三年级奥数,乘除法巧算,带答案

合集下载

三年级 奥数 小学奥数除法中的巧算(含答案)

三年级 奥数 小学奥数除法中的巧算(含答案)

除法中的巧算(一)学习方法指导我们利用“商不变的性质”进行除法中的巧算,因为“商不变性质”,是被除数、除数同时乘以或同时除以一个数(零除外),它们的商不变。

一般有这样的公式:()()a b a n b n ÷=⨯÷⨯或 ()()()=÷÷÷≠a n b n n 0如:()()123122322464÷=⨯÷⨯=÷=或 ()()12612262632÷=÷÷÷=÷=例1. 用简便方法计算下列各题。

(1)82525÷(2)47700900÷ 分析:(1)(2)可以利用“商不变的性质”去计算。

(1)82525÷ ()()=⨯÷⨯=÷=8254254330010033想办法使其中一个数扩大、或缩小后成为整十、整百、整千,如25扩大4倍得100。

(2)47700900÷()()=÷÷÷=÷=47700100900100477953看到被除数,与除数末尾都有00,这样让它们同时缩小100倍。

在除法运算中,还有两个数的和,(或差)除以一个数,可以用这个数分别去除这两个数(在都能整除的情况下),再求两个商的和或差。

一般公式:()a b c a c b c +÷=÷+÷()a b c a c b c -÷=÷-÷如:()126212262639+÷=÷+÷=+=()126212262633-÷=÷-÷=-=这个性质可以推广到多个数的和除以一个数的情况。

例2. 用简便方法计算。

(1)()2501655+÷(2)()7022134143--÷分析:这两题都可以运用以上性质去解答,就是“两个数的和(差)除以一个数”的除法运算性质。

三年级下册数学试题-奥数练习:乘除法巧算(含答案)全国通用

三年级下册数学试题-奥数练习:乘除法巧算(含答案)全国通用

乘除法巧算练习1. 125 的“好朋友”是__________。

2. 25 的“好朋友”是__________。

3. 5 的“好朋友”是__________。

解析:所谓好朋友,就是凑整数。

用简便方法计算4. 25×9×4=_______。

5. 125×9×8=__________。

6. 5×9×2=__________。

7. 25×2×3×4×5=_________。

8. 25×125×7×8×4=__________。

9. 8×9×5×125×2=__________。

10. 125×72=__________。

11. 125×56=__________。

12. 25×28=__________。

13. 3×62÷3=_________。

14. 16×62÷8=_________。

15. 9×79÷9=_______。

16. 42×5÷6=__________。

17. 56×7÷8=__________。

18. 35×4÷7=________。

19. 51÷17×17÷51=__________。

20. 43÷20×20÷43=__________。

选择题21.下列四个选项中,哪个算式有错误?• A. 16÷3×6=16×6÷3• B. 12×9÷3=12×3÷9• C. 2×30÷5=30÷5×2• D. 12×6÷4÷2=12÷4×6÷222.下列四个选项中,哪个算式有错误?• A. 15÷4×8=15×8÷4• B. 25×3÷5=25÷5×3• C. 36×3÷6=36×6÷3• D. 40×3÷5×2=40÷5×2×323.下列四个选项中,哪个算式有错误?• A. 18÷3×6=18÷6×3• B. 63×5÷7=63÷7×5• C. 6×35÷7=35÷7×6• D. 27×4÷9×3=27÷9×3×424.以下哪个算式是错误的?• A. 24×(8×9)=24×8×9• B. 35×(25÷5)=35×25÷5• C. 56÷(7×2)=56÷7×2• D. 48÷(24÷8)=48÷24×825.以下哪个算式是正确的?• A. 24×(8×5)=24×8÷5• B. 28×(36÷14)=28×36÷14• C. 45÷(5×3)=45÷5×3• D. 100÷(20÷5)=100×20×526.下面哪个算式是正确的?• A. 36×6÷3×2=36×(6×3÷2)• B. 36÷6÷3×2=36÷(6×3×2)• C. 36÷6×3÷2=36÷(6÷3×2)• D. 36÷6÷3×2=36÷(6÷3×2) 27.下面哪个算式是错误的?• A. 32×8÷2×4=32×(8÷2×4)• B. 32÷8×2÷4=32÷(8÷2÷4)• C. 64÷8÷2÷4=64÷(8×2×4)• D. 64÷8×2×4=64÷(8÷2÷4) 28.下面哪个算式是错误的?• A. 40×60÷2÷10=40×(60÷2÷10) • B. 60÷40×2×10=60÷(40÷2÷10) • C. 40÷60×30÷10=40÷(60÷30×10) • D. 60÷6÷3×9=60÷(6×3×9)29. 计算:4×(25÷10)=_______30. 计算:4×(9÷6)=__________31. 计算:12÷(4÷3)=________32. 计算:25÷(5÷2)=__________33. 计算: 10÷( 5÷2) =_________34. 计算: 5÷( 5÷4) ÷( 4÷3) ÷( 3÷2) ÷( 2÷1) =__________35. 计算: 10÷( 10÷9) ÷( 9÷8) ÷( 8÷7) =__________36. 计算: 64÷4÷2=__________37. 计算: 81÷3÷3=__________38. 计算: 900÷4÷25=__________39. 计算: 7000÷8÷125=_________40. 计算: 18÷15×5=__________答案: 1.( 8) 2.( 4) 3.( 2) 4.( 25×4×9) 5.( 125×8×9) 6.( 5×2×9) 7.( 25×4×2×5×3)8.(25×4×125×8×7) 9.(8×125×5×2×9) 10.(125×8×9) 11.(125×8×7)12.(25×4×7)13.(3÷3×62) 14.(16÷8×62) 15.(9÷9×79) 16.(42÷6×5) 17.(56÷8×7) 18.(35÷7×4)19.(51÷51×17÷17) 20.(43÷43×20÷20) 21.(B )22.(C )23.(A )24.(C )25.(B )26.(C )27.(A ) 28.(D ) 29.(4×25÷10) 30.(4×9÷6) 31.(12÷4×3)32.(25÷5×2)33.(10÷5×2)34.(5÷5×4÷4×3÷3×2÷2×1)35.(10÷38.(900÷()39.(7000÷(8×125)割圆术 数学意义:“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。

小学奥数-乘除法中的巧算(含答案)

小学奥数-乘除法中的巧算(含答案)

乘除法中的巧算同学们好!我们学习了加、减、连加、连减的混合运算律,可利用加法的运算定律或连减及加减的混合运算的性质进行简便运算。

而乘、除法更有着一些巧妙的简便算法,下面共同学习。

(一)学习指导首先认识乘法交换律:乘法结合律:如:或利用这些定律,可以使式题简便,同时可以推广到多个数相乘,我们可以选择两个因数相乘,得出较简单的(整十、整百、整千……)积,再将这个积与其它因数相乘,有时也可以把某个因数再分解成两个因数,使其中一个因数与其它的乘数的积成为较简单的数,然后再与其它的因数相乘,这样就可以进行巧算。

例1. 用简便方法计算。

(1)(3)(2)(4)分析:(1)可以将4和25结合起来先乘。

这样:原式(2)可以将125和8相结合起来乘,这样:原式(3)可以把28变成4×7,再将125和4结合起来先乘:原式(4)我们先把32变为4×8,再把25和4,125和8结合起来乘:原式利用乘法分配律,可以使一些题简便:,这个定律可以推广,一般的有,如,当两个数相乘时,有时可以把一个因数变为两个数的和与另一个因数相乘,也可以把一个因数变为两个数的差与另一个因数相乘,这样计算简便。

例2. 用简便方法计算下面各题。

(1)(3)(2)(4)分析:(1)、(2)题可以直接用乘法分配律去计算。

(1)(2)(3)题可以先把4004变为(),然后再用分配律计算。

(4)小题可以先把798变为(),再运用分配律计算。

例3. 巧算一个数乘以10,100,1000……分析:一个数乘以10,就是在这个数后添0,如:4301043=⨯当一个数乘以100时,就是在这个数后添00,如:52000100520=⨯当一个数乘以1000时,就是在这个数后添000,如:……例4. 巧算一个数与99相乘。

分析:先填空,再观察一个数与99相乘的规律。

观察发现:“一个数与99相乘,先在这个数后添00,再减去此数”即可。

如果是一个数与999相乘,是否也具有这样的规律呢?请你先填空,再总结规律。

三年级乘除法速算巧算

三年级乘除法速算巧算

第2讲;乘除法速算巧算一、乘法中的巧算1•两数的乘积是整十、整百、整千的,要先乘•为此,要牢记下面这三个特殊的等式:5X 2=10 25X 4=100 125 X 8=1000例1计算①123X 4 X 25②125 X 2X 8X 25 X 5X 4解:①式=123 X( 4 X 25) =123X 100 = 12300②式=(125X 8)X( 25 X 4)X( 5X 2) =1000X 100 X 10=10000002•分解因数,凑整先乘。

例2计算①24 X 25②56X125③125 X 5X 32 X 5解:①式=6X( 4X25) =6X 100=600②式=7X 8 X 125=7 X( 8X 125) =7 X 1000=7000③式=125X 5 X 4X 8X 5= (125 X 8)X( 5X 5 X 4) =1000 X 100=1000003. 应用乘法分配律。

例3计算①175 X 34 + 175 X 66②67 X 12+67 X 35 + 67 X 52+6解:①式=175 X( 34+66) =175X 100=17500②式=67 X ( 12+ 35 + 52 + 1) = 67 X 100 = 6700 (原式中最后一项67 可看成67 X 1)例4计算①123X101②123X 99解:①式=123 X( 100 + 1) =123 X 100 + 123 = 12300 + 123=12423②式=123X( 100-1) =12300-123=121774•几种特殊因数的巧算。

例5 一个数X 10,数后添0;—个数X 100,数后添00;—个数X 1000,数后添000 ;以此类推。

女口:15X 10=150 15 X 100=1500 15X 1000= 15000例6一个数x 9,数后添0,再减此数; 一个数X 99,数后添00,再减此数; 一个数X 999,数后添000,再减此数;,以此类推。

高斯小学奥数含答案三年级(上)第01讲 乘除法巧算

高斯小学奥数含答案三年级(上)第01讲 乘除法巧算

6基础例题:这一讲介绍的是乘法巧算和除法巧算的一些基本方法.在计算乘法时,一个数与10、100、1000这样的数相乘,很容易算出结果,例如2310230⨯=,231002300⨯=,23100023000⨯=等.有三组乘法在巧算时也经常用到:2510⨯=,425100⨯=,81251000⨯=.第一讲乘除法巧算7加减法里有带符号搬家,乘法中也有.在计算多个数相乘时,我们可以通过带符号搬家改变运算顺序,简化计算.例题1计算:(1)2135⨯⨯; (2)41125⨯⨯.分析:仔细观察算式,如何改变一下运算顺序来变得简单些呢?练习1计算:(1)41725⨯⨯;(2)125108⨯⨯.有时题目中没有明确给出2与5、4与25、8与125相乘,我们可以通过拆数的方法凑出10、100、1000,例如:18592590⨯=⨯⨯=.例题2计算:(1)532125⨯⨯; (2)801625⨯⨯.分析:这两个小题中有25或者125,这两个数能够如何巧算呢?练习2 计算:(1)25532⨯⨯; (2)56125⨯.下面介绍的是乘除法巧算的一些基本方法,同加减法一样,通过“带符号搬家”来适当改变运算顺序,像漫画中那样配对进行简化计算.例题3 乘法中常见运算技巧➢ 乘法中的凑整:25⨯;425⨯;8125⨯.➢ 带符号搬家:在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号.不论数移动到哪个位置,它前面的运算符号不变.带符号搬家依据的运算律是:(1) 乘法交换律:⨯=⨯a b b a .(2) 乘法结合律:()()⨯⨯=⨯⨯a b c a b c .小 总 结8 计算:(1)36119⨯÷; (2)4000125÷.分析:如何利用除号后面的数进行除法凑整呢?练习3计算:(1)28114⨯÷;(2)30025÷.在计算连续乘除法运算时,式子中经常会出现括号.在乘除法去括号时,同加减法去括号时类似,要注意变号的问题,具体来说,乘除法中去括号的法则是: 括号前面是乘号,去掉括号不变号;括号前面是除号,去掉括号变符号. 例题4计算:(1)()72072513÷⨯÷; (2)()()()81123123363÷⨯÷÷-.分析:在去括号的时候要注意些什么?去掉括号后算式变成了什么样?能够如何巧算? 练习4计算:(1)()13013315÷÷⨯;(2)()3631111÷⨯⨯.挑战极限:除了去括号之外,有时候还需要添括号来简化运算.例题5计算:(1)310008125÷÷; (2)333155÷⨯.分析:第一问中看到8和125,能不能让它俩相乘呢?第二问中15和5处能不能加个括号呢?加括号时要注意什么呢?例题6计算:()()()()262527172591739÷⨯÷⨯÷⨯÷.分析:在去括号的时候要注意些什么?去掉括号后算式变成了什么样?能够如何巧算?9运算符号的来历 同学们每天都与+、-、×、÷打交道,做起题来也已经习惯了有它们的帮助,但你们一定还不知道它们来到这个世界上的时间可比数字晚多了. 大约五百年前,德国科学家魏特曼在横线上加上一竖来表示增加的意思,在加号上去掉一竖来表示减少的意思,从此,数学这一学科就多了两个新成员,这就是“+”、“-”的来历. “×”是英国的数学家欧德艾在三百多年前提出来的,他认为乘法是一种特殊的加法,于是把“+”斜过来写,也就是我们今天的“×”,“÷”是瑞士数学家拉哈提出来的,他在两点中间放上一横,表示平均分的意思.同学们,现在我们不仅会使用这些数学运算符号,而且还了解了它们的来历,以后算题的时候就会辨别的更清楚,计算的更仔细了. 课堂内外 去括号和添括号原则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变.例如:○1 ()a b c a b c ⨯÷=⨯÷○2 ()a b c a b c ⨯÷=⨯÷ ○3 ()a b c a b c ÷÷=÷⨯ ○4 ()a b c a b c ÷÷=÷⨯ 小 总 结10 作业1. 计算:(1)295⨯⨯; (2)25194⨯⨯.2. 计算:(1)2512⨯; (2)12532⨯.3. 计算:(1)20025÷; (2)3000125÷;(3)121437⨯÷÷; (4)12253⨯÷.4. 计算:()()()220887227÷⨯÷÷÷.5. 计算:420002425÷÷÷.11第一讲 乘除法巧算1. 例题1答案:(1)130;(2)1100详解:(1)213525*********⨯⨯=⨯⨯=⨯=;(2)4112542511100111100⨯⨯=⨯⨯=⨯=.2. 例题2答案:(1)20000;(2)32000详解:(1)53212554812554812554100020000⨯⨯=⨯⨯⨯=⨯⨯⨯=⨯⨯=;(2)80162580442580442580410032000⨯⨯=⨯⨯⨯=⨯⨯⨯=⨯⨯=.3. 例题3答案:(1)44;(2)32详解:(1)361193691141144⨯÷=÷⨯=⨯=;(2)400012541000125410001254832÷=⨯÷=⨯÷=⨯=().4. 例题4答案:(1)26;(2)9详解:(1)72072513720725131051321326÷⨯÷=÷÷⨯=÷⨯=⨯=();(2)81123123363811231233381331231239÷⨯÷÷=÷⨯÷÷=÷÷⨯÷=()()(-).5. 例题5答案:(1)31;(2)111详解:(1)31000812531000100031÷⨯=÷=();(2)3331553331553333111÷⨯=÷÷=÷=().6. 例题6答案:2详解:2625271725917392627252591717392627252591717392627939262793132633132613332=÷⨯÷⨯÷⨯÷=⨯⨯÷÷⨯÷÷=⨯⨯÷÷⨯÷÷=⨯÷÷=⨯÷÷⨯=⨯÷÷=÷⨯÷=原式()()()()()(). 7. 练习1答案:(1)1700;(2)10000简答:(1)425171700=⨯⨯=原式;(2)12581010000=⨯⨯=原式.8. 练习2答案:(1)4000;(2)7000简答:(1)25548254584000=⨯⨯⨯=⨯⨯⨯=原式;(2)781257000=⨯⨯=原式.9. 练习3答案:(1)77;(2)12简答:(1)2841171177=÷⨯=⨯=原式;(2)3100253412=⨯÷=⨯=原式.10. 练习4答案:(1)2;(2)12简答:(1)13013315103152=÷⨯÷=⨯÷=原式;(2)3631111363111112=÷÷⨯=÷⨯÷=原式.11. 作业1答案:(1)90;(2)1700简答:(1)29525990⨯⨯=⨯⨯=;(2)25194254191900⨯⨯=⨯⨯=.12 12. 作业2答案:(1)300;(2)4000简答:(1)25122543300⨯=⨯⨯=;(2)12532125844000⨯=⨯⨯=.13. 作业3答案:(1)8;(2)24;(3)8;(4)100简答:(1)20025210025248÷=⨯÷=⨯=;(2)3000125310001253824÷=⨯÷=⨯=;(3)121437123147428⨯÷÷=÷⨯÷=⨯=;(4)1225312325425100⨯÷=÷⨯=⨯=.14. 作业4答案:10简答:2208872272202210=÷⨯÷÷⨯=÷=原式.15. 作业5答案: 210简答:()42000242542000242542000200210÷÷÷=÷⨯⨯=÷=.。

小学三年级奥数第15讲 乘除巧算(含答案分析)

小学三年级奥数第15讲 乘除巧算(含答案分析)

第15讲乘除巧算一、知识要点前面我们已给同学们介绍了加、减法中的巧算,大家学会了运用“凑整”的方法进行巧算,实际上这种凑整的方法也同样可以运用在乘除计算中。

为了更好地凑整,同学们要牢记以下几个计算结果:2×5=10,4×25=100,8×125=1000。

提高计算能力,除了加、减、乘、除基本运算要熟练之外,还要掌握一定的运算技巧。

巧算中,经常要用到一些运算定律,例如乘法交换律、乘法结合律、乘法分配律等等,善于运用运算定律,是提高巧算能力的关键。

二、精讲精练【例题1】你有好办法算出下面各题的结果吗?(1)25×17×4 (2)8×18×125(3)8×25×4×125 (4)125×2×8×5练习1:1、计算:(1)25×23×4 (2)125×27×82、计算:(1)5×25×2×4 (2)125×4×8×25 (3)2×125×8×5【例题2】你有好办法计算下面各题吗?(1)25×8 (2)16×125(3)16×25×25 (4)125×32×25练习2:(1)25×12 (2)125×32 (3)48×125 (4)125×16×5 (5)25×8×5【例题3】你能很快算出它们的结果吗?(1)82×88 (2)51×59练习3:(1)72×78 (2)45×45(3)81×89 (4)91×99【例题4】简便运算:(1)130÷5 (2)4200÷25 (3)34000÷125练习4:1、你能迅速算出结果吗?(1)170÷5 (2)3270÷5 (3)2340÷52、计算:(1)7200÷25 (2)3600÷25 (3)5600÷25 【例题5】计算:31×25练习5:计算:(1)29×25 (2)17×25 (3)221×25三、课后作业1、想一想,怎样算比较简便?125×16 25×322、(1)125×64×25 (2)32×25×253、你能很快算出它们的结果吗?(1)42×48 (2)61×694 、你有好办法计算下面各题吗?(1)32000÷125 (2)78000÷125 (3)43000÷125(4)322×25 (5)2561×25 (6)3753×25第15讲乘除巧算(答案)一、知识要点前面我们已给同学们介绍了加、减法中的巧算,大家学会了运用“凑整”的方法进行巧算,实际上这种凑整的方法也同样可以运用在乘除计算中。

小学三年级奥数乘除巧算

小学三年级奥数乘除巧算

2.清朝黄遵宪曾作诗曰:“钟声一及时,顷刻不少留。虽
有万钧柁,动如绕指柔。”这是在描写
()
A.电话
B.汽车
C.电报
D.火车
解析:从“万钧柁”“动如绕指柔”可推断为火车。
答案:D
[典题例析]
[例1] 上海世博会曾吸引了大批海内外人士利用各种
交通工具前往参观。然而在19世纪七十年代,江苏沿江
居民到上海,最有可能乘坐的交通工具是
解析:从图片中可以了解到各国举的灯笼是火车形状, 20世纪初的这一幅漫画正反映了帝国主义掠夺中国铁路 权益。B项说法错误,C项不能反映漫画的主题,D项时 间上不一致。 答案:A
[典题例析] [例2] (2010·福建高考)上海是近代中国茶叶的一个外销
中心。1884年,福建茶叶市场出现了茶叶收购价格与上海
和除数同时扩大或缩小相同的倍数(0除外),商不 变,因而: (1)130÷5可将130和5同时乘2.使除除变为10,然 后再用260÷10=26; (2)4200÷25可以将4200和25同时乘4,使除数变为 100,然后再用16800÷100=168; (3)34000÷125可以将34000和125同时乘8,使除数 变为1000,然后再用272000÷1000=272。
(2)特点:进程曲折,发展缓慢,直到20世纪30年代情况才发生变 化。
3.交通通讯变化的影响 (1)新式交通促进了经济发展,改变了人们的通讯手段和 ,出行 方式转变了人们的思想观念。
(2)交通近代化使中国同世界的联系大大增强,使异地传输更为便 捷。
(3)促进了中国的经济与社会发展,也使人们的生活 多。姿多彩
之外,还要掌握一定的运算技巧。巧算中,经常要用 到一些运算定律,例如乘法交换律、乘法结合律、乘 法分配律等等,善于运用运算定律,是提高巧算能力 的关键。

三年级奥数-乘除巧算

三年级奥数-乘除巧算
乘除巧算
专题简析
前面我们已给小朋友们介绍了加减中的巧算, 大家学会了运用“凑整”的方法进行巧算,实际 上这种;凑整“的方法也同样可以运用在乘、除计 算中。为了更好地凑整,为了更好地“凑整”, 同学们要牢记以下几个计算结果: 25×4=100 125×8=1000.
巧算中,经常要用到一些运算定律,例如乘 法交换律、乘法结合律、乘法分配律等,善于运 用运算定律,是提高巧算能力的关键。
(3)2340÷5
2、计算。 (1)7200÷25
(2)3600÷25
(3)5600÷25
3、你能很快计算下面各题吗? (1)32000÷125
(2)78000÷125
(3)43000÷125
【例题5】
计算 (1)49×55+55×51
(2)79×85+35×79-20×79
【练习5】
1、(1)26×49+49×74 (2)82×173-73×82
2、(1)68×99+68 (2)614×14+88×614-614×2
3、1750÷14-350÷14 7175÷35-700÷35+525÷35
精讲精练
【例题1】
你有好办法算出下面各题的结果吗?
(1)25×17×4
(2) 8×18×125
(3)8×25×4×125
(4) 125×2×8×5
【练习1】
1、计算: 25×23×4
125×27×8
2、计算。 (1)5×25×2×4
(2)125×4×8×25
(3)2×125×8×5
【例题2】
你有好办法计算下面各题吗? (1)25×8 (2) 16×125 (3)16×25×25 (4) 125×32×25

三年级奥数详解答案_第二讲2_除法及乘除混合的巧算

三年级奥数详解答案_第二讲2_除法及乘除混合的巧算

二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。

例11计算①110÷5 ②3300÷25 ③ 44000÷125解:①110÷5=(110×2)÷(5×2)=220÷10=22②3300÷25=(3300×4)÷(25×4)=13200÷100=132③ 44000÷125=(44000×8)÷(125×8)=352000÷1000=3522.在乘除混合运算中,乘数和除数都可以带符号“搬家”。

例12 864×27÷54=864÷54×27=16×27=4323.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。

例13① 13÷9+5÷9 ②21÷5-6÷5 ③2090÷24-482÷24 ④187÷12-63÷12-52÷12解:①13÷9+5÷9=(13+5)÷9=18÷9=2②21÷5-6÷5=(21-6)÷5=15÷5=3③2090÷24-482÷24=(2090-482)÷24 ④187÷12-63÷12-52÷12=(187-63-52)÷12=1608÷24=67 =72÷12=64.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。

三年级奥数-乘除法的巧算及练习

三年级奥数-乘除法的巧算及练习

乘除法的巧算之羊若含玉创作用轻便办法盘算下面各题1、25×8×22、37×9×103、25×64×125×54、125×125×645、32×25×1256、56×1257、16×25×5例3:盘算: 1200÷25÷4用轻便办法盘算下面的题目6000÷125÷8 5200÷4÷25 6300÷4÷75 4200÷8÷25巧算:333÷37÷3 1000000÷8÷125÷25÷8÷5例4:盘算:12÷5+13÷5 32÷3-20÷3用轻便办法盘算下面的题目63÷8+9÷8 52÷5-7÷59÷13+6÷13+11÷13 37÷9-11÷9-8÷9 1000000÷8÷125÷25÷8÷5例5:盘算: 120×80÷60技能:四则元算中,若是同级运算,可以“带着符号搬场”(符号在前,数字在后).用轻便办法盘算下面的题目28×25÷7 32×125÷4120×260÷12045×37÷1563÷8×64÷79÷13+6÷13+11÷13 37÷9-11÷9-8÷9例6:盘算: 25÷10×4技能:四则运算中,若是同级运算,可以“带着符号搬场”(符号在前,数字在后).用轻便办法盘算下面的题目6÷10×5 8÷20×1255÷6×6125÷4×89÷10×100÷945×25÷5÷9 45×37÷15 63÷8×64÷7特殊的两位的乘法1、十几乘十几.口诀:头乘头,尾加尾,尾乘尾.注:个位相乘,不敷两位数要用0占位.例:12×14=?解: 1×1=1 2+4=6 2×4=8 12×14=168演习:15×13= 14×12= 12×15= 19×17= 16×14=2、头同,尾合十.口诀:一个头加1后头乘头,尾乘尾,个位相乘不敷两位数用0占位.例:23×27=?解:2+1=3 2×3=6 3×7=21 23×27=621演习:34×36= 82×88= 51×59= 24×26= 74×76=3、尾同,头合十.口诀:十位相乘加个位放百位,个位相乘不敷两位数用0占位.例:34×74=?解: 3×7+4=25 4×4=16 34×74=2516演习:54×54= 83×23= 71×31= 44×64= 16×96=4、第一个乘数互补,另一个乘数数字相同.口诀:一个头加1后,头乘头,尾乘尾例:37×44=?解:3+1=4 4×4=16 7×4=28 37×44=1628演习:37×22= 64×33= 19×88= 82×77= 73×55=5、几十一乘几十一.口诀:头乘头,头加头,尾乘尾.例:21×41=?解:2×4=8 2+4=6 1×1=1 21×41=861演习:31×41= 61×21= 41×51= 51×71= 81×91=作业:加减法的巧算.(靠整法、凑整法、分组法、基准数法)799999+79999+7999+799+79+7 526-73-27-26 4253-(253-158)乘除法的巧算.(整数乘积、乘法分派律、合理拆数、商不变性质)演习1:2532125 1251348255 2456212525548 2510412588 67×101 219+229+239+249 演习2:15×12= 18×12= 13×16= 18×15= 11×19=演习3:32×38= 81×89= 53×57= 22×28= 73×77=演习4:34×74= 82×22= 61×41= 44×64= 76×36=演习5:37×33= 64×22= 19×55= 82×66= 73×44=演习6:41×51= 71×81= 31×61= 21×71= 51×31=。

小学三年级奥数乘除法的巧算及练习

小学三年级奥数乘除法的巧算及练习

小学三年级奥数乘除法的巧算及练习乘除法的巧算计算:8×4×125×25=分析:进行四则运算前一定要仔细观察题目的数字特征及运算符号的特征。

熟记:5×2=10 25×4=100125×8=1000 37×3=111观察8×4×125×25=?的特征,因为8×125=1000 25×4=100,所以,可先将8和125,4和25乘起来,再把他们的积相乘。

即:8×4×125×25=(8×125)×(4×25)=1000×100=100000 试试身手1、用简便方法计算下面的题目8×6×125=4×7×25×10=2、巧算10×3×37 32×25×1253、计算37×25×3×4 3×5×4×37×25×2知识向导:计算:125×32×25分析由数字“125,25”及符号“连乘”的特征,可以想到“8,4”,结合上章所学,因为他们的乘积是整千、整百数。

而32=4×8,所以,可以将一个乘数“32”拆成需要的几个因数。

即:125×32×25=125×8×4×25=(125×8)×(25×4)=1000×100=100000试试身手用简便方法计算下面各题1、25×8×22、37×9×103、25×64×125×54、125×125×64知识向导计算:1200÷25÷4分析:观察题目发现有两个显著的特征:一是连除;二是25和4的积是100所以我们有两种方法:一、可以用25去除以被除数1200,也可以先用4除以被除数1200,即1200÷25÷4=48÷4=12 或1200÷4÷25=300÷25=12二、一个数连续除以几个数,等于这个数除以这几个数的积1200÷25÷4=1200÷(25×4)=1200÷100=12试试身手用简便方法计算下面的题目6000÷125÷8 5200÷4÷25用两种以上的方法来运算,比一比哪一种更简便250÷5÷25 500÷5÷25巧算:333÷37÷31000000÷8÷125÷25÷8÷5知识向导计算:12÷5+13÷532÷3-20÷3分析:观察题目的数字特征,根据四则运算法则直接计算较困难,但各题中,除数数字都相同,因而:12÷5+13÷5=(12+13)÷5=532÷3-20÷3=(32-20)÷3=4技巧:两个商的和(或差),在除数相同的情况下,可以先算两个被除数的和(或差),再除以除数。

三年级奥数12-巧算乘除法

三年级奥数12-巧算乘除法

三年级奥数12-巧算乘除法课题巧算乘除法教学目标重点难点知识点提炼:一、乘法中的巧算1.特殊数字的乘积5×2= 25 ×4= 125 ×8= 625 ×16=37×3= 75×4= 375×8=2.乘法分配律:a×(b+c)= a×(b-c+d)=3. 乘法结合律:a×b×c=4. 任何数乘115. 头同为合十6. 尾同头合十例1用简便方法计算下列各题。

(1)25×13×4 (2)125×(22 ×8) (3)27×50×2 (4)5×25×4 ×20例2运用简便方法计算。

(3)50 ×8 ×25 (4)64 ×25 ×125 (5)75 ×16例3乘数是5 ,25、125 ,625的乘法。

(1)12 ×5 (2)24 ×25(3)48 x 125 (4)64 ×625例4速算下列各题。

(l)13×24+24×85 (2)382×41十58×382+382 (3)102 ×19(4)296×25(5) 67×33+68×67一67例5用简便方法计算下列各题。

(1)13 ×5 (2)26 ×25(3)97 ×125 (4)34 ×625例6一个数乘以11的速算。

(1)45362×11 (2)2456×11例7用简便方法计算下列各题。

(1)54 x 56 (2)71 x 79 (3)23 x 27例9速算下列各题。

(1)67 x 47 (2)98 x 18 (3)83 x 23例10速算下列各题。

三年级奥数乘除法的巧算及练习

三年级奥数乘除法的巧算及练习

小学三年级奥数练习题乘除法的巧算计算:8×4×125×25=分析:进行四则运算前一定要仔细观察题目的数字特征及运算符号的特征。

熟记:5×2=10 25×4=100125×8=1000 37×3=111观察8×4×125×25=?的特征,因为8×125=1000 25×4=100,所以,可先将8和125,4和25乘起来,再把他们的积相乘。

即:8×4×125×25=(8×125)×(4×25)=1000×100=100000试试身手1、用简便方法计算下面的题目8×6×125=4×7×25×10=2、巧算10×3×37 32×25×1253、计算37×25×3×4 3×5×4×37×25×2知识向导:计算:125×32×25分析由数字“125,25”及符号“连乘”的特征,可以想到“8,4”,结合上章所学,因为他们的乘积是整千、整百数。

而32=4×8,所以,可以将一个乘数“32”拆成需要的几个因数。

即:125×32×25=125×8×4×25=(125×8)×(25×4)=1000×100=100000试试身手用简便方法计算下面各题1、25×8×22、37×9×103、25×64×125×54、125×125×64知识向导计算: 1200÷25÷4分析:观察题目发现有两个显著的特征:一是连除;二是25和4的积是100 所以我们有两种方法:一、可以用25去除以被除数1200,也可以先用4除以被除数1200,即1200÷25÷4=48÷4=12 或1200÷4÷25=300÷25=12 二、一个数连续除以几个数,等于这个数除以这几个数的积1200÷25÷4=1200÷(25×4)=1200÷100=12试试身手用简便方法计算下面的题目6000÷125÷8 5200÷4÷25用两种以上的方法来运算,比一比哪一种更简便250÷5÷25 500÷5÷25巧算:333÷37÷31000000÷8÷125÷25÷8÷5知识向导计算:12÷5+13÷532÷3-20÷3分析:观察题目的数字特征,根据四则运算法则直接计算较困难,但各题中,除数数字都相同,因而:12÷5+13÷5=(12+13)÷5=532÷3-20÷3=(32-20)÷3=4技巧:两个商的和(或差),在除数相同的情况下,可以先算两个被除数的和(或差),再除以除数。

奥数题及答案(小学三年级)

奥数题及答案(小学三年级)

奥数题及答案(小学三年级)1.工程问题绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天解答:200÷4=50 (棵)(200+400)÷50=12(天)【小结】归一思想.先求出一天种多少棵树,再求共需几天完成任务.单一数:200÷4=50 (棵),总共的天数是:(200+400)÷50=12 (天).2.还原问题3个笼子里共养了78只鹦鹉,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的鹦鹉一样多.求3个笼子里原来各养了多少只鹦鹉解答:三(一)班和三(二)班每天共叠千纸鹤:2400÷3=800(只),'相同时间'是:(2430+2370)÷800=6(天),三(一)班每天叠的个数:2430÷6=405 (只),三(二)班每天叠的个数:2370÷6=395(只).小学三年级奥数题及答案:楼梯问题1上楼梯问题某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒解答:上一层楼梯需要:48÷(4-1)=16(秒)从4楼走到8楼共走:8-4=4(层)楼梯还需要的时间:16×4=64(秒)答:还需要64秒才能到达8层。

2.楼梯问题晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶解:每一层楼梯有:36÷(3-1)=18(级台阶)晶晶从1层走到6层需要走:18×(6-1)=90(级)台阶。

答:晶晶从第1层走到第6层需要走90级台阶。

小学三年级奥数题及答案:页码问题1.黑白棋子有黑白两种棋子共300枚,按每堆3枚分成100堆。

其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。

【三年级】三年级奥数乘除法的巧算及练习供参考

【三年级】三年级奥数乘除法的巧算及练习供参考

【关键字】三年级乘除法的巧算用简便方法计算下面各题1、25×8×22、37×9×103、25×64×125×54、125×125×645、32×25×1256、56×1257、16×25×5例3:计算:1200÷25÷4用简便方法计算下面的题目6000÷125÷85200÷4÷25 6300÷4÷75 4200÷8÷25巧算:333÷37÷31000000÷8÷125÷25÷8÷5例4:计算:12÷5+13÷532÷3-20÷3用简便方法计算下面的题目63÷8+9÷852÷5-7÷59÷13+6÷13+11÷1337÷9-11÷9-8÷91000000÷8÷125÷25÷8÷5例5:计算:120×80÷60技巧:四则元算中,若是同级运算,可以“带着符号搬家”(符号在前,数字在后)。

用简便方法计算下面的题目28×25÷732×125÷4120×260÷12045×37÷15 63÷8×64÷79÷13+6÷13+11÷1337÷9-11÷9-8÷9例6:计算:25÷10×4技巧:四则运算中,若是同级运算,可以“带着符号搬家”(符号在前,数字在后)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16. 数与运算---3 选出下题最为简便的一种计算方法。 76×153−53×76 A. 76×(153-53) B. (76×153)-(53×76) C. (76+76)×(153-53)
答案:A 解析:有公因数76,所以提取公因数即76×(153-53)。
错因分析:对提取公因数的应用不理解。
4. (25+20)×4用乘法分配律应该怎么计算呢?下列哪个方法是符合的? A. (25+20)×4=25×4+20×4 B. (25+20)×4=25×4×20×4 C. (25+20)×4=25+20×4
答案:A 解析:由乘法分配律可知A项是正确的。
5. 下面的算式你会计算吗:380÷(38÷125) A. 38不能除以125,所以不能计算。
2013) + 2015 = 6043
.
28. 计算:25 × 13 × 2 + 15 × 13 × 7 =

答案:2015
解析:25 × 13 × 2 + 15 × 13 × 7
= 5 × 13 × 10 + 5 × 13 × 21
= 5 × 13 × (10 + 21)
= 5 × 13 × 31
18. 计算:125×1700×8 A. 1550000 B. 1700000 C. 1890000 D. 2380000
答案:B 解析:125×1700×8
=1700×(125×8) =1700×1000 =1700000
19. 计算:125×78 A. 9750 B. 9650 C. 9550
答案:A 解析:当两个数相乘时,有时可以运用乘法分配律把一个因数变成两个数的差与另一个因数相乘。
答案:86415 解析:【分析】7※5 = 7 + 77 + 777 + 7777 + 777777 = 86415
27. 计算:2015×2015 − 2014×2013 =().
答案:6043 解析:(2014 + 1)×2015 − 2014×2013 = 2014×2015 − 2014×2013 + 2015 = 2014×(2015 −
即:这8个乘积的总和(3 + 5) × (6 + 8) × (7 + 11) = 2016。 那么下次再遇到这样的题目就直接可以用A中数之和×B中数之和×C中数之和。
33. 2014 − 37 × 13 − 39 × 21 =

答案:714
解析:原式= 2014 − 37 × 13 − 63 × 13
17. 下面选项中最简便的运算顺序是哪一个?
125×37×8
A. (125×37)×8 B. 125×(37×8) C. (125×8)×37
答案:C 解析:乘法具有交换律和结合律,找到相乘能够得到整十、整百、整千的数先计算,题中125×8是一对好朋友乘积
是1000,所以先计算,然后在乘37。 错因分析:对125和8相乘得到整千数不熟悉,选择错误。
答案:C 解析:(1)同时乘以和除以的这个数不能包括0;(2)被除数和除数同时缩小2倍,商不变,应该还是10;(3)
对的。
15. 计算:125×5×2×8 A. 1000 B. 20000 C. 2000 D. 10000
答案:D 解析:125×5×2×8
=(125×8)×(5×2) =1000×10 =10000 答案应该选择D.
10. 计算123456789×987654321÷123456789,结果是 A. 123456789 B. 987654321 C. 765432198 D. 321654789
答案:B 解析:123456789×987654321÷123456789
=(123456789÷123456789)×987654321 =1×987654321 =987654321 所以答案选择B。
35. 计算。(末同首合十) (1)76×36 = (2)28×88 =
= 325 × (337 + 2 × 330 + 3)
= 325 × 1000
= 325000
31. 计算:53 × 57 − 47 × 43 =

答案:1000 解析:原式= 53 × 57 + 53 × 43 − 53 × 43 − 47 × 43
= 53 × (57 + 43) − (53 + 47) × 43 = (53 − 43) × 100 = 1000
32. 有人A、B、C三组数,A = , {3, 5} B = , {6, 8} C = {7, 11}。从每一组中各取出一个 数,相乘得到一个积,这8个乘积的总和是 。
答案:2016 解析:这8个乘积的总和是:
3 × 6 × 7 + 3 × 6 × 11 + 3 × 8 × 7 + 3 × 8 × 11 + 5 × 6 × 7 + 5 × 6 × 11 + 5 × 8 × 7 + 5 × 8 × 11 = 3 × 6 × (7 + 11) + 3 × 8 × (7 + 11) + 5 × 6 × (7 + 11) + 5 × 8 × (7 + 11) = 3 × (6 + 8) × (7 + 11) + 5 × (6 + 8) × (7 + 11) = (3 + 5) × (6 + 8) × (7 + 11) = 2016
, ; 3×7 + 7 = 28 7×7 = 49 得:37×77 = 2849
14. 判断题,选出正确的答案: (1)被除数和除数同时乘以(或除以)一个数,商不变.() (2)甲÷乙=10,如果甲和乙同时除以2,那么甲÷乙=5.() (3)被除数乘以4,要想商不变,除数也要乘以4.() A. √、√、√ B. ×、×、× C. ×、×、√ D. √、×、√
22. 计算:300×674 − 672×671 + 372×674 =

答案:2016
解析:原式 。 = (300 + 372)×674 − 672×671 = 672×3 = 2016
23. 99 × 37 + 45 × 99 + 83 =(
)
答案:8201
解析:原式
= 99 × (37 + 45) + 83
= 13700 + 58 + 8 × 8 × 27 ÷ 12
= 13758 + 8 × 8 × 27 ÷ 3 ÷ 4
= 13758 + 2 × 8 × 9
= 13902
30. 计算:325 × 337 + 650 × 330 + 975 =

答案:325000
解析:原式= 325 × 337 + 325 × 2 × 330 + 325 × 3
= 99 × 82 + 82 + 1
= 8200 + 1
= 8201
24. 2012 × 9 + 2012 × 8 − 2012 × 7 =()。
答案:20120 解析:原式= 2012 × (9 + 8 − 7) = 2012 × 10 = 20120。
25. 37 × 37 + 2 × 63 × 37 + 63 × 63=
B. 可以计算:380÷(38÷125) =380÷38÷125 =10÷125 =8
C. 可以计算:380÷(38÷125) =380÷38×125 =10×125 =1250
D. 可以计算:380÷(38÷125) =380÷125×38 =10×38 =380
答案:C 解析:去括号,要变号。

答案:10000
解析:原式= 37 × (37 + 63) + 63 × (37 + 63) = 100 × (37 + 63) = 100 × 100 = 10000
26. 有一种运算满足6※2 = 6 + 66 = 72,2※3 = 2 + 22 + 222 = 246⋯ ⋯那么7※5= 。
125×78 = 125×(80 − 2) = 125×80 − 125×2 = 10000 − 250 = 9750
20. 选出下题最为简便的一种计算方法。 390×23÷39 A. (390×23)÷39
B. 390×(23×39) C. 390÷(23×39)
D. 390÷39×23
答案:D 解析:带着符号搬家,观察发现390÷39更好计算,所以把÷39和×23位置交换一下。
6. 计算:67×47= 空类2 。 A. 3049 B. 3149 C. 3249 D. 3349
答案:B 解析:计算这道题是“同尾头合十”,就按同尾头合十的巧算方法进行计算。
, ; 6×4 + 7 = 31 7×7 = 49 得:67×47 = 3149
7. 计算:98×92 = 空类2 。 A. 9016 B. 9416 C. 9616 D. 9816
12. 如果甲÷乙=27,那么(甲÷9)÷(乙÷9)=()。 A. 3 B. 9 C. 18 D. 27
答案:D 解析:由商不变性质可知,还是27.
13. 计算:37×77 = 空类2 。 A. 2149 B. 2449 C. 2749 D. 2849
答案:D 解析:计算这道题是“同尾头合十”,就按同尾头合十的巧算方法进行计算。
1. 两个数相除,除数除以8,要想商不变,被除数()。 A. 被除数也不变 B. 被除数也除以8 C. 被除数乘以8.
相关文档
最新文档