数学试题(1)

合集下载

五年级数学知识竞赛试题(1)

五年级数学知识竞赛试题(1)

五年级数学知识竞赛试题(1)五年级数学知识竞赛试题(⼀)姓名:⼀、填空题。

1、下⾯两个⽅框应填什么数,才能使这道整数除法的余数为最⼤。

()÷ 18 = 105 ……()2、⼀个分数,⽤2和3分别约分⼀次后得53,原来这个分数是 ( )。

3、找规律填数:52 ,43,35,28,22,17,( ),( )。

4、马⼤哈做⼀道加法题时,将⼀个加数的个位上的 3 看成了 8 ,将⼗位上的 7看成了 1 ,得出结果是 1998 ,那么正确的结果应该是( )。

5、两根同样长的绳⼦,⼀根剪去它的21,另⼀根剪去21⽶,这时剩下的绳⼦仍是同样长,这两根绳⼦原来长( )⽶。

6、右图平⾏四边形的⾯积是 28 平⽅厘⽶,阴影部分的⾯积是( )。

7、有⼀幢楼房每上⼀层要⾛ 14 级台阶,到⼩平家要⾛ 70 级台阶,他家住在( )楼。

8、⼀个六位数 568 □□□能同时被3、4 、5整除,这样的六位数中最⼩的是( )。

9、五年级有72名学⽣,乘车春游,共交□52.7□元车费(□为同⼀个被污损的数字),平均每个学⽣交了( )元钱。

10、五年级同学分成四个⼩组集邮,第⼀组集了127张,第⼆组集了149张,第三组集了238张,第四组只集了95张。

他们最少还应集( )张,就可以把全部邮票平均分成四份,每⼀份有( )张。

11、⼀台电视机⼀⼩时⼤约耗电 0.1 度,如果每台电视机每天少开 1 ⼩时,全国 6.5 亿台电视机⼀年(365天)⼤约节约⽤电( )度。

12、李⽼师拿出3个圆柱体,3个⽴⽅体,4个球。

对同学们说:“三种物体不同的组合,得到不同的质量。

请你观察下图,写出各种物体的质量,填在括号⾥。

圆柱体()千克,⽴⽅体()千克,球()千克。

⼆、选择合适答案的序号填在括号⾥。

1、如果41 =a 1 + b1 , a , b 都是不等于零的整数。

则( a + b ) 不能等于 ( ) 。

A 、18B 、20C 、162、甲⼄丙 3 个数的平均数是 150 ,甲数是 48 ,⼄数与丙数相同,⼄数是( ) 。

厦门育龙数学测试题(一)

厦门育龙数学测试题(一)

厦门育龙数学测试题(一)
厦门育龙数学测试题
选择题
1.给定一个等差数列的前四项分别为1、4、7、10,求这个等差数
列的第十项是多少?
– A. 27
– B. 28
– C. 29
– D. 30
2.如下图所示,AB是一个直角三角形,AC=3cm,BC=4cm。

若将BC
边绕点C旋转一周,其终点位置为D,请问此时AD与AB的夹角是多少?
– A. 30°
– B. 45°
– C. 60°
– D. 90°
3.一个正方形的对角线长度为12cm,求该正方形的边长是多少?
– A. 6cm
– B. 8cm
– C. 10cm
– D. 12cm
填空题
1.已知a = 3,b = 5,c = 7,那么a^2 + b^2 - c^2
的值为 ______。

2.设直线l1的斜率为2,过点P(-1, 3)且与l1垂直的
直线方程是y = ______。

3.若x = -3,y = 4,那么2x + 3y的值为 ______。

简答题
1.请解释什么是概率?
2.请解释什么是平均数,并举例说明其计算方法。

3.解释质数与合数的区别,并给出一个属于质数和一个
属于合数的例子。

以上是部分厦门育龙数学测试题,选择题、填空题和简答题分别为三个不同类型的题目。

请按照题目要求回答。

2020年考研数学一真题及答案解析

2020年考研数学一真题及答案解析

(4)【答案】(A).
【解析】若 anrn 发散,则 r R ,否则,若 r R ,由阿贝尔定理知, anrn
n 1
n 1
绝对收敛,矛盾. 故应选(A).
(5)若矩阵 A 经过初等列变换化成 B ,则
()
(A)存在矩阵 P ,使得 PA B.
(B)存在矩阵 P ,使得 BP A.
(C)存在矩阵 P ,使得 PB A.
x a2 a1
y b2 b1
z c2 c1
与直线 L2
:
x a3 a2
y b3 b2
z c3 c2
相交于一
ai
点,法向量 αi
bi
,
i
1, 2,3 .则
ci
()
(A) α1 可由 α2 , α3 线性表示.
(B) α2 可由 α1, α3 线性表示.
(C) α3 可由 α1, α2 线性表示. (6)【答案】(C).
f x
,
f y
, 1
0,0
fx0, 0, fy 0, 0 , 1 ,故
n x, y, f x, y fx0, 0 x fy 0, 0 y f x, y x2 y2 ,
3
n x, y, f x, y
x2 y2
则 lim
lim
0. 故应选(A).
x, y0,0
x2 y2
x, y0,0
x2 y2
(4) 设 R 为幂级数 an xn 的收敛半径, r 是实数,则 n 1
()
(A) anrn 发散时, r R . n 1
(B) anrn 发散时, r R . n 1
(C) r R 时, anrn 发散. n 1

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)(解析版)

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)(解析版)

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)一、单选题1.设集合{}12A x x =<<,{}B x x a =>,若A B ⊆,则a 的范围是( ) A .2a ≥ B .1a ≤C .1a ≥D .2a ≤【答案】B【分析】结合数轴分析即可.【详解】由数轴可得,若A B ⊆,则1a ≤. 故选:B.2.命题p :x ∃∈R ,210x bx ++≤是假命题,则实数b 的值可能是( )A .74-B .32-C .2D .52【答案】B【分析】根据特称命题与全称命题的真假可知:x ∀∈R ,210x bx ++>,利用判别式小于即可求解. 【详解】因为命题p :x ∃∈R ,210x bx ++≤是假命题,所以命题:x ∀∈R ,210x bx ++>是真命题,也即对x ∀∈R ,210x bx ++>恒成立, 则有240b ∆=-<,解得:22b -<<,根据选项的值,可判断选项B 符合, 故选:B . 3.函数 21x y x =-的图象大致为( )A .B .C .D .【答案】B【分析】本题首先根据判断函数的奇偶性排除A,D ,再根据01x <<,对应0y <,排除C ,进而选出正确答案B .【详解】由函数 21x y x =-, 可得1x ≠±,故函数的定义域为()()()1111∞∞--⋃-⋃+,,,, 又 ()()()2211xxf x f x x x --===---, 所以21x y x =-是偶函数, 其图象关于y 轴对称, 因此 A,D 错误; 当 01x <<时,221001x x y x -<=<-,, 所以C 错误.故选: B4.已知322323233,,log 322a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】D【分析】构造指数函数,结合单调性分析即可.【详解】23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,3222333012a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝<=⎭<∴,, ∴01a <<;32xy ⎛⎫= ⎪⎝⎭在R 上单调递增,23033222013b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝>=⎭<∴,, ∴1b >; 223332log log 123c ==-=- ∴c a b << 故选:D5.中国共产党第二十次全国代表大会于2022年10月16日在北京召开,这次会议是我们党带领全国人民全面建设社会主义现代化国家,向第二个百年奋斗目标进军新征程的重要时刻召开的一次十分重要的代表大会,相信中国共产党一定会继续带领中国人民实现经济发展和社会进步.假设在2022年以后,我国每年的GDP (国内生产总值)比上一年平均增加8%,那么最有可能实现GDP 翻两番的目标的年份为(参考数据:lg 20.3010=,lg30.4771=)( ) A .2032 B .2035 C .2038 D .2040【答案】D【分析】由题意,建立方程,根据对数运算性质,可得答案.【详解】设2022年我国GDP (国内生产总值)为a ,在2022年以后,每年的GDP (国内生产总值)比上一年平均增加8%,则经过n 年以后的GDP (国内生产总值)为()18%na +, 由题意,经过n 年以后的GDP (国内生产总值)实现翻两番的目标,则()18%4na a +=, 所以lg 420.301020.301027lg1.083lg32lg5lg 25n ⨯⨯===-20.301020.301020.30100.6020183lg 32(1lg 2)3lg 32lg 2230.477120.301020.0333⨯⨯⨯===≈--+-⨯+⨯-=,所以到2040年GDP 基本实现翻两番的目标. 故选:D.6.将函数sin y x =的图像C 向左平移6π个单位长度得到曲线1C ,然后再使曲线1C 上各点的横坐标变为原来的13得到曲线2C ,最后再把曲线2C 上各点的纵坐标变为原来的2倍得到曲线3C ,则曲线3C 对应的函数是( )A .2sin 36y x π⎛⎫=- ⎪⎝⎭B .2sin36y x π⎛⎫=- ⎪⎝⎭C .2sin 36y x π⎛⎫=+ ⎪⎝⎭D .2sin36y x π⎛⎫=+ ⎪⎝⎭【答案】C【分析】利用图像变换方式计算即可.【详解】由题得1C :sin 6y x π⎛⎫=+ ⎪⎝⎭,所以2C :sin 36y x π⎛⎫=+ ⎪⎝⎭,得到3C :2sin 36y x π⎛⎫=+ ⎪⎝⎭故选:C7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为( ) A .9 B .6 C .4 D .1【答案】D【分析】由题可得211x y+=,利用基本不等式可得29x y +≥ ,进而即得.【详解】因为20x y xy +-=,0x >,0y >,所以211x y+=,所以()212222559y x x y x x y y x y ⎛⎫+=+ ⎪⎝+++≥⎭==, 当且仅当22y xx y=,即3x y ==时等号成立, 所以912x y≤+,即92x y +的最大值为1.故选:D.8.已知22log log 1a b +=且21922m m a b+≥-恒成立,则实数m 的取值范围为( ) A .(][),13,-∞-⋃∞ B .(][),31,-∞-⋃∞ C .[]1,3- D .[]3,1-【答案】C【分析】利用对数运算可得出2ab =且a 、b 均为正数,利用基本不等式求出192a b+的最小值,可得出关于实数m 的不等式,解之即可.【详解】因为()222log log log 1a b ab +==,则2ab =且a 、b 均为正数,由基本不等式可得1932a b +≥,当且仅当2192ab a b =⎧⎪⎨=⎪⎩时,即当136a b ⎧=⎪⎨⎪=⎩时,等号成立, 所以,192a b+的最小值为3,所以,223m m -≤,即2230m m -≤-,解得13m -≤≤. 故选:C.二、多选题9.函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学据此推出以下结论,其中正确的是( )A .函数()y f x =的图像关于点(,)P a b 成中心对称的图形的充要条件是()y f x a b =+-为奇函数B .函数32()3f x x x =-的图像的对称中心为1,2C .函数()y f x =的图像关于x a =成轴对称的充要条件是函数()y f x a =-是偶函数D .函数32()|32|g x x x =-+的图像关于直线1x =对称 【答案】ABD【分析】根据函数奇偶性的定义,以及函数对称性的概念对选项进行逐一判断,即可得到结果. 【详解】对于A ,函数()y f x =的图像关于点(,)P a b 成中心对称的图形,则有()()2f a x f a x b ++-=函数()y f x a b =+-为奇函数,则有()()0f x a b f x a b -+-++-=, 即有()()2f a x f a x b ++-=所以函数(=)y f x 的图像关于点(,)P a b 成中心对称的图形的充要条件是 为()y f x a b =+-为奇函数,A 正确;对于B,32()3f x x x =-,则323(1)2(1)3(1)23f x x x x x ++=+-++=-因为33y x x =-为奇函数,结合A 选项可知函数32()=-3f x x x 关于点(1,2)-对称,B 正确; 对于C ,函数()y f x =的图像关于x a =成轴对称的充要条件是()()f a x f a x =-+, 即函数()y f x a =+是偶函数,因此C 不正确; 对于D ,32()|-3+2|g x x x =,则323(1)|(1)3(1)2||3|g x x x x x +=+-++=-, 则33(1)|3||3|(1)g x x x x x g x -+=-+=-=+, 所以32()|-3+2|g x x x =关于=1x 对称,D 正确 故选:ABD.10.下列结论中正确的是( )A .若一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值是14-B .若集合*1N lg 2A x x ⎧⎫=∈≤⎨⎬⎩⎭∣,{}142x B x-=>∣,则集合A B ⋂的子集个数为4 C .函数()21f x x x =++的最小值为1 D .函数()21xf x =-与函数()f x 【答案】AB【分析】对于A :12-和13为方程220ax bx ++=的两根且0a <,即可得到方程组,解得即可判断A ;根据对数函数、指数函数的性质求出集合A 、B ,从而求出集合A B ⋂,即可判断B ;当1x <-时()0f x <,即可判断C ;求出两函数的定义域,化简函数解析式,即可判断D.【详解】解:对于A :因为一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,所以12-和13为方程220ax bx ++=的两根且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得122a b =-⎧⎨=-⎩,所以14a b +=-,故A 正确;对于B:{{}**1N lg N 1,2,32A x x x x ⎧⎫=∈≤=∈<≤=⎨⎬⎩⎭∣∣0,{}{}12234222|2x x B x x x x --⎧⎫=>=>=>⎨⎬⎩⎭∣∣, 所以{}2,3A B ⋂=,即A B ⋂中含有2个元素,则A B ⋂的子集有224=个,故B 正确; 对于C :()21f x x x =++,当1x <-时10x +<,()0f x <,故C 错误; 对于D :()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 令()2210x -≥,解得x ∈R,所以函数()f x =R ,函数()21xf x =-的定义域为R ,虽然两函数的定义域相同,但是解析式不相同,故不是同一函数,即D 错误; 故选:AB11.已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭.当()()122f x f x =时,12min 2x x π-=,012f π⎛⎫-= ⎪⎝⎭,则下列结论正确的是( ) A .6x π=是函数()f x 的一个零点B .函数()f x 的最小正周期为2π C .函数()1y f x =+的图象的一个对称中心为,03π⎛-⎫⎪⎝⎭D .()f x 的图象向右平移2π个单位长度可以得到函数2y x =的图象 【答案】AB【分析】根据三角函数的图象与性质,求得函数的解析式())6f x x π=-,再结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,函数()()f x x ωϕ+,可得()()min max f x f x == 因为()()122f x f x =,可得()()122f x f x =, 又由12min 2x x π-=,所以函数()f x 的最小正周期为2T π=,所以24Tπω==,所以()()4f x x ϕ+,又因为012f π⎛⎫-= ⎪⎝⎭()]012πϕ⨯-+=,即cos()13πϕ-+=,由2πϕ<,所以6πϕ=-,即())6f x x π=-,对于A 中,当6x π=时,可得()cos()062f ππ==,所以6x π=是函数()f x 的一个零点,所以A 正确;又由函数的最小正周期为2T π=,所以B 正确;由()1)16y f x x π=+=-+,所以对称中心的纵坐标为1,所以C 不正确;将函数())6f x x π=-的图象向右平移2π个单位长度,可得())]2))2666f x x x x πππππ=--=---,所以D 不正确. 故选:AB.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()2e 11e 2x x f x =-+,()()g x f x =⎡⎤⎣⎦,则下列叙述正确的是( ) A .()g x 是偶函数B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{}1,0,1-【答案】BD【分析】依题意可得()2321e xf x =-+,再根据指数函数的性质判断函数的单调性与值域,距离判断B 、D ,再根据高斯函数的定义求出()g x 的解析式,即可判断A 、D.【详解】解:因为()()22e 2e 111321e 21e 21e 21122e2x x x x x x f x =-=-=--=-+-++++,定义域为R , 因为1e x y =+在定义域上单调递增,且e 11x y =+>,又2y x=-在()1,+∞上单调递增,所以()2321e xf x =-+在定义域R 上单调递增,故B 正确; 因为1e 1x +>,所以1011e x<<+,所以1101e x -<-<+,则2201e x -<-<+, 则1323221e 2x -<-<+,即()13,22f x ⎛⎫∈- ⎪⎝⎭,故C 错误;令()0f x =,即32021e x -=+,解得ln3x =-,所以当ln3x <-时()1,02f x ⎛⎫∈- ⎪⎝⎭,令()1f x =,即32121ex-=+,解得ln3x =, 所以当ln3ln3x -<<时()()0,1f x ∈,当ln 3x >时()31,2f x ⎛⎫∈ ⎪⎝⎭,所以()()1,ln 30,ln 3ln 31,ln 3x g x f x x x ≥⎧⎪⎡⎤==-≤<⎨⎣⎦⎪-<-⎩, 所以()g x 的值域是{}1,0,1-,故D 正确;显然()()55g g ≠-,即()g x 不是偶函数,故A 错误; 故选:BD三、填空题13.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有3个实数解,则k 的取值范围为___________.【答案】(4,3]--【分析】根据给定条件将方程()f x k =的实数解问题转化为函数()y f x =的图象与直线y k =的交点问题,再利用数形结合思想即可作答.【详解】方程()f x k =有3个实数解,等价于函数()y f x =的图象与直线y k =有3个公共点, 因当0x ≤时,()f x 在(,1]-∞-上单调递减,在[1,0]-上单调递增,(1)4,(0)3f f -=-=-, 当0x >时,()f x 单调递增,()f x 取一切实数,在同一坐标系内作出函数()y f x =的图象及直线y k =,如图:由图象可知,当43k -<≤-时,函数()y f x =的图象及直线y k =有3个公共点,方程()f x k =有3个解,所以k 的取值范围为(4,3]--. 故答案为:(4,3]--14.已知()1sin 503α︒-=,且27090α-︒<<-︒,则()sin 40α︒+=______【答案】##【分析】由4090(50)αα︒+=︒-︒-,应用诱导公式,结合已知角的范围及正弦值求cos(50)α︒-,即可得解.【详解】由题设,()sin 40sin[90(50)]cos(50)ααα︒+=︒-︒-=︒-,又27090α-︒<<-︒,即14050320α︒<︒-<︒,且()1sin 503α︒-=,所以14050180α︒<︒-<︒,故cos(50)3α︒-=-. 故答案为:3-15.关于x 不等式0ax b +<的解集为{}3x x >,则关于x 的不等式2045ax bx x +≥--的解集为______.【答案】()[)13,5-∞-,【分析】根据不等式的解集,可得方程的根与参数a 与零的大小关系,利用分式不等式的解法,结合穿根法,可得答案.【详解】由题意,可得方程0ax b +=的解为3x =,且a<0,由不等式2045ax bx x +≥--,等价于()()22450450ax b x x x x ⎧+--≥⎪⎨--≠⎪⎩,整理可得()()()()()510510ax b x x x x ⎧---+≤⎪⎨-+≠⎪⎩,解得()[),13,5-∞-,故答案为:()[)13,5-∞-,.16.已知函数f (x )=221122x a x x x -≥⎧⎪⎨-<⎪⎩(),(), 满足对任意实数12x x ≠,都有1212f x f x x x -<-()()0 成立,则实数a 的取值范围是( ) 【答案】138a ≤【分析】根据分段函数的单调性可得()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩ ,解不等式组即可. 【详解】根据题意可知,函数为减函数,所以()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤.故答案为:138a ≤【点睛】本题考查了由分段函数的单调性求参数值,考查了基本知识掌握的情况,属于基础题.四、解答题17.在①A B B ⋃=;②“x A ∈“是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合{}{}121,13A x a x a B x x =-≤≤+=-≤≤. (1)当2a =时,求A B ⋃;()RAB(2)若_______,求实数a 的取值范围.【答案】(1){}15A B x x ⋃=-≤≤,{}35R A B x x ⋂=<≤ (2)答案见解析【分析】(1)代入2a =,然后根据交、并、补集进行计算.(2)选①,可知A B ⊆,分A =∅,A ≠∅计算;选②可知A B ,分A =∅,A ≠∅计算即可;选③,分A =∅,A ≠∅计算.【详解】(1)当2a =时,集合{}{}15,13A x x B x x =≤≤=-≤≤, 所以{}15A B x x ⋃=-≤≤;{}35R A B x x ⋂=<≤ (2)若选择①A B B ⋃=,则A B ⊆, 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ⊆,{|13}B x x =-≤≤,所以12111213a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得01a ≤≤,所以实数a 的取值范围是)([],10,1-∞-⋃.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ,{|13}B x x =-≤≤,12111213a a a a -≤+⎧⎪-≥-⎨⎪+<⎩或12111213a a a a -≤+⎧⎪->-⎨⎪+≤⎩解得01a ≤≤, 所以实数a 的取值范围是)([],10,1-∞-⋃. 若选择③,A B ⋂=∅,当A =∅时,121a a ->+解得2a <- 当A ≠∅又A B ⋂=∅则12113211a a a a -≤+⎧⎨->+<-⎩或解得2a <-所以实数a 的取值范围是()(),24,-∞-+∞.18.计算下列各式的值: (1)1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)7log 2log lg25lg47++ 【答案】(1)12; (2)112.【分析】(1)根据指数幂的运算求解;(2)根据对数的定义及运算求解. 【详解】(1)12232231222301322( 2.5)34833331222-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥ ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦ 2339199112242442--+-+⎛⎫=== ⎪⎝⎭. (2)7log 2log lg25lg47++()31111log 27lg 2542322222=+⨯+=⨯++=.19.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭同时满足下列两个条件中的两个:①函数()f x 的最大值为2;②函数()f x 图像的相邻两条对称轴之间的距离为2π. (1)求出()f x 的解析式;(2)求方程()10f x +=在区间[],ππ-上所有解的和.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)23π.【分析】(1)由条件可得2A =,最小正周期T π=,由公式可得2ω=,得出答案.(2)由()10f x +=,即得到1sin 262x π⎛⎫+=- ⎪⎝⎭,解出满足条件的所有x 值,从而得到答案.【详解】(1)由函数()f x 的最大值为2,则2A = 由函数()f x 图像的相邻两条对称轴之间的距离为2π,则最小正周期T π=,由2T ππω==,可得2ω= 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为()10f x +=,所以1sin 262x π⎛⎫+=- ⎪⎝⎭,所以()2266x k k πππ+=-+∈Z 或()72266x k k πππ+=+∈Z , 解得()6x k k ππ=-+∈Z 或()2x k k ππ=+∈Z .又因为[],x ππ∈-,所以x 的取值为6π-,56π,2π-,2π, 故方程()10f x +=在区间[],ππ-上所有解得和为23π. 20.某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【答案】(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果; (2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型. 【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得:当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x .当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+.此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭12502001050=-=.此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.21.已知函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数. (1)求a 的值,判断1()()()F x f x f x =+的奇偶性,并加以证明; (2)解不等式 log (1)log (2)a a x x +<-.【答案】(1)3a =,是偶函数,证明见解析;(2)1|12x x ⎧⎫-<<⎨⎬⎩⎭.【解析】(1)根据2221,0,1a a a a --=>≠,求出a 即可; (2)根据对数函数的单调性解不等式,注意考虑真数恒为正数. 【详解】(1)函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数, 所以2221,0,1a a a a --=>≠,解得:3a =, 所以()3x f x =, 1()()33()x x F x f x f x -=+=+,定义域为R ,是偶函数,证明如下: ()33()x x F x F x --=+=所以,1()()()F x f x f x =+是定义在R 上的偶函数; (2)解不等式 log (1)log (2)a a x x +<-,即解不等式 33log (1)log (2)x x +<- 所以012x x <+<-,解得112x -<< 即不等式的解集为1|12x x ⎧⎫-<<⎨⎬⎩⎭【点睛】此题考查根据指数函数定义辨析求解参数的值和函数奇偶性的判断,利用对数函数的单调性解对数型不等式,注意考虑真数为正数.22.已知函数2()2x x b cf x b ⋅-=+,1()log a x g x x b -=+(0a >且1a ≠),()g x 的定义域关于原点对称,(0)0f =.(1)求b 的值,判断函数()g x 的奇偶性并说明理由; (2)求函数()f x 的值域;(3)若关于x 的方程2[()](1)()20m f x m f x ---=有解,求实数m 的取值范围. 【答案】(1)1b =,()g x 为奇函数 (2)()1,1-(3)(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭【分析】(1)根据()g x 的定义域关于原点对称可得1b =,再求解可得()()0g x g x -+=判断即可; (2)根据指数函数的范围逐步分析即可;(3)参变分离,令()()21,3t f x =-∈,将题意转换为求()()222tm t t =---在()1,3t ∈上的值域,再根据基本不等式,结合分式函数的范围求解即可. 【详解】(1)由题意,1()log ax g x x b-=+的定义域10x x b ->+,即()()10x x b -+>的解集关于原点对称,根据二次函数的性质可得1x =与x b =-关于原点对称,故1b =. 此时1()log 1ax g x x -=+,定义域关于原点对称,11()log log 11a a x x g x x x --+-==-+-,因为1111()()log log log log 101111aa a a x x x x g x g x x x x x -+-+⎛⎫-+=+=⨯== ⎪+-+-⎝⎭. 故()()g x g x -=-,()g x 为奇函数.(2)由(1)2()21x x c f x -=+,又(0)0f =,故002121c -=+,解得1c =,故212()12121x x x f x -==-++,因为211x +>,故20221x<<+,故211121x -<-<+,即()f x 的值域为()1,1- (3)由(2)()f x 的值域为()1,1-,故关于x 的方程2[()](1)()20m f x m f x ---=有解,即()()()22f x m f x f x -=-在()()()1,00,1f x ∈-⋃上有解.令()()()21,22,3t f x =-∈⋃,即求()()212223tm t t t t==---+-在()()1,22,3t ∈⋃上的值域即可.因为2333t t +-≥=,当且仅当t =时取等号,且21301+-=,223333+-=,故)2233,00,3t t ⎛⎫⎡+-∈⋃ ⎪⎣⎝⎭,故13,223m t t∞∞⎛⎛⎫=∈-⋃+ ⎪ ⎝⎭⎝+-,即m的值域为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭,即实数m 的取值范围为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭.。

数学1考研试题及答案

数学1考研试题及答案

数学1考研试题及答案一、选择题(每题4分,共20分)1. 设函数f(x)=x^2-4x+c,若f(x)在区间[2,+∞)上单调递增,则c 的取值范围是()。

A. c≥0B. c≥4C. c≤0D. c≤4答案:B2. 已知函数f(x)=x^3-3x+1,求f'(x)的值。

A. 3x^2-3B. x^2-3xC. 3x^2-9xD. x^3-3答案:A3. 计算定积分∫(0,1) x^2 dx的值。

A. 1/3B. 1/2C. 1D. 2答案:B4. 若矩阵A = [1 2; 3 4],则|A|的值为()。

A. 2B. -2C. 6D. -6答案:C5. 设等比数列{a_n}的前n项和为S_n,若S_3=7,S_6=28,则S_9的值为()。

A. 63B. 56C. 49D. 84答案:A二、填空题(每题4分,共20分)6. 已知函数f(x)=2x+3,求f(-1)的值。

答案:17. 设等差数列{a_n}的公差为d=3,若a_3=12,则a_1的值为。

答案:38. 计算极限lim(x→0) (sin x)/x的值。

答案:19. 设矩阵B = [1 0; 0 2],则B^2的值为。

答案:[1 0; 0 4]10. 已知函数g(x)=x^3-6x^2+11x-6,求g'(x)的值。

答案:3x^2-12x+11三、解答题(每题10分,共60分)11. 证明:若x>0,则x^2>2x。

证明:因为x>0,所以x-1>-1,所以(x-1)^2>0,即x^2-2x+1>0,所以x^2>2x。

12. 求函数f(x)=x^3-3x+1在x=1处的导数。

解:f'(x)=3x^2-3,所以f'(1)=3×1^2-3=0。

13. 计算定积分∫(0,2) (x^2-4x+4) dx。

解:∫(0,2) (x^2-4x+4) dx = [1/3x^3-2x^2+4x](0,2) = (1/3×2^3-2×2^2+4×2) - (0) = 8/3。

高等数学1试题(附答案解析)

高等数学1试题(附答案解析)

高等数学1试题(附答案解析)work Information Technology Company.2020YEAR一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。

2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。

3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。

4.11dx =⎰。

5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。

6. 222222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭=4π。

二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。

A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点2. 设()232x x f x =+-,则当0x →时,下列结论正确的是 B 。

A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )( 3.+∞ C 。

A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。

A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2xy d t π-=⎰的全长为 D 。

A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点 A 。

A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。

考研数学一真题及答案(全)

考研数学一真题及答案(全)

全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim2x b ax a +→-==,得12ab =. (2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-.(C) ()()11f f >-. (D) ()()11f f <-. 【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为(A) 12. (B) 6. (C) 4. (D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<.(C) 025t =. (D)025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处.(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则(A) T E -αα不可逆. (B) T E +αα不可逆.(C) T 2E +αα不可逆. (D) T 2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似.(D) A 与C 不相似,B 与C 不相似.【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化, B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B .(8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是(A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答.题纸..指定位置上.(9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()x y C C -=+【详解】特征方程2230r r ++=得1r =-+,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydyxdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a.【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x +【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k k n n→∞+. 【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =.所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明:(I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,0()lim 0,'(0)0,x f x f x+→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。

高等数学1期中考试试题参考答案

高等数学1期中考试试题参考答案

《高等数学(Ⅰ)》试卷学院:______ 班级:_____学号:________姓名:________任课教师:_____题类一二三四五总分阅卷人得分一、选择题(每题2分,共16分)1、 下列极限存在的是…………………………………………………………( )(A )(B ) (C ) (D ) xx 21lim ∞→1310lim -→x x x e x 1lim ∞→xx 3lim ∞→2、,,则下列不正确的是…………………………()0)(lim =→x f ax ∞=→)(lim x g ax (A )(B ) ∞=+→)]()([lim x g x f ax ∞=→)]()([lim x g x f ax (C )(D ) 0][lim )()(1=+→x g x f ax 0)](/)(lim[=→x g x f ax 3、则下列正确的是…………………………(),0)(lim >=→A x f ax ,0)(lim <=→B x g ax (A ) f (x )>0, (B ) g(x )<0, (C ) f (x )>g (x ) (D )存在a 的一个空心邻域,使f (x )g (x )<0。

4、已知, 则………………………………………………( ),2lim)(0=→xx f x =→)2x (sin3x 0limf x (A ) 2/3, (B ) 3/2 (C ) 3/4 (D ) 不能确定。

5、若函数在[1,2]上连续,则下列关于函数在此区间上的叙述,不正确的是……( )(A ) 有最大值 (B ) 有界 (C ) 有零点 (D )有最小值6、下列对于函数y =x cos x 的叙述,正确的一个是………………………………………( )(A )有界,且是当x 趋于无穷时的无穷大,(B )有界,但不是当x 趋于无穷时的无穷大,(C ) 无界,且是当x 趋于无穷时的无穷大,(D )无界,但不是当x 趋于无穷时的无穷大。

高等数学单元测试题1

高等数学单元测试题1

高等数学测试题(一)极限、连续部分(答案)一、选择题(每小题4分,共20分)分) 1、 当0x ®+时,(A )无穷小量。

)无穷小量。

A 1sin x x B 1x e C ln x D 1sin x x2、点1x =是函数311()1131x x f x x x x -<ìï==íï->î的(C )。

A 连续点连续点 B 第一类非可去间断点第一类非可去间断点 C 可去间断点可去间断点 D 第二类间断点第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的(D )。

A 充分非必要条件充分非必要条件 B 必要非充分条件必要非充分条件 C 充要条件充要条件 D 无关条件无关条件4、已知极限22lim()0x x ax x®¥++=,则常数a 等于(A )。

A -1 B 0 C 1 D 2 5、极限21lim cos 1x x e x ®--等于(D )。

A ¥ B 2 C 0 D -2 二、填空题(每小题4分,共20分)分)1、21lim(1)x x x®¥-=22e -2、 当0x ®+时,无穷小ln(1)Ax a =+与无穷小sin 3x b =等价,则常数A=3 3、 已知函数()f x 在点0x =处连续,且当0x ¹时,函数21()2x f x -=,则函数值(0)f =0 4、 111lim[]1223(1)n n n ®¥+++··+=1 5、 若lim ()x f x p®存在,且sin ()2lim ()x xf x f x xp p®=+-,则lim ()x f x p ®=1 二、解答题二、解答题1、(7分)计算极限分)计算极限 222111lim(1)(1)(1)23n n ®¥---解:原式=132411111lim()()()lim 223322n n n n n n n n ®¥®¥-++···=·=2、(7分)计算极限分)计算极限 30tan sin lim x x x x®- 解:原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x x x x x x x x x ®®®--===3、(7分)计算极限分)计算极限 123lim()21x x xx x +®¥++ 解:原式= 11122112221lim(1)lim(1)121211lim(1)lim(1)1122x x x x x x x x x e x x +++®¥®¥+®¥®¥+=+++=+·+=++ 4、(7分)计算极限分)计算极限 201sin 1lim 1x x x x e ®+-- 解:原式=201sin 12lim 2x x xx ®=5、(7分)设3214lim 1x x ax x x ®---++ 具有极限l ,求,a l 的值的值 解:因为1lim(1)0x xx ®-+=,所以,所以 321lim(4)0x x ax x ®---+=, 因此因此 4a = 并将其代入原式并将其代入原式321144(1)(1)(4)limlim 1011x x x x x x x x l x x ®-®---++--===++6、(8分)设3()32,()(1)nx x x x c x a b =-+=-,试确定常数,c n ,使得()()x x a b解:解: 32221()32(1)(2)(1)(2)3lim ,3,2(1)x x x x x x x x c n c x ca ®=-+=-+-+=\==- 此时,()()x x ab 7、(7分)试确定常数a ,使得函数21sin 0()0x x f x x a x x ì>ï=íï+£î在(,)-¥+¥内连续内连续解:当0x >时,()f x 连续,当0x <时,()f x 连续。

2020考研数学一真题及答案解析

2020考研数学一真题及答案解析
为连续函数. 计算
I xf xy 2x ydydz yf (xy) 2y xdzdx zf xy z dxdy
.
【详解】将曲面 Z x2 y2 向 xoy 面投影得 Dxy
Dxy 为1
x2
y2
4
,又
Z
' x
x x2
y2
,
Z
' y
y x2 y2
I
{[ xf
(
xy)
又 G(0) G(1) 0 ,从而 G(x) 0 ,即 f (x) Mx , 0 x 1 .
因此 f(1) M ,从而 M 0 .
综上所述,最终 M 0
(20)(本题满分 11 分)
设二次型
f
x1, x2
x12
4 x1x2
4 x22
经正交变化
x1 x2
Q
y1 y2
化为二次型
,
AC A
1
B2 =3>0 0
x y
1 6 1 12
,为极小值点
f (1 , 1 ) 1 极小值为 6 12 216
(16)(本题满分 10 分)
I
计算
L
4x 4x2
y y
2
dx
x y 4x2 y2
dy
,其中
L为
x2
y2
2
,方向为逆时针方向.
【详解】补曲线 L1 : 4x2 y2 2 ,逆时针方向
(C)3 可由1 ,2 线性表示
(D)1,2 ,3 线性无关
【答案】(C).
(7)
PA
PB
PC
1 4
,
P AB
0,
P AC

成人自考大专数学试题(答案) (1)

成人自考大专数学试题(答案)  (1)

成人自考大专试题数学卷(满分120分,考试时间90分钟)一、选择题:(本题共20小题,每小题2.5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ABC 是边长为2的正三角形,E,F 分别是PA,AB 的中点,∠CEF=90°,则球O 的体积为()A.B.C.2.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =()A.}{43x x -<<B.}42{x x -<<-C.}{22x x -<<D.}{23x x <<3.设复数z 满足=1i z -,z 在复平面内对应的点为(x,y),则()A.22+11()x y +=B.221(1)x y +=-C.22(1)1y x +-=D.22(+1)1y x +=4.设01a <<,则函数y =()A.+∞)B.1 [C.11-(,)D.-∞(,5.已知等差数列﹛n a ﹜中,53=a ,4115=a ,则公差=d ()A.4B.3C.5D.26、角2017°是在那个象限内()A、第一象限角B、第二象限角C、第三象限角B、第四象限角7、直线12y =+的倾斜角为()A、90°B、180°C、120°B、150°210y ++=与直线30x +=的位置关系是()A、两线平行B、两线垂直C、两线重合B、非垂直相交9、在圆:22670x y x +--=内部的点是())B、(-7,0)C、(-2,7)B、(2,1)10.函数2()|1|f x x =+的定义域为()A、[-5,+∞)B、(-5,+∞)C、[-2,-1)∪(-1,+∞)B、(-2,-5)∪(-1,+∞)11.对命题“x0∈R,x02-2x0+4≤0”的否定正确的是()A.x0∈R,x02-2x0+4>0B.x∈R,x2-2x+4≤0C.x∈R,x2-2x+4>0D.x∈R,x2-2x+4≥012.已知直线1l :x+ay+6=0和2l :(a-2)x+3y+2a=0,则1l ∥2l 的充要条件是a=()A.3B.1C.-1D.3或-113.函数y=x416-的值域是()A.[0,+∞)B.(0,4]C.[0,4)D.(0,4)14.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是()A.y=x3B.y=||1ln x C.y=2|x|D.y=cosx15、若集合}25|{<<-=x x A ,}33|{<<-=x x B ,则=B A ()A、}23|{<<-x xB、}25|{<<-x xC、}33|{<<-x x D、}35|{<<-x x 16、已知集{1,2,3},B {1,3}A ==,则A B = ()A、{3}B、{1,2}C、{1,3}D、{1,2,3}17、已知集合{}{}3,2,3,2,1==B A ,则()A、A=BB、=B A ∅C、B A ⊆D、A B ⊆18、若集合{}1,1M =-,{}2,1,0N =-,则M N = ()A、{0,-1}B、{1}C、{-2}D、{-1,1}19、设A,B 是两个集合,则“A B A = ”是“A B ⊆”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件20、设集合A={0,2,a},B={1,a2},若A∪B={0,1,2,5,25},则a 的值为()A、0B、1C、2D、5二、填空题:(本题共3小题,每小题10分,共20分.)1.设数列{an}的前n 项和为Sn,若a1=1,an+1=2Sn(n∈N*),则S4=_____.2.等比数列14,1,4,16,…的第5项是_____.3.已知双曲线1422=-b y x 的右焦点F,与抛物线x y 122=的焦点重合,过双曲线的右焦点F 作其渐近线的垂线,垂足为M,则点M 的纵坐标为______;三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(1)当2000≤≤x 时,求函数)(x v 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大?求出最大值.(精确到1辆/小时)2.一直线过直线和直线的交点p,且与直线垂直.(1)求直线L 的方程;(2分)(2)若直线L 与圆相切,求a .3、解:(1)由题知5,435===b a S 设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===.(1)求角C ;(2)求c 边的长度.参考答案:一、选择题1-5:DCCBA;6-10:CCDDC.11-15:CCBDA;16-20:CDBCD.二、填空题1、272.643.352±三、解答题1、(1)解:因为当20020≤≤x 时,车流速度是车流密度x 的一次函数,故设b kx v +=则⎩⎨⎧+=+=b k bk 20602000⎪⎪⎩⎪⎪⎨⎧=-=∴320031b k 320031+-=∴x v 故⎪⎩⎪⎨⎧≤≤+-<≤=20020,320031200,60)(x x x x v (2)由(1)得⎪⎩⎪⎨⎧≤≤-<≤=20020,)200(31200,60)(x x x x x x f 当200<≤x 时,)(x f 为增函数,1200)(<x f 当20020≤≤x 时,310000)100(31)200(31)(2+--=-=x x x x f当100=x 时,最大值3333=即当车流密度为100辆/千米时,车流量可以达到最大,最大约为3333辆/小时)(x g 的减区间为)0,(-∞2、参考答案.(1)由解得p(1,1),又直线与直线垂直,故L 的斜率为L,所以,即直线的方程为.(2)由题设知,半径,因为直线与圆相切,所以到直线的距离为,所以,又a>0,得a=6或a=2(舍),所以a=6.3题:参考答案:C ab S sin 21=Csin 542135⨯⨯=∴23sin =∴C 又 C 是ABC ∆的内角3π=∴C 或32π=C (2)当3π=C 时,3cos2222πab b a c -+=215422516⨯⨯⨯-+=21=21=∴c 当32π=C 时,22222cos 3c a b ab π=+-215422516⨯⨯⨯++==6161=∴c。

高等数学试题及答案 (1)

高等数学试题及答案 (1)

《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2ln 2x x x dx C =+⎰B )、sin cos tdt tC =-+⎰C )、2arctan 1dx dx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11cos 2y -B )、11cos 2x - C )、22cos y - D )、22cos x- 14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D 14. A 15. B二.填空题1. 21e 2. 2π3. C x+1 4. 412x x + 5. (0,0) 三.判断题1. T2. F3. F4. T5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。

2022年江苏省苏州市中考数学试题真题 (1)

2022年江苏省苏州市中考数学试题真题 (1)

2022年苏州市初中学业水平考试试卷数 学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟.2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置.......上. 1.下列实数中,比3大的数是( )A .5B .1C .0D .-22.2022年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141 260万,比上年末增加48万人,中国人口的增长逐渐缓慢.141 260用科学记数法可表示为( )A .0.14126×106B .1.4126×106C .1.4126×105D .1.4126×104 3.下列运算正确的是( )A .(-7)2=-7B .6÷23=9 C .2a +2b =2ab D .2a 3b =5ab4.为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.若参加“书法”的人数为80人,则参加“大合唱”的人数为( )A .60人B .100人C .160人D .400人5.如图,直线AB 与CD 相交于点O ,∠AOC =75°,∠1=25°,则∠2的度数是( )A .25°B .30°C .40°D .50°6.如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的 顶点称为格点,扇形OAB 的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投一次),任意投掷飞镖一次,飞镖击中扇形OAB (阴影部分)的概率是( )A .π12B .π24C .10π60D .5π607.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”.设走路快的人要走x 步才能追上,根据题意可列出的方程是( )A .x =100-60100x B .x =100+60100x C .10060x =100+x D .10060x =100-x8.如图,点A 的坐标为(0,2),点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为(m ,3),则m 的值为( )A .433B .2213C .533D .4213二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填写在答题卡相应位置.......上.. 9.计算:a a 3= ▲ .10.已知x +y =4,x -y =6,则x 2-y 2= ▲ . 11.化简x 2x -2-2xx -2的结果是 ▲ .12.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为 ▲ . 13.如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,连接AC ,A D .若∠BAC =28°,则∠D= ▲ .14.如图,在平行四边形ABCD 中,AB ⊥AC ,AB 3,AC =4,分别以A ,C 为圆心,大12AC的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AECF 的周长为 ▲ .15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为 ▲ .16.如图,在矩形ABCD 中,AB BC =23.动点M 从点A 出发,沿边AD 向点D 匀速运动,动点N 从点B 出发,沿边BC 向点C 匀速运动,连接MN .动点M ,N 同时出发,点M 运动的速度为v 1,点N 运动的速度为v 2,且v 1<v 2.当点N 到达点C 时,M ,N 两点同时停止运动.在运动过程中,将四边形MABN 沿MN 翻折,得到四边形MA ′B ′N .若在某一时刻,点B 的对应点B ′恰好与CD 的中点重合,则v 1v 2的值为 ▲ .三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 17.(本题满分5分)计算:|-3|+22-(3-1)0.18.(本题满分5分)解方程:x x +1+3x =1.19.(本题满分6分)已知3x 2-2x -3=0,求(x -1)2+x (x +23)的值.20.(本题满分6分)一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球,这个球是白球的概率为 ▲ ;(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)21.(本题满分6分)如图,将矩形ABCD 沿对角线AC 折叠,点B 的对应点为点E ,AE 与CD 交于点F . (1)求证:△DAF ≌△ECF ; (2)若∠FCE =40°,求∠CAB 的度数.22.(本题满分8分)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如下表格:(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m ,培训后测试成绩的中位数是n ,则m ▲ n :(填“>”、“<”或“=”)(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少? (3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?23.(本题满分8分)如图,一次函数y =kx +2(k ≠0)的图像与反比例函数y =mx (k ≠0,x >0)的图像交于点A (2,n ),与y 轴交于点B ,与x 轴交于点C (-4,0).(1)求k 与m 的值;(2)P (a ,0)为x 轴上的一动点,当△APB 的面积为72时,求a 的值.24.(本题满分8分)如图,AB 是⊙O 的直径,AC 是弦,D 是AB 的中点,CD 与AB 交于点E .F 是AB 延长线上的一点,且CF =EF .(1)求证:CF 为⊙O 的切线;(2)连接BD ,取BD 的中点G ,连接AG .若CF =4,BF =2,求AG 的长.25.(本题满分10分)某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:(1)(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m 千克甲种水果和3m 千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m 的最大值.26.(本题满分10分)如图,二次函数y =-x 2+2mx +2m +1(m 是常数,且m >0)的图像与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .其对称轴与线段BC 交于点E ,与x 轴交于点F .连接AC ,BD .(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求∠OBC 的度数; (2)若∠ACO =∠CBD ,求m 的值;(3)若在第四象限内二次函数y =-x 2+2mx +2m +1(m 是常数,且m >0)的图像上,始终存在一点P ,使得∠ACP =75°,请结合函数的图像,直接写出m 的取值范围.27.(本题满分10分)(1)如图1,在△ABC 中,∠ACB =2∠B ,CD 平分∠ACB ,交AB 于点D ,DE //AC ,交BC 于点E .①若DE =1,BD =32,求BC 的长;②试探究AB AD -BEDE 是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,∠CBG 和∠BCF 是△ABC 的2个外角,∠BCF =2∠CBG ,CD 平分∠BCF ,交AB 的延长线于点D ,DE ∥AC ,交CB 的延长线于点E .记△ACD 的面积为S 1,△CDE 的面积为S 2,△BDE 的面积为S 3,若S 1 S 3=916S 22,求cos ∠CBD 的值.。

2020考研数学一真题

2020考研数学一真题

2020年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)当0x +→,下列无穷小量中最高阶的是(A )2(1)xt e dt -⎰(B)0ln(1xdt⎰(C )sin 20sin xt dt⎰.(D)1cos 0-⎰(2)设函数()f x在区间(1,1)-有定义,且0lim ()0x f x →=,则()(A )当x →=时,()f x 在0x =处可导(B )当x →=时,()f x 在0x =处可导(C )()f x 在0x =处可导时,0x →=(D )()f x 在0x =处可导时,x →=(3)(,)f x y 在()00,可微,(0,0)0f =,()''(0,0),,1x y n f f =-,非0向量n α⊥,则()(A )(,)limx y →存在(B )(,)limx y →存在(C )(,)limx y →存在(D )(,)limx y →存在(4)R 为1nnn a x∞=∑收敛,r 为实数,则()(A )221nnn ax∞=∑发散,则r R≥(B )221nnn ax ∞=∑收敛,则r R≤(C )r R≥,221nnn ax∞=∑发散(D )r R≤,则221nnn ax ∞=∑收敛(5)若矩阵A 由初等列变换为矩阵B ,则()(A )存在矩阵P ,使PA B =;(B )存在矩阵P ,使BP A =;(C )存在矩阵P ,使PB A =;(D )方程组0AX =与=0BX 同解;(6)已知22211113332322::x a y b z c l a b c x a y b z c l a b c ---==---==相交于一点,令i i i i a b c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1,2,3i =,则()(A )1α可由2α,3α线性表示(B )2α可由1α,3α线性表示(C )3α可由1α,2α线性表示(D )123,,ααα线性无关(7)()()()()()()121,0,41======BC P AC P AB P C P B P A P ,则C B A ,,恰好发生一个的概率为()(A )43(B )32(C )21(D )512(8)设为12100,,...,x x x 来自总体X 的简单随机样本,其中1{0}{1}2P x P x ====,()x Φ表示标准正态分布函数,则由中心极限定理可知,1001{55}i P x =≤∑的近似值为()(A )1(1)-Φ(B )(1)Φ(C )1(0.2)-Φ(D )(0.2)Φ二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.()011lim 1ln1x x e x→⎡⎤-=⎢⎥-+⎣⎦.(10)设(ln x y t ⎧=⎪⎨=⎪⎩,则221t d y dx ==.数()f x 满足()()()0f x af x f x '''++=()0a >,且()0f m=,()0f n'=,则()f x dx +∞=(12)设函数2dt,则()21,1f x y∂=∂∂.(13)行列式01101111011a a a a --=--.(14)已知随机变量X 服从区间,22ππ⎛⎫- ⎪⎝⎭上的均匀分布,sin Y X =,则(),Cov X Y =.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分)求函数()33,8f x y x y xy=+-的极值.(16)(本题满分10分)计算2222444L x y x yI dx dy x y x y -+=+++⎰,其中L 为222x y +=,方向为逆时针方向.(17)(本题满分10分)设数列{}na满足11a=,11(1)2n nn a n a+⎛⎫+=+⎪⎝⎭.证明:当1x<时幂级数1nnna x∞=∑收敛并求其和函数.(18)(本题满分10分)设∑为曲面224)z x y =≤+≤下侧,()f x 为连续函数.计算()[]()2()2I xf xy x y dydz yf xy y x dzdx zf xy z dxdy∑=+-+++++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰(19)(本题满分10分)设函数()f x 在[]0,2上具有连续导数.()()020f f ==,[](){}0,2max x M f x ∈=.证:(1)存在()0,2ξ∈使()f Mξ'≥(2)若对任意()0,2x ∈,()f x M'≤,则0M =.(20)(本题满分11分)设二次型()22121122,44f x x x x x x=-+经正交变化1122x yQx y⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭化为二次型()22121122,46g y y ay x x y=++,其中a b≥.(1)求a,b的值(2)求正交变换矩阵Q(21)(本题满分11分)设A 为2阶矩阵,(),P A αα=,其中α是非零向量且不是A 的特征向量.(1)证明P 为可逆矩阵.(2)若260A A ααα+-=,求1P AP -,并判断A 是否相似于对角矩阵.(22)(本题满分11分)设随机变量123,,X X X 相互独立,其中1X 与2X 均服从标准正态分布,3X 的概率分布为331{0}{1}2P X P X ====,3132(1)Y X X X X =+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.有 6 张扑克牌,分别是红桃 6 、黑桃 6 、红桃 7 、黑桃 7 、红桃 8 、黑桃 8 ,从中随机抽取 2 张,给甲、
乙两人各一张,则甲所得扑克牌的数字比乙大的概率是( )
A. 0.2
B. 0.3
C. 0.4
D. 0.5
3.关于函数 f (x) x2 ax b 有下列四个命题,如果有且只有一个是假命题,它是( )
17、如图,在圆内接 ABC 中,内角 A, B,C 所对的边分别为 a, b, c ,
满足 a cos C c cos A 2bcos B. (1)求 B ; (2)若点 D 是劣弧 AC 上一点,AB 2 , BC 3 , AD 1,求四边形 ABCD 的面积.
18、设各项均为正数的数列 an 的前 n 项和为 Sn ,已知 a1 1, a2 3 ,且 Sn2 2Sn1 8Sn (n N *) .
曲线为 C2 .
(1)求曲线 C1 和 C2 的方程;
(2)当设 F1 、 F2 是 C2 的两个焦点.试问:在 C1 上,是否存在点 N ,使得△ F1NF2 的面积 S ma2 .若
存在,求 NF1F2 NF2F1 的正切值;若不存在,请说明理由. 22、(1)当 x 0 时 ax sin x 0 恒成立,求 a 的取值范围;
(2)证明:当 x 0 时 2 x 4sin x 2ex 2
3
(3)若一个 n 面体的直度为 1,棱数为 k ,试将 k 表示成 n 的函数;
(4)求五面体直度的最大值. 21、平面内与两定点 A1(a, 0) 、 A2 (a, 0) (a 0) 连线的斜率之积等于非零常数 m 的点的轨迹,加上 A1 、
A2 两点所成的曲线 C 可以是圆、椭圆或双曲线.设 m 1时,对应的曲线为 C1 , m(0, ) ,对应的
P K 2 k0
0.100
0.050
0.010
0.005
0.001
k
2.706
3.841
Байду номын сангаас
6.635
7.879
10.828
20、定义:若一个 n n 4 面体共有 m 个面是直角三角形,那么称这个几何体的直度为 m .根据此定义解
n
答下列问题.
(1)请构造一个直度是 3 的四面体; 4
(2)是否存在直度为 1 的四面体?请说明理由;
B.若 z12 z22 0 ,则 z1 z2 0
C.|z1z2| z1 z2
D.若复数
z1
1 i
i
(i
是虚数单位),则 |
z12n
|
2n ,
n
N*
1
11、正方体 ABCD-A1B1C1D1 的棱长为 1,E、F、G 分别为 BC、CC1、BB1 的中点,则( ) A.直线 DD1 与直线 AF 垂直;B.直线 A1G 与平面 AEF 平行
为________.(3 分)
16、已知函数 f ( ) 2 (cos 1)2 sin2 cos2 (sin 1)2 ,若集合 a R f () m ,
2
2
则实数 m 的取值范围为___________.
四、解答题:本题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。
C.平面 AEF 截正方体所得的截面面积为 9 8
D.点 A1 到平面 AEF 的距离为 6 6
12、某同学对函数
f
x
sin x ex ex
进行研究后,得出以下结论,其中正确的是(

A.函数 y f x 的图象关于 x 0 对称 B.对定义域中的任意实数 x 的值,恒有 f x 1成立
A.126
B.210
C.252
D.330
7.在区间 0, m 内任取两个数 a, b ,若 a b 时 ab ln a ba ln b 恒成立,则 m 的最大值为( )
a
b
A.1
B. e
2
C.2
D. e
8.设 P(s,t) 为抛物线 y2 x 上在第一象限内的点,过点 P 作圆 M : (x 2)2 y2 1的切线 l1,l2 ,分别交
C.函数 y f x 的图象与 x 轴有无穷多个交点,且每相邻两交点的距离相等
D.对任意常数 m 0 ,存在常数 b a m ,使函数 y f x 在a,b 上单调递减
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13、若有一组数据的总偏差平方和为 100,相关指数 R2 =0.75,则其残差平方和为______.
抛物线 C 于点 A x1, y1, B x2, y2 ,当 s 2 时, y1 y2 的取值范围为( )
A. 2 2,0
B. 3,0
C. 2,0
D. 1,0
二、选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题 目要求.全部选对的得 5 分,有选错的得 0 分,部分选对的得 2 分.
(1)若{Sn1 Sn}为等比数列,求 的值,并写出{Sn1 Sn}的首项和公比;
(2)求an 的通项公式.
2
19、冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方 便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是 化学气相沉积法,使石墨升华后附着在材料上再结晶.现有 A 材料、B 材料供选择,研究人员对附着在 A、 B 材料上再结晶各做了 50 次试验,得到如下等高条形图.
石家庄二中高三数学阶段性检测
一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项 是符合题目要求的.
1.已知U 是全集, M , N 均为U 的子集, M CU N ,以下选项一定错误的是( )
A. M N U
B. M N
C. M N U
D. CU M N N
A.曲线对称轴在 y 轴右侧 B.曲线在点 0, f 0 处的切线的倾斜角为钝角
C.在 0, 上函数不单调
D.曲线与 x 轴有两个交点
4.如图,已知椭圆 C : x2 y2 1 m 0 的中心为原点 O , F 为 C 的
m5 m
左焦点, P 为 C 上一点,满足等腰 OPF 的底边 PF 2 ,则 m ( )
A.4
B.11
C.20
D.31
5.已知单位向量 a 满足等式 2 a b , a 2b 13 ,则 b 在 a 方向上的投
影为( )
A. 3
B. 1
C.1
D. 3
6.已知 1 xn 的展开式中第五项的二项式系数与第六项的二项式系数相等,并且所有项的系数和为
512,则 1 x +1 x2 + +1 xn 的展开式中 x5 的系数为( )
(1)由上面等高条形图,填写 2 2 列联表,判断是否有 99%的把握认为试验成功与材料有关? (2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及 UV 胶层;②石墨烯层;③
表面封装层.每个环节生产合格的概率分别为 1 , 1 , 3 , ,且各生产环节相互独立.已知生产 1 吨的石墨烯 224
发热膜的固定成本为 1 万元,若生产不合格还需进行修复,且生产 1 吨石塑烯发热膜的每个环节修复费用
均为 1000 元.如何定价,才能实现每生产 1 吨石墨烯发热膜获利可达 1 万元以上的目标?
附:参考公式: K 2
nad bc2
,其中 n a b c d .
a bc d a cb d
9、已知函数
f
x
ex ,则( x2 1

A. f x 在 1, 上是增函数;
B.方程 f x e 有且仅有一个解
C. f x 有极小值没有极大值;
D. f x 有极大值没有极小值
10.已知复数 z 对应复平面内点 A ,则下列关于复数 z 、 z1 、 z2 结论正确的是( )
A.若 z 1 z 2i 3 ,则点 A 的轨迹是椭圆
14、已知函数
f
x 为定义在
R
上的奇函数,对任意
xR
都有
f
(x
3)
f
(x)
,当
x 0,
3 2
时,
f (x) 2x ,则 f (2021) 的值为_______.
15、在棱长为 6 的正方体空盒内,有四个半径为 r 的小球在盒底四角,分别与正方体底面处交于某一顶点 的三个面相切,另有一个半径为 R 的大球放在四个小球之上,与四个小球相切,并与正方体盒盖相切,无 论怎样翻转盒子,五球相切不松动,则小球半径 r 的最大值为________;(2 分)大球半径 R 的最小值
相关文档
最新文档