ADC8738资料

合集下载

多参数MRI对子宫肉瘤与良性子宫肌瘤的鉴别诊断价值及与肿瘤细胞恶性程度的关系

多参数MRI对子宫肉瘤与良性子宫肌瘤的鉴别诊断价值及与肿瘤细胞恶性程度的关系

Vol39 No1Jan. . 2021第39卷第1期2021年1月影像科学与光化学Imaging Science and Photochemistryhttp : //www. yxkxyghx. org多参数MRI 对子宫肉瘤与良性子宫肌瘤的鉴别诊断价值及与肿瘤细胞恶性程度的关系卜岛**,韩茜茜2020-06-19 收稿,2020-09-29 录用*通讯作者首都医科大学附属北京妇产医院放射科,北京100026摘 要:本文选取子宫肉瘤(US)患者103例作为观察组,另选取同期良性子宫肌瘤患者103例作为对照组,探究多参数MRI 对US 与良性子宫肌瘤的鉴别诊断效果及与肿瘤细胞恶性程度的关 系。

结果发现,观察组达峰时间(TTP )、扩散系数(ADC )低于对照组;随临床分期增加,TTPADC呈下降趋势,Topo 'a 、A g NOR 、PDGF a 、Matriptase mRNA 相对表达量呈升高趋势,TTP 、ADC 与Topo ' a 、AgNOR 、PDGF a 、Mat —ptase mRNA 相对表达量呈负相关,且TTP A ADC 联合鉴别诊断US 和良性子宫肌瘤的AUC 值最大,提示US 与良性子宫肌瘤MRI 参数存在显著差异,且TTP 、ADC 值与增殖分子、侵袭分子活性直接相关,可为临床鉴别诊断提供数据支持。

关键词:MRI ;子宫肉瘤;子宫肌瘤;肿瘤细胞;Matriptase ; Topoip ;增殖分子doi : 10 7517/issn 1674-0475. 200613The Value of Multi-parameter MRI in the Differential Diagnosis ofUterine Sarcoma and Benign Uterine Fibroids and the Relationshipwith the Malignant Degree of Tumor CellsBU Dao * , HAN QianqianDepartment of Radiology , Beijing Obstetrics and Gynecology Hospital , Capital MedicalUniversity , Beijing 100026, P. R. ChinaAbstract : In this research, 103 uterine sarcoma (US) patients were selected as the observation group, and 103 patients with benignuterinefibroidswereselectedasthecontrolgroup Thevalueof MRImulti-parametersinthedi f erentialdiagnosisofUSandbenignuterinefibroidswereexplored !aswe l astherelationshipbetweentheMRIparametersandthemalignancyoftumorce l s Thetimetopeak (TTP ) andapparentdi f usioncoe f icient (ADC ) oftheobservationgroupwerelowerthanthoseofthecontrolgroup TTPandADCshowedadownwardtrend withtheincreaseofclinicalstage !whiletherelativeexpressionofTopo 'a !AgNOR !PDGF a !andMatriptasemRNAshowedanincreasingtrendwiththeincreaseofclinicalstage TP !ADCwerenegativelycorrelatedwithTopo 'a !AgNOR !PDGF a and MatriptasemRNArelativeexpression AndthecombinedAUCvalueofTTPand ADCwasthelargestindi f erentialdiagnosisofUSandbenignuterinefibroids Theseresultsindicatedthatthereweresignificantdi f erences in MRI parameters between US and benign uterine fibroids TTPandADCvaluesaredirectlyrelatedtotheactivitiesofproliferationmoleculesandinvasionmolecules !whichcanprovidedatasupportforclinicaldi f erentialdiagnosis Keywords : MRI ; uterine sarcoma ; uterine fibroids ; tumor cells ; matriptase ; Topo'a; proliferation molecules8182影像科学与光化学第39卷子宫肉瘤(uterine sarcoma,US)是一种典型女 性生殖系统恶性肿瘤,以发病率低、恶性程度高、5 年存活率低为特点:1:)US 具有多种不同生物学活性及组织学形态,早期确诊率低造成患者错失最佳治疗时机是导致预后不良的主要原因之一常规超声诊断在US 与良性子宫肌瘤鉴别中敏感性低,而动态增强MRI 能反映病灶内部细胞排列、形态、血液供给等信息,被部分学者推荐应用于可疑US 的早期诊断,但基于US 病理生理改变的特殊性,目前仍无统一标准达峰时间(TTP )、扩散系数(ADC)是增强MRI 检查中常用的参数,前者可反映病灶组织内血流状态,后者主要从细胞形态、细胞 生理改变等层面提供诊断信息。

ad0808电压信号转化

ad0808电压信号转化

ADC0808是一款八位A/D转换器,可以将模拟信号转换成数字信号来计算机处理。

它可以将输入的模拟电压信号转换为相应的数字值,实现电压信号的转化。

ADC0808的工作原理是基于逐次逼近法的。

在逐次逼近法中,首先将输入电压与参考电压进行比较,然后根据比较结果来调整数字值,直到得到最终的数字值。

ADC0808内部包含一个多位比较器、一个数据暂存器、一个内部时钟、一个参考电压源和一个缓冲放大器等部件。

当ADC0808接收到模拟电压信号时,首先通过缓冲放大器将信号进行放大和缓冲,然后通过定时器进行时间分解,将模拟信号转换成位值。

接下来,通过放大器将位值变成比较电压,多位比较器比较这些比较电压与模拟信号之间的差值,并把结果存储在数据暂存器中。

最终,通过逐次逼近法得到转换后的数字值。

需要注意的是,ADC0808的转换精度和速度会受到多种因素的影响,如输入信号的幅度、频率、噪声等。

因此,在使用ADC0808进行电压信号转化时,需要根据实际情况进行选择和调整。

AD DA专题

AD DA专题

D/A和A/D转换一:D/A和A/D转换?D,digital的首字母,即“数字的”之意。

A,analog的首字母,即“模拟的”之意。

可见,D/A和A/D转换就是数字信号和模拟信号之间的转换,那什么是模拟信号和数字信号呢?模拟信号就是连续变化的信号,数字信号就是不连续变化、数字化的信号,例如液体温度计显示的信号就是连续的,是模拟的,而电脑里的二进制数是不连续的只有0和1,是数字信号。

了解了什么是数字信号和模拟信号,那为什么要进行转化呢?因为单片机等芯片(包括电脑芯片在内)无法处理模拟信号,只能处理有0和1组合起来表示不同的信息的数字信号,以电脑上的麦克和音响为例,麦克将声音转化成连续变化的电压,然后将电压输送给相应的模数转换芯片,芯片将模拟信号转化成数字信号然后再处理或传送给主控芯片进行处理,这是A/D转换过程。

而芯片将收到或者已经存储的数字信号,转换成模拟信号(如电压信号),再通过音响发出声音,这是D/A转换过程。

二:下面主要介绍DAC0832和ADC0832两款芯片,其他的芯片同理。

1,DAC0832通俗易懂诠释:DA就是把数字量转换为模拟量的器件。

每个DA 都已自己的精度(数字量每增加1增加的模拟量),假设我们输入的数字量为Q,那么Q与精度的乘积就是输出的模拟量的大小。

1.1,DA转换原理:图1 DA转化原理图DA 转换原理图由欧姆定理,根据电阻之间的关系,可以得到如下电流关系:1.2,分辨率分辨率是指输入数字量的最低有效位(LSB)发生变化时,所对应的输出模拟量(常为电压)的变化量,也就是数字量进行加1操作时输出模拟量的变化值(比如数字量从99变化到100过程中输出模拟量的变化)。

它反映了输出模拟量的最小变化值。

分辨率与输入数字量的位数有确定的关系,可以表示成FS/ 。

FS 表示满量程输入值,n 为二进制位数。

对于5V 的满量程,采用8位的DAC 时,分辨率为5V/256=19.5mV;当采用12位的DAC 时,分辨率则为5V/4096=1.22mV。

ADC0808

ADC0808

11.2.4 典型的集成ADC 芯片为了满足多种需要,目前国内外各半导体器件生产厂家设计并生产出了多种多样的ADC 芯片。

仅美国AD 公司的ADC 产品就有几十个系列、近百种型号之多。

从性能上讲,它们有的精度高、速度快,有的则价格低廉。

从功能上讲,有的不仅具有A/D 转换的基本功能,还包括内部放大器和三态输出锁存器;有的甚至还包括多路开关、采样保持器等,已发展为一个单片的小型数据采集系统。

尽管ADC 芯片的品种、型号很多,其内部功能强弱、转换速度快慢、转换精度高低有很大差别,但从用户最关心的外特性看,无论哪种芯片,都必不可少地要包括以下四种基本信号引脚端:模拟信号输入端(单极性或双极性);数字量输出端(并行或串行);转换启动信号输入端;转换结束信号输出端。

除此之外,各种不同型号的芯片可能还会有一些其他各不相同的控制信号端。

选用ADC 芯片时,除了必须考虑各种技术要求外,通常还需了解芯片以下两方面的特性。

(1)数字输出的方式是否有可控三态输出。

有可控三态输出的ADC 芯片允许输出线与微机系统的数据总线直接相连,并在转换结束后利用读数信号RD 选通三态门,将转换结果送上总线。

没有可控三态输出(包括内部根本没有输出三态门和虽有三态门、但外部不可控两种情况)的ADC 芯片则不允许数据输出线与系统的数据总线直接相连,而必须通过I/O 接口与MPU 交换信息。

(2)启动转换的控制方式是脉冲控制式还是电平控制式。

对脉冲启动转换的ADC 芯片,只要在其启动转换引脚上施加一个宽度符合芯片要求的脉冲信号,就能启动转换并自动完成。

一般能和MPU 配套使用的芯片,MPU 的I/O 写脉冲都能满足ADC 芯片对启动脉冲的要求。

对电平启动转换的ADC 芯片,在转换过程中启动信号必须保持规定的电平不变,否则,如中途撤消规定的电平,就会停止转换而可能得到错误的结果。

为此,必须用D 触发器或可编程并行I/O 接口芯片的某一位来锁存这个电平,或用单稳等电路来对启动信号进行定时变换。

ADC0809引脚图与接口电路

ADC0809引脚图与接口电路

ADC0809引脚图与接口电路作者:佚名来源:本站原创点击数:15504 更新时间:2007年07月29日【字体:大中小】A/D转换器芯片ADC0809简介8路模拟信号的分时采集,片内有8路模拟选通开关,以及相应的通道抵制锁存用译码电路,其转换时间为100μs左右。

图9.8 《ADC0809引脚图》1. ADC0809的内部结构ADC0809的内部逻辑结构图如图9-7所示。

图9.7 《ADC0809内部逻辑结构》图中多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用一个A/D转换器进行转换,这是一种经济的多路数据采集方法。

地址锁存与译码电路完成对A、B、C 3个地址位进行锁存和译码,其译码输出用于通道选择,其转换结果通过三态输出锁存器存放、输出,因此可以直接与系统数据总线相连,表9-1为通道选择表。

表9-1 通道选择表2.信号引脚ADC0809芯片为28引脚为双列直插式封装,其引脚排列见图9.8。

对ADC0809主要信号引脚的功能说明如下:IN7~IN0——模拟量输入通道ALE——地址锁存允许信号。

对应ALE上跳沿,A、B、C地址状态送入地址锁存器中。

START——转换启动信号。

START上升沿时,复位ADC0809;START下降沿时启动芯片,开始进行A/D转换;在A/D转换期间,START应保持低电平。

本信号有时简写为ST.A、B、C——地址线。

通道端口选择线,A为低地址,C为高地址,引脚图中为ADDA,ADDB和ADDC。

其地址状态与通道对应关系见表9-1。

CLK——时钟信号。

ADC0809的内部没有时钟电路,所需时钟信号由外界提供,因此有时钟信号引脚。

通常使用频率为500KHz的时钟信号EOC——转换结束信号。

EOC=0,正在进行转换;EOC=1,转换结束。

使用中该状态信号即可作为查询的状态标志,又可作为中断请求信号使用。

D7~D0——数据输出线。

为三态缓冲输出形式,可以和单片机的数据线直接相连。

ADC0808ADC0809 MP兼容的8位AD转换8通道多路复用器

ADC0808ADC0809 MP兼容的8位AD转换8通道多路复用器

外文资料译文ADC0808/ADC0809 MP兼容的8位A/D转换8通道多路复用器一.总体描述ADC0808,ADC0809的数据采集组件是一个8位模拟 - 数字转换器的单片CMOS器件,8通道多路复用器和微处理器兼容控制逻辑。

8位A / D 转换使用连续逼近作为转换技术。

该转换器具有高阻抗斩波稳定比较器,1模拟开关树和连续256R分压器逼近寄存器。

8通道多路复用直接访问的8路单端模拟信号。

该器件无需外部零点和满刻度的需要调整。

轻松连接到微处理器提供多路复用地址锁存和解码输入和锁存TTL三STATEÉ输出。

ADC0808,ADC0809的设计已优化通过结合几个A/ D转换的最可取的方面,转换技术。

ADC0808,ADC0809的提供高速度快,精度高,最低温度的依赖,优秀的长期精度和可重复性,并消耗最小的功率。

这些特点使该设备适合的应用程序,过程和机器控制消费电子和汽车应用。

16-与常见的输出通道多路复用器(采样/保持端口)看到ADC0816数据表。

(更多信息请参见AN-247。

)二.特点简易所有微处理器的接口5VDC或模拟跨度调整后的电压基准无零或全面调整需要8通道多路复用地址与逻辑0V至5V单电源5V输入范围输出符合TTL电平规格之标准密封或成型28引脚DIP封装28引脚型芯片载体封装ADC0808相当于以MM74C949ADC0809的相当于MM74C949-1三.主要技术指标垂直分辨率8位单电源:5 VDC低功耗15毫瓦转换时间100毫秒四.框图图1框图绝对最大额定值(注1及2)如果指定的军事/航空设备是必需的,请联系美国国家半导体的销售办公室/分销商的可用性和规格。

电源电压(VCC)(注3)6.5V在任何引脚-0.3V电压至(VCC+0.3V)除了控制输入电压控制输入-0.3V到+15V(START,OE时钟,ALE地址,补充B,添加C)存储温度范围-65℃至+150℃875毫瓦TA=25℃封装耗散导致温度。

(完整word版)ADC0808功能及简介

(完整word版)ADC0808功能及简介

11.2.4 典型的集成ADC 芯片为了满足多种需要,目前国内外各半导体器件生产厂家设计并生产出了多种多样的ADC 芯片。

仅美国AD 公司的ADC 产品就有几十个系列、近百种型号之多。

从性能上讲,它们有的精度高、速度快,有的则价格低廉。

从功能上讲,有的不仅具有A/D 转换的基本功能,还包括内部放大器和三态输出锁存器;有的甚至还包括多路开关、采样保持器等,已发展为一个单片的小型数据采集系统。

尽管ADC 芯片的品种、型号很多,其内部功能强弱、转换速度快慢、转换精度高低有很大差别,但从用户最关心的外特性看,无论哪种芯片,都必不可少地要包括以下四种基本信号引脚端:模拟信号输入端(单极性或双极性);数字量输出端(并行或串行);转换启动信号输入端;转换结束信号输出端。

除此之外,各种不同型号的芯片可能还会有一些其他各不相同的控制信号端。

选用ADC 芯片时,除了必须考虑各种技术要求外,通常还需了解芯片以下两方面的特性。

(1)数字输出的方式是否有可控三态输出。

有可控三态输出的ADC 芯片允许输出线与微机系统的数据总线直接相连,并在转换结束后利用读数信号RD 选通三态门,将转换结果送上总线。

没有可控三态输出(包括内部根本没有输出三态门和虽有三态门、但外部不可控两种情况)的ADC 芯片则不允许数据输出线与系统的数据总线直接相连,而必须通过I/O 接口与MPU 交换信息。

(2)启动转换的控制方式是脉冲控制式还是电平控制式。

对脉冲启动转换的ADC 芯片,只要在其启动转换引脚上施加一个宽度符合芯片要求的脉冲信号,就能启动转换并自动完成。

一般能和MPU 配套使用的芯片,MPU 的I/O 写脉冲都能满足ADC 芯片对启动脉冲的要求。

对电平启动转换的ADC 芯片,在转换过程中启动信号必须保持规定的电平不变,否则,如中途撤消规定的电平,就会停止转换而可能得到错误的结果。

为此,必须用D 触发器或可编程并行I/O 接口芯片的某一位来锁存这个电平,或用单稳等电路来对启动信号进行定时变换。

CMI-8738资料

CMI-8738资料

With high speed PCI V2.1 bus controller and legacy audioSB16® DSPemulator,CMI8738 is designed for PC add-in cards and all-in-one motherboards. No external CODEC is needed in CMI8738: CMI-8738 supports the legacy audio – SB16™, FM emulator/DLS wavetable music synthesis, and HRTF 3D positional audio functions.Being compatible with A3D™ and DirectSound™ 3D, CMI8738 meets PC99®requirementsCMI8738 uses HRTF 3D extension technology to enhance traditional HRTF 3D positional audio by substituting two-speaker system by four- speaker one (it supports additional 2CH 16-bit DAC to provide rear side audio). It greatly improves HRTF 3D positional audio quality and successfully removes the sweet spot limitations: users can enjoy genuine 3D audio gaming effects, and don't have to worry about the environmental confinement any more.Being outstanding for its full audio functions, competitive price, and power management, CMI-8738 is the best choice for people seeking for optimum use of the PC applications.C-Media licensed HRTF 3D library from Central Research Lab (CRL ®), U.K , who provides one of the world's best HRTF librariesFeaturesHRTF-based 3D positional audio ,supporting DirectSound™ 3D and A3D™ interfaceSupports rear side speakers, C3D X positional audio in 4 CH speaker mode Legacy audio SBPro ™ compatibleDLS -based wavetable music synthesizer, supports DirectMusic™Built-in 32ohm Earphone bufferDrivers support EAX™, Karaoke Echo, Key Surround sound MPU-401 port Dual game port16-bit full duplex CODEC 4 CH 16-bit DAC32-bit PCI bus masterExternal E²PROM interfaceSingle chip design, +5V, 128 pins QFPPreliminary Ver 1.2CMI-8738/PCI-SXC3D X PCI-Based HRTF 3D Extension Positional Audio ChipCMI-8738/PCI Block DiagramPCI interface PCI BUSDMA engine IRQ control Legacy audio SB16™emulator MPU 401 and GAME port Music Synthesizer HRTF DSP engine16-bit CODEC Analog Mixer PLL and timing circuit 14.318Mhz 3D SurroundEarphone bufferLINEOUTMIC AMPLINE / CD / AUX / PCPSK INMIC INRear L/RU1CMI8738103104105106107108109110111112113114115116117118119120121122646362616059585756555453525150494847464523456789101112131415161718192021222324252627282930311011009998979695949392919089888786858483828180797877767574737232333435363738394041424344128127126125124123165666768697071102NC NC NC NC NC NC XBIO3XBIO2XBIO1XBIO0NC GND VDD GND XINTA NC XPRST XCLK33XGNT XREQ XADOUTL XVREF XINTVREFAVDD AGND NC NC NC XOUT XIN VDD GND XA0XA1XA2XA3XA4XA5GND VDD X A 27G N D V D D X A 26X A 25X A 24X C B E 3X I D S E L V D D G N D X A 23X A 22X A 21X A 20X A 19G N D V D D X A 18A 17X A 16X C B E 2X F R A M E X I R D Y X T R D Y X D E V S E L V D D G N D X S T O P X P A R X C B E 1N C V D D M D G N D N C X G D 7X G D 6X G D 5X G D 4X G D 3X G D 2X G D 1X G D 0X R X D X T X D X G P B I O N C X M B C S Z X E E C S V D D 5V A G N D A V D D X M I C I N X P C S P K I N X A U X R X A U X L X L N R X L N L X R E A R R X R E A R L X C D R X A 15X A 14X A 13X A 12G N D V D D X A 11XA10XA9XA8XCBE0XA7XA6XA29XA30XA31GND VDD NC X A 28X A D O U T RX A D C H L X A D C H R X L F I L T X R F I L T X C D G N D X C D L N CPINOUTPINOUTCMI8738-037-SX AUDIO CHIP QFP 128 PINSPIN DESCRIPTION DIGITAL PIN DESCRIPTIONDefinitionName Number PINTypeI/O PCI bus address and data linesXA31-XA0 126-128,1-2,5-7,12-16,19-21,32-35,38-41,43-44,47-52XINTA 117 O Interrupt request , active-low.XPRST 119 I ResetXCLK33 120 I PCI bus clock.XGNT 121 I Bus master grant, active-low.XREQ 122 O Bus master request, tri-stateoutput, active-low.XIDSEL 9 I ID select, active-high.XFRAME 23 I/O Cycle frame, active-low.XIRDY 24 I/O Initiator ready, active-low. The busmaster device is ready to transmitor receive dataXTRDY 25 I/O Target ready, active-low. The targetdevice is ready to transmit orreceive dataXDEVSEL 26 I/O Device select, active-low. Thetarget device has decoded theaddress of the current transactionas its own chip select range.XSTOP 29 I/O Stop transaction, active-low. Thetarget device request to the masterto stop the current transaction.XPAR 30 I/O Parity. The pin indicates even parityacross XA31-XA9 and XCBE3-0 forboth address and data phases.XCBE3,2,1,0 8,22,31,42 I/O Multiplexed command/byte enable.These pins indicate cycle typeduring the address phase of atransaction.Digital and PCI I/O power pin+5VVDD 4,10,18,27,37,45,54,115,124GND Digital and PCI I/O groundGND 3,11,17,28,36,46,53,114,116,125XIN 55 I 14.318Mhz crystal, or external clockinputcrystalXOUT 56 O 14.318MhzXGD7-XGD4 97-94 I Game port switch input pin.Switch D to switch AXGD3-XGD0 93-90 I/O Game port resistor input pin.RC3 to RC0XTXD 88 O MIDI transmit datadatareceiveXRXD 89 I MIDI109-112 I/O General purpose I/OXBIO3-XBIOVDD5V 83 +5V Digital and PCI I/O power pinVDDM 100 +5V Digital and PCI I/O power pinDGND 99 GND Digital and PCI I/O groundXEECS 84 O EEPROM chip selectAVDD 61,81 +5VAnalogpowerAGND 60,82 GNDAnalogground XADOUTL-R 64,65 AO1 Line outXADCHL-R 66,67 AI/O ADC filterXLFILT 68 AI/O Left channel DAC filterXRFILT 69 AI/O Right channel DAC filter XVREF 63 AI Reference Voltage (no use, left itfloating)XINTVREF 62 AI ReferenceVoltageXCDL-RXCDGND71,72,70 AI CD audio differential input XLNL-R 75,76 AI Line in or Rear speaker out XAUXL-R 77,78 AI Aux. Line inXPCSPKIN 79 AI PC beep signalXMICIN 80 AI MicrophoneinXREARL-R 73,74 AI/O Rear speaker outXGPBIO 87 O General purpose I/O pin XMBCSZ 85 I Audio chip select (low:enable)NC 57-59,86,98,101-108,113,118,123 - ReservedPIN DESCRIPTIONANALOG PIN DESCRIPTIONELECTRICAL CHARACTERISTICSAbsolute Maximum RatingsUnitsValueRatings SymbolDigital power voltage VDD VDD±5% VAnalog power voltage AVDD AVDD±5% VOperating temperature range TO 0 to 70 °CStorage temperature range TST -40 to 125 °CMaximum power dissipation PDMAX 300 MWDigital CharacteristicsUnitTypMax PARAMETER SymbolMinInput high voltage(PCI I/O) VIH 2. VDD+0.5 VInput low voltage (PCI I/O) VIL -0.5 0.8 VOutput high voltage VOH 2.4 VDD VOutput low voltage VOL 0.0 0.2 0.4 VOutput buffer current 5 mAAudio CharacteristicsUnitTypMax PARAMETER SymbolMinAnalog input voltage Avin 1.1 VRmsAnalog output voltage Avout 1.1 VRmsA-A S/N ratio 85 dbTHD 0.09A-AADC S/N ratio 80 db0.2 %ADCTHD 0.1DAC S/N ratio 80 dbDAC0.2 %THD 0.1Microphone input level 20 200 mvbooster 20 db MicrophoneCMI8738 PCI Configuration Spaces00h 13F6 : (Vender ID) read only02h 0111 : (Device ID) read only04h 0006 : Command (State after #RST all is “0”)0 (bit 9) Fast back-to-back enable0 (bit 8) #SERR enable (R/W)0 (bit 7) Wait cycle control0 (bit 6) Parity error response0 (bit 5) VGA palette snoop0 (bit 4) Memory write and invalidate enable0 (bit 3) Special cycles1 (bit 2) Bus master (R/W)0 (bit 1) Memory space1 (bit 0) I/O space (R/W)06h 0280 : Status0 (bit 15) Detected Parity Error0 (bit 14) Signaled System Error0 (bit 13) Received Master Abort0 (bit 12) Received Target Abort0 (bit 11) Signaled Target Abort01 (bits 10-9) DEVSEL timing 00-fast, 01-medium, 10-slow0 (bit 8) Data Parity Error Detected1 (bit 7) Fast Back-to-Back Capable0 (bit 6) UDF Supported0 (bit 5) 0-33MHz ,1-66MHZ Capable00000 (bits 4-0) Reserved08h 10 : Revision ID09h 040100 : Audio device0C h 00 : Cache Line Size0D h 20 : Latency Timer0E h 80 : Header Type0F h 00 : BIST10h 0000d401 : I/O of length : -65280(ffff0100h) : First Base Address register 14h 00000000 : Uninitialized : Second Base Address register18h 00000000 : Uninitialized : Third Base Address register1C h 00000000 : Uninitialized : Fourth Base Address register20h 00000000 : Uninitialized : Fifth Base Address register24h 00000000 : Uninitialized : Sixth Base Address register28h 00000000 : Cardbus CIS Pointer2C h 13f6 : (SubSystem Vender ID) (R/W)2E h ffff : SubSystem ID (R/W)30h 00000000 : Expansion ROM Base Address34h 00000000 : Reserved38h 00000000 : Reserved3C h 05 : Interrupt Line3D h 01 : Interrupt Pin3E h 02 : Min Grant3F h 18 : Max LatencyDMA Slave Configuration Register(R/W) PCI Configuration address 40HBit(s) Function31:16 Reserved15:4 Slave Base Address 15-4. INTEL VX chipset seleted if Base Address 15:4=000h3 Non legacy Extended Addressing0 = disabled1 = enabledSize2:1 Transfer00 = 8 bit transfer01 = 16 bit transfer10 = 32 bit transfer, non legacy11 = Reserved0 Channel Enable0 = disabled1 = enabledPCI register Internal Register MappingFunction Control Register 0Address 00HBit(s) R/WName Description31-20 Reserved.0)(Default1->Reset19 RST_CH1Channel1,0)(Default1->ResetChannel0,18 RST_CH017 CHEN1 Channel1,1->Enabled, 0->Disabled.16 CHEN0 Channel0,1->Enabled, 0->Disabled.15-4 Reservedenabled.ischannel13 PAUSE11->PauseChannel1,ifisenabled.channel02 PAUSE0Channel0,1->Pauseif1->Recording, 0->Playback,1 CHADC1Channel11->Recording, 0->Playback0,Channel0 CHADC0Function Control Register 1Address 04H Name DescriptionBit(s) R/W31-16 Reserved15-13 DSFC[2:0] DAC Sampling Frequency Select,0 0 0 5.512K0 0 1 11.025KK0 1 0 22.05K0 1 1 44.11 0 0 8K1 0 1 16K1 1 0 32KK1 1 1 4812-10 ASFC[2:0] ADC Sampling Frequency Select,0 0 0 5.512KK0 0 1 11.0250 1 0 22.05K0 1 1 44.1KK1 0 0 8K1 0 1 16K1 1 0 32K1 1 1 489-6 Reserved5 INTRM Interrupt Mask bit for MCB (Master control block) module interrupt.0 MCB interrupt disabled.1 MCB interrupt enabled.4 BREQ If this bit is set low it will prevent the MCB and DAC/ADC block from accessing the memory.0 Bus Master request disabled(power on state)1 Bus Master request enabled.V oiceLegacydevice(SB16,FM).3 VOICE_EN Thisenablesbit0 Legacy V oice disabled on channel 0.1 Legacy V oice enabled on channel 0.UARTLegacydevice.This2 UART_ENbitenablesdisabled0 UARTenabled1 UARTenables Legacy Joystick device.1 JYSTK_EN Thisbitdisabled0 Joystickenabled1 Joystick0 ReservedChannel Format RegisterAddress 08HName DescriptionBit(s) R/W31-24 VER[7:0] PCI Audio subversion for internal indentification. “01”23-19 Reserved18 FMOFFSET2 When set 1 and Reg. 24H bit7 ‘FMmute=1’,FM PCM will be forced to DC value 0002H.17-16 ReservedresolutionSample15-14 AdcBitLen[1:0]0016 Bits per sample . (Default)0115 Bits per sample.1014 Bits per sample.1113 Bits per sample.resolution13-12 AdcDacLen[1:0]Sample00600nSec per bit in a sample.01660nSec per bit in a sample.10 1.3uSec per bit in a sample. (Default) 112.8uSec per bit in a sample.11 CH1 Ssmple Rate 176K 10 CH1 Sample Rate 88K 9 CH0 Sample Rate 176K 8 CH0 Sample Rate 88K 7-4reserved3-2 CH1FMT[1:0] Data format of channel 100 8 bit Mono mode 01 8 bit Stereo mode 10 16 bit M ono mode 11 16 bit S tereo mode1-0 CH0FMT[1:0] Data format of channel000 8 bit Mono mode 01 8 bit Stereo mode 10 16bit Mono mode 11 16 bit S tereo modeInterrupt Hold/Clear RegisterAddress 0C HBit(s) R/W Name Description 31-19Reserved18 TDMA_INT_EN Interrupt hold/clear bits for updating TDMA position0 Interruupt Clear 1Interrupt Hold if exist.17 CH1_INT_EN Interrupt hold/clear bits for the Channel 1.0 Interrupt Clear 1Interrupt Hold if exist.16 CH0_INT_EN Interrupt hold/clear bits for the Channel 0.Interrupt Clear1 Interrupt Hold if exist.15-0ReservedInterrupt RegisterAddress 10HBit(s) R/W Name Description31 R INTR Interrupt reflected from any sources.No interrupt1Interrupt pending30-28 Reserved27 R VCOBusTarget/MasterAccess.PCIduringconditions26 R MCBint Abortoccurinterrupt0 No0Interrupt pending25-17 Reserved16 R UARTint This bit is the UART interrupt bit.0No UART interrupt1UART interrupt pending15 R LTDMAINT Interrupt for updating Low Channel TDMA position.0No interrupt1 Interruptpending14 R HTDMAINT Interrupt for updation High Channel TDMA position.0No interrupt.1 Interruptpending.13-8 Reserved7 R XDO46 Direct programming EEPROM interface , read data registerfromCTRLregister.DMAstatus6 R LHBTOGHigh/Low5 R LegHDMA Legacy is in High DMA channel.4 R LegStereo Legacy is in Stereo mode.Busy.BChannel3 R Ch1BusyBusy.AChannel2 R Ch0BusyInterrupt.1 R Chint1 ChannelB0No interrupt1Interrupt pendingAInterrupt.0 R Chint0 Channel0 No interruptpending1 InterruptLegacy Control/Status RegisterAddress 14H Name DescriptionBit(s) R/W31 Reserved30-29 VMPU [1:0] Base address for MPU401 access00Base address : 330h01Base address : 320h10 Base address : 310h11 Base address : 300h28ReservedAddress Select for SB16 access.27-26 VSBSEL[1:0] TheBase00Base address: 220h01Base address: 240h10Base address: 260h11Base address: 280hBase Address Select for FM access.25-24 FMSEL[1:0] The00Base address : 388h01Base address : 3C8h10Base address : 3E0h11Base address : 3E8h23-21 Reserved20 SetRetry Mode of wait state . 0:legacy I/O wait (default) 1:legacy I/O BUS retry19C_EEACCESS Direct programming EEPROM interface Registers.18C_EECS17C_EEDI4616C_EECK4615-0 ReservedMicellaneous Control RegisterAddress 18HName DescriptionR/WBit(s)31 PWD Power Down Mode enabled..Engine.Master/DSP30 RESET ResetBus29-28 SFIL[1:0] Four level of filter control at the front end DAC..withwork27 TX/VX Whichmotherboardto0VX chip sets.1TX chip sets.26 N4SPK3D Hardware copy front channel to rear channel25-24 Reserved23 ENDBDAC Default low, High will enable Double DAC structure.low,22 XCHGDAC DefaultBack>SPKR.>SPKR, CH10 CH0Front>SPKR.FrontSPKR, CH11 CH0>Back21-20 Reservedenabled.FM19 FM_EN Legacy18-17 Reserved16 VIDWPDSB Sub ID write protect disabled. (default 0)15 Reservedchannel mask on Legacy DMA.14 MASK_EN Activate0Disabled1Enabled13 VIDWPDSB Write Protect of HSP Configuration Sub ID.0Protect.1No protect.contrlsoftwarefilter stepping at the front end DAC.Let12 SFILENB11-5 Reserved4 MIDSMP Enable 1/2 interpolation at the Front end DAC..3-2 UPDDMA[1:0] For every the number of samples to notify updating TDMA position.00Every 2048 samples01Every 1024 samples10Every 512 samples.11Every 256 samples.1-0 TWAIT[1:0] For controling the length of legacy BUS cycle.00 3 PCICLK.0118 PCICLK.1024 PCICLK1132 PCICLK* Notice REQ_SQ[2:0] States of BusRequest Engine.usingisBus.MM_DATA BusMasterMIDLE Bus Master is not using Bus.Request.BusMaster0/1REQA/REQB ChannelGrant.BusMaster0/1GNTA/GNTB ChannelRequest.DMA0/1ADRQ/BDRQChannelAcknoledge.DMAADACK/BDACK Channel0/10/1Interrupt.AIRQ/BIRQ ChannelBusy.CX/BX Channel0/1T - DMA PositionAddress 1C HName DescriptionBit(s) R/W31-16 R TDMACN T Current Byte/Word Count of DMA channel.Address of DMA channel.R TDMAADR Current15-0Mixer Control / Device Configure Register (can be accessed only by BYTE instruction)Address 20HBit(s) R/W Name Description7-0 W SBVR[7:0] Programmable SB16 version No. R DEV[7:0] Hardwire device version No.Address 21HBit(s) R/W Name Description7-3Reserved2 X_ADPCM SB16 ADPCM enable,default disabled. 1 PROINV SBPro Left/Right channel switching. 0X_SB16Indicate device active as SB16 compatible, default SB16Address 22HBit(s) R/W Name Description7-0IDXdataMapping SB compatible mixer INDEX register data port(A2x5h)Address 23HBit(s) R/W Name Description7-0IDXaddrMapping SB compatible mixer INDEX register address port(A2x4h)Address 24HBit(s) R/W Name Description7 Fmmute Mute FM6 Wsmute Mute Wave stream5 SPK4 select four speaker mode(emulate Line in to Line out ) 4Rear2frontexchange rear and front channels’s speaker out3 Waveinl Digital Wave recording Left channel 2 Waveinr Digital Wave recording Right channel 1-0ReservedAddress 25HBit(s) R/W Name Description7 RAUXREN Recording source select R-Aux 6 RAUXLEN Recording source select L_Aux 5 VAUXRM R-AUX mute control 4 VAUXLM L-AUX mute control3-1controlvolumeVADMIC[2:0] RecordingMIChighdisablegain0 MICGAINZ MICcontrol,defaultAddress 26HName DescriptionBit(s) R/WVAUXL[3:0] L-AUX volume control7-4controlvolumeVAUXR[3:0] R-AUX3-0Address 27HName DescriptionBit(s) R/W0 DMAUTO SB16 Low/High DMA Auto detect enabled ,When high.1 Reserved2 XGPBIO general purpose bi-direction pin, when high output tri-state (default LOW)3 Reserved4 Reserved5 XGPO1 general purpose output pin 1,this pin shared with XSPDIFO pin, and enabled when index reg. F0_bit 0 programmed high.Reserved6-7Mup401 PCI PortIndex address 40-4F HFM PCI PortIndex address 50-5FH Extension Index Register (access from SB compatible mixer port)Index address F0HName DescriptionBit(s) R/Wcontrol7-5volumePhoneVPHONE[2:0]mutecontrolPhone4 VPHOMhighunmutecontrol,defaultmute3 VSPKM PC-SpeakerenableR-channel2 RLOOPREN RecordingL-channelenable1 RLOOPLEN Recording0 VADMIC3 Micphone record boost, default low disable, high enable.Index address F8-FF HThese 8 registers is used to programming M/N conunter by clock generatorChannel 0 Frame Register 1Address 80HBit(s) R/W Name Description31-0 W BASADDR0 Base address of channel 0. R CURADDR0 Current address of channel 0.Channel 0 Frame Register 2Address 84HBit(s) R/W Name Description31-16 W BASCNT0 Base count of samples at Codec. 15-0 W BASCNT0 Base count of samples at Bus Master. 31-16 R CURCNT0 Current count of samples at Codec. 15-0RCURCNT0Current count of samples at Bus Master.Channel 1 Frame Register 1Address 88HBit(s) R/W Name Description31-0 W BASADDR1 Base address of channel 0. R CURADDR1 Current address of channel 0.Channel 1 Frame Register 2Address 8C HBit(s) R/W Name Description31-16 W BASCNT1 Base count of samples at Codec. 15-0 W BASCNT1 Base count of samples at Bus Master. 31-16 R CURCNT1 Current count of samples at Codec. 15-0RCURCNT1Current count of samples at Bus Master.Legacy SB compatible mixerIndex D7 D6 D5 D4 D3 D2 D1 D00x00 Reserved0x04 Wave volume left channel Wave volume right channel0x0A Micvolume 0x22 Master volume left channel Master volume right channel0x26 FM volume left channel FM volume right channel0x28 Analog-CD volume left channel Analog-CD volume right channel0x2E Line-in volume left channel Line-in volume right channel0x30 Reserved0x31 Reserved0x32 Reserved0x33 Reserved0x34 Reserved0x35 Reserved0x36 Reserved0x37 Reserved0x38 Reserved0x39 Reserved0x3A Reserved0x3BPCspkvolumeOutput muting controls0x3CLine L Line R CD L CD R MicRecording left channel controls0x3DFM L FM R Line L Line R CD L CD R MicRecording right channel controls0x3EFM L FM R Line L Line R CD L CD R Mic0x3F Reserved0x40 Reserved0x41 Reserved0x42 Reserved0x43 Reserved0x44 Reserved0x45 Reserved0x46 Reserved0x47 ReservedIRQ channel (read only)0x80IRQ10IRQ7 IRQ5 IRQ2(9)16 bit DMA channel (read only) 8 bit DMA channel (read only)0x81DMA7 DMA5 DMA3DMA 1DMA 0Interrupt status (read only)0x82MPU-401 16bitDMA8bitDMAz Please do not write any values into reserved registers1. StereoIt is only one-dimensional, as sounds come from (left /right) the physical location ofspeakers.2. Surround (Stereo Expander )It filters the existing stereo signal to make the sounds fill in the area around the speakers, and in front of the listener. Sound sources appear to come from outside the physical locations of the speakers.3. Multi-Speaker Surround (Dolby Pro Logic or Digital AC-3)It uses five speakers instead of two to surround the listener; hence, sound sources come from five directions and create engaging audio experience. This surround sound effect, however, has to be pre-recorded, and it dose not support interactive environment.4. HRTF 3D Positional 3D (C-Media 3D)Only this sound processing technology can be called real 3D manifestation, as 3D usually refers to the three dimensions of X, Y and Z. This technology allows people to pin-point the location of sound in the real world (up/down, left/right, front/back)using only two speakers or a pair of headphones. This technology also supports interactive 3D applications to get a real-time placement of sounds via API (application programming interface) such as Microsoft DirectSound3D TM . We can also use this technology to simulate Multi-speaker Surround with two physical speakers to deliver five “virtual" speakers in the air, surrounding the listener and creating home theater soundenvironment. This is the most economical and the easiest solution to people who would like to get high performance surround sound but don’t want to spend money in adding extra speakers.A virtual speakerA physical speaker5. HRTF 3D Extension Positional (C-Media 3DX)3D illusion exists because traditional 3D positional audio system assumes the user's position as the sweet spot to design crosstalk-cancellation circuit; therefore, if the user wants to have 3D positional audio effects, he can’t move his head or position out of sweet spot. Another 3D illusion fails because half the population are compulsive"head-turners" who will never get 3D audio from two speakers . To remedy this,C-Media utilizes HRTF 3D extension technology (C3DX) to enhance traditional HRTF 3D positional audio by substituting two-speaker system by four-speaker one. Therefore, at least one or two speakers should be placed behind the listener's head to complement the rear-side effect, thus creating compelling realistic sound. This technology greatly improves HRTF 3D positional audio quality, and successfully eliminates the sweet spot limitation. Users can enjoy the real 3D audio gaming effects, and don't have to worry about the environmental confinement any more.A virtualspeaker A physicalspeakerC3D HRTF Positional Audio TechnologyC3D technology uses an audio filter called Head Related Transfer Functions (HRTFs), which is licensed from CRL®(Central Research Lab). The basic concept of C3D is: since we can hear sound three dimensionally in the real world using our two ears, it must be possible to regenerate the same sound effect from two loud speakers.What is HRTF ?HRTF (Head Related Transfer Functions) is a set of audio filters which can vary locations of sound effects (spatial hearing cues) in three-dimension measured from the listener's eardrum.People can use this technology and special digital signal processing to re-create spatial hearing cues, so as to makes the ears hear a realistic and three-dimensional sounds coming from a pairs of loud speakers or headphones.There are several listening cues which allow people to hear sounds three-dimensionally :(I). Spatial Hearing : Primary 3D-cues1. IADThe head shadowing effect creates differences in the amplitudes of the sound signals arriving at each ear from the source. The effects of diffraction are most noticeable in the range between about 700 Hz to 8 KHz, where the A and S functions periodically converge and diverge gently. This Inter-aural Amplitude difference (IAD) is one of the primary 3D sound cues.2. ITDIn addition to IAD, there is also a time-of-arrival difference between the left and right ears(unless the sound source is in one of the pole positions, such as directly in front, behind, above and below): this is known as the Inter-aural Time Delay (ITD).3. Pinna EffectsIt has been presumed by several researchers that the convolutions of the pinna create the spectral features which constitute the 'height' cues. In practical experiments by Gardner, in which different parts of the pinna were occluded, and then the ability of a number of subjects to identify sound source positions at different heights was tested, it was shown that the different features all contributed by different amounts. For example, if the fossa is excluded, then height localization capability is impaired, but not totally extinguished. It would be reasonable to conclude that it is the combined effect of the pinna convolutions which create the various localization cues, and it is not valid - orlogical - to attempt to assign particular spatial capabilities with individual physicalfeatures.(II). Spatial Hearing : Secondary 3D-cues (shoulder & local reflections)In addition to the 'primary' 3D sound cues (IAD, ITD and pinna effects), there are several additional cues which do contribute to the localization capability; these will be referred to here as 'secondary' cues, and include shoulder/torso reflections, local room reflections, and psychological cues.1. Shoulder / Torso reflectionsThe presence of a torso attached to an artificial head has the effect of increasing the pressure in the vicinity of the ear up to frequencies of around 2 kHz. The effect is greater for frontal sources than lateral ones. In experience, the presence of the torso does not appear to contribute much to spatial accuracy. However, shoulders are located very close to the ears, and their effect is greater, this time, in respect oflateral sounds. If one listens to an artificial head first without - and then with - shoulder fitments, then it is clear that the shoulders do contribute to spatial effects in certain positions.The shoulders provide a strong reflection from lateral sources, with a short path-length of around 10 cm between direct sound and reflection. The effects are most important forside-positioned sources, especially for "height" effects, where the shoulders tend to mask sources which move below about 30degree depression.2. Local, Room ReflectionsIn simulations, it is clear that the incorporation of first-order simulated room reflections can help in the creation of sound images which have a "solid" nature. However, the effects - if accurately simulated - are relatively slight. Experience has shown that it is primarily the quality of the HRTFs themselves which determine the quality and solidity of the sound image.The further addition of second-order reflections does not help significantly, because in reality, there is a great number of reflections in the average room. A method which does help to recreate the acoustic experience of a room, however, is to use approximate simulations of lateral reverb, using either 2 or 4 laterally placed "virtual" sources at, say, +-70 degrees and80 degrees azimuth.•The quality of the sound image relates to the HRTFs used.•The quality of the room image relates to addition of reflections and reverb.3. Psychological CuesThere are clearly psychological cues present in everyday life which work together with the audio cues to tell us about the world around us. For example, if you hear the sound of a helicopter flying, you expect it to be up in the air, and not downwards. If a dog is barking nearby, you would expect it to be downwards.。

集成声卡基础知识

集成声卡基础知识

集成声卡基础知识电脑主板集成声卡知识介绍:一、何谓AC’97自从威盛(VIA)在其MVP3主板芯片中提出了“AC’97声卡”这个概念,我们便常常在形形色色的主板说明书上见到它,最后也就有了“AC’97软声卡”一说。

发展到后来,“AC’97”干脆成了软声卡的代名词。

可是如果你去看看某些高档声卡的技术资料,你就会惊讶地发现“该卡采用AC’97标准”,难道高档声卡也是软声卡?要知道这其中的奥妙,还须先认识AC’97规范(或标准)。

1.AC’97的提出1996年6月,5家PC领域中颇具知名度和权威性的软硬件公司共同提出了一种全新思路的芯片级PC音源结构,也就是我们现在所见的“AC’97”标准(Audio Codec97)。

2.什么是AC’97规范早期的ISA声卡由于集成度不高,声卡上散布了大量元器件,后来随着技术和工艺水平的发展,出现了单芯片的声卡,只用一块芯片就可以完成声卡所有的功能。

但是由于声卡的数字部分和模拟部分集成在一起,很难降低电磁干扰对模拟部分的影响,使得ISA声卡信噪比并不理想。

AC’97标准则提出“双芯片”结构,即将声卡的数字与模拟两部分分开,每个部分单独使用一块芯片。

AC’97标准结合了数字处理和模拟处理两方面的优点,一方面减少了由模拟线路转换至数字线路时可能会出现的噪声,营造出了更加纯净的音质;另一方面,将音效处理集成到芯片组后,可以进一步降低成本。

3.AC’97的应用1997年后,市场上出现的PCI声卡大多数已经开始符合AC’97规范,把模拟部分的电路从声卡芯片中独立出来,成为一块称之为“Audio Codec”(多媒体数字信号编解码器)的小型芯片,而声卡的主芯片即数字部分则成为一块称之为“Digital Control”(数字信号控制器)的大芯片。

由此可见,AC’97并不是某种声卡的代称,而是一种标准。

二、集成声卡中的主流──软声卡通过上面的介绍,我们知道一块符合AC’97标准的声卡是有“Audio Codec”与“Digital Control”两个芯片的。

ADC0832英文手册

ADC0832英文手册
Molded (N) SO(M)
Molded (N) Molded (N)
SO(M) PCC (V) PCC (V) Molded (N) SO(M) SO(M)
Temperature Range
0˚C to +70˚C 0˚C to +70˚C −40˚C to +85˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C −40˚C to +85˚C 0˚C to +70˚C
0˚C to +70˚C
Converter and Multiplexer Electrical Characteristics The following specifications apply for
VCC = V+ = VREF = 5V, VREF ≤ VCC +0.1V, TA = Tj = 25˚C, and fCLK = 250 kHz unless otherwise specified. Boldface limits apply from TMIN to TMAX.
supplies n 0V to 5V input range with single 5V power supply n Remote operation with serial digital data link n TTL/MOS input/output compatible n 0.3" standard width, 8-, 14- or 20-pin DIP package n 20 Pin Molded Chip Carrier Package (ADC0838 only) n Surface-Mount Package

集成声卡真的很差?亲测集成声卡 PK 主流随身听

集成声卡真的很差?亲测集成声卡 PK 主流随身听

集成声卡真的很差?亲测集成声卡PK 主流随身听提到集成声卡,恐怕多数朋友对其的印象是比较差的,诸如音质不佳、底噪明显等等缺点可以说出来一大堆,即便是与小小的随身听相比,可能也会有不少朋友认为集成声卡都是有所不如的。

那么集成声卡真的这么差吗?笔者认为未必,因为集成声卡是个很笼统的总称,集成声卡和集成声卡也有档次、好坏之分,就像随身听一样,有几十元的山寨MP3,也有像卖一万多的顶级播放器,它们的音质差距无疑是非常巨大的,而集成声卡也是如此。

不过集成声卡的初衷就是低成本,所以价格上差距没有那么巨大,但音质上的差别肯定是有的,但最好的与最坏的差别究竟有多大却很难说清,在买电脑的时候恐怕也没有多少人会在意集成声卡效果如何,很多时候都是碰运气。

但如果稍微在意一下的话,也会发现集成声卡也有档次之分,有些是入门型号,有些是高端型号,还有些集成的是独立声卡芯片。

在下面笔者也随想随谈,来说说集成声卡的历史,以及主流的集成声卡与随身听的音质PK。

集成声卡的前生今世ISA声卡创新AWE64 Gold,看起来元件很多很复杂在上个世纪90年代中期,笔者刚刚接触并使用个人电脑的时候,多媒体电脑的概念刚刚盛行起来(再往前似乎都是靠机箱里那个单音的鸣声器),带MMX多媒体指令集的Intel 奔腾处理器、带3D加速的显卡、声霸卡成为潮流,成为组装电脑必不可少的几大件。

在当时声卡只有独立的,还没有集成这个概念,入门级的虽然不算贵,但怎么也要一二百元元的样子,不过这在当年多媒体电脑的配件里属于非常便宜的零件(即便不考虑RMB贬值与电子产品价格下滑等问题,现在一二百元的声卡成本反而变得很奢侈),那时候恐怕也没人奢求什么音质,只要能看电影、玩游戏出个声音就很令人感动了,就像曾经的手机能有个32和弦、64和弦就很牛了。

PCI声卡相对于老ISA声卡的集成度更高经典的创新SB Live!系列声卡再往后一段时间里声卡的发展很迅速,8bit的ISA声卡迅速被淘汰,PCI总线、16bit/44.1KHz CD级音质以及多声道声卡成为了主流,当时虽然也还有YAMAHA 724这样的百元级入门声卡,但是人们也开始对音质有了一定追求,创新的声卡也开始一枝独秀,称霸中高端声卡市场,记得当年如果好意思说自己是个有点追求的DIYer,怎么着也要来个400多元的创新SB Live!数码版。

ADC0832CCN

ADC0832CCN

0˚C to +70˚C
Converter and Multiplexer Electrical Characteristics The following specifications apply for VCC = V+ = VREF = 5V, VREF ≤ VCC +0.1V, TA = Tj = 25˚C, and fCLK = 250 kHz unless otherwise specified. Boldface limits apply from TMIN to TMAX.
Part Number ADC0831CCN ADC0831CCWM ADC0832CIWM ADC0832CCN ADC0832CCWM ADC0834BCN ADC0834CCN ADC0834CCWM ADC0838BCV ADC0838CCV ADC0838CCN ADC0838CIWM ADC0838CCWM See NS Package Number M14B, M20B, N08E, N14A, N20A or V20A 8 4 2 Analog Input Channels 1 Total Unadjusted Error Package Molded (N) SO(M) SO(M) Molded (N) SO(M) Temperature Range 0˚C to +70˚C 0˚C to +70˚C −40˚C to +85˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C 0˚C to +70˚C −40˚C to +85˚C 0˚C to +70˚C

ADC0808功能及简介资料

ADC0808功能及简介资料

A D C0808功能及简介11.2.4 典型的集成ADC 芯片为了满足多种需要,目前国内外各半导体器件生产厂家设计并生产出了多种多样的ADC 芯片。

仅美国AD 公司的ADC 产品就有几十个系列、近百种型号之多。

从性能上讲,它们有的精度高、速度快,有的则价格低廉。

从功能上讲,有的不仅具有A/D 转换的基本功能,还包括内部放大器和三态输出锁存器;有的甚至还包括多路开关、采样保持器等,已发展为一个单片的小型数据采集系统。

尽管ADC 芯片的品种、型号很多,其内部功能强弱、转换速度快慢、转换精度高低有很大差别,但从用户最关心的外特性看,无论哪种芯片,都必不可少地要包括以下四种基本信号引脚端:模拟信号输入端(单极性或双极性);数字量输出端(并行或串行);转换启动信号输入端;转换结束信号输出端。

除此之外,各种不同型号的芯片可能还会有一些其他各不相同的控制信号端。

选用ADC 芯片时,除了必须考虑各种技术要求外,通常还需了解芯片以下两方面的特性。

(1)数字输出的方式是否有可控三态输出。

有可控三态输出的ADC 芯片允许输出线与微机系统的数据总线直接相连,并在转换结束后利用读数信号RD 选通三态门,将转换结果送上总线。

没有可控三态输出(包括内部根本没有输出三态门和虽有三态门、但外部不可控两种情况)的ADC 芯片则不允许数据输出线与系统的数据总线直接相连,而必须通过I/O 接口与MPU 交换信息。

(2)启动转换的控制方式是脉冲控制式还是电平控制式。

对脉冲启动转换的ADC 芯片,只要在其启动转换引脚上施加一个宽度符合芯片要求的脉冲信号,就能启动转换并自动完成。

一般能和MPU 配套使用的芯片,MPU 的I/O 写脉冲都能满足ADC 芯片对启动脉冲的要求。

对电平启动转换的ADC 芯片,在转换过程中启动信号必须保持规定的电平不变,否则,如中途撤消规定的电平,就会停止转换而可能得到错误的结果。

为此,必须用D 触发器或可编程并行I/O 接口芯片的某一位来锁存这个电平,或用单稳等电路来对启动信号进行定时变换。

AD7888是美国模拟器件AD公司推出的一款高速低功耗12位模数转换器

AD7888是美国模拟器件AD公司推出的一款高速低功耗12位模数转换器

AD7888 的特点AD7888是美国模拟器件AD公司推出的一款咼速低功耗12位模数转换器,可以在+2.7〜+5.25V 单电源模式下工作,见图2。

其最大转换速率可达到125k SPS。

AD7888的输入采样/保持电路在500ns内获取一个信号,采用单端采样模式,包含8个单端模拟输入,从AIN1到AIN8,模拟输入电压从0〜VREF。

AD7888 内部具有用做A/D转换的换的2.5V基准电压源,REFIN/REFOUT 管脚允许用户访问这个基准。

另外,该管脚也可以使用外部基准电压,范围从1.2V到VDD。

CMOS 的制造工艺确保了低功率消耗,正常工作时为2mW,掉电状态下为3^W。

该器件采用16脚SOIC和TSSOP外形封装。

可以选择多种电源管理模式(包括数据转换后自动处于掉电模式),与多种串行接口兼容,如SPI/QSPI/MICOWIRE/DSP 。

AD7888引脚功能及符号说明见图3、表1、表2。

R£F IH«R£FOUTV D0ACM>AHI AIN2AW AIN4AD788STOP VOf(Not g Scab)固BB回回B回习SCLKDOU7DINAGHDAimAIN7AIN6AIN5图2 AD7888模数转换器■:USfli表1 AD7888模数转换器管脚表2引脚符号及说明在AD7888中,控制寄存器是8位的只写寄存器。

数据在时钟周期信号的上升沿从AD7888的DIN引脚载入,在此同时获取外部模拟量转换的结果。

每次数据的传输需要准备16个连续时钟信号。

数据只能在片选信号下降沿之后的前8个时钟脉冲的上升沿装入控制寄存器4AD78881.5tACQMSB DONTC5CSDIN14.58 SCLKPINSPI serial peripheral in terfaceMotorolaSPIAD7888MCU AT89S52SPI-rr述厂LJ述厂LLT上厂LLTU厂LAfirHn-專乂L U—才J i 弋)r* i : i 4"匚AD7888 MCUAD7888 MCU6N137 6N137AD7888MCU AT89S522.5V 3 4 () AD7888 CS AD888 SPI74LS125SPI 74LS125SPI 74LS125CPU74LS125直接使用芯片内置的+2.5V 参考电压,在程序中必须将控制器的REF位置清为“ 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

WM873824Bit Stereo ADCWOLFSON MICROELECTRONICS plc Product Preview,January 2003,Rev 1.8Copyright 2003Wolfson Microelectronics plcDESCRIPTIONThe WM8738is a high performance stereo audio ADC designed for consumer applications.Stereo line-level audio inputs are provided,along with a control input pin to allow operation of the audio interface in either one of two industry standard modes.The device also has a selectable digital high pass filter to remove residual DC offsets.Stereo 24-bit multi-bit sigma delta ADCs are provided,along with oversampling digital interpolation filters.24-bit digital audio output word lengths and sampling rates from 8kHz to 96kHz are supported.The device is available in a small 14-pin SOIC package.FEATURES•Audio Performance-90dB SNR (‘A’weighted @48kHz)ADC • 3.0–5.5V Analogue Supply Operation • 3.0–3.6V Digital Supply Operation•ADC Sampling Frequency:8kHz –96kHz •Selectable ADC High Pass Filter•Selectable Audio Data Interface Modes -I 2S or Left Justified •14-pin SOIC PackageAPPLICATIONS•CD and Minidisc Recorders •DVD Players•General Purpose Audio ConversionBLOCK DIAGRAMF M TN O H PRINLINCAP D V D DD G N DAVDD AGND LRCLKSDATO V R E FBCLK MCLKwPP Rev 1.8January 20032PIN CONFIGURATIONORDERING INFORMATIONDEVICE TEMP.RANGE PACKAGE WM8738ED -25to +85o C 14-pin SOIC WM8738GED -25to +85o C 14-pin SOIC (lead free)WM8738ED/R-25to +85o C14-pin SOIC (tape and reel)WM8738GED/R -25to +85oC14-pin SOIC(lead free,tape and reel)MCLK LINAVDD AGND LRCLK NOHP SDATO DGND CAP FMT BCLK DVDD RINVREF Note:Reel quantity =3,000PIN DESCRIPTIONPIN NAME TYPE DESCRIPTION1DVDD Supply Digital positive supply 2SDATO Digital Output ADC digital data output3BCLK Digital InputADC digital output data clock (5v Tolerant)4FMTDigital input (with pull down)Audio interface format selection (5v Tolerant)‘0’=I 2S‘1’=Left Justified 5CAP Analog Reference de-coupling pin 6VREF Analogue output Buffered reference decoupling pin 7RIN Analogue Input Right channel ADC input 8LIN Analogue InputLeft channel ADC input 9AVDD Supply Analogue positive supply10AGND SupplyAnalogue ground supply and chip substrate 11NOHPDigital input (with pull down)Digital highpass filter bypass;(5v Tolerant)‘0’=Enabled ‘1’=Bypassed12LRCLK Digital Input Data left/right word clock (5v Tolerant)13MCLK Digital Input Master clock input (5v Tolerant)14DGNDSupplyDigital supply groundNotes1.Digital input pins have Schmitt trigger input buffers and are 5V tolerant.ABSOLUTE MAXIMUM RATINGSAbsolute Maximum Ratings are stress ratings only.Permanent damage to the device may be caused by continuously operating at or beyond these limits.Device functional operating limits and guaranteed performance specifications are given under ElectricalCharacteristics at the test conditionsspecified.ESD Sensitive Device.This device is manufactured on a CMOS process.It is therefore generically susceptibleto damage from excessive static voltages.Proper ESD precautions must be taken during handling and storageof this device.The WM8738has been classified as MSL1,which has an unlimited floor life at<30o C/85%Relative Humidity and therefore will not be supplied in moisture barrier bags.CONDITION MIN MAXDigital supply voltage-0.3V+3.63V Analogue supply voltage-0.3V+7.0VVoltage range digital inputs DGND-0.3V+7.0VVoltage range analogue inputs AGND-0.3V AVDD+0.3V Master Clock Frequency37MHz Operating temperature range,T A-25°C+85°CStorage temperature prior to soldering30°C max/85%RH maxStorage temperature after soldering-65°C+150°C Package body temperature(soldering10seconds)+240°C Package body temperature(soldering2minutes)+183°CNotes1.Analogue and digital grounds must always be within0.3V of each other.2.The digital supply voltage must always be less than or equal to the analogue supply voltage.RECOMMEN DED OPERATIN GCON DITION SPARAMETER SYMBOL TESTCONDITIONSMIN TYP MAX UNIT Digital supply range DVDD 3.0 3.6V Analogue supply range AVDD 3.0 5.5V Ground DGND,AGND0V Analogue supply current AVDD=5.0V,(DVDD at3.3V)30mA Analogue supply current AVDD=3.3V,(DVDD at3.3V)19mASupply Current Low Power ModeAVDD=5.0V(DVDD at3.3V)180µASupply Current Low Power ModeAVDD=3.3V(DVDD at3.3V)110µADigital supply current DVDD=3.3VAVDD=5.0V or3.3V4mAw PP Rev1.8January20033ELECTRICAL CHARACTERISTICSTest ConditionsAVDD=5.0V,AGND=0V,DVDD=3.3V,DGND=0V,T A=+25o C,fs=48kHz,MCLK=256fs unless otherwise stated. PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT Digital Logic Levels(TTL Levels)Input LOWlevel V IL0.8V Input HIGH level V IH 2.0V Output LOWV OL0.1x DVDD V Output HIGH V OH0.9x DVDD V Pull down resistance(FMT,NOHP)R PD100kΩAnalogue Reference LevelsReference voltage V CAP AVDD/2–50mV AVDD/2AVDD/2+50mVVBuffered reference voltage V REF V CAP V Potential divider outputimpedanceR CAP40K50K60K OhmsInput to ADCInput Signal Level(0dB)V RIN/V LIN 1.0Vrms SNR(Note1,2)A-weighted,0dB gain@fs=48KHz90dBSNR(Note1,2)A-weighted,0dB gain@fs=96KHz90dBSNR(Note1,2)A-weighted,0dB gain@fs=48KHz,AVDD=3.3V90dBDynamic Range(Note2)DNR A-weighted,-60dB fullscale input9097dBTotal Harmonic Distortion(THD)(Note4)-1dB input,0dB gain-87dB ADC channel separation1KHz input95dB Input Resistance20k Ohms Input Capacitance10pF Notes1.Ratio of output level with1kHz full scale input,to the output level with the input open circuited,measured‘A’weightedover a20Hz to20kHz bandwidth using an Audio analyser.2.All performance measurements done with20kHz low pass filter,and where noted an A-weight filter.Failure to usesuch a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the ElectricalCharacteristics.The low pass filter removes out of band noise;although it is not audible it may affect dynamicspecification values.3.VREF and CAP de-coupled with10uF and0.1uF capacitors(smaller values may result in reduced performance).4.This data is measured,using an active filter on the device inputs.TERMINOLOGY1.Signal-to-noise ratio(dB)-SNR is a measure of the difference in level between the full scale output and the outputwith no signal applied.(No‘Auto-zero’or Automute function is employed in achieving these results).2.Dynamic range(dB)-DNR is a measure of the difference between the highest and lowest portions of a signal.Normally a THD+N measurement at60dB below full scale.The measured signal is then corrected by adding the60dBto it.(e.g.THD+N@-60dB=-32dB,DR=92dB).3.THD+N(dB)-THD+N is a ratio,of the r.m.s.values,of(Noise+Distortion)/Signal.4.Stop band attenuation(dB)-Is the degree to which the frequency spectrum is attenuated(outside audio band).5.Channel Separation(dB)-Also known as Cross-Talk.This is a measure of the amount one channel is isolated fromthe other.Normally measured by sending a full scale signal down one channel and measuring the other.6.Pass-Band Ripple-Any variation of the frequency response in the pass-band region.w PP Rev1.8January20034wPP Rev 1.8January 20035DIGITAL AUDIO INTERFACE TIMINGFigure 1Master Clock Timing RequirementsTest ConditionsAVDD =5.0V,AGND =0V,DVDD =3.3V,DGND =0V,T A =+25o C,fs =48kHz,MCLK =256fs unless otherwise stated.PARAMETERSYMBOL TEST CONDITIONS MIN TYP MAX UNIT System Clock TimingInformationMCLK System clock pulse width high T MCLKH 10ns MCLK System clock pulse width low T MCLKL 10ns MCLK System clock cycle timeT MCLKY27nsFigure 2Digital Audio Data Timing Test ConditionsAVDD =5.0V,AGND =0V,DVDD =3.3V,DGND =0V,T A =+25o C,fs =48kHz,MCLK =256fs unless otherwise stated.PARAMETER SYMBOL TEST CONDITIONSMINTYP MAXUNIT Audio Data Input Timing InformationBCLK cycle time t BCY 80ns BCLK pulse width high t BCH 40ns BCLK pulse width low t BCL 40ns LRCLK set-up time to BCLK rising edget LRSU 10ns LRCLK hold time from BCLK rising edge t LRH 10ns SDATO propagation delay from BCLK falling edget DD10nsDEVICE DESCRIPTIONINTRODUCTIONThe WM8738is an ADC designed for audio recording.It’s features,performance and low powerconsumption make it ideal for recordable CD or DVD players,karaoke,MP3players and mini-discplayers.The on-board stereo analogue to digital converter(ADC)is of a high quality using a multi-bit high-order oversampling architecture delivering optimum performance with low power consumption.TheADC includes a selectable digital high pass filter to remove unwanted DC components from the audiosignal.The device supports system clock inputs of256,384,512fs or768fs(fs is the sampling rate)The output from the ADC is available on the digital audio interface in either I2S or left justified audiodata formats.The line inputs are biased internally through the operational amplifier to V CAP.ADCThe WM8738uses a multi-bit over sampled sigma-delta ADC.A single channel of the ADC isillustrated in Figure3.Figure3Multi-Bit Oversampling Sigma Delta ADC SchematicThe use of multi-bit feedback and high oversampling rates reduces the effects of jitter and highfrequency noise.The ADC Full Scale input is1.0V rms at AVDD=5.0volts.Any voltage greater than full scale willpossibly overload the ADC and cause distortion.Note that the full scale input tracks directly withAVDD.The ADC filters perform true24bit signal processing to convert the raw multi-bit oversampled datafrom the ADC to the correct sampling frequency to be output on the digital audio interface.ADC DIGITAL FILTERThe ADC digital filters contain a digital high pass filter,selectable via pin NOHP.NOHP=0Digital high pass filter enabledNOHP=1Digital high pass filter bypassedThe high-pass filter response detailed in Digital Filter Characteristics.The operation of the high passfilter removes residual DC offsets that are present on the audio signal.w PP Rev1.8January20036AUDIO DATA SAMPLIN GRATESIn a typical digital audio system there is only one central clock source producing a reference clock towhich all audio data processing is synchronised.This clock is often referred to as the audio system’sMaster Clock.The external master system clock can be applied directly through the MCLK input pin.In a system where there are a number of possible sources for the reference clock it is recommendedthat the clock source with the lowest jitter be used to optimise the performance of the ADC.The master clock for WM8738supports audio sampling rates from256fs to768fs,where fs is theaudio sampling frequency LRCLK,typically32kHz,44.1kHz,48kHz,or96kHz.The master clock isused to operate the digital filters and the noise shaping circuits.The WM8738has a master clock detection circuit that automatically determines the relationshipbetween the master clock frequency and the sampling rate(to within+/-32system clocks).If there isa greater than32clocks error the interface is disabled and maintains the output level at the lastsample.The master clock must be synchronised with LRCLK,although the WM8738is tolerant ofphase variations or jitter on this clock.Table1shows the typical master clock frequency inputs forthe WM8738.If MCLK is stopped for greater than10us then the device will enter a low power mode where thecurrent taken from AVDD is greatly reduced.Note that when the device enters this mode thereferences are powered down.Table1shows the common MCLK frequencies for different sample rates.SAMPLINGMaster Clock Frequency(MHz)RATE256fs384fs512fs768fs(LRCLK)32kHz8.19212.28816.38424.57644.1kHz11.289616.934022.579233.868848kHz12.28818.43224.57636.86496kHz24.57636.864Unavailable UnavailableTable1Master Clock Frequency Selectionw PP Rev1.8January20037DIGITAL AUDIO INTERFACESThe WM8738has two data output formats,selectable via the FMT pin.Refer to the ElectricalCharacteristic section for timing information.FMT=0ADC audio data output is I2SFMT=1ADC audio data output is Left JustifiedBoth of these modes are MSB first.The digital audio interface takes the data from the internal ADC digital filter and placed it on theSDATO and LRCLK.SDATO is the formatted digital audio data stream output from the ADC digitalfilters with left and right channels multiplexed together.LRCLK is an alignment clock that controlswhether Left or Right channel data is present on the SDATO line.SDATO and LRCLK aresynchronous with the BCLK signal with each data bit transition signified by a BCLK transition.LEFT JUSTIFIED MODEIn left justified mode,the MSB of the ADC data is output on SDATO and changes on the same fallingedge of BCLK as LRCLK and may be sampled on the rising edge of BCLK.LRCLK is high duringthe left samples and low during the right samples.Figure4Left Justified Mode TIming DiagramI2S MODEIn I2S mode,the MSB of the ADC data is output on SDATO and changes on the first falling edge ofBCLK following an LRCLK transition and may be sampled on the rising edge of BCLK.LRCLK is lowduring the left samples and high during the right samples.Figure5I2S Mode TIming Diagramw PP Rev1.8January20038wPP Rev 1.8January 20039DIGITAL FILTER CHARACTERISTICSPARAMETER SYMBOLTEST CONDITIONSMIN TYPMAX UNIT Passband ±0.01dB 00.4535fsdB Stopband -6dB0.5fsPassband ripple ±0.01dB Stopband0.5465fsStopband Attenuation f >0.5465fs-65dB Group Delay22SamplesTable 2Digital Filter CharacteristicsADC FILTER RESPONSES-80-60-40-200.511.522.53R e s p o n s e (d B )Frequency (Fs)-0.02-0.015-0.01-0.00500.0050.010.0150.0200.050.10.150.20.250.30.350.40.450.5R e s p o n s e (d B )Frequency (Fs)Figure 6ADC Digital Filter Frequency Response Figure 7ADC Digital Filter RippleADC HIG H PASS FILTERThe WM8738has a selectable digital highpass filter to remove DC offsets.The filter response is characterised by the following polynomial.Figure 8ADC Highpass Filter Response-15-10-500.00050.0010.00150.002R e s p o n s e (d B )Frequency (Fs)RECOMMENDED EXTERNAL COMPONENTSFigure9External Components DiagramRECOMMENDED EXTERNAL COMPONENTS VALUESCOMPONENT REFERENCE SUGGESTEDVALUEDESCRIPTIONC1and C410µF De-coupling for DVDD and AVDDC2and C30.1µF De-coupling for DVDD and AVDDC5and C71µF Analogue input AC coupling capsC6and C8 4.7nF Analogue input filtering(RC)capacitorR2and R310kΩCurrent limiting resistorsR1and R4680ΩAnalogue input filtering(RC)resistorC90.1µFC1010µFReference de-coupling capacitors for VREF pinC110.1µFC1210µFReference de-coupling capacitors for CAP pinTable3External Components Descriptionw PP Rev1.8January200310PACKAGE DIMENSIONSNOTES:A.ALL LINEAR DIMENSIONS ARE IN MILLIMETERS(INCHES).B.THIS DRAWIN GIS SUBJECT TO CHAN G E WITHOUT N OTICE.C.BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION,NOT TO EXCEED0.25MM(0.010IN).D.MEETS JEDEC.95MS-012,VARIATION=AB.REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.w PP Rev1.8January200311IMPORTANT NOTICEWolfson Microelectronics plc (WM)reserve the right to make changes to their products or to discontinue any product or service without notice,and advise customers to obtain the latest version of relevant information to verify,before placing orders,that information being relied on is current.All products are sold subject to the WM terms and conditions of sale supplied at the time of order acknowledgement,including those pertaining to warranty,patent infringement,and limitationof liability.WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WM’s standard warranty.Testing and other quality control techniques are utilised to the extent WM deems necessary to supportthis warranty.Specific testing of all parameters of each device is not necessarily performed,except those mandated by government requirements.In order to minimise risks associated with customer applications,adequate design and operating safeguards must be usedby the customer to minimise inherent or procedural hazards.WM assumes no liability for applications assistance or customer product design.WM does not warrant or represent thatany license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right of WM covering or relating to any combination,machine,or process in which such products or services mightbe or are used.WM’s publication of information regarding any third party’s products or services does not constitute WM’s approval,license,warranty or endorsement thereof.Reproduction of information from the WM web site or datasheets is permissable only if reproduction is without alterationand is accompanied by all associated warranties,conditions,limitations and notices.Representation or reproduction of this information with alteration voids all warranties provided for an associated WM product or service,is an unfair and deceptive business practice,and WM is not responsible nor liable for any such use.Resale of WM’s products or services with statements different from or beyond the parameters stated by WM for that product or service voids all express and any implied warranties for the associated WM product or service,is an unfair and deceptive business practice,and WM is not responsible nor liable for any such use.ADDRESS:Wolfson Microelectronics plc20Bernard TerraceEdinburghEH89NXUnited KingdomTel::+44(0)1312727000Fax::+44(0)1312727001Email::sales@w PP Rev1.8January200312This datasheet has been download from: Datasheets for electronics components.。

相关文档
最新文档