2.1不等式的基本性质

合集下载

专题2-1 不等关系与不等式性质(知识讲解)-八年级数学下册(北师大版)

专题2-1 不等关系与不等式性质(知识讲解)-八年级数学下册(北师大版)

专题2.1 不等关系与不等式性质(知识讲解)【学习目标】1.理解不等式的意义,能用不等关系符号刻画现实世界中的数量关系.3. 掌握不等式的三条基本性质,并能简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.特别说明:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c ).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).特别说明:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.用不等式表示:(1)a与2的和是正数.(2)x与y的差小于3.(3)x,y两数和的平方不小于4.(4)x的一半与y的2倍的和是非负数.【答案】(1)a+2>0 (2)x-y<3 (3)(x+y)2≥4 (4)12x+2y≥0【分析】结合不等式的定义以及题意列不等式即可.(1)因为正数都大于0,所以“a与2的和是正数”可表示为:a+2>0(2)“x与y的差小于3”可表示为:x-y<3(3)因为“不小于3”就是“大于或等于”,所以“x,y两数和的平方不小于4”可表示为:(x+y)2≥4(4)因为“非负数”就是“正数或0”,所以“x的一半与y的2倍的和是非负数”可表示为:12x+2y≥0【点拨】本题考查了列不等式,用符号“<”或“>”表示大小关系的式子,叫做不等式.如5x>,像3x≠这样用符号“≠”表示不等关系的式子也是不等式.注意①常见的符号有“>、<、≠、≥、≤”,分别读作“大于、小于、不等于、大于或等于、小于或等于”.其中“≥”又读作“不小于”,“≤”又读作“不大于”.①在不等式“a b>”或“a b<”中,a叫不等式的左边,b叫不等式的右边.①在列不等式时,一定要注意表示不等式关系的关键词,如:正数、非负数、不大于、至少等.举一反三:【变式1】有两种商品其单价总和超过100元,且甲商品的单价是乙商品单价的2倍少10元,设未知数,并用不等式表示出上述关系;【答案】设乙商品的价格为x元,x+2x-10>100【分析】设乙商品的价格为x元,表示出甲商品的价格,然后根据两商品的单价总和超过100元,列不等式即可.解:设乙商品的价格为x元,则甲商品的价格为(2x-10)元,由题意得,x+2x-10>100.即不等式为:x+2x-10>100.【点拨】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.【变式2】通过测量一棵树的树围(树干的周长)可以计算出它的树龄;通常规定以树干离地面1.5米的地方作为测量的部位,某棵树栽种时的树围为5cm,以后树围每年增加约3cm,这棵树至少生长多少年,其树围才能超过2.4m?根据题意,完成下面填空:(1)题目涉及的两个有关系的量,分别是:_____________________________;(2)设生长年份为x,则树围用x表示为:__________________;(3)用文字叙述生长年份与树围满足的不等关系是:______________________________;(4)用适当的不等号表示(3)中的不等关系:___________________________;【答案】(1)生长年份,树围;(2)5+3x;(3)这棵树生长x年,其树围才能超过2.4m;(4)5+3x>240【分析】(1)由题可知两个有关系的量分别是生长年份和树围;(2)栽种时的树围为5cm,以后树围每年增加约3cm,可知x年后,树围为(5+3x)m;(3)这棵树生长x年,其树围才能超过2.4m;(4)由题意可得5+3x>2.4×100.解:(1)由题可知两个有关系的量分别是生长年份和树围;故答案为生长年份,树围;(2)栽种时的树围为5cm,以后树围每年增加约3cm,可知x年后,树围为(5+3x)cm;故答案为5+3x;(3)用文字叙述生长年份与树围满足的不等关系是:这棵树生长x 年,其树围才能超过2.4m ;故答案为这棵树生长x 年,其树围才能超过2.4m ;(4)用适当的不等号表示(3)中的不等关系为:5+3x>2.4×100,故答案为5+3x>240【点拨】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.类型二、不等式的性质2.根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式. (1)15x -<; (2)413x -≥; (3)1142x -+≥; (4)410x -<-.【答案】(1)6x < (2)1≥x (3)6x ≤- (4)52x > 【分析】(1)根据不等式的性质1解答即可;(2)先根据不等式的性质1,再根据不等式的性质2解答; (3)先根据不等式的性质1,再根据不等式的性质3解答; (4)根据不等式的性质3解答即可;(1)解:15x -<,两边加上1得:1151x -+<+, 解得:6x <; (2)解:413x -≥,两边加上1得:41131x -+≥+,即44x , 两边除以4得:1≥x ; (3)解:1142x -+≥,两边减去1得:111412x -+-≥-,即132x -≥,两边除以12-得:6x ≤-;(4)解:410x -<-,两边除以4-得:52x >. 【点拨】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.举一反三:【变式1】已知x y >,下列不等式一定成立吗?(1)66x y -<-;(2)33x y <;(3)22x y -<-;(4)2121x y +>+. 【答案】(1)不成立;(2)不成立;(3)成立;(4)成立. 【分析】根据不等式的性质,对选项逐个判断即可. 解:(1)①x y >①66x y ->-,不等式两边同时加上或减去一个数,不等号方向不变; 不等式66x y -<-不成立; (2)①x y >①33x y >,不等式两边同时乘以一个大于零的数,不等号方向不变; 不等式33x y <不成立; (3)①x y >①22x y -<-,不等式两边同时乘以一个小于零的数,不等号方向改变; 不等式22x y -<-成立; (4)①x y >①22x y > ①2121x y +>+ 不等式2121x y +>+成立【点拨】此题考查了不等式的性质,熟练掌握不等式的有关性质是解题的关键. 【变式2】说明:(1)由314x -≤,得43x ≥-,是如何变形的?依据是什么?(2)由a b >,得ax bx >的条件是什么?为什么? (3)由a b >,得ax bx ≤的条件是什么?为什么?【答案】(1)不等式两边同时乘以43-,依据是不等式的两边同乘以一个负数,改变不等号的方向;(2)条件是0x >,理由是不等式的两边同乘以一个正数,不改变不等号的方向;(3)条件是0x ≤,当0x <时,理由是当0x <时,不等式的两边同乘以一个负数,改变不等号的方向;当0x =时,左边=右边0=.【分析】(1)根据不等式的性质:不等式的两边同乘以一个负数,改变不等号的方向即可得; (2)根据不等式的性质:不等式的两边同乘以一个正数,不改变不等号的方向即可得; (3)根据不等式的性质:不等式的两边同乘以一个负数,改变不等号的方向、以及等式的性质即可得.解:(1)不等式两边同时乘以43-,依据是不等式的两边同乘以一个负数,改变不等号的方向;(2)条件是0x >,理由是不等式的两边同乘以一个正数,不改变不等号的方向; (3)条件是0x ≤,理由如下:当0x <时,不等式的两边同乘以一个负数,改变不等号的方向;当0x =时, 左边=右边0=.【点拨】本题考查不等式的性质,熟记不等式的性质是解题关键.类型三、不等式性质的应用3.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.反之也成立.这种比较大小的方法称为“求差法比较大小”.请运用这种方法尝试解决下面的问题:(1)比较22432a b b +-+与2321a b -+的大小; (2)若223a b a b +>+,比较a 、b 的大小. 【答案】(1)222432321a b b a b +-+>-+;(2)a b < 【分析】(1)直接用22432a b b +-+减去2321a b -+得出的结果与0进行比较即可得到答案;(2)直接解不等式即可.解:(1)()222243232130a b b a b b +-+--+=+>,①222432321a b b a b +-+>-+;(2)①223a b a b +>+,①()()2230a b a b a b +-+=-+>, ①a b <.【点拨】本题主要考查了整式的减法运算,解不等式,不等式的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.举一反三:【变式1】阅读材料:形如2213x <+<的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如221213x x <+⎧⎨+<⎩;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得122x <<,然后同时除以2,得112x <<. 解决下列问题:(1)请你将双连不等式534x -≤-<转化为不等式组. (2)利用不等式的性质解双连不等式2235x ≥-+>-.【答案】(1)5334x x -≤-⎧⎨-<⎩;(2)142x ≤<【分析】(1)根据阅读材料中的方法将双连不等式化为不等式组即可; (2)利用不等式的基本性质求出所求即可.解:(1)534x -≤-<转化为不等式组为5334x x -≤-⎧⎨-<⎩.(2)2235x ≥-+>-,不等式的左、中、右同时减去3, 得128x -≥->-,同时除以2-,得142x ≤<【点拨】此题考查了解一元一次不等式组,以及不等式的定义,弄清阅读材料中的转化方法是解本题的关键.【变式2】在△ABC 中,AB =9,BC =2,AC =x . (1)求x 的取值范围;(2)若△ABC 的周长为偶数,则△ABC 的周长为多少? 【答案】(1)7<x <11;(2)20【分析】(1)根据三角形的三边关系列出不等式求解即可.(2)根据第三边取值范围和三角形周长表达式列式计算即可.解:(1)由题意知,9﹣2<x<9+2,即7<x<11;(2)①7<x<11,①x的值是8或9或10,①①ABC的周长为:当x=8时,9+2+8=19(舍去);当x=9时,9+2+9=20符合题意当x=10时,9+2+10=21(舍去);即该三角形的周长是20.【点拨】本题主要考查了三角形的三边关系,不等式的性质,利用三角形三边关系建立不等式是解题的关键.。

2.1不等式的基本性质3

2.1不等式的基本性质3
a cb (2) a b a c b c
cd bcbd 由传递性可得 a c b d 证毕
(1)又称为不等式的移项法则 (2)又称为不等式的同向可加性
例2.利用性质3证明:
如果 a b 0, c d 0 ,那么 ac bd 证明:a b, c 0 ac bc
c d,b 0 bc bd
当 c 0时,由于正数与正数的乘积为正数
所以 (a b)c 0 即 ac bc
当 c 0时,由于正数与负数的乘积为负数
所以 (a b)c 0 即 ac bc
该性质叫做不等式的乘法性质。
例1.利用性质1和性质2证明:
(1)如果 a b c ,那么a c b (2)如果a b,c d ,那么a c b d 证: (1) a b c a b (b) c (b)
一般地,如果 a b 0 , 那么 an bn (n N *)
思考
a b 0 n a n b (n N *, n 1) 成立吗?
证:反证法,假设 n a n b
即 n a n b 或者 n a n b
由一般结论和根式性质得 a b ,与已知矛盾
因此假设不成立,即原不等式成立. 证毕
在由传递性得 ac bd 证毕
思考 命题 a b, c d ac bd 成立吗?
原题被称为不等式的正数同向可乘性!
a b 0
思考
n个
可得出什么结论?
a b 0
三、不等式的性质II
性质3 如果 a b, c 0 ,那么 ac bc 如果 a b, c 0 ,那么 ac bc
即 (a c) (b c) 0
因此 a c b c 证毕
性质2表明不等式两边加上同一个数, 所得不等式与原不等式同向,又称为 不等式的加法性质

人教高中数学不等式的基本性质PPT完美版

人教高中数学不等式的基本性质PPT完美版
例题讲解 例1、比较两数(a+1)2与 a2-a+1值的大小。
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版
练习 比较两数(a2 +1)2与 a4+a2+1的值的大小。
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版
例题讲解

6.不能把质朴、理性的爱国主义视为 民粹主 义、狭 隘民族 主义, 同时应 防止各 种形式 的民粹 主义和 极端民 族主义 行为。

7. 众多短视频平台成为人们的消遣神 器,但 如果缺 乏内容 创新和 内涵续 航,短 视频的 发展将 不容乐 观。

8. 在这个浅表性阅读时代,越是具有 艺术美 感、内 容穿透 力和人 文内涵 的走心 作品越 能获得 观众的 认可。
性质5:如果a>b>0,c>d>0,那么ac>bd.不等式的叠乘性质
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版 人教高中数学不等式的基本性质PPT完 美版
谢谢
人教高中数学不等式的基本性质PPT完 美版 人教高中数学不等式的基本性质PPT完 美版

1.中美贸易摩擦已升级为舆论战,坚 持正确 舆论导 向、弘 扬爱国 主义精 神尤为 重要。

2.爱国主义精神具有深厚的历史性, 极强的 传承力 、感染 力,以 及坚韧 性,顽 强性和 理性。

3.爱国主义精神,是在中国共产党近 百年之 奋斗史 中不断 形成, 积聚与 升华而 成的。

4.面对史上规模最大的贸易战,中国 政府和 人民最 重要的 是“集中 力量做 好自己 的事”

不等式的基本性质

不等式的基本性质
=2x2-3x-5-2x2+3x
=-5<0
∴(2x-5)(x+1)<2x2-3x
亲爱的同学们,下节课见!
第二章 不等式
2.1 不等式的基本性质
1.作差比较法:比较两个实数的大小,可以通过考察它们的差来实现.
对于两个任意的实数a和b,有:a-b>0⇔a>b;
a-b=0⇔a=b;
a-b<0⇔a<b.
2.不等式的性质.
(1)性质1(加法法则):如果a>b,那么a+c>b+c.
(2)性质2(乘法法则):如果a>b,c>0,那么ac>bc;

√ )
2.如果a>b,且c>d,那么a+c>b+d.

√ )
3.如果a>b,且c>d,那么ac>bd.

× )
三、选择题
1.已知a>b,且ac>bc,那么(
A. c>0
B. c=0
A ).
C. c<0
2.若m>3,则下列不等式中必定成立的是(
A. m>0
B. m-3<0
3.如果a>b,那么(
A. ac<bc
(4)设a>b,则-2a< -2b,
(5)设x<y,则1-2x>1-2y,
1 1
(6)设x>y>0,则 < .

2.根据条件,写出x的取值范围:
(1)x+4>7, x>3
(2)2x-1<3,x<2
(3)3-2x>5, x<-1
(4)2-x<x-4, x>3
二、判断题
1.如果a<b,且b<c,那么a<c.


三、解答题
比较大小.
1.x2+1与(x+1)2,其中x>0.
解:∵(x2+1)-(x+1)2
=x2+1-(x2+2x+1)

数学上册2.1《不等式的基本性质》课件(2)

数学上册2.1《不等式的基本性质》课件(2)
时时吹来一阵风,
把它吹得如烟,如雾,如尘。
小练习:
1.背诵全诗 2.学习了这篇诗歌,有什么感受,
请同学们课下互相交流,谈一 谈。
同学们,再见
作业: 第26页 习题3 4
5 瀑布
叶圣陶(1894年- 1988年),原名叶 绍钧,字秉臣,汉族 人,江苏苏州人,著 名作家、教育家、编 辑家、文学出版家和
社会活动家。
想一想
5瀑 布
叶圣陶
Байду номын сангаас
瀑布
还没看见瀑布, 先听见瀑布的声音, 好像叠叠的浪涌上岸滩, 又像阵阵的风吹进松林。
山路忽然一转, 啊!望见了瀑布的全身!
这般景象没法比喻, 千丈青山衬着一道白银。
站在瀑布脚下仰望, 好伟大呀,一座珍珠的屏!
时时吹来一阵风, 把它吹得如烟,如雾,如尘。
瀑布
还没看见瀑布, 先听见瀑布的声音, 好像叠叠的浪涌上岸滩, 又像阵阵的风吹进松林。
山路忽然一转, 啊!望见了瀑布的全身! 这般景象没法比喻, 千丈青山衬着一道白银。
站在瀑布脚下仰望, 好伟大呀,一座珍珠的屏! 时时吹来一阵风, 把它吹得如烟,如雾,如尘。


站在瀑布脚下仰望, 好伟大呀,一座珍珠的屏! 时时吹来一阵风, 把它吹得如烟,如雾,如尘。
世 界 上 最 宽 的 瀑 布 伊 瓜 苏 瀑 布
------
世界上最高的瀑布-----安赫尔瀑布
世界第一瀑布----维多利亚瀑布
观察上面的题的大小比较,你能得到怎样的结论?
对于两个实数a,b,它 们都具有如下性质
a-b>0a>b a-b<0a<b a-b=0a=b
做差比较法:是一种常见的 比较两个实数大小的方法, 一般步骤是:把要比较的 两个实数作差,然后进行 化解,判断最终化解结果 的符号,从而判断出这两 个实数的大小。

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

A.x2>y2
B.ax>ay
C.x+5>y+5
D.x+2y>3y
【解析】 B选项中,当a=0时,ax=ay,故选项B不成立.
2.a、b、c 为实数,且 c≠0,下列命题中正确的是( D ) A.a>b⇒ac>bc B.ac<bc⇒a<b C.a>b⇒1a<1b D.a>b⇒ca2>cb2 【解析】 利用不等式的性质或举反例进行判断,取 a=2、b=-1、c=-1 来检验,对 A 有ac<bc,故 A 错;对 B 有 a>b,故 B 错;对 C 有a1>1b,故 C 错;对 D,∵ c≠0,∴ c12>0,由不等式的性质知,选项 D 正确.
【融会贯通】 比较大小. (1)( 2+ 3)2 与 4+2 6; (2)2x2+5x+6 与(x+3)(x+2),x∈R. 解:(1)∵( 2+ 3)2-(4+2 6)=(5+2 6)-(4+2 6)=1>0,∴( 2+ 3)2 >(4+2 6). (2)∵(2x2+5x+6)-(x+3)(x+2)=(2x2+5x+6)-(x2+5x+6)=x2≥0, ∴(2x2+5x+6)≥(x+3)(x+2).
2.1 不等式的基本性质
知识点1 知识点2 知识点3 知识点4 知识点5
1.不等式的概念 用不等号“≠、>、<、≥、≤”表示不等关系的式子叫做不等 式.如:f(x)>g(x),f(x)≤g(x),等等.
知识点1 知识点2 知识点3 知识点4 知识点5
2.几个恒不等式 任意实数的平方不小于0,即a2≥0. 任意实数的绝对值不小于0,即|a|≥0.
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
【解析】 根据不等式的性质可知,a>3 且 b>3⇒a+b>6 成立,a>3 且 b

中职数学2.1不等式的基本性质课件

中职数学2.1不等式的基本性质课件

例3
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
用符号“ ”或“ ”填空,并说明利用了不等式的哪(几)条
基本性质.
(2)如果 > ,那么 + 4
+ 2;
(2)根据不等式性质1,不等式 > 两边同时加上4,不等号
方向不变,即 + 4 > + 4,
又因为 + 4 > + 2,所以根据不等式性质3,可以得到
当>0时,点和点同时向右平移个单
位,即可到达点′和点′的位置;
当<0时,点和点同时向左平移
个单位,即可到达点′和点′的位置.
显然,两种情况中,点′点′的左右位置与点和点的情况相同.
2.1不等式的性质 —不等式的性质
性质3
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
5
2
例1 比较 7 与 3 的大小.
解 因为 5 2 15 14 15 14 1 0
7
3
21
5 2
所以

7 3
21
21
21
,
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
大于b(或b小于a).
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
因为实数与数轴上的点是一一对应的,对于任意实数,都可以
在数轴上找到对应的点和,如图所示.

不等式的基本性质

不等式的基本性质

a>b>0,c>d>0 如果a>b,c>d,那么ac>bd是否成立? 如果a>b>0,那么1/a<1/b是否一定成立? 如果a<b<0,那么1/a>1/b是否一定成立? 同号倒数改向性 例:若a、bR,请写出不等式a>b和1/a>1/b同时成立的 充要条件。
正数同向相乘法性
例 求证:如果a>b>0,那么a2>b2。 如果a>b>0,那么an>bn。(nN*)
7、已知三个不等式:(1)ab>0;(2)-c/a<-d/b;
(3)bc>ad,以其中两个作为条件,余下一个作为结论, 则可以组成多少个真命题? 8、已知命题甲:a>b,命题乙:1/a<1/b, 命题丙:c/a2>c/b2。 (1)若甲是乙的必要非充分条件,求a、b应满足的条件; (2)若a<0,b<0,判断丙是甲的什么条件,并加以证明。 9、(1)设2<a5,3b<10,求a+b、a-b及a/b的取值范围; (2)若二次函数f(x)的图像过原点,且1f(-2) 2, 3f(3)
2、如果a>b,那么a+c>b+c。
3、如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc。 4、如果a>b,c>d,那么a+c>b+d。 5、如果a>b>0,c>d>0,那么ac>bd。 6、如果a、b同号,那么1/a<1/b。
7、如果a>b>0,那么an>bn (nN*) 。
4、解关于x的不等式:(1)ax+4<2x+a2,其中a>2 (2)m(x+2)>x+m。

不等式的基本性质

不等式的基本性质

不等式的基本性质第二章不等式课题:2.1-不等式的基本性质(2课时)教学目标:1.掌握作差比较大小的方法,并能证明一些不等式。

2.掌握不等式的性质,掌握它们的证明方法及其功能,能简单运用。

3.提高逻辑推理和分类讨论的能力;培养条理思维的惯和认真严谨的研究态度。

教学重点:作差比较大小的方法;不等式的性质。

教学难点:不等式的性质的运用教学过程:第1课时:问题情境:现有A、B、C、D四个长方体,A、B的底面积为a²,高分别为a、b,C、D的底面积为b²,高分别为a、b,其中a≠b。

甲先从四个中取两个盛水,乙用剩下的两个盛水。

问如果你是甲,是否一定能保证两个所盛水比乙的多?分析:依题意可知:A、B、C、D四个的容积分别为a³、a²b、ab²、b³,甲有6种取法。

问题可以转化为比较两两和的大小。

研究比较大小的依据:我们知道,实数与数轴上的点是一一对应的。

在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大。

例如,在右图中,点A表示实数a,点B表示实数b,如果点A在点B右边,则a>b。

而a-b表示a减去b所得的差,由于a>b,则差是一个正数,即a-b>。

命题:“若a>b,则a -b>”成立;逆命题“若a-b>,则a>b”也正确。

类似地:若a<b,则a-b<;若a=b,则a-b=。

结论:(1)“a>b”⇔“a-b>”;(2)“a=b”⇔“a-b=”;(3)“a<b”⇔“a-b<”——以上三条即为比较大小的依据:“作差比较法”。

正负数运算性质:1) 正数加正数是正数;2) 正数乘正数是正数;3) 正数乘负数是负数;4) 负数乘负数是正数。

研究不等式的性质:性质1:若a>b,b>c,则a>c(不等式的传递性)证明:∵a>b∴a-b>;∵b>c∴b-c>;∴(a-b)+(b -c)=a-c>(正负数运算性质)则a>c。

反思:证明要求步步有据。

性质2:若a>b,则a+c>b+c(不等式的加法性质)证明:∵a>b∴a-b>;∵(a+c)-(b+c)=a-b>∴a+c >b+c。

不等式的基本性质

不等式的基本性质

不等式的基本性质
基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

符号语言表示为:如果,那么。

基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。

符号语言表示为:如果,并且,那么(或)。

基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。

符号语言表示为:如果,并且,那么(或)。

注意事项:
(1)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”
(2)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。

不等式的基本性质

不等式的基本性质

第二章 不等式2.1 不等式的基本性质一、教学目的:首先让学生掌握不等式的一个等价关系,了解并会证明不等式的基本性质1、2、3。

二、教学重点:比较实数的大小、不等式的基本性质。

三、教学难点:会比较两个实数的大小。

四、教学过程:2课时一、引入新课1.世界上所有的事物不等是绝对的,相等是相对的。

2.过去我们已经接触过许多不等式 从而提出课题二、几个与不等式有关的名称 (例略)1.“同向不等式与异向不等式”2.“绝对不等式与矛盾不等式”三、不等式的一个等价关系(充要条件)1.从实数与数轴上的点一一对应谈起0>-⇔>b a b a 0=-⇔=b a b a 0<-⇔<b a b a2.应用:例一 比较)5)(3(-+a a 与)4)(2(-+a a 的大小解:(取差))5)(3(-+a a - )4)(2(-+a a07)82()152(22<-=-----=a a a a∴)5)(3(-+a a <)4)(2(-+a a例二 已知x ≠0, 比较22)1(+x 与124++x x 的大小解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=∵0≠x ∴02>x 从而22)1(+x >124++x x小结:步骤:作差—变形—判断—结论例三 比较大小1.231-和10 解:∵23231+=- ∵02524562)10()23(22<-=-=-+ ∴231-<102.a b 和ma mb ++ ),,(+∈R m b a 解:(取差)a b -m a m b ++)()(m a a a b m +-= ∵),,(+∈R m b a ∴当a b >时a b >m a m b ++;当a b =时a b =m a m b ++;当a b <时a b <ma mb ++ 3.设0>a 且1≠a ,0>t 比较t a log 21与21log +t a 的大小解:02)1(212≥-=-+t t t ∴t t ≥+21 当1>a 时t a log 21≤21log +t a ;当10<<a 时t a log 21≥21log +t a 课堂练习:P33页练习2.1.2、不等式的基本性质1.性质1(传递性):如果b a >,c b > 那么c a >证:∵b a >,c b > ∴0>-b a ,0>-c b∵两个正数的和仍是正数 ∴+-)(b a 0)(>-c b0>-c a ∴c a >2.性质2(加法法则):如果b a >,.c b c a +>+证明3. 性质3(乘法法则):如果b a >,bc c c >>a 0,则;如果b a >,bc c c ∠∠a 0,则;文字归纳不等式性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.例1 利用不等式的性质,填”>”,“<”(1)若a>b,则2a+1 2b+1;(2)若-1.25y<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0,c<0,则(a-b)c 0.变式训练 :用“>”或“<”在横线上填空,并在题后括号内填写理由.(1) 3a 3b;( ) (2) a -8 b -8; ( ) (3) -2a -2b;( ) (4) 2a -5 2b -5;( ) (5) -3.5a -1 -3.5b -1. ( )课堂练习:P36页练习 P37页的习题五、归纳小结:1.本节重点(1)掌握不等式的三条基本性质,尤其是性质3;(2)能正确应用性质对不等式进行变形;2.注意事项(1)要反复对比不等式性质与等式性质的异同点;(2)当不等式两边都乘以(或除以)同一个数时,一定要看清是正数还是负数;对于未给定范围的字母,应分情况讨论.。

中职数学(基础模块)2.1不等式的基本性质

中职数学(基础模块)2.1不等式的基本性质
不等式的基本性质与其他数学知识的联系
不等式的基本性质定义
不等式的基本性质分类
练习题
汇报人:
性质3:不等式的同乘性
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
以上是关于“性质3:不等式的同乘性”的介绍内容,希望对您有所帮助。
性质:当两个不等式相乘时,如果两个不等式都是正数或都是负数,则它们的乘积仍然是正数或负数。
定义:不等式的同乘性是指当两个不等式相乘时,如果两个不等式都是正数或都是负数,则它们的乘积仍然是正数或负数。
利用不等式性质比较大小
定义:不等式是数学中比较两个数大小关系的数学符号。
性质:不等式的性质有对称性、传递性、可加性和同向不等式的可乘性。
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
应用:不等式的同乘性在解决不等式问题时非常有用,可以用来化简不等式或比较大小。 以上是关于“性质3:不等式的同乘性”的介绍内容,希望对您有所帮助。
证明:设a>b>0,c>d>0,则ac>bc>0,bc>bc+d>0,ac>bc+d>0,因此ac>bc+d>0,即不等式的同乘性成立。
不等式的基本性质:对于任意两个实数a和b,如果a>b且c>d,则a+c>b+d
不等式的基本性质:对于任意两个正实数a和b,如果a>b,则ac>bc

《数学 基础模块》上册 2.1.1不等式的基本性质(作差比较法)

《数学 基础模块》上册 2.1.1不等式的基本性质(作差比较法)
2.1不等式的基本性质(一)
教学目标
知识目标:
理解作差比较实数大小的方法.
能力目标:
能够应用作差法判断任意两个实数的大小.
情感目标:
主动参与学习,感受数学在生活中的应用,提升数学思维能力与计算技能.
教学重点
作差比较法.
教学难点
作差比较法.
教学备品
教学课件.
课时安排
1课时.
教学过程
教学过程
教学意图
情境引入
巩固知识,提升知识的应用能力.
2006年7月12日,在国际田联超级大奖赛洛桑站男子110米栏比赛中,我国百米跨栏运动员刘翔以12秒88的成绩夺冠,并打破了尘封13年的世界记录12秒91,为我国争得了荣誉.
如何体现两个记录的差距?
知识探究
通常利用观察两个数的差的符号,来比较它们的大小.因为12.88−12.91=−0.03<0,所以得到结论:刘翔的成绩比世界记录快了0.03秒.
ห้องสมุดไป่ตู้变换练习,体会作差比较法的应用技巧,突破重难点。
归纳小结
本次课学了哪些内容?重点和难点各是什么?
(1)本次课学了哪些内容?
(2)在学习方法上有哪些体会?
加深学生对于本节课知识的理解,培养学生自主学习的能力,提升学习主动性。
布置作业
(1)书面作业:教材习题一
(2)实践调查: 探究生活中作差比较法的应用
强化练习
教材练习
P321、2
及时练习,巩固新知.
难点突破
本次课重难点:作差比较法.
强化练习
比较下列各对实数的大小:
(1) 与 ;(2) 与 ;
(3)当 时,比较 与 的大小.
解析:(1)例1、2中是比较任意两个实数的大小,可直接根据作差比较法进行判断.

2.1不等式的基本性质高中

2.1不等式的基本性质高中

(1)作差; 常用手段:配方法,因式分
(2)变形;
解法。
常见形式:变形为常数;
(3)定号;
一个常数与几
(4)下结论;
个平方和; 几个因式的积。
作商比较两数大小的依据
若 b0
(1) a 1 a b b
(2) a 1 a b b
(3) a 1 a b b
例1:已知a 0,1 b 0 ,那么在
三、例题分析:
例2:(2)已知2x 4y 1 ,比较 x2 y2
作与差210比的较大法:小__xx2_2_y_y2_2__121_0 _
注:特殊值 法容易漏“=”
20

x2

(1 4

1 2
x)2

1(条件 20
2x

4y=1
的应用)
5 x2 - 1 x+ 1 5(x2 - 1 x+ 1 ) 4 4 80 4 5 100
3b 4
1 1 1(乘法单调性)
4 Q2

a
b
3
3

1

-
a

(1 乘法法则)
2b
1 a 1(乘法单调性)
b2
三、例题分析:
例5:已知 2 a 3, 4 b 3,求 a b, a b, a , ab, b2 的取值范围。
ba
解:(4)Q 4 b 3 3 b 4(乘法单调性)
• 上式中的左边反映的是实数的运算性质, 而右边则是实数的大小顺序,合起来就成 为实数的运算性质与大小顺序之间的关系。 这一性质不仅可以用来比较两个实数的大 小,而且是推导不等式的性质,不等式的 证明,解不等式的主要依据。

不等式的基本性质

不等式的基本性质

如果a+b>c,则a与c-b?
推论1:如果a+b>c,则a>c-b.
证明 :因为 所以 即 a+b>c, a+b+(-b)>c+(-b), a>c-b.
综合法:指从已知条件出发,借助其性质和有 关定理,经过逐步的逻辑推理,最后达到特征结论 或需求问题的方法。其特点和思路是:由因到果。
小试牛刀
(1)在-6<2 (2)在4>-3 的两边都加上9,得 的两边都减去6,得 3<11 ;
(3)如果 a<b,那么 a-3 (4)如果 x>3,那么 x+2
-2>-9 ; < b-3;
> 5; (5)如果 x+7>9,那么两边都 减去7,得 x>2.
把不等式60>36的两边同时乘以任意一个
不为0的数,你发现什么规律了吗?
如果不等式两边都乘同一个正数,则不等
号的方向不变,如果都乘同一个负数,则不等
趣味探索不等式
10年后爷爷和爸爸他们各自多少 岁呢?爷爷的年龄还比爸爸的年 龄大吗?10年前呢?X年后呢?
10年后,60+10>36+10 10年前,60-10>36-10 x年后,60+x>36+x
不等式的两边都加上(或减去)同一个数,不等号的方向不变。
趣味探索不等式
a>b
b
c b b+c b+c c
号的方向改变。
趣味探索不等式
3.不等式性质3(乘法法则) :如果 a>b,c>0,则ac>bc; 如果 a>b,c<0,则ac<bc. 证明:因为 ac-bc=(a-b)c, 又由 a>b,即 a-b>0, 所以 当c>0时,(a-b)c>0,即 ac>bc; 所以 当c<0时,(a-b)c<0,即 ac<bc.

不等式的基本性质

不等式的基本性质

2.1 不等式的基本性质知识点一、不等式的基本性质:性质1 对称性:a b b a <⇔>;性质2 传递性:b a >,c b >c a >⇒;性质3 可加性:b a >⇒c b c a +>+;性质4 可乘性:b a >,0>c ⇒bc ac >;b a >,0<c ⇒bc ac <; 性质5 同向可加性:b a >,d c >⇒d b c a +>+;性质6 同向可乘性:0>>b a ,0>>d c ⇒ bd ac >;性质7 乘方法则:0>>b a ⇒n n b a >;性质8 开方法则:0>>b a ⇒n n b a >;知识点二、不等式的一些常用性质(1)若b a >,0>ab ⇒b a 11<; (2)b a <<0⇒ba 11<; (3)0>>b a ,dc <<0⇒d b c a >; (4)若0>>b a ,0>m ,则m a m b a b ++< 知识点三、实数大小的比较一、实数(代数式)大小的比较1、比较下列两组数的大小,并说明理由(1)107+与143+(2)当1>x 时,3x 与12+-x x2、已知0>>b a ,比较2222b a b a +-与ba b a +-的大小.3、已知a ,b ,c 是不全相等的实数,试比较222c b a ++与ca bc ab ++的大小关系.4、已知0<<y x ,试比较))((22y x y x -+与))((22y x y x +-的大小关系.5、已知142++=a a P ,422-+-=b b Q 则( )A .Q P >B .Q P <C .Q P ≥D .Q P ≤二、不等式性质的应用1、给出下列命题:①a >b ⇒a c 2>b c 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2,其中正确的命题是( )A .①②B .②③C .③④D .①④2、若0a b >>,0c d <<,则下列选项中正确的是( )A .11ac bd < B .ad bc > C .a b c d > D .a b d c<3、已知a >0>b >-a ,c <d <0,给出下列四个命题:(1)a d >b c ;(2)a d + b c<0; (3)a -c >b -d ;(4)a ·(d-c )>b (d-c )中能成立的个数是( )A .1B .2C .3D .4三、利用不等式性质求代数式的取值范围1、已知14-≤-≤-y x ,32≤+≤-y x ,求y x -2的取值范围.2、设a ,b 为实数,已知432≤≤ab ,322≤≤b a ,求43b a 的取值范围3、(1)已知21≤-≤b a ,42≤+≤b a ,求b a 24-的取值范围;(2)已知-1<a <b <1,求a -b 的取值范围;(3)已知∈y x ,R ,且832≤≤xy ,942≤≤y x ,求43y x 的取值范围.四、不等式的证明1、已知0>>b a ,0>>d c ,求证:d b bd c a ac +>+.2、已知a ,b 是两个不相等的正实数,试比较b a b a 与a b b a 的大小关系.1、若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是( )4、若a >b >0,则下列不等式中恒成立的是 ( )A .b a >b +1a +1B .a +1a >b +1bC .a +1b >b +1aD .2a +b a +2b >a b 5、盐水溶液的浓度公式为()b p a b a =>盐的量克盐水的量克,向盐水中再加入m 克盐,那么盐水将变得更咸,下面哪一个式子可以说明这一事实( )A . b b m a a m+<+ B . b b m a a m +>+C . b b m +<D . b b m +>7、某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 的两种规格. 按照生产的要求,600mm 的钢管的数量不能超过500mm 钢管的3倍. 怎样写出满足上述所有不等关系的不等式呢?8、比较下列代数式的大小(1)比较(x +2)(x +3)和(x +1)(x +4)的大小.(2)已知a >2,b >2,试比较a +b 与a b 的大小.9、已知,,a b m 都是正数,且a b <,求证:a mab m b +>+.10、下面的推理过程 ⎭⎪⎬⎪⎫a >b ⇒ac >bc c >d ⇒bc >bd ⇒a c >b d ⇒a d >bc ,其中错误之处的个数是() A .0 B .1 C .2 D .311、已知0,0a b c d >>>><12、已知-2<a≤3,1≤b<2,试求下列代数式的取值范围:(1)|a|;(2)a+b;(3)a-b;(4)2a-3b.13、已知-1<x+y<4且2<x-y<3,则z=2x-3y的取值范围为____ __.。

不等式的基本性质

不等式的基本性质

【课题】2.1不等式的基本性质【教学目标】
知识目标:
⑴理解不等式的基本性质;
⑵了解不等式基本性质的应用.
能力目标:
⑴了解比较两个实数大小的方法;
⑵培养学生的数学思维能力和计算技能.
【教学重点】
⑴比较两个实数大小的方法;
⑵不等式的基本性质.
【教学难点】
比较两个实数大小的方法.
【教学设计】
(1)以实例引入知识内容,提升学生的求知欲;
(2)抓住解不等式的知识载体,复习与新知识学习相结合;
(3)加强知识的巩固与练习,培养学生的思维能力.
【教学备品】
教学课件.
【课时安排】
1课时.(45分钟)
【教学过程】。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】2.1不等式的基本性质
【教学目标】
知识目标:
(1)理解不等式的基本性质;
(2)了解不等式基本性质的应用.
水平目标:
通过不等关系的学习与探究,培养数学思维水平.
情感目标:
(1)经历比较实数大小及证明不等关系的过程,注重逻辑判断与推理;
(2)感受生活中的不等关系模型,体会数学知识的应用.
【教学重点】
⑴比较两个实数大小的方法;
⑵不等式的基本性质.
【教学难点】
比较两个实数大小的方法.
【教学设计】
(1)以实例引入知识内容,提升学生的求知欲;
(2)抓住解不等式的知识载体,复习与新知识学习相结合;
(3)增强知识的巩固与练习,培养学生的思维水平.
【教学备品】
教学课件.
【课时安排】
1课时.(45分钟)
【教学过程】。

相关文档
最新文档