数和反函数的图像关于y=x对称,所以它们的奇偶性相反。

原函数和反函数奇偶性的关系奇偶性传递如果一个偶函数f(x)与一个奇函数g(x)的复合函数为h(x)=f(g(x)),则h(x)为偶函数。

函数的奇偶性

函数的奇偶性

函数的奇偶性1.奇偶性:① 定义:如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为奇函数;若 ,则称f (x )为偶函数. 如果函数f (x )不具有上述性质,则f (x )不具有 . 如果函数同时具有上述两条性质,则f (x ) . ② 简单性质:1) 图象的对称性质:一个函数是奇函数的充要条件是它的图象关于 对称;一个函数是偶函数的充要条件是它的图象关于 对称.2) 函数f (x )具有奇偶性的必要条件是其定义域关于 对称. 2.与函数周期有关的结论:①已知条件中如果出现)()(x f a x f -=+、或m x f a x f =+)()((a 、m 均为非零常数,0>a ),都可以得出)(x f 的周期为 ;②)(x f y =的图象关于点)0,(),0,(b a 中心对称或)(x f y =的图象关于直线b x a x ==,轴对称,均可以得到)(x f 周期例1. 判断下列函数的奇偶性.(1)f(x)=2211x x -⋅-; (2)f(x)=log 2(x+12+x ) (x ∈R); (3)f(x)=lg|x-2|.变式训练1:判断下列各函数的奇偶性:(1)f (x )=(x-2)x x -+22; (2)f (x )=2|2|)1lg(22---x x ; (3)f (x )=⎪⎩⎪⎨⎧>+-≤-<+.1(2),1|(|0),1(2)x x x x x例2 已知函数f(x),当x,y ∈R 时,恒有f(x+y)=f(x)+f(y). (1)求证:f(x)是奇函数;(2)如果x ∈R +,f (x )<0,并且f(1)=-21,试求f(x)在区间[-2,6]上的最值.变式训练2:已知f(x)是R 上的奇函数,且当x ∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式.例3 已知函数f(x)的定义域为R ,且满足f(x+2)=-f(x) . (1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x ≤1时,f(x)=21x,求使f(x)=-21在[0,2 009]上的所有x 的个数.变式训练3:已知函数f(x)=x 2+|x-a|+1,a ∈R. (1)试判断f(x)的奇偶性; (2)若-21≤a ≤21,求f(x)的最小值.1.奇偶性是某些函数具有的一种重要性质,对一个函数首先应判断它是否具有这种性质. 判断函数的奇偶性应首先检验函数的定义域是否关于原点对称,然后根据奇偶性的定义判断(或证明)函数是否具有奇偶性. 如果要证明一个函数不具有奇偶性,可以在定义域内找到一对非零实数a 与-a ,验证f (a )±f (-a )≠0.2.对于具有奇偶性的函数的性质的研究,我们可以重点研究y 轴一侧的性质,再根据其对称性得到整个定义域上的性质.3.函数的周期性:第一应从定义入手,第二应结合图象理解.函数的奇偶性练习题1.函数f (x )=x(-1﹤x ≦1)的奇偶性是( )A .奇函数非偶函数B .偶函数非奇函数C .奇函数且偶函数D .非奇非偶函数2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是 ( )A.(-∞,2)B. (2,+∞)C. (-∞,-2)⋃(2,+∞)D. (-2,2)4.已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性:(1)f (x )=lg (12+x -x );(2)f (x )=2-x +x -2(3) f (x )=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。

函数的奇偶性

函数的奇偶性

函数的奇偶性在数学中,函数奇偶性是指函数在其自变量发生翻转(或反转)时,其因变量会发生什么样变化的概念。

函数奇偶性与变量的坐标轴翻转有关,即函数f(x)的图像与原点的对称性。

其中,当函数的曲线与原点的对称线完全重合时,该函数为奇函数;当函数的曲线在原点处分割,其值间隔为偶函数。

奇函数的定义:如果存在定义域内的某个点x0,使得f(x0)=f (-x0),则函数f(x)为奇函数。

当x0=0时,即f(0)=f(-0)时,函数f(x)为奇函数。

奇函数满足以下特性:1)若f(x)是奇函数,则f(-x)=-f(x);2)若f(x)是奇函数,则f(αx)=-f(x),α是任何非零常数;3)若f(x)是奇函数,则f(x+2y)=-f(x-2y),y是任意常数。

偶函数的定义:如果存在定义域内的某个点x0,使得f(x0)=f (-x0),则函数f(x)为偶函数,而在x0=0的情况下,f(0)=f(-0),该函数则为偶函数。

偶函数必须满足以下条件:1)若f(x)是偶函数,则f(-x)=f(x);2)若f(x)是偶函数,则f(αx)=f(x),α是任何非零常数;3)若f(x)是偶函数,则f(x+2y)=f(x-2y),y是任意常数。

随着函数的奇偶性在函数论和数学中的被广泛应用,越来越多的人开始研究函数的奇偶性,以及它对函数的影响。

例如,在圆锥曲面上,函数f(x,y)只有在f(x,y)和f(-x,-y)相等的情况下,才能保持函数的奇偶性,因此,函数f(x,y)是一个偶函数。

此外,函数的奇偶性还可用于数值分析、概率论、统计学和机器学习中,从而提出有关函数的新思想。

在统计学中,函数的奇偶性可用于处理和预测模式;在机器学习中,函数的奇偶性可用于建立有效模型,从而减少训练时间。

总之,函数的奇偶性是一个涉及函数的重要性质,是函数论和数学中的基本概念之一,可用于帮助理解函数的变化,从而有助于提高数学分析和解决数学问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.2函数的奇偶性(共一课时)1.相关的资料的查阅、搜寻本节课使用的教学资源有教材、教辅资料、教学设备、学校图书馆、学校电子备课室、市教育信息网、人教社网站等。

课前认真研读了教材、教学参考书,查阅了相关教案、习题等参考资料。

由于本节课新、旧课标及教材内容的要求相差比较大,所以备课前与本教研组的几位教师进行了充分讨论,以把握本节课的教学要求、重点和难点、教材处理方法和教学方法,准确理解教材的深度和广度,处理好课内练习和课外作业的关系,掌握好教学的“尺度”,从多方面为设计好教学方案做准备。

(1)查阅《普通高中数学课程标准(实验)》(人民教育出版社)第13~18页对本节内容的描述,知道课标对本节内容的要求。

(2)仔细阅读人教A版教材《数学1》(必修)第33~36页相关内容,明确数学教材要讲什么内容,研究课堂练习和习题配置情况,了解它们与例题的关系。

(3)阅读人教A版教学参考书《数学1》(必修)第23~33页内容,深层次了解教材编写意图和教学目标、重点、难点等要求,以及本节内容与前后知识的联系。

(4)查阅了部分往届复习和练习资料,适当选用了一些例题、习题,帮助学生学习与巩固所学内容。

2.教材分析函数是描述客观世界变化规律的重要数学模型。

高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。

学生将学习指数函数、对数函数、幂函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。

学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。

(1)《课程标准》对本章的要求:《课程标准》对本节课的要求是什么?通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

通过具体实例,了解简单的分段函数,并能简单应用。

通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

学会运用函数图象理解和研究函数的性质(2)本节课的内容和地位《函数的奇偶性》是人教A版普通高中课程标准实验教科书数学1第一章第3节内容.学习本节需要一课时,教材的主要内容是,学习函数奇偶性的定义和判断方法.函数是中学教材重要内容,它反映了变量空间的基本规律,为人们更好地认识、把握和利用客观世界提供了有力的武器。

而函数性质是其本质规律的反映,研究一般函数的通性和具体函数的性质是学习函数的重要内容。

函数奇偶性是函数性质之一,学习它既巩固和提高了对函数的概念、表示方法的认识,又为进一步学习具体函数打下了基础。

本章第一节是集合的概念和表示方法,第二节是函数的概念、表示方法,第三节是函数的基本性质,本节是第三节函数基本性质的第二个性质,教材的编排顺序极有利于组织教学,较适合学生的认知规律,尤其是在讨论函数性质时,教科书通过问题,引导学生经历了“三步曲”:第一步,观察具体函数的图象,描述图象特征;第二步,结合相应的数值表,用日常描述性语言描述函数特征;第三步,引进数学符号,用形式化语言描述函数性质。

通过这样的安排,帮助学生更好地认识函数的性质,并体会从直观到抽象的过程。

在这个过程中,教科书为学生提供了实际操作、自我探究的机会,也有利于学生自学。

本节课的核心内容是什么?为什么的核心内容?通过教材分析,确定本节课的教学重点是什么?3.学生分析学生是学习的主体,一切教学都要从学生的实际出发。

只有对学生情况熟悉,才能做到有的放矢、因材施教,调动学生的积极性。

分析学生主要是了解学生的知识结构、认知水平的准备情况。

本节课是继学生学完函数的单调性之后的又一个性质,在学习单调性时我们引导学生采用“三步曲”,对于学习函数的基本性质有了一定的认知基础,所以采用类似的方法进一步学习奇偶性应该说不是太困难的。

为帮助学生更易于理解本节内容,课前将上课内容制成课件,其中PowerPoint数张,链接《几何画板》演示函数的图象,利于学生观察、比较、分析,从而深刻理解知识,牢固掌握知识。

帮助学生更好地认识函数的性质,并体会从直观到抽象思维的过程。

学生的知识基础是什么?认知特点是什么?学习本节课内容的优势和薄弱点式什么?教学的难点是什么?如何针对学生的实际解决?4.确定课堂教学目标鉴于以上分析,确定以下的教学目标:课标对本节课的要求是什么?如何将课程目标具体化为本节课的教学目标?【知识与技能】(1)能概括和说出函数的奇偶性的定义;(2)能利用定义判断具体函数的奇偶性(可简称为定义法);(3) 能利用图象判断具体函数的奇偶性(可简称为图象法);(4)能综合运用函数的性质解决一些简单的相关问题.【过程与方法】在学习函数的性质过程中,引导学生经历了“三步曲”:第一步,观察具体函数的图象,描述图象特征;第二步,结合相应的数值表,用日常描述性语言描述函数特征;第三步,引进数学符号,用形式化语言描述函数性质。

这样,学生的数学学习活动不只限于对概念、结论和技能的记忆、模仿和接受,并且通过独立思考、自主探索、动手实践、合作交流、阅读自学等来学习数学,展现了知识发生发展的过程,反映了从具体到抽象、特殊到一般的原则,帮助学生更好地认识函数的性质,并体会从直观到抽象的过程,通过层层深入的思考与探究,经历数学知识的发现和创造过程,了解知识的来龙去脉。

在这个过程中,为学生提供实际操作、自我探究的机会丰富的背景实例、恰当的问题串和精辟的分析展现了知识发生发展的过程,反映了从具体到抽象、特殊到一般的原则。

同时展示逻辑思考方法,可以使学生体会数学思考和探索活动的基本规律,养成良好的思维习惯,形成有条理地、符合逻辑地进行思考、推理、表达与交流的能力。

丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念。

通过设计一系列阶梯型题目,由浅入深,由易而难,由熟悉问题到陌生问题,引起学生学习的兴趣与探究的热情,并达到突出重点,突破难点的目的.在整个过程中,师生共同探讨,体会和感受数学建模思想的内涵及数学本质,逐步提高创新意识和实践能力.【情感与价值】课堂教学上让学生观察、分析、比较、归纳和概括,培养学生良好的思维习惯,学习数学的科学精神,通过学生间的合作交流,培养学生的合作意识和集体精神,通过学习从具体到抽象概括、从特殊到一般归纳的过程,初步体会唯物辩证主义思想;同时引导学生热爱数学学习.【重点与难点】重点:会用定义法和图象法判断函数的奇偶性;难点:概括定义和简单应用.教学过程设计写成文稿形式即可,不必写成教案的形式。

重要的是详细写出设计每个教学环节的目的和意义。

5.教学过程设计(几何画板给出)设计意图教学活动要以学生为中心,所有活动把学生放在“前面”,先让学生观察、思考、分析,用自己的语言去描述个人观点,从而训练其思维能力,培养学习习惯以及数学的理性精神.(研究过程仿照上面进行)三、例题分析:例1.判断下列函数的奇偶性:(1)f (x )=x 4;(2)f (x )=x 5;(3)f (x )=x+x 1;(4)f (x )=21x。

处理过程: 1.先让学生分析、思考,用什么方法和依据什么判断?叫部分学生讲讲自己的理由。

(定义法)2.教师示范第(1)题,其余x三个叫三位学生板演,其他学生练习。

3.总结定义法的一般步骤(让学生完成): ①求定义域,判断是否关于原点对称;②对称时,判断 f (-x )=f (x )还是f (-x )=-f (x );③依定义得出结论。

例2.观察下列图象,指出其函数的奇偶性(几何画板给出):(1)112)(2+=x x f学生动手练习,巩固对概念的认识。

训练学生善于总结,提高理性水平和能力。

学习用图象法判断。

(2)31)(x x f =师生活动:结合定义让学生给出结论奇函数图象关于原点中心对称,反之亦然;偶函数图象关于y 轴对称,反之亦然。

练习:已知函数f (x )=x 3+x 图象的一部分如下,你能画出它的另一部分吗?(学生自己完成,交流讨论。

)四、课堂小结:判断函数的奇偶性有哪些方法? (学生自己完成) 五、课堂练习:1.判断下列函数的奇偶性:(1)2211x x y -+-=;(2)y=x 2,x ∈[-1,2];(3)11-+-=x x y ;(4)⎪⎪⎩⎪⎪⎨⎧<-->+=0,1210,121)(22x x x x x g2.填空题:(填“奇”、“偶”)(1)若函数f (x )是R 上的奇函数,则函数F (x )= f (x )+ f (-x )是 函数;(2)若函数f (x )是R 上的奇函数,则函数x f (x )是 函数;(3)若函数f (x )和g (x )都是R 上的奇函数,则函数f (x )+ g (x )是 函数;f (x )g (x )是 函数。

变式与反例能帮助学生更全面和深刻理解概念,特设计此练习。

填空题形式上可节约时间;本题目可给学有余力者,探究抽象函数的奇偶性。

6.板书设计【设计意图】在板书的设计上,左侧写出主要知识要点,突出本节课的重点,右侧中间是三个例题的解答过程,整体布局突出本节课的核心思想。

虽然本节课用的是多媒体,但它的定位是辅助教学,不少内容需要在多媒体上,但也有许多内容需要板书,因为板书有一种生成的过程,有助于学生更好的学习。

7.作业设计1.P39习题1.6 A组6;2.函数f(x)是R上的奇函数,且在(0,+∞)上增函数,那么f(x)是增函数还是减函数?为什么?函数f(x)是R上的偶函数呢?3.已知函数f(x)和g(x)都是R上的奇函数,设F(x)=a f(x)+b g(x)+2(a、b为常数),若F(5)=7,则F(-5)= 。

4.设函数f(x)是R上的奇函数,当x>0时,f(x)=x(1-x),求当x<0时f(x)的解析式。

【设计意图】综合应用所学知识解决简单的相关问题.哪些题是针对哪些学生进行巩固训练的,对不同学生的要求是什么,既要体现巩固性,还要体现层次性。

课后目标检测第 11 页 共 10 页 1.画出下列函数图象,指出其奇偶性和单调区间:(1)f (x )=x 2+1; (2)f (x )=x1-22.判断函数f (x )=x+x 1的奇偶性。

【设计意图】这三个目标检测题紧紧围绕本节课的主要知识点展开,主要检测学生对本节知识的掌握情况。

8.教学反思1. 本节课设计思路力图符合新课标的精神,做到心中有课标,心中有教材,心中有学生,从实际到理论,再由理论指导实际的认知过程,关注学生的学习情感和学习中将要遇到的困难,语言精练,宏观调控与微观操作相呼应,并注意细节的处理.2.本节课内容相对比较简单,预测学生能积极参与思考、交流、讨论,动手动脑、思维活跃,达到教学目标,顺利完成教学任务。

相关文档
最新文档