固体物理第三章(2)
固体物理-第三章 金属自由电子论讲解
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:
《固体物理基础》晶格振动与晶体的热学性质
一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。
王淑华固体物理答案第三章
3.4 由原子质量分别为 m, M 两种原子相间排列组成的一维复 式格子,晶格常数为 a ,任一个原子与最近邻原子的间距 为 b ,恢复力常数为 β1 ,与次近邻原子间的恢复力常数 β2 , 试求 (1)格波的色散关系; (2)求出光学波和声学波的频率最大值和最小值。 解:(1)只考虑最近邻原子的相互作用
由上式可知,存在两种独立的格波。
声学格波的色散关系为
12 β β 4 β β qa 2 2 1 2 1 2 ωA sin 1 1 2 m 2 β1 β2
光学格波的色散关系为
12 β β 4 β β qa 2 2 1 2 1 2 ωO sin 1 1 2 m 2 β1 β2
为角频率; 式中,A为轻原子的振幅;B为重原子的振幅;
q 2 为波矢。
将试探解代入运动方程有
m 2 A e iaq e iaq B 2 A
M 2 B e iaq e iaq A 2B
(1)
经整理变成
2 A 2 cos aqB 0 2 2 cosaqA M 2 B 0
2
m
要A、B有不全为零的解,方程(1)的系数行列式必须等于零, 从中解得
12 2 2 m M m M 2mM cos 2aq mM 2
(2)
式中的“+”“-”分别给出两种频率,对应光学支格波和声学支 格波。上式表明, 是q的周期函数, 2a q 2a 。当q取 边界值,即 q 2a 时,从(2)式得
固体物理学第三章
3 1 !(d d 3 U 3)r a 3 ..... .n 1 !.(d d .n U .n)r .a.n
简谐近似—— 振动很微弱,势能展式中只保留到二阶项。
U (r) U (a ) (d)U 1(d 2 U ) 2 da r 2 !d2ra U(r)U(a)1 2(dd2U 2r)a2
此处N=5,代入上式即得:
ei(5a)q 1 5aqn2(n为整数)
由于格波波矢取值范围:
q
a
a
则:5n5
22
故n可取-2,-1,0,1,2这五个值
相应波矢:4,2,0,2,4
5a 5a 5a 5a
由于,2 sinqa
m2
代入,β,m及q值 则得到五个频率依次为(以rad/sec为单位) 8.06×1013,4.99×1013,0,4.99×1013,8.06×1013
f du(d2u) d 2u 为恢复力常数
dr d2r
dr 2
周期边界条件
N 2 a l q l 为 整 N /2 h N 数 /2 且
3.1 一维单原子链的振动
3.1.1 一维单原子链的振动
设原子链为一维,则:原子间距为a; 第n个原子的平衡位置为rn=na 第n个原子离开平衡位置的位移为xn
格波的应用:
晶体的弹性力常数β约为15N/m,若一个原 子的质量为6×10-27Kg,则晶格振动的最大圆频 率为ωm=1014弧度/秒,最大频率γm约为1013Hz即 10THz。THz波段在微波与红外光之间。
不同材料的晶格振动频谱具有各自的特征, 可以作为这个材料的 “指纹”,THz谱技术作为 一种有效的无损探测方法,通过晶格振动频谱可 以鉴别和探测材料。
3.1.2 格波频率与波矢关系——色散关系
《固体物理学》房晓勇主编教材-思考题解答参考03第三章_晶体振动和晶体的热学性质
第三章晶体振动和晶体的热学性质3.1相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同?解答:(王矜奉3.1.1,中南大学3.1.1)以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由《固体物理学》第79页公式,可得两原子振幅之比(1)其中m原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得,1B A=. 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.3.2 试说明格波和弹性波有何不同?解答:晶格中各个原子间的振动相互关系3.3 为什么要引入玻恩-卡门条件?解答:(王矜奉3.1.2,中南大学3.1.2)(1)方便于求解原子运动方程.由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(《固体物理学》§3.1与§3.6). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.4 试说明在布里渊区的边界上()/q π=a ,一维单原子晶格的振动解n x 不代表行波而代表驻波。
固体物理各章节知识点详细总结
3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32
由
2π Kh
d h1h2h3
2π
d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···
黄昆版固体物理学课后答案解析答案 (2)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理 第三章 晶格振动
1 2 T = ∑q 2 i =1 i
3N •
3.1晶体中原子的微振动 3.1晶体中原子的微振动 声子 晶体振动势能U (qi ) 按 qi 的幂将势能在平衡位置附近展开为泰勒级数 ∂U 1 ∂ 2U U = U0 + ∑ ( ) 0 qi + ∑ ( ) 0 qi q j + 高阶项 ∂q i 2 ij ∂qi ∂q j i 其中 U 0 = 0 平衡位置处的势能为零势能点
xn = x N + n
又 : xn = Ae
i ( kna − ωt )
又 − π < k ≤ π s = − N + 1,− N + 2⋯⋯ N 共有N个取值 : a a 2 2 2
=1 e ⇒ 2π ⋅ s, = N+ 2π ,− π + 2 2π ,..., π 有N种均匀分布的分立取值 种均匀分布的分立取值 a L a L a 2π L 间隔∆k = ,密度 ,第一布里渊区倒格点数N。 L 2π
, ( l =1, 2, ⋯ 3N )
Ql = Ql0 sin(ωl t + α 1 )
1 ε l = (Q l + ωl2Ql2 ) 2
• 2
能量量子化
1 εl = (nl + )hυl 2
3.2 一维布拉菲格子的晶格振动 一、简谐近似
du 1 d 2u u( x) ≈ u( x0 ) + ∆x + (∆x)2 2 dx r0 2 dx x
3.1晶体中原子的微振动 声子 3.1晶体中原子的微振动 晶格振动模式
质量加权坐标下: 质量加权坐标下:
•• 3N
↔
独立的谐振子
↔
声子
固体物理吴代鸣 第三章
Ⅱ. 德拜模型
模型要点:
(1)用连续介质中的弹性波替代格波,即以弹性波 的色散关系ω(q)=Cq替代晶格格波的色散关系ω (q); (2)认为晶体中只存在三支弹性波,二支横波和一 支纵波,其色散关系分别为: ωt(q)=Ctq和ωl(q)=Clq。
体系规定:
N个原子组成,共有3N个晶格振动模。
重要结论
(2)T处于低温段时,实验规律与理论不符; 实验结论:CV(低温)~T3
爱因斯坦模型的评价
虽然Einstein模型简单,但与实验符合程度却相 当好,说明晶体比热的量子理论的成功;但极低温下 Einstein模型给出的比热容随温度T下降过快,而实 际上低温热容随温度的变化具有T3关系。只考虑了光 学模的贡献,完全忽略了声学波的贡献。说明 Einstein模型过于简单,需要进一步修正。晶格振动 采取格波形式,它们的频率值是不完全相同的,而是 有一定的分布情况。
0 其中 E (称爱因斯坦温度) kB
讨论
(1)高温情况(T>>θE): (2)低温情况(T<<θE):
CV 3 NkB
CV 3 NkB (
E
T
)2 e
T
E
T
T 0时, e
E
T
0, 有CV 3 NkB (
E
T
)2 e
E
0
结论:(1)T趋近于0时的理论结果与实际符合较好;
即Debye的T3定律
关于非谐效应
(1)格临爱森状态方程:
dU E d ln P , 其中 是格临爱森常数。 dV V d ln V CV (2)格临爱森定律: K 0V
表示当温度变化时,热膨胀系数近似与晶格热容量成比例。
固体第三章
在第一章和第二章中讨论晶体结 构时,我们把晶体内的原子看作是 处于自己的平衡位置上固定不动的。 但实际上,物质是在不断运动的, 量子力学告诉我们,即使达到绝对 零度,仍具有零点能的振动。
它强烈地影响着物质的比热、热导、热膨胀、 光反射等物理性质。本章将介绍晶格振动是 如何影响这些物理性质的。
一维晶格的振动 为了探讨晶格振动的基本特点,人们只 能采取一些近似方法.一维振动是最简 单的一种振动,进而推广到二维和三维 情况。我们先讨论最简单的一维原子链 (一维单式格子或一维布拉维格子)的振 动。
第一节
一维单原子链
一. 运动方程
以一维单原子链为例.一维单原子链的每个原子都相 同,原子质量为m ,原子间平衡距离为a,晶格振动 在t 时刻第n 个原子对平衡位置的偏离为
2
其中, 对于n=1,2,3‥‥‥N个的每个原子都有一 个类似的方程,所以方程数目和原子数目N相等。
由N个质量为m 和N个质量为M 的两种原子P和Q相间排 列而成、原子平衡间距为 a、 晶格周期为 2a. 在简谐 近似和最近邻近似下,第 n 个原胞原子的牛顿运动方 程为
第2n个M原子的方程
d u2 n M (u2 n1 u2 n ) (u2 n u2 n 1 ) 2 dt
—— 与q之间存在 着两种不同的色散 关系
—— 一维复式格子存 在两种独立的格波
与一维简单格子不同,有两种不同原子构成的一维 复式格子存在两种独立的格波,一种格波的频率高 于另一种格波的频率. 取正号的一支频率比较大, 称为光频支,对应的格波称为光学波;取负号的一 支称为声频支,对应的格波称为声学波.
相速度 群速度
vp
q vg
q
相速度是指特定频率为w,波矢为q的波的传播速度。
固体物理第三章复习重点复习过程
固体物理第三章复习重点1、概念(声子)的描述,理论模型(爱因斯坦和德拜模型)的结果与实验不符合的原因。
2、计算晶体格波波矢和频率的数目。
3、从正格子出发,找到倒格子,画出第一、第二布里渊区。
4、一维单原子链色散关系的推导。
5、已知格波的色散关系,根据模式密度的定义式求格波的模式密度。
重点:晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设?各取得了什么成就?各有什么局限性?为什么德拜模型在极低温度下能给出精确结果?答:在爱因斯坦模型中,假设晶体中所有的原子都以相同的频率振动,而在德拜模型中,则以连续介质的弹性波来代表格波而求出的表达式。
爱因斯坦模型取得的最大成就在于给出了当温度趋近于零时,比热容Cv亦趋近于零的结果,这是经典理论所不能得到的结果。
其局限性在于模型给出的是比热容Cv以指数形式趋近于零,快于实验给出的以3T趋近于零的结果。
德拜模型取得的最大成就在于它给出了在极低温度下,比热和温度T3成比例,与实验结果相吻合。
其局限性在于模型给出的德拜温度应视为恒定值,适用于全部温度区间,但实际上在不同温度下,德拜温度是不同的。
在极低温度下,并不是所有的格波都能被激发,而只有长声学波被激发,对热容产生影响。
而对于长声学波,晶格可以视为连续介质,长声学波具有弹性波的性质,因而德拜的模型的假设基本符合事实,所以能得出精确结果。
爱因斯坦模型假设晶体中所有的原子都以相同的频率振动,高温符合实验规律,低温下不符合德拜模型 高温符合实验规律,低温下符合较好,但是有偏差。
(1)晶体视为连续介质,格波视为弹性波;(2)有一支纵波两支横波;(3)晶格振动频率在D 0ω~之间(D ω为德拜频率)。
爱因斯坦模型与德拜模型(掌握)德拜模型在低温下理论结果与实验数据符合相对较好但是仍存在偏差,其产生偏差的根源是什么?答:(1)忽略了晶体的各向异性;(2)忽略了光学波和高频声学波对热容的贡献, 光学波和高频声学波是色散波,它们的关系式比弹性波的要复杂的多。
固体物理讲义第三章
1 第三章 晶体的结合主要内容:● 大量原子聚合在一起形成晶体的原因● 晶体结合的类型内聚能和原子间的相互作用力内聚能是指在绝对零度下将晶体分解为相距无限远、静止的自由原子所需要的能量 原子间相互作用力:● 吸引力:不同的结合方式有不同的机理● 排斥力:库仑排斥+量子效应● 原子核之间的库仑排斥力● 电子壳层交叠时,由泡利不相容原理而产生的排斥力内聚能的计算设晶体中任意两个粒子的相互作用能可表示为:其中a 、b 、m 、n 均为大于零的常数,由实验确定,r 为两粒子之间的距离。
晶体内聚能视为粒子对间的互作用,设晶体中有N 个粒子,则晶体内聚能:这里,相互作用能视为粒子对间的互作用。
先计算两个粒子之间的互作用势,然后再把考虑晶体结构的因素,总和起来可以得到晶体的总结合能。
只有离子晶体和分子晶体可以这样处理。
此思想称为双粒子模型。
晶体结合的类型⏹ 根据化学键的性质,晶体可以分为离子晶体、原子晶体(共价晶体)、金属晶体、分子晶体。
⏹ 对于大多数晶体,结合力的性质是属于综合性的。
固体结合的性质取决于组成固体的原子结构。
离子晶体和离子键● 离子晶体:由正离子和负离子组成。
● 离子键:正、负离子间的静电相互作用产生● 晶体结构:氯化钠结构、氯化铯结构● 离子-离子相互作用能有两项:① 库仑相互作用能,正比于: ② 相临离子间排斥能,正比于: 离子晶体的内聚能 由N 对离子组成的离子晶体的内聚能:相邻离子间的最短距离 马德隆常数 最邻近离子数 n m r b r a r u +-=)((2)(2)(11∑∑--+-==N j n j m j N j j r b r a N r u N r U r1-nr 1)(N )4()4()(02'102'1n n jj n j j r B r A r Nz r a q N r r q N r U j +-=+±=+±=∑∑λπελπεr )1('∑±=j j a μz r a r j j =1λπεμz B q A ==0242分子晶体:● 基元:分子● 结合力:范德瓦尔斯力● 晶体结构:密积结构,惰性气体:面心立方● 结合能:相距为R 的一对分子间的总的相互作用势能为(称为Lennard-Jones 势)共价晶体和共价键:● 原子靠共价键结合。
固体物理:3-2 三维晶格的振动
每一个波矢q,对应三支声学波(每个(q)为一支),
3n-3支光学波,总共N3+ N(3n-3)=3nN个晶格振动数
目,3nN为原子自由度数之和。
原胞数
结论: 1)晶格振动的波矢数目等于晶体的原胞数; 2)格波振动模式数目等于晶体中所有原子的自由度数之和。
9
光学纵波 光学横波 声学纵波
声学横波
X
K L
三维晶格振动的问题及其复杂, 难以得到晶格振动的近似解, 通过对比一维复式格子,来推 导三维晶格振动的形式解
晶格振动的 普遍规律
3
a1,a2,a3为晶体原胞的基矢,沿基矢方向晶体各有N1,N2,N3 个原胞。共有N= N1N2N3个原胞;晶体由n种不同原子构成, 原子的质量分别为m1,m2…mn ,每个原胞中n个不同原子平 衡位置的相对坐标为r1,r2…rn.设顶点的位置矢量为
原子的位置准连续
2u x 2
q Ae 2 i(qx t )
q 2u
2u t 2
2Aei(qx t )
2u
长声学波
弹性波
14
二、长光学波
15
16
17
18
19
20
21
22
Rl l1a1 l2a2 l3a3
的原胞中n个原子在t时刻偏离起平衡位置的位移为
第p个原子在方向的运动方程为 :
第l个原胞中
第n个原子
简谐近似下,位
移的线性代数式
4
试探解:
q一定,对于晶格中同一种原子,qrp相位一定
方向
Ap共有3n个
3n个线性齐次方程组
Ap非零,则系
数行列式为零
3n个的实根
5
3n个的实根中,有三个根,当波矢q0时, 0,声学支
固体物理 课后习题解答(黄昆版)第三章
黄昆固体物理习题解答第三章晶格振动与晶体的热学性质3.1 已知一维单原子链,其中第j个格波,在第个格点引起的位移为,μ= anj j sin(ωj_j+ σj) ,σj为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位移。
解:任意一个原子的位移是所有格波引起的位移的叠加,即μn= ∑ μnj=∑ a j sin(ωj t naq j+σj)j j(1)μ2 n =⎛⎜⎝∑μjnj⎞⎛⎟⎜⎠⎝∑μj*nj⎞⎟⎠= ∑μj2nj+ ∑ μ μnj*nj′j j′由于μ μnj⋅nj数目非常大的数量级,而且取正或取负几率相等,因此上式得第2 项与第一项μ相比是一小量,可以忽略不计。
所以2= ∑ μ 2njn j由于μnj是时间的周期性函数,其长时间平均等于一个周期内的时间平均值为μ 2 = 1 T∫0 2 ω+σ 1 2j aj sin( t naqjj j)dt a=j(2)T0 2已知较高温度下的每个格波的能量为KT,μnj的动能时间平均值为1 L T ⎡1 ⎛dμ⎞2 ⎤ρw a2 T 1= ∫ ∫dx0⎢ρnj⎥= j j∫0 2 ω+ σ= ρ 2 2 T⎜⎟dt L a sin( t naq)dt w Lanj T0 0 0 ⎢ 2 ⎝dt⎠⎥2T0 j j j j 4 j j其中L 是原子链的长度,ρ 使质量密度,T0为周期。
1221所以Tnj= ρ w La j j=KT(3)4 2μKT因此将此式代入(2)式有nj2 = ρ ωL 2 jμ所以每个原子的平均位移为2== ∑ μ 2= ∑KT= KT∑1n njρ ωL2ρLω2j j j j j3.2 讨论 N 个原胞的一维双原子链(相邻原子间距为 a),其 2N 格波解,当 M=m 时与一维单原子链的结果一一对应.解答(初稿)作者季正华- 1 -黄昆固体物理习题解答解:如上图所示,质量为M 的原子位于2n-1,2n+1,2n+3 ……质量为m 的原子位于2n,2n+2,2n+4 ……牛顿运动方程:..mμ2n= −β μ(22n−μ2n+1 −μ2n−1)..Mμ2n+1 = −β μ(22n+1 −μ2n+2 −μ2n)体系为N 个原胞,则有2N 个独立的方程i na q方程解的形式:iμ2n=Ae[ωt−(2 ) ] μ2n+1=Be[ω−(2n+1)aq]na qμ=将μ2n=Ae[ωt−(2 ) ]2n+1 Be i[ωt−(2n+1) aq]代回到运动方程得到若A、B 有非零的解,系数行列式满足:两种不同的格波的色散关系:——第一布里渊区解答(初稿)作者季正华- 2 -第一布里渊区允许 q 的数目黄昆 固体物理 习题解答对应一个 q 有两支格波:一支声学波和一支光学波。
沈阳工业大学《固体物理》(李新)第三章
ni =
ni = 0 ∞
ni e − ni ℏωi / k BT ∑ e − ni ℏωi / k BT ∑
∞
ℏωi 令: k T = x B
ni =
ni = 0
ni e − ni x ∑ e − ni x ∑
∞
∞
ni = 0
∞ d = − ln ∑ e − ni x dx ni =0
d = − ln(1 + e − x + e − 2 x + e −3 x …) dx
的总数就是晶体链原胞的数目N。 第一布里渊区内波数 q 的总数就是晶体链原胞的数目 。 值对应着两个频率, 每个 q 值对应着两个频率,所以
晶格振动频率数=2N=晶体的自由度数。
3. 三维晶格
N个原胞 个原胞每个原胞有n个原子 个原子的三维晶体 个原胞 个原子
晶格振动的波矢数 = 晶体的原胞数 N 波矢数 原胞数 晶格振动的模式数 = 晶体的自由度数 3nN 模式数 自由度数 晶体中格波的支数 = 原胞内的自由度数:3n 支数
1 一维原子链的振动
1.4 格波 格波: 晶格中存在着角频率为 格波: 2π q = n⋅ •格波的波矢: 格波的波矢: 格波的波矢 的平面波。 ω的平面波。 格波
λ
•格波的传播方向: 格波的传播方向: 格波的传播方向 •波速: 波速: 波速
q qa qa 当q->0时, ≈ 时 sin 2 2
= d 1 ln(1 − e − x ) = x dx e −1
ni = 0
频率为ω 频率为 i的声子平均声子数
ni =
1 e ℏωi / k BT − 1
5 确定晶格振动谱ω(q)的实验方法---格波的色散关系。 格波的色散关系。
固体物理:第三章 晶格振动和晶体的热学性质
2 sin aq
m
2
2π / a π / a
0
π/ a
2π / a
是波矢q的周期性函数,且(-q)= (q)。
m
2 sin aq
m
2
2π a
π a
o
πa
2π a
当 q , q 2π s ( s为 整 数), a
(q) (q)
且
i t na ( q 2π s )
xn (q) Ae
x2n Beit2naq
其他原子位移可按下列原则得出:
(1)同种原子周围情况都相同,其振幅相同;原子不同,其振幅 不同。
(2)相隔一个晶格常数2a的同种原子,相位差为2aq。
x2n1 Aeit 2n1aq
x Be 2n2
[t ( 2n2 )aq]
..
x M 2n x2n1 x2n1 2 x2n
2
2
2
2
波矢 q
2π Na
s
也只能取N个不同的值。
晶格振动波矢只能取分立的值
波矢的数目(个数)=晶体原胞的数目
6. 长波极限:
q 2π 0
2 sin aq 2 aq a q
m2
m2
m
Vp q
vp a m
弹性波
m
2π a
π a
o
πa
Vp q
vp a m
由连续介质波
弹性模量
x
格波 不能在晶体中传播,实际上此时它是一种驻波。因为 此时相邻原子的振动位相相反,
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
固体物理(第3章)讲解
—— 每一个原子运动方程类似 —— 方程的数目和原子数相同
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
方程解和振动频率 设方程组的解 naq — 第n个原子振动相位因子
得到 应用三角公式
4 2 aq sin ( ) m 2
—— 常数
—— 平衡条件
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
dv 1 d v v (a ) v (a ) ( )a ( 2 )a 2 High items dr 2 dr
简谐近似 —— 振动很微弱,势能展式中只保留到二阶项
2 1 2 2 任意一个简正坐标 [ 2 i Qi ] (Qi ) i (Qi ) 2 2 Qi
1 能量本征值 i ( ni ) i 2
本征态函数
—— 谐振子方程
n (Qi )
i
i
exp(
2
2
) H ni ( )
— 厄密多项式
§3-1 简谐近似和简正坐标 ——
格波 波矢的取值和布里渊区 相邻原子相位差 格波1的波矢
—— 原子的振动状态相同
相邻原子相位差
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
格波 格波2的波矢
aq1 / 2
相邻原子的位相差
—— 两种波矢q1和q2的格波中,原子的振动完全相同
原子位移宗量
N个原子的位移矢量 —— 体系的势能函数在平衡位置按泰勒级数展开
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h2 b2 b2 b2, N 2 h N 2 qy , qy 2 N2 2 2 2 2 h3 b3 b3 qz b3, N 3 h N 3 qz , 3 N3 2 2 2 2
h3 h1 h2 q b1 b2 b3 —— N N1N2 N3 个取值 N1 N2 N3
——称为声学波 其余(3n-3)支格波的频率比声学波的最高频率 还高,称之为光学波
波恩-卡门边界条件
l1 , l2 , l3 l1 N1 , l2 , l3 l u u u , p p p l1 , l2 , l3 l1 , l2 N 2 , l3 l u u u , p p p l1 , l2 , l3 l1 , l2 , l3 N 3 l u u u , p p p
对于每一个波矢q 3支声学波和3n-3支光学波
总的格波模式数目
N (3 3n 3) 3nN
结论
——晶体中原子的坐标数目
晶格振动的波矢数目等于晶体的原胞数 格波振动模式数目等于晶体中所有原子的自由度之和
金刚石的振动谱
6支格波,3支声学波,3支光学波 实验得到的振动频谱与理论相符
——玻恩卡门周期边界条件是合理的
r1、r2 、rn
各原子偏离平衡位置的位移
l l l u , u , u 1 2 n
第p个原子在α方向的运动方程
l mpu x, y, z p
——一个原胞中有3n个类似的方程 原子位移方程的解
l i[( Rl rp )q t ] u Ap ' e Ap ei[ qRl t ] p l u Ap ei[ qRl t ] 分量表示形式 p
可得
ei ( q Rl t ) ei ( q Rl qN1a1 t ) , i ( q Rl t ) i ( q Rl q N 2 a2 t ) e e , ei ( q Rl t ) ei ( q Rl q N3a3 t ) ,
q N1a1 2 h1 , q N 2 a2 2 h2 , q N 3a3 2 h3 ,
波矢q具有倒格矢的量纲,容易得出
h3 h1 h2 q b1 b2 b3 N1 N2 N3
—— h1、h2、h3 取整数
——三维晶格的波矢是分离的 波矢的基矢
——将方程解代回3n个运动方程
3n个线性齐次方程 mp 2 Ap . 系数行列式为零,得到3n个ω的实根 在3n个实根中,其中有三个,当波矢 q 0 时 Ai vAi (q)q, (i 1, 2, 3)
vAi (q) 是q方向传播的弹性波的速度,是一常数
A1 A2 An ——原胞作刚性运动
b1 b2 b3 、 、 N1 N 2 N3
波矢空间一个点占据的体积
b1 b2 b3 * (2 )3 (2 )3 V * ( )= N1 N2 N3 N N Vc
波矢密度
Vc 1 3 (2 ) (2 )3 Vc
波矢改变一个倒格矢
km m1b1 m2b2 m3b3, m1、m2、m3为整数
R(l ) Km 2 (l1m1 l2 m2 l3m3 )
eiRl ( ቤተ መጻሕፍቲ ባይዱm q ) eiR(l )q
原子的位移形式保持不变,原子振动状态一样 q的取值限制在一个倒格子原胞中 ——第一布里渊区
b1 b1 h1 N1 N1 q x , qx b1, h1 2 2 2 2 N1
固体物理
Solid State Physics
§3.2 三维晶格的振动
三维复式格子 ——一个原胞中有n个原子 原子的质量 m1 , m2 , m3 ,mn 第l个原胞的位置 R(l ) l1a1 l2a2 l3a3 晶体的原胞数目 N N1 N 2 N 3 原胞中各原子平衡位置的相对坐标