人教版八年级下册数学:画函数图象 (9)
八年级数学下册知识点总结(全)
八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
人教版八年级数学下册教学课件(RJ) 第十九章 一次函数 第2课时 一次函数的图象和性质
在一次函数y=kx+b中, 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
例4 P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象 上的两点,下列判断中,正确的是( D )
A.y1>y2 B. y1<y2
C.当x1<x2时,y1<y2 D.当x1<x2时,y1>y2
思考:仿照正比例函数的做法,你能看出当 k 的符号 变化时,函数的增减性怎样变化吗?
k>0时,直线左低右高, y 随x 的增大而增大; k<0时,直线左高右低, y 随x 的增大而减小.
y y =-3x+1 y =-x+1 6
4
2 A
-5
O
-2
y =3x+1 y =x+1 C B
D 5x E
要点归纳
性质
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
6.若直线y=kx+2与y=3x-1平行,则k= 3 .
7.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点, 则y1-y2 > 0(填“>”或“<”).
8.已知一次函数y=(3m-8)x+1-m的图象与 y轴交
点在x轴下方,且y随x的增大而减小,其中m为整
数,求m的值 .
解: 由题意得
解:函数y=-6x与y=-6x+5中,自变量x可以是任意
实数.列表表示几组对应值(计算并填写表中空格).
x
-2 -1 0 1 2
y=-6x
0 -6
y=-6x+5
5 -1
人教版数学八年级下册同步训练:19.1.2《函数图像》(含答案解析)
人教版数学八年级下册同步训练:19.1.2《函数图像》一、选择题1.下列函数关系中,属于正比例函数关系的是()A. 圆的面积与它的半径B. 面积为常数S时矩形的长y与宽xC. 路程是常数时,行驶的速度v与时间tD. 三角形的底边是常数a时它的面积S与这条边上的高h2.一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是()A. B. C.3.下列四个点中在函数y=2x-3的图象上有()个.(1,2) , (3,3) , (-1, -1), (1.5,0)A. 1B. 2C. 3D. 44.如果A、B两人在一次百米赛跑中,路程s(米)与赛跑的时间t(秒)的关系如图所示,则下列说法正确的是()A. A比B先出发B. A、B两人的速度相同C. A先到达终点D. B比A跑的路程多5.函数y=3x+1的图象一定经过( )A. (2,7)B. (4,10)C. (3,5)D. (-2,3)6.下列各点中,在函数y=2x-6的图象上的是( )A. (-2,3)B. (3,-2)C. (1,4)D. (4,2)7.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图象如图所示,下列结论错误的是()A. 轮船的速度为20千米/小时B. 快艇的速度为千米/小时C. 轮船比快艇先出发2小时D. 快艇比轮船早到2小时8.某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A. 小强从家到公共汽车在步行了2公里B. 小强在公共汽车站等小明用了10分钟C. 公共汽车的平均速度是30公里/小时D. 小强乘公共汽车用了20分钟9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反应当天爷爷离家的距离y(米)与时间t(分钟)之间的大致图象是( )A. B.C. D.10.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),由此函数的最小值()A. 0B.C. 1D.11.均匀地向如图的容器中注满水,能反应在注水过程中水面高度h随时间t变化的图象是()A. B. C. D.12.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数的图象,那么符合小明行驶情况的图象大致是()A. B. C. D.13.小亮家与学校相距1500m,一天放学后他步行回家,最初以某一速度匀速前进,途中遇到熟人小强,说话耽误几分钟,与小强告别后他就改为匀速慢跑,最后回到了家,设小亮从学校出发后所用的时间为t(min),与家的距离为s(m),下列图象中,能表示上述过程的是()A. B. C. D.14.如图,将一个高度为12c m的锥形瓶放入一个空玻璃槽中,并向锥形瓶中匀速注水,若水槽的高度为10c m,则水槽中的水面高度y(c m)随注水时间x(s)的变化图象大致是()A. B. C. D.15.如图,李老师早晨出门锻炼,一段时间内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离出发点M的距离与时间x之间的函数关系的大致图象是()A. B. C. D.二、填空题16.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是________千米/分钟.17.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间图象如图,则慢车比快车早出发________小时,快车追上慢车行驶了________千米,快车比慢车早________小时到达B地.18.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为________ 平方米.19.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升________ 元.20.甲、乙两人分别从A、B两地相向而行,y与x的函数关系如图,其中x表示乙行走的时间(时),y表示两人与A地的距离(千米),甲的速度比乙每小时快________千米.三、解答题21.小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:(1)小明家离超市的距离是________千米;(2)小明在超市买东西时间为________小时;(3)小明去超市时的速度是________千米/小时.22.一次越野跑中,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程s(米)与时间t(秒)的关系如图,结合图象解答下列问题:Ⅰ.请你根据图象写出二条信息;Ⅱ.求图中S1和S0的位置.23.李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下来聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程S(米)与所用时间t(分)之间的关系如图所示.(1)求a、b、c的值;(2)求李老师从学校到家的总时间.24.小强骑自行车去交游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间的函数图象,根据图象所提供的数据,请你写出3个信息.25.某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中所走的路程S(米)与时间t(分)之间的关系.(1)学校离他家________米,从出发到学校,王老师共用了________分钟;(2)王老师吃早餐用了多少分钟?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?答案解析部分一、选择题1.【答案】D【解析】【解答】As=πr,s是r的二次函数By= ,y是x的反比例函数Cv= ,v是t的反比例函数Ds= ah ,s是h的正比例函数故答案为:D【分析】将每个选项的关系式列出来,然后再判断即可2.【答案】C【解析】【解答】设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是h=20-5t ,是一次函数图象,即t越大,h越小,符合此条件的只有C故答案为:C【分析】可以列出蜡烛点燃后,剩下的长度h与点燃时间t的函数关系式,利用函数的性质判断即可3.【答案】B【解析】【解答】分别代入:2≠2×1-3;3=2×3-3;-1≠2×(-1)-3;0=2×1.5-3;共两个满足.故答案为:B【分析】分别将各选项代入函数关系式,能满足左边等于右边的即在函数图象上.4.【答案】C【解析】【解答】结合图象可得出,A、B同时出发,A比B先到达终点,A的速度比B的速度快.故答案为:C【分析】根据图象法表示函数,观察A、B的出发时间相同5.【答案】A【解析】【解答】将A、B、C、D的坐标分别代入解析式只A符合左边等右边,故A选项正确.故答案为:A【分析】将ABCD各点分别代入解析式,使等式成立的即为函数图象上的点6.【答案】D【解析】【解答】将A、B、C、D的坐标分别代入解析式只D符合左边等右边,故D选项正确.故答案为:D【分析】将ABCD各点分别代入解析式,使等式成立的即为函数图象上的点7.【答案】B【解析】【解答】解:轮船的速度为:160÷8=20千米/小时,快艇的速度为:160÷(6﹣2)=40千米/小时,故A正确,B错误;由函数图象可知,C、D正确.故选B.【分析】先计算轮船和快艇的速度,再结合图象,逐一判断.8.【答案】D【解析】【解答】A.依题意得小强从家到公共汽车步行了2公里,故A不符合题意;B.依题意得小强在公共汽车站等掌上小明用了10分钟,故B不符合题意;C.公交车的速度为30公里/小时,故C不符合题意;D.小强和小明一起乘坐公共汽车,时间为30分钟,故D不符合题意.故答案为:D.【分析】观察图像可得出相关的信息:小强从家到公共汽车在步行了2公里;小强在公共汽车站等小明用了30-20=10分钟;公共汽车30分钟行驶的路程是15公里;即可得出答案。
【初二课件】人教版八年级数学下册第十九章一次函数函数课件
x 1
2
即当x= 1 时,y=0.
2
二 确定自变量的取值范围
问题:请用含自变量的式子表示下列问题中的函 数关系:
(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
练一练
填表并回答问题:
x
1
y=+2x 2和-2
4
9
16
8和-8 18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值与之对应吗? 答: 不是 .
(2)y是x的函数吗?为什么? 关键词:两个变量,
答:不是,因为y的值不是唯一的.
给一个x,得一个y. 易错点:顺序不要反.
典例精析
例1 下列关于变量x ,y 的关系式:y =2x+3; y =x2+3;y =2|x|;④ y x ;⑤y2-3x=10, 其中表示y 是x 的函数关系的是 .
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
当堂练习
1.下列说法中,不正确的是( C ) A.函数不是数,而是一种关系 B.多边形的内角和是边数的函数 C.一天中时间是温度的函数 D.一天中温度是时间的函数
2.下列各表达式不是表示y是x的函数的是( C )
人教版八年级下册数学19.1.2 第2课时 画函数图像课件 (共16张PPT)
试画出函数
y6 x
(>0)
的图象:
合作探究
解:从函数
y 6 x
(x>0)可以看出,x的取值范围是:x>0
第一步:列表:
y
6
x ... 1 2 3 4 5 ...
5
y ... 6 3 2 1.5 1.2 ... 4
第二步:描点(x,y) 第三步:连线.
3
y6
x
2
直线从左向右下降, y 随着 x 的增大而减小。
x的取值范围是全体实数
y
3
根据表中数值描点(x,y),
2
并用平滑曲线连接这些点。
1
y=x+0.5
直线从左向右上升, y 随着 x 的增大而增大。
-3 -2 -1 O 1 2 3 x -1 ((--321,,--210..55))
-2
-3
人教版 八年级 下册
第十九章 一次函数
19.1.2 第2课时 画函数图像
学习目标
1 会用描点法画出函数的图像
2 会判断一个点是否在函数的图象上 3 体会数形结合的思想
认真阅读课本第77例3至79页 的内容,完成下面练习并体验知识 点的形成过程 。
合作探究
探究一 用描点法画函数图象
对于x的每一个确定的值,y都有唯一的对应值, 即y是x的函数.
k=___-7____.
实战演练
4、函数y= - 1 x+5的一部分图象如图所示,利用图象回答:
2
(1)自变量x的取值范围 (2)当x取什么值时,最小值是多少? (3)在图中,当x增大时,y的值是怎样变化的?
解:(1)从图象中观察得知:自变量X 的取值范围是:0≤x≤5
(2)从图象中观察得知: 当 x = 3 时,y 有最小值,最小值 y = 2.5
人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)
新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
人教版八年级数学下册课件函数的图像函数的图像
Q (升)
Q (升)
Q (升)
Q (升)
40
40
40
40
0 8 t (时) 0 8 t (时) 0 8 t (时) 0 8 t (时
A.
B.
C.
D.
2.最近中旗连降雨雪,德岭山水库水位上涨.如图 表示某一天水位变化情况,0时的水位为警戒水位. 结合图象判断下列叙述不正确的是 ( C )
(4)张强从文具店回家的平均速度是多少?
用平滑曲线去连接画出的点
(1,1) D.
AB
1注、:已函知数1点图.(1象-1可,能2是)曲是线函,数也y=可kx能的是图直象线上,的也一可点能,是则线段或射线,函数图象的形状取决于函数关系和自变量的取值范围。
请根据图象回答下列问题:
(1)在平面直角坐标系中,平面内的点可以用一对
实际问题中的函数图象
思考:下图是自动测温仪记录的图象,它反映了北 京的春季某天气温 T 如何随时间 t 的变化而变化.
你从图象中得到了哪些信息?
T/℃ 8
O4
14
-3
24 t/时
从图象中可以看出这一天中任一时刻的气温.
1、画出函数 y = x + 0.5 的图象
解:(1)从函数解析式可以看出,x的取值范围是 全体实数 . 从x的取值范围中选取一些简洁的数值, 算出y的对应值,填写在表格里:
-2
-3
-4
.
图象上的点与函数关系式的关系:
(1)函数图象上的任意点(x,y)中的x、y满足 函数关系式;
(2)满足函数关系式的任意一对(x,y)的值, 所对应的点一定在函数图象上。
判断下列各点是否在函数 y=x+0.5 的图象上?
《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)
y =2x
6
4
y= 1 x
2
3
-5
O
-2
5
x
三.类比学习
当k<0 时,正比例函数的图象特征及 性质又怎样呢?
请各小组画出函数y =-3x 和y =-1.5x 的 图象,进行小组合作研究.
总结提升
y=kx (k是常数,k≠0)的图象是一条经过 原点的直线
函数 大致图象 经过的象限 从左 y随x的 向右 增大而
y=kx k>0
第三、一象限 上升 增大
y=kx k<0
第二、四象限 下降 减小
现在,我们有画正比例函数图象的简便 画法了吗?
四.正比例函数的性质
正比例函数的图象都是经过原点的一条直线 (1)当k>0时,函数y=kx的图象经过三、一象限
从左到右上升,即函数y随x的增大而增大 (2)当k<0时,函数y=kx的图象经过二、四象限,
点(0, 0 )与点( 1,-3 ), y随x的增大 而 减小 。 3.下列图象哪个可能是函数y=-1.2x的图象( B)
A
B
C
D
你一定行!
4.请用两点画出直线 y 4x 的图象。
5.若点 (-1,m),(2,n)都在直线y=-4x上, 试比较m,n的大小
你一定行!
五、知识回顾 谈谈本节课你的收获。
六、分层作业
必做题:P120第一、二题。 选做题:若点 (-1,a),(2,b)都在 直线y=kx上,试比较a,b的大小
课件说明
本课是在上一节课学习正比例函数概念的基础上,进 一步研究其图象及其性质.
学习目标: 1.会画正比例函数的图象; 2.能根据正比例函数的图象和表达式 y =k(k≠0)
初中数学(新人教版)八年级下册同步测试:函数的图象(同步测试)【含答案及解析】
19.1.2函数的图象知能演练提升一、能力提升1.小明从家出发步行至学校,停留一段时间后乘车返回,则下列函数图象最能体现他离家的距离(s)与出发时间(t)之间的对应关系的是()2.已知小刚以400 m/min的速度匀速骑车5 min,在原地休息了6 min,然后以500 m/min的速度骑回出发地.下列函数图象能表达这一过程的是()3.王老师外出开会,他所走的路程s(单位:km)与时间t(单位:h)的关系如图所示,则下列说法正确的是()A.0~3 h,他的速度越来越快,3~5 h,他的速度减慢B.0~3 h,他的速度越来越快,3~5 h,他的速度与原来持平C.0~3 h,他的速度越来越快,3~5 h,他的速度为0 km/hD.0~3 h,他的速度保持不变,3~5 h,他的速度为0 km/h4.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()5.如图,已知点P是正方形ABCD的对角线AC上的一个动点(A,C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()★6.在一次自行车越野赛中,甲、乙两名选手行驶的路程y(单位:km)随时间x(单位:min)变化的图象(全程)如图所示,根据图象判定下列结论不正确的是()A.甲先到达终点B.前30 min,甲在乙的前面C.第48 min时,两人第一次相遇D.这次比赛的全程是28 km7.如图,表示的是小明在6 h~8 h 时他的速度与时间的图象,则在6 h~8 h行驶的路程是km.8.图①中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(单位:m)与旋转时间x(单位:min)之间的关系如图②所示.(1)根据图②填表:(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径.图①图②9.在式子y=x+1中,对于x的每一个确定的值,y有唯一的对应值,即y是x的函数.(1)画出函数y=x+1的图象;(2)判断点A(1,2),B(-1,-1)是否在这个函数的图象上.10.小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25 min,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车返回体育馆.如图中线段AB,OB分别表示父亲和小明送票、取票过程中,离体育馆的路程s(单位:m)与所用时间t(单位:min)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)求点B的坐标;(2)小明能否在比赛开始前到达体育馆?二、创新应用★11.如图,在三个函数图象中,有两个函数图象能近似地刻画如下甲、乙两个情境:情境甲:小芳离开家不久,发现把作业本忘在家,于是返回家里找作业本再去学校;情境乙:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境甲、乙所对应的函数图象分别为,(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.知能演练·提升 一、能力提升1.B2.C3.D4.B5.A6.D7.908.解 (1)自左往右依次填:5,70,5,54,5.(2)变量y 是x 的函数,因为在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以变量y 是x 的函数. (3)摩天轮的直径是70-5=65(m). 9.解 (1)列表:根据表中的数据描点(x ,y ),并用平滑的曲线按自变量由小到大的顺序连接这些点.(2)当x=1时,y=1+1=2,故点A (1,2)在函数y=x+1的图象上; 当x=-1时,y=-1+1=0,故点B (-1,-1)不在函数y=x+1的图象上. 10.解 (1)从题图可以看出:父子俩从出发到相遇时花费了15 min . 设小明步行的速度为x m/min,则小明父亲骑车的速度为3x m/min, 依题意得15x+45x=3 600.解得x=60.所以两人相遇处离体育馆的距离为60×15=900(m). 所以点B 的坐标为(15,900).(2)小明取票后,赶往体育馆的时间为90060×3=5(min).小明取票花费的时间为15+5=20 min .因为20<25,所以小明能在比赛开始前到达体育馆. 二、创新应用11.解 (1)③ ① 情境甲:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时③符合,又去学校,即离家越来越远,故③符合情境甲;情境乙:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,故只有①符合.(2)情境是小芳离开家不久,休息了一会儿,又走回了家.(符合情境即可)。
八年级数学下册《函数的图像》练习题及答案(人教版)
八年级数学下册《函数的图像》练习题及答案(人教版)班级姓名考号1.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原来的速度返回,父亲在报亭看报10分钟,然后用15分钟返回家,下面给出的图象中表示父亲离家距离与离家时间的函数关系是()A.B.C.D.2.下列各曲线中不能..表示y是x的函数的是()A.B.C.D.3.梦想从学习开始,事业从实践起步.近来,每天登录“学习强国”APP,学精神增能量、看文化长见识已经成为一种学习新风尚.下面是爸爸上周“学习强国”周积分与学习天数的有数据,则下列说法错误的是()学习天数n(天)1234567周积分w(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.从第3天到第4天,周积分的增长量为50分D.天数每增加1天,周积分的增长量不一定相同4.函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数284x y x =-+的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.x … 4- 3-2- 1- 0 1 2 3 4 … y … 85 2413 a 85 0 b 2- 2413- 85- … 小明根据他的发现写出了以下三个命题:①当22x -≤≤时,函数图象关于直线y x =对称;①2x =时,函数有最小值,最小值为2-;①11x -<<时,函数y 的值随x 点的增大而减小.其中正确的是( )A .①①B .①①C .①①D .①①①5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.小明和小强两个人开车从甲地出发匀速行驶至乙地,小明先出发.在整个行驶过程中,小明和小强两人的车离开甲地的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示,有下列结论:①甲、乙两地相距300千米;①小强的车比小明的车晚出发1小时,却早到1个小时;①小强的车出发后1.5小时追上小明的车.其中正确的结论有( )A .①①B .①①C .①①D .①①①7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:温度/① 76 78 80 82 84蜂每分钟鸣叫的次数 144 152 160 168 176如果这种数量关系不变,那么当室外温度为88①时,蟋蜂每分钟鸣叫的次数是( )A .178B .184C .190D .1928.如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP 的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .249.如图1,点P 从矩形ABCD 的顶点A 出发,沿A →D →B 以2cm/s 的速度匀速运动到点B ,图2是点P 运动时,PBC 的面积y (cm 2)随时间x (s )变化的关系图像,则a 的值为( )A .8B .6C .4D .310.将盛有凉牛奶的瓶子放在热水中(如图甲所示),通过热传递方式改变牛奶的内能,图乙是凉牛奶与热水的温度随时间变化的图像.假设热水放出热量全部被牛奶吸收,下列回答错误..的是( )A .08min 时,热水的温度随时间的增加逐渐降低;B .08min 时,凉牛奶的温度随时间的增加逐渐上升;C .8min 时,热水和凉牛奶的温度相同;D .0min 时,两者的温度差为80C ︒.二、填空题11.一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为______h . 注水时间()h t0.5 1 1.5 2 2.5 … 水的深度()m h0.8 1.6 2.4 3.2 4 …12.李玲用“描点法”画二次函数2y a bx c =++的图象时,列了如下表格,根据表格上的信息回答问题:该二次函数2y a bx c =++当3x =时,y =________.13.甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法其中正确的结论有 ___________.①A 、B 两地相距210千米;①甲车速度为60千米/小时;①乙车速度为120千米/小时;①乙车共行驶132小时.14.如图1,在菱形ABCD 中,∠A=60°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为_______.15.育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了2h 3第一次返回到自己班级,则七(2)班需要_________ h 才能追上七(1)班.三、解答题16.如图所示的是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分钟)变化而变化的图像.(1)摩托车从出发到最后停止共经过了多长时间?离家最远的跑离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?17.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,所挂物体的质量与弹簧长度的几组对应值如下:x012345所挂物体质量/kgy182022242628弹簧长度/cm(1)上表反映了哪两个变量之间的关系,并指出哪个是自变量,哪个是因变量;(2)不挂物体时,弹簧长________cm;(3)当所挂物体的质量为7kg时,弹簧长度是多少?(4)当弹簧长度为34cm(在弹性限度内)时,所挂物体的质量是多少?18.上海磁悬浮列车在一次运行中速度V(千米/小时)关于时间t(分钟)的函数图象如图,回答下列问题.(1)列车共运行了___分钟(2)列车开动后,第3分钟的速度是___千米/小时.(3)列车的速度从0千米/小时加速到300千米/小时,共用了___分钟.(4)列车从___分钟开始减速.19.测得一弹簧的长度L (厘米)与悬挂物体的质量x (千克)有下面一组对应值:悬挂物体的质量x (千克) 01 2 3 4 5 6 7 8 弹簧的长度L (厘米) 12 12.5 13 13.5 14 14.5 15 15.5 16试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?20.如图1,在Rt ABC △中,AC=BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以1cm/s 的速度由F 点出发,沿F E D A B →→→→的路径运动,连接BP ,CP ,BCP 的面积2/cm y 与运动时间/s x 之间的图象关系如图2所示.根据相关信息,解答下列问题:(1)判断EF 的长度;(2)求a ,b 的值;(3)当10x =时,连接,此时与的有怎样的数量关系,请说明理由.1---10CCCCD DDBCD11.312.113.①①①14.2315.216.(1)解:根据距离(千米)随行驶时间(分钟)变化而变化的图像可知摩托车从出发到最后停止共经过了100分钟,离家最远的距离是40千米.(2)解:当020t <≤时,S=10速度为100.5(km /min)20=; 当2050t <≤时401030S =-=速度为40101(km /min)5020-=-; 当50100t <≤时,S=40,速度为400.8(km /min)10050=-; ①20~50分钟这一时段内速度最快,最快速度为1千米/分钟.17.解:表格中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)解:当所挂物体质量为0时,所对应的弹簧长度是18cm故答案为:18;(3)解:由表格中弹簧的长度随所挂物体质量之间的变化关系可知,当所挂物体质量每增加1kg ,弹簧的长度就增长2cm ,所以当所挂物体质量为7kg 时,弹簧的长度为18+2×7=32(cm )答:当所挂物体的质量为7kg 时,弹簧长度是32cm ;(4)解:由弹簧的长度随所挂物体质量之间的变化关系可知,当弹簧长度为34cm 时,所挂物体的质量为34182-=8(kg )答:当弹簧长度为34cm (在弹性限度内)时,所挂物体的质量是8kg .18.(1)解:列车共运行了8分钟;故答案为:8;(2)列车开动后,第3分钟的速度是300千米/小时;故答案为:300;(3)列车的速度从0千米/小时加速到300千米/小时,共用了2分钟;故答案为:2;(4)列车从5分钟开始减速.故答案为:5.19.(1)解①由表格可知,弹簧的长度L 的初始值为12厘米,当弹簧称所挂重物质量x 每增加1千克,弹簧长度L 就增加0.5厘米①L =0.5x +12 ;(2)解:当x =10时,L =0.5x +12=17=0.5×10+12=17(厘米)答①当所挂物体的质量为10千克时,弹簧的长度是17厘米;(3)解:当L = 18厘米时,则18=0.5x + 12 解得①x =12(千克)答①所挂物体质量是12千克.20.(1)解:由图2可知,点P 从点F 到点E 用了5秒 ①()155cm EF =⨯=.(2)解:①四边形CDEF 是正方形①5cm DE EF CD ===①()()55110s a =+÷=由图2可知,点P 从点D 到点A 用了()1313103s a -=-= ①()133cm AD =⨯=①()8cm AC CD AD =+=①8cm AC BC ==当点P 在DE 上时,()2118520cm 22BCP SBC EF =⋅=⨯⨯= ①20b =综上:10,20a b ==;(3)解:当10x =时,如图,点P 和点D 重合 ①四边形CDEF 是正方形①,90CD CF BCD ACF =∠=∠=︒在BCD △和ACF △中 90AC BC BCD ACF CD CF =⎧⎪∠=∠=︒⎨⎪=⎩①()SAS BCD ACF ≌①AF BD =①点P 和点D 重合①AF BP =.。
人教版八年级下册19.1.1变量与函数(教案)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是指数值可变的量,而函数则是一种特殊的关系,描述了一个变量随另一个变量变化而变化的规律。它是数学模型中的重要组成部分,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数在描述物体运动中的应用,以及如何帮助我们解决问题。
举例:在解析式y = f(x)中,x为自变量,y为因变量,自变量是独立变量,而因变量随自变量变化。
(2)掌握函数的定义:使学生掌握函数的定义,了解函数的三种表示方法(列表法、解析式法、图象法)。
举例:给出一个具体函数,如y = 2x + 1,让学生学会用列表法、解析式法和图象法表示。
(3)学会绘制函数图像:培养学生通过描点、连线等方式绘制函数图像的能力。
2.教学难点
(1)函数抽象思维的培养:学生在从具体问题中抽象出函数关系时,可能存在一定的困难。
突破方法:通过生活中的实例,如气温随时间变化、物品价格与数量的关系等,引导学生理解函数的抽象概念。
(2)函数性质的判断:如何判断函数的单调性、奇偶性等性质,是学生学习的难点。
突破方法:通过具体函数的图象和解析式,引导学生观察、分析、归纳函数的性质,如奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
5.提高学生的数学运算能力:在学习函数相关知识的过程中,加强学生的运算训练,提高运算速度和准确性。
本节课将紧紧围绕核心素养目标,结合课本内容,注重培养学生的综合运用能力,为学生的全面发展奠定基础。
三、教学难点与重点
1.教学重点
(1)理解变量的概念:强调自变量与因变量的区别,使学生能够准确判断变量之间的关系。
五、教学反思
在今天的教学中,我发现同学们对变量与函数的概念有了初步的认识,但仍然存在一些理解和应用上的困难。首先,对于变量的概念,尽管我通过生活中的实例进行了讲解,但部分同学在区分自变量和因变量时仍然感到困惑。在今后的教学中,我需要进一步强化变量的定义,并通过更多的实例来帮助同学们理解和掌握。
人教版八年级数学 下册 第十九章 19.1.2 函数的图像 课件(3课时,共69张PPT)
(3)如果水位的变化规律不变,按上述 函数预测,再持续2小时,水位的高度: __y_=_0_.3_×__7_+_3_=_5_._1_(m__)_____. 此时函数图象(线段AB)向 ___________延伸到对应的位置,这时 水位高度约为___5_.1_m______米.
由例可以看出,函数的不同表示法 之间可以__转__化_______.
值范围是: X取全体实数 ; 第一步:从的取值范围中选取一些简洁的数 值,算出的对应值,填写在表格里;
x … -3 -2 -1 0 1 2 …
y … -2.5 -1.5 -0.5 0.51.52.5 …
知识点 用描点法画函数图象 第二步:根据表中数值描点( x ,y);
y=x+0.5
• • • • • •
1、如果A、B两人在一次百米赛跑中, 路程(米)与赛跑的时间t(秒)的关系
如图所示则下列说法正确的是( C)
A. A比B先出发; B. A、B两人的速度相同; C. A先到达终点; D. B比A跑的路程多.
2、用列表法与解析式法表示n边形 的内 角和m(单位:度)关于边数的n函数.
解:列表法:
边数n 3 4 5 …
内角和 m/度 180 360 540
…
解析法:m=(n-2)×180 °,n≥3
大而减小,当x>0时,y随x的增大而增大。
画函数图象的一般步骤:
列表、描点、连线,这种画函数图象 的方法称为描点法。
函数图象的三种表示法
1、描点法画函数图象的一般步骤: (1)_列__表__,(2)_描__点__,(3)_连__线___. 2、表示函数的三种方法分别为:
__解_析__式__法__、___列_表__法__ 、_图__象_法__ .
人教版八年级下册数学:画函数图象
知识模块三 函数表示方法的综合应用
如图①所示,矩形ABCD中,动点P从点B出 发,沿BC,CD,DA运动至点A停止,设点 P运动的路程为x,△ABP的面积为y,y关 于x的函数图象如图②所示. (1)求矩形ABCD的面积; (2)求点M、点N的坐标;
知识模块三 函数表示方法的综合应用
解:(1)结合图形可知,P点在BC上,△ABP的面积逐 渐增大,当x在4~9之间,△ABP的面积不变,得出 BC=4,CD=5, ∴矩形ABCD的面积为4×5=20; (2)由(1)得当点P运动到点C时,△ABP的面积为10, 则点M的纵坐标为10,故点M的坐标为(4,10). ∵BC=AD=4,CD=5, ∴NO=13,故点N的坐标为(13,0);
19.1.2 函数的图象
(2)
每节课都要像考试一样紧张
你准备好了吗?
购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x 变化,指出其中的常量与变量,写出y与x之间的函数解析式.
答:常量是0.2,变量是x和y, y=0.2x.
问题:除了用解析式表示两个变量之间的函数关系,还 有其他方法吗?
学习目标
通过今天的学习, 能说说你的收获和体会吗? 你有什么经验与收获让同学们共享呢?
1.列表选取数值时,需要确定自变量的范围吗?为什么? 2.从自变量的取值范围内选取数值时,所选数值有没有要 求(或特点)?有的话,请说明。
3.描点时,有哪些注意事项? 4.连线时,顺序有没有要求?要求连线是哪一种? 5.函数图像上的点与函数解析式有怎样的关系?
3.图象法:直观地反映了函数随自变量的
变化而变化的规律.
1、小红的爷爷饭后出去散步,从家中走20分钟到一个离家900 米的街心花园,与朋友聊天10分钟后,用15分钟返回家里.下面 图形中表示小红爷爷离家的时间与外出距离之间的关系是( D )
人教版八年级数学下册19.1.2画函数图象 同步导学(带答案)
19.1.2画函数图象学习目标用描点法画函数图象.一、变式训练知识点:描点法画图的步骤:一列表;二描点;三连线.1.用“描点法”画出y=x的图象.解:函数y=x的自变量x的取值范围是全体实数.x …-3 -2 -1 0 1 2 3 …y ……画图略2.用“描点法”画出y=4x的图象.解:函数y=4x的自变量x的取值范围是x≠0x …-4 -2 -1 1 2 4 …y ……画图略3.用“描点法”画出y=-x+1的图象.解:函数y=-x+1的自变量x的取值范围是全体实数.x …-3 -2 -1 0 1 2 3 …y ……画图略4.用“描点法”画出y=x2-2的图象.解:函数y=x2-2的自变量x的取值范围是全体实数.x …-3 -2 -1 0 1 2 3 …y ……画图略二、基础训练5.用“描点法”画出y=2x的图象.解:函数y=2x的自变量x的取值范围是全体实数.x …-3 -2 -1 0 1 2 3 …y ……画图略6.用“描点法”画出y=-12x2+3的图象.解:(1)y=-12x2+3的自变量x的取值范围是全体实数.x …-3 -2 -1 0 1 2 3 …y ……(2)并判断点A(2,-1),B(1,-3),C(-2,1)是否在这个函数的图象上.解:画图略(1)全体实数(2)A:-12×4+3=1,∴A不在函数图象上.B:-12×1+3=52,∴B不在函数图象上.C:-12×4+3=1,∴C在函数图象上.三、拓展提升7.矩形的周长是8 cm,设一边长为x cm,另一边长为y cm.(1)求y关于x的函数关系式,并写出自变量x的取值范围;(2)在给出的坐标系中,作出函数图象.解:(1)y=4-x(0<x<4);(2)略.8.一根蜡烛原来的长度为10厘米,点燃时每1分钟减少0.5厘米.(1)写出剩下长度y与点燃时间x(分钟)的函数关系式,并写出自变量x的取值范围.(2)在直角坐标系中画出这个函数的图象.解:(1)y=10-0.5x(0≤x≤20);(2)略.。
人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.
人教版数学八年级下册函数的图像(第1课时)教学课件
停留了5 min;③甲、乙两组同时到达景点;④相遇后,乙组的速度
小于甲组的速度.根据图象信息,以上说法正确的
有 ①②
.
s/km
55
乙 甲
t/min O 10 20 30 40 50 60 70
第二十九页,共三十三页。
课堂检测 拓广探索题
某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)
由小到的大顺序,把所描出的各
第十二页,共三十三页。
巩固练习
(1)在所给的平面直角坐标系中画出函数 y 1 x的图象.
2
(先填写下表,再描点、连线)
x … -3 -2 -1 0 1 2 3 …
y
…
3 2
-1 1
2
பைடு நூலகம்
0
1 2
1
3
2…
(2)点P(5,2)
不在 该函数的图象
y 3
(tú xiànɡ)上(填“在”或“不在”). 2
第四页,共三十三页。
探究新知
知识点 1 函数(hánshù)的图象
写出正方形的面积S与边长x的函数解析式,并确定 (quèdìng)自变量x的取值范围.
S=x2 (x>0)
x 0 0.5 1 1.5 2 2.5 3 3.5 4
S 0 0.25 1 2.25 4 6.25 9 12.25 16
第五页,共三十三页。
第二十二页,共三十三页。
连接(liánjiē)中考
甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后
,乙车才沿相同路线行驶.乙车先到达(dàodá)B地并停留1h后,再以原
速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km
八年级数学下册《函数的图象》练习题及答案(人教版)
八年级数学下册《函数的图象》练习题及答案(人教版)班级姓名考号一、单选题1.小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.2.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是()A.B.C.D.3.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是【】A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回4.下列是y关于x的函数是().A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A .8.6分钟B .9分钟C .12分钟D .16分钟7.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程y (km )与行进时间t (h )之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;①乙用了4.5个小时到达目的地:①乙比甲迟出发0.5小时;①甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个8.如图1,点P 从菱形ABCD 的顶点A 出发,沿着折线ABCDA 匀速运动,图2是线段AP 的长度y 与时间x 之间的函数关系的图像(不妨设当点P 与点A 重合时,y =0),则菱形ABCD 的面积为( )A .12B .6C .5D .2.59.铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是( ) A .一条直线 B .一条射线 C .一条线段 D .10个不同的点10.如图,60MAN ∠=︒,点B 在射线AN 上,2AB =.点P 在射线AM 上运动(点P 不与点A 重合),连接BP ,以点B 为圆心,BP 为半径作弧交射线AN 于点Q ,连接PQ .若,AP x PQ y ==,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.13.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,右图为P运动的路与ABP的面积14.学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.15.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____米/分钟.三、解答题16.写出下列各问题中的函数关系式,并指出自变量的取值范围.(1)如果直角三角形中一个锐角的度数为α,另一个锐角的度数β与α之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;(3)有一边长为2cm的正方形,若其边长增加xcm,则增加的面积y(cm2)与x之间的关系.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.他本次上学所用的时间与路程的关系示意图如图所示.(1)小明在书店停留了______分钟;(2)本次上学途中,小明一共行驶的路程为______;(1)在上升或下降过程中,无人机的速度是米/分;20.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()m y 与小雪离开出发地的时间()min x 之间的函数图象如图所示,请根据图象解答下列问题:(1)小雪跑步的速度为多少米/分?(2)小松骑自行车的速度为米/分?(3)当小松到家时,小雪离图书馆的距离为多少米?参考答案1.C2.C3.D4.C5.C6.C7.C8.B9.D10.C(3)由图象可知:图象关于直线x =2对称;故答案为:图象关于直线x =2对称;(4)进一步探究函数图象发现:①函数图象与x 轴有2个交点,对应的方程2|x ﹣2|﹣1=0有2个实数根; ①若关于x 的方程2|x ﹣2|﹣1=a 有两个实数根,则a 的取值范围是a >﹣1 故答案为2,2;a >﹣1.20.(1)解:由函数图象可知小雪跑步5分钟的路程为450035001000m -= ①小雪跑步的速度为10005200m /min ÷=;(2)解:由(1)得小雪步行的速度为100m/min设小雪在第t 分钟改为步行①()200100354500t t +-=解得10t =①由函数图象可知,当第10分钟时,小雪改为步行,此时两人相距1000m ①小松骑车的速度为()()4500200101000105300m /min -⨯-÷-=; (3)解:由(2)得小松到家的时间为4500300520min ÷+= ①小雪离图书馆的距离为()45002001010020101500m -⨯-⨯-=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.1.2 函数的图象
导入新课:
同学们,前一章我们一起学习了特殊的 平行四边形—正方形及其相关内容,那我们 一起考虑正方形的边长x与面积s之间有怎样 的函数关系。写出函数关系式并指出自变量 x的取值范围.
s x2 (x>0)
同学们,这个变量之间的函数关系我们能 不能用平面直角坐标系表示出来呢?那我们一 起考虑一下这个函数的图像是怎样的?
2、描点:
s
S = x2(x>0)
5
4
3、连线:
3
2
1
-5 -4 -3 -2 -1 0 1 2 3 4 5x
-1
做一做
同学们,刚才我们初步掌握了画函数的图 像的一般步骤,那现在我们一起画一下下 面函数的图像吧。
1、作出函数y=x+0.5的图象
2、作出函数y=
6
x
(x>0)
的图象.
如何作出y=x+0.5的图象?
解:列表 x
… -2 -1 0 1 2 …
y=x+0.5 … -1.5 -0.5 0.5 1.5 2.5 …
描点:
y
2
y=x+0.5
连线:
1
-2 -1 O 1 2 x -1
-2
函数y=x+0.5的图象是一条直线
作出函数y= 6 (x>0) 的图象.
解:(1)列表:
x
X ┅ 0.5 1 1.5 2 2.5 3 3.5 4 5 6 ┅
什么叫函数的图像?
如果把一个函数的自变量x与对应的函数y的 值分别作为点的横坐标和纵坐标,那么在坐标平 面内由这些点组成的图形叫做该函数的图象.
函数图象直观地反映了变量之间的对应关系和 变化规律.
作函数S = x2(x>0)的图象
1、列表: x 0 0.5 1 1.5 2 2.5 …
s 0 0.25 1 2.25 4 6.25 …
玉米地
x表示时间,y表示尤努斯和 他家的距离.根据图象回答下 列问题y:/千米
2
1.1
看一看
o 15 25 37 55
80 x/分
菜地
尤努斯家
(1)菜地离尤努斯家多远?尤努斯从家到菜地用了多少时间? (2)尤努斯给菜地浇水用了多少时间? (3)菜地离玉米地多远?尤努斯从菜地到玉米地用了多少时间? (4)尤努斯给玉米地除草用了多少时间? (5)玉米地离尤努斯家多远?尤努斯从玉米地回家的平均速度是多少?
T/℃
8
上海
北京
O
7
12
-3
X/time
24 X/h
布置作业
1.教科书P83习题19.1复习巩固5,6,7,8题 2.练习册相关部分
再见
回答问题:
1.哪个时间温度最高?是多少度? 2.哪个时间温度最低?是多少度? 3.什么时间段温度在下降?什么时间段温度在上升? 4.温度在零度以下的时间长呢?还是在零度以上的时 间长? 5.曲线与X轴的交点表示什么? 6.你还能看出什么信息?
T/℃
8
4
14
O
3
24 T/H
2.填空
下图是北京与上海在某天的气温随时间变化的图象.则: 1.在_7__点和_1_2_点的时候,两地气温相同; 2.在_7__点到_1_2_点之间,北京的气温比上海的气温要高.
y ┅ 12 6 4 3 2.4 2 1.7 1.5 1.2 1 ┅
(2)描点:
(3)连线:
小结:
根据函数解析式画函数图象需要三步:
• 1.列表(确定自变量的取值范围,根据自变量计 算函数值)
• 2.描点(找出自变量与函数值组成的有序数对即 点)
• 3.连线(用线顺次连接可以得到函数的图像)
复习巩固