变频器在风机上的应用
风机变频原理
风机变频原理
风机变频技术是一种能够根据实际需要调整电机转速的技术,通过改变电机的
频率来实现转速的调节。
在风机系统中,采用变频技术可以实现风机的无级调速,提高系统的运行效率,降低能耗,延长设备的使用寿命。
风机变频原理主要是通过变频器对电机进行控制,实现对电机转速的调节。
变
频器是一种能够改变交流电频率的装置,通过改变电源输入的频率来控制电机的转速。
在风机系统中,变频器可以根据实际需要调整输出频率,从而控制风机的转速,实现能耗的节约和系统运行效率的提高。
风机变频原理的核心是电机的转速控制,通过改变电机的输入频率来实现转速
的调节。
在风机系统中,通过变频器对电机进行控制,可以实现风机的无级调速,从而满足不同工况下的运行需求。
在风机系统中,采用变频技术可以实现风机的启动、停止、加速、减速等操作,提高系统的运行效率,降低设备的能耗。
风机变频原理的应用可以提高系统的运行效率,降低能耗,延长设备的使用寿命。
通过对风机进行无级调速,可以更好地适应不同工况下的运行需求,提高系统的稳定性和可靠性。
同时,风机变频技术还可以减少设备的启动冲击,降低设备的维护成本,提高系统的整体经济效益。
总的来说,风机变频原理是一种能够提高风机系统运行效率,降低能耗,延长
设备使用寿命的技术。
通过对电机进行无级调速,可以更好地满足不同工况下的运行需求,提高系统的稳定性和可靠性。
因此,在风机系统中应用变频技术具有重要的意义,可以为工业生产带来更大的效益和价值。
变频器的应用实例
变频器的应用实例变频器是一种能够调节电机转速的电力设备,广泛应用于各个领域。
下面将介绍几个变频器的应用实例。
1. 工业生产中的泵站控制在工业生产过程中,常常需要使用泵站来输送液体或气体。
传统的泵站控制方式通常是通过手动操作或者采用恒速电机来实现。
然而,这种方式存在能源浪费和操作不灵活的问题。
通过使用变频器,可以根据实际需要调节泵站的转速,从而实现节能效果和灵活控制。
2. 电梯系统中的驱动控制电梯作为现代建筑中不可或缺的设施,其安全性和稳定性要求非常高。
变频器在电梯系统中的应用主要体现在电梯的驱动控制上。
传统的电梯系统通常采用恒速驱动方式,这种方式存在能源浪费和运行不平稳的问题。
而采用变频器可以根据载重情况和乘客需求动态调节电梯的速度,从而提高运行效率和乘坐舒适度。
3. HVAC系统中的风机控制暖通空调系统(HVAC)中的风机控制是一个非常重要的环节。
传统的风机控制系统通常采用恒速运行方式,无法根据实际需要进行调整,造成能源浪费和运行效率低下。
而使用变频器可以根据室内温度和需求实时调节风机的转速,提高空气流通效率,实现节能效果。
4. 机械加工中的数控设备在机械加工领域,数控设备的应用越来越普遍。
数控设备的运行通常需要精确控制电机的转速和位置。
传统的数控设备通常采用直流电机或者恒速交流电机,无法满足精确控制的需求。
而采用变频器可以根据数控程序要求实时调节电机的转速和位置,提高加工精度和效率。
5. 新能源领域中的风力发电控制风力发电是一种清洁能源,具有广阔的发展前景。
在风力发电系统中,变频器主要应用于风机的控制。
通过采用变频器可以根据风速的变化调节风机的转速,实现最大化的能量转化效率。
此外,变频器还可以对风力发电机组进行监控和故障诊断,提高运维效率。
变频器在工业生产、电梯系统、HVAC系统、机械加工和新能源领域等方面都有广泛的应用。
通过使用变频器,可以实现节能效果、提高运行效率和加工精度,从而为各个行业带来更好的发展前景。
变频器在风机中的应用
变频器在风机中的应用变频器是一种电子控制设备,可以将电源电压与频率转换成可控电源电压输出。
在风机的应用中,变频器可以改变电动机的转速,并控制风机的流量,使得风机在不同的工作状态下能够实现最佳效率。
一、变频器在节能方面的应用1.1 恒定流量控制传统风机在运行时通常采用阀门、叶片调节或变速装置的方式进行调整。
这种调节方式既能耗费大量电能,又易损坏风机,操作也不便捷。
而使用变频器能够实现恒定流量控制,可根据要求调整风机转速,以实现稳定的风量输出。
1.2 节省能源传统的风机调节方式需要消耗很多能源,而使用变频器可以降低电机启动时的电流冲击,减少电机的能量损失,从而达到节约能源的目的。
同时,变频器还能够根据实际负载调整风机的转速,以满足系统的需求。
二、变频器在风机中的应用2.1 变频器调速通过变频器控制风机转速可以满足不同风量需求的场景以及不同的运行状态要求。
在低负荷运行环境下,通过变频器调速可以减少风机的能量损失,实现节能。
2.2 风机起停控制在工业生产环境中,风机起停控制具有很高的要求。
变频器可以通过外部控制触发,实现风机的起停控制,并且由于变频器的反应速度较快,能够及时响应外部控制信号,保障风机的安全运行。
2.3 数字化化管理在现代化的风机管理中,变频器的应用可以使得风机运转更加稳定,同时还能够实现数字化智能管理。
根据实际运行状态调整变频器控制参数,可以提高风机的运行效率,延长风机的使用寿命,为企业带来更多的经济收益。
总结:变频器可以为风机提供更加稳定和高效的控制方式,带来更多的经济效益。
同时,变频器应用的数字化化管理也有助于让企业更加清晰地把握风机的使用状况,提供科学依据,为企业的运营管理带来更好的智能化服务。
变频器在风机控制中的应用
变频器在风机控制中的应用随着科技的不断发展,变频器在工业控制领域中的应用越来越广泛。
在风机控制方面,变频器的应用可以提供更好的能效、精确的控制和稳定的运行。
本文将详细介绍变频器在风机控制中的应用。
一、变频器的基本原理变频器是电力电子器件的一种,它可以通过改变电源输入电压的频率和幅值,来调节电机的转速。
通过变频器可以实现电机的无级调速,从而使风机的转速可以根据需求随时调整。
二、风机控制的需求在许多工业领域中,风机的控制需求非常重要。
比如在通风系统中,需要根据室内温度和湿度的变化来调整风机的运行状态;在空调系统中,需要根据房间负荷的大小来调整风机的风量。
传统的风机控制方法往往采用阀门的开闭来控制风量,但这种方法调节范围有限、能效低下。
而变频器的应用可以解决这些问题,提供更好的控制性能和能效。
三、变频器在风机控制中的优势1. 节能效果显著:变频器通过调整电机的转速,可以根据实际需求精确控制风机的风量。
与传统的调压阀方法相比,变频器可以根据实时负荷需求来调整电机的转速,避免能量的浪费,大幅提高能效。
2. 精确控制:变频器具有高精度的控制特性,可以实现风机转速的无级调节,从而精确控制风机的风速和风量。
这对于一些对风速要求较高的场合非常重要,比如实验室、医院手术室等。
3. 稳定运行:传统的调压阀方法存在压力波动的问题,容易导致风机的运行不稳定。
而变频器能够根据负荷需求精确调整转速,使风机运行平稳,不易出现波动。
四、变频器在风机控制中的应用案例1. 通风系统中的变频器应用:在大型建筑物的通风系统中,通过变频器可以根据不同时间段和不同区域的负荷需求,精确调整风机的运行状态,从而提供更好的室内舒适度和能效。
2. 空调系统中的变频器应用:在空调系统中,通过变频器可以根据房间的热负荷变化,调整风机的风量,实现节能运行。
同时,变频器还可以实现空调系统的精确控制,提供更好的温度和湿度控制效果。
3. 工业生产中的变频器应用:在一些工业生产过程中,需要通过风机来实现物料的输送、处理和干燥等操作。
风机变频原理
风机变频原理
风机变频原理是通过变频器控制风机的转速,实现调节风机的输出风量和静压。
变频器是一种电子装置,它可以根据输入的频率信号,通过改变输出电压和频率的方式,控制电机的转速。
在传统的风机驱动系统中,使用的是恒频供电系统,即输入电压和频率是恒定的。
通过改变风机的叶片角度和调节进出口阀门的开度来控制风机的输出。
然而,这种方式调节风机的效果有限,且调节过程较为复杂。
而在风机变频控制系统中,通过变频器可以实时调节风机的转速。
变频器会将输入的电压和频率转换成可调的电压和频率输出,并将其输送给电机驱动风机。
通过改变输出电压和频率的方式,可以调节电机的转速,进而改变风机的输出风量和静压。
风机变频器工作的基本原理是通过PWM(脉宽调制)技术来
改变输出电压和频率。
PWM调制是一种将输入信号根据一定
的规则转换成周期性脉冲信号的技术。
变频器将输入信号进行采样,经过AD转换后,通过计算、比较等处理,生成脉冲信号来控制输出电压和频率。
具体来说,变频器会根据需要调节的转速,计算出相应的电压和频率,并将调整后的脉冲信号发送给电机。
电机根据脉冲信号的频率和占空比来调节转速,实现风机的输出控制。
风机变频控制系统的优势在于可以实现精细的风量和静压控制,提高系统的能效和运行稳定性。
此外,由于变频器可以实时监
测风机运行状态,并根据系统需求进行调节,它还可以提供过载保护、故障诊断等功能。
总之,风机变频原理通过变频器控制风机的转速,实现对风机输出风量和静压的精确调节。
这种系统能够提高风机的效率和控制性能,广泛应用于空调、通风、供暖等领域。
变频器在风机节能中的应用
进行远程控制和监视 。 此外, 要注意负载是标准
・
3 ・ 00 4 2 1 年第 3 《 机技 术》 期 电
研究与交流
变频器在风 机 节能 中的应用
蒋 绍凤 唐 亮
兖矿鲁南化肥厂 ( 7 5 7 2 72 )
Ene g - a i r y s v ng App i aton fBl wer e lc i o o sby M ansofFr quenc e y Cont o rl
负载还是重载负载。
() 3 规格
冲击产生 的 “ 水锤 效应” 则选用带泵控制功能 , 的软起动器。 通风机可利用软起 动功能, 减少皮
带 磨 损和机 械 冲 击 , 以及 停机 时制动 转 矩 功能 。
根 据 电动机 的标 称功率 、 电流及 负载性 质
选择起 动器。 软起动器容量稍大于电动机工作电
Ja gS af n in h oe
l n i g a
Ya k a g L n n C n c l e t i e l n n u n u a h i a ri z rP a t f l
我厂循环水风 机大到几百千瓦, 小到几十千
瓦 , 有4 多 台。 共 0 为了给 循 环 水 散 热 , 机 容 量 风
带来 的拖 动 系统 反 惯性 冲击 , 有计 算 机联 网要 若 求 , 选带 通 讯 接 口的软 起 动 器 , 可 以对 软 起 动 器
时, 须加装热继电保护。 冷却方式有机械风冷和
自 然风冷, 机械风 冷带冷 却风机 , 有通电常转或
温 度控 制运 转 两种 型式 。
( 稿 日期 : 0 9 1 .4 收 2 0 .2 2 )
作 者简 介 : 绍 凤 , , 90 蒋 女 1 8 年生 , 东烟 台人 , 学 本科 学 历,自动 山 大
风机变频原理
风机变频原理
风机变频技术是指通过改变电源频率来控制风机的转速,从而实现对风机运行状态的精准控制。
在风电场中,风机变频技术被广泛应用,可以有效提高风机的运行效率和稳定性,降低能耗和维护成本,同时也对电网具有一定的支撑作用。
下面我们将详细介绍风机变频原理。
首先,风机变频技术的基本原理是利用变频器对电源频率进行调节,以改变电机的转速。
在传统的风机系统中,电机通常是由恒定频率的交流电源驱动,因此风机的转速也是固定的。
而通过变频器可以改变电源频率,从而改变电机的转速,实现对风机的精准控制。
其次,风机变频技术的关键在于变频器的控制策略。
变频器需要根据风机的运行状态和外部环境条件,调节输出频率和电压,以实现对风机的最佳控制。
在风速较大时,需要提高风机转速以提高发电效率,而在风速较小或风机受到外部干扰时,需要降低风机转速以保护设备和延长使用寿命。
因此,变频器需要具备智能化的控制策略,能够根据实时情况对风机进行动态调节。
此外,风机变频技术还涉及到电机的变频驱动系统。
变频驱动
系统通常由变频器、电机和传感器等组成,其中变频器起到控制电
源频率的作用,电机负责转换电能为机械能,传感器用于采集风机
运行状态和环境参数。
这些组件共同协作,实现了风机变频技术的
应用。
总的来说,风机变频技术通过改变电源频率来控制风机的转速,实现了对风机运行状态的精准控制。
这不仅提高了风机的运行效率
和稳定性,降低了能耗和维护成本,也对电网具有一定的支撑作用。
随着风电行业的发展,风机变频技术将会得到更广泛的应用,为风
电产业的可持续发展做出贡献。
变频风机原理
变频风机原理
变频风机原理是通过变频器控制风机电机的转速,实现风机的无级调速。
变频器会根据被控制的参数来调节输出频率和电压,从而控制电机的转速。
变频器将电网的交流电转换成直流电,再通过逆变器将直流电转换为交流电,交流电的频率和电压可以根据变频器的设定进行调整。
在使用变频风机时,先将输入电压通过整流和滤波等电路处理,将其转换为直流电源。
然后通过逆变器将直流电转换为交流电,而逆变器的输出频率和电压可以通过变频器来调节。
变频器通过控制逆变器的开关管的通断控制,来控制交流电的频率和电压输出。
通过不同的输出频率和电压,可以控制电机的转速。
变频风机的优点在于可以实现精确的调速控制,能够根据实际需求来调整风机的转速。
通过调节转速,可以有效节省能源,减少设备的损耗。
另外,变频风机还具有较好的起动和制动性能,能够在瞬间启停,并且既可以实现正转也可以实现反转。
总结来说,变频风机原理是通过变频器控制逆变器的输出频率和电压来实现风机的无级调速。
通过调节转速,可以实现精确的控制和节能效果。
同时,还能够提供良好的起动和制动性能。
这使得变频风机在工业生产和生活中得到了广泛应用。
变频器在风机风量调节中的应用
变频器在风机风量调节中的应用环保设备网整理工厂生产中运送粉状物料主要有三种方法:传送带、提升机、气力吸运系统。
由于气力吸运系统运送物料速度快、流量大,所以一般工厂都采用此方法。
高压风机是气力吸运系统必需的动力设备。
根据工艺要求,风机风量控制应随物料流量的变化而相应变化,以保证物料不堵不掉,维持生产的正常运转。
目前工厂中普遍采用恒速控制风量,即高压风机的速度不变,改变风门调节风量。
该方法能耗大。
如果采用变频器,改为调速控制,调节高压风机的速度以改变风量,将减少能耗,可提高经济效益。
1、变频器调速工作原理变频器是可以改变频率和电压的电源。
变频器采用交2直2交变换原理,将电网三相交流电经过三相桥式整流成脉动直流;再通过电解电容和电感滤波成平滑直流;最后通过逆变器,逆变成电压和频率可调的三相交流电。
电机转速随频率变化而变化,因此改变电源频率就能改变电动机转速。
在变频器、电动机、风机构成的传动系统中,通过改变电源频率来改变电动机的转速,进而调节风量,实现风机的变频调速控制。
2、调速控制风量的节能原理与风门控制风量方式相比,采用调速控制风量有着明显的节能效果。
通过图1的风机特性曲线可以说明其节能原理。
图中,曲线1为风机在恒速n1下的风压2风量(H-Q)特性;曲线2为管网风阻特性(风门开度全开)。
设工作点为A,输出风量Q1为100%,此时风机轴功率N1同Q1与H1的乘积即面积AH1OQ1成正比。
根据工艺要求,风量从Q1降至Q2有两种控制方法。
(1)风门控制。
风机转速不变,调节风门(开度减小),即增加管网阻力,使管网阻力特性变到曲线3,系统工作点由A移到B。
由图1可见,此时风压反而增加,轴功率N2与面积BH2OQ2成正比,大小与N1差不多。
(2)调速控制。
风机转速由n1降到n2,根据风机参数的比例定律,画出转速n2下的风压2风量(H2Q)特性,如曲线4;工作点由原来的A点移到C点。
可见在相同风量Q2的情况下,风压H3大幅度降低,面积CH3OQ2也显著减少;节省的功率损耗△N同Q2与△H的乘积面积成正比,因而节能效果十分明显。
金田变频器在风机上的应用案例--JTE320系列
金田变频器在风机上的应用案例--JTE320系列
一、负载特点:
1、风机类有负压风机、环流风机、离心风机、罗茨风机、锅炉引风机、锅炉鼓风机、压式排风机、三叶罗茨风机等,负载惯性较大;是传送气体的机械设备,是将电机的轴功率转变为机械能的一机械,风机风量与与电机转速成正比,即改变电机转速可改变风机风量的大小。
2、利用变频器改变频率进行调速可实现节能,一般最低频率运行在15HZ,通常在35HZ 左右运行,极小时段在50HZ满风量工作。
二、对变频器应用要求:
低频运行平稳,输出故障时可报警;在用风量较小的情况下,必须保证电机的温升和电机的噪声不得超过允许的范围。
三、应用案例
风机现场图片
1、参数说明
四、注意事项:
2、变频器的停车方式设定可为自由停车。
由于风机是大惯量负载,若加减速时间设定过短,在加速时过程中容易会出现过流、过载,在减速时容易出过电压保护,但设定时间过长,会导致风量调节缓慢,跟随性能会变差,使系统易处在短期不稳定状态中,有时满足不了要求。
因此,在满足变频器正常运行(不跳故障)的前题下,尽量把加减速时间设定合理。
3、做好防尘措施,定期进行变频器清理维护。
变频风机原理
变频风机原理变频风机是一种利用变频器控制电机转速来实现风机调速的设备,它在工业生产中被广泛应用,具有节能、效率高、运行稳定等优点。
本文将从变频风机的原理入手,介绍其工作原理及应用特点。
首先,我们来了解一下变频风机的原理。
变频风机是通过变频器控制电机的转速,从而改变风机的输出风量和压力。
在传统的风机系统中,电机的转速是通过改变电源的频率来实现的,而变频风机则是通过改变电机的输入电压和频率,从而实现电机转速的调节。
变频器是一种能够改变电源频率的设备,通过它可以实现对电机的精确控制,从而达到节能、调速灵活、运行平稳等效果。
其次,变频风机的工作原理是怎样的呢?当变频器控制电机的输入电压和频率时,电机的转速会随之改变,从而改变风机的输出风量和压力。
在风机系统中,风机的输出风量和压力是根据工艺需要进行调节的,而变频风机可以根据实际工艺需求,通过改变电机的转速来实现精确的风量和压力控制。
这种精确的控制方式不仅能够满足不同工艺的需求,还可以节约能源,提高系统的效率。
另外,变频风机具有哪些应用特点呢?首先,它具有节能的特点。
传统的风机系统在调速时通常会通过启停或者调节阀门的方式来实现,这种方式会造成能源的浪费。
而变频风机可以通过改变电机的转速来实现精确的风量控制,从而节约能源。
其次,变频风机具有调速灵活的特点。
传统的风机系统在调速时通常反应迟钝,而变频风机可以实现快速的响应,从而满足不同工艺的需求。
最后,变频风机具有运行稳定的特点。
由于变频器可以精确控制电机的转速,从而使风机系统运行更加稳定可靠。
总的来说,变频风机是一种通过改变电机转速来实现风机调速的设备,它具有节能、效率高、运行稳定等优点。
通过对变频风机的原理、工作原理及应用特点的介绍,相信大家对变频风机有了更深入的了解。
在未来的工业生产中,变频风机将会得到更广泛的应用,为工业生产带来更大的效益。
变频器在风机水泵中的应用
- 节能效果显著,长期运行可大幅降低电费支出。- 减少设备故障率,延长设备使用寿命,降低维修成本。- 提高生产效率,满足工艺和自动调速要求,提升产品质量。- 变频器价格逐渐下降,可靠性增强,投资回报期短。
变频器在风机水泵中的应用
应用方面
描述
节能效果
- 变频器通过调整电机转速来控制风机水泵的输出,避免了传统方法中通过阀门或挡板调节流量时产生的节流损失。- 电机转速降低时,其轴功率和输入功率均按转速的三次方比例下降,从而实现显著的节能效果。- 变频器内置PID调节功能,可根据系统需求自动调整电机转速,保持恒压或恒流量,进一步提高节能效率。
调速控制
- 变频器能够实现对电机转速的精确控制,满足风机水泵在不同工况下的调速需求。- 通过改变电机输入电压的频率,可以平滑地调节电机转速,实现无级调速。- 调速范围广泛,可根据实际需要进行调整,但一般不宜低于额定转速的50%,最好处于75%~100%之间。
系统优化
- 变频器的应用可以减少电机启动时的电流冲击,延长电机和泵的使用寿命。- 降低管道阻力,减少截流损失,提高系统的整体效率。- 实现自动化控制,减少人工操作,降低劳动强度,提高生产效率。- 变频器具有通讯功能,可通过PC机进行组态和系统维护,ห้องสมุดไป่ตู้便远程监控和管理。
变频器在风机上的应用
一、概述:目前在我国各行各业的各类机械与电气设备中与风机配套的电机约占全国电机装机量的60%,耗用电能约占全国发电总量的三分之一。
特别值得一提的是,大多数风机、水泵在使用过程中都存在大马拉小车的现象,加之因生产、工艺等方面的变化,需要经常调节气体和液体的流量、压力、温度等;目前,许多单位仍然采用落后的调节档风板或阀门开启度的方式来调节气体或液体的流量、压力、温度等。
这实际上是通过人为增加阻力的方式,并以浪费电能和金钱为代价来满足工艺和工况对气体、液体流量调节的要求。
这种落后的调节方式,不仅浪费了宝贵的能源,而且调节精度差,很难满足现代化工业生产及服务等方面的要求,负面效应十分严重。
变频调速器的出现为交流调速方式带来了一场革命。
随着近十几年变频技术的不断完善、发展。
变频调速性能日趋完美,已被广泛应用于不同领域的交流调速。
为企业带来了可观的经济效益,推动了工业生产的自动化进程。
变频调速用于交流异步电机调速,其性能远远超过以往任何交、直流调速方式。
而且结构简单,调速范围宽、调速精度高、安装调试使用方便、保护功能完善、运行稳定可靠、节能效果显著,已经成为交流电机调速的最新潮流。
二、变频节能原理:1. 风机运行曲线采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方法比较,具有明显的节电效果。
由图可以说明其节电原理:图中,曲线(1)为风机在恒定转速n1下的风压一风量(H―Q)特性,曲线(2)为管网风阻特性(风门全开)。
曲线(4)为变频运行特性(风门全开)假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。
如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。
从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。
变频器在风机、水泵上的应用
科 技l l I 论坛
变频器在风机 、 水泵上的应用
张宝 涛 - 刘 洋
( 、 宁高科 节 能 热 电设 计研 究 院 , 宁 沈 阳 l02 2 辽 宁 省轻 工设 计 院 , 宁 沈 阳 l0 3 ) 1辽 辽 10 1 、 辽 106
摘 要: 介绍 了风机 、 水泵的运行特性 , 变频调速的基本概念及 其优 良的节电性 能, 对使用效果和存在 问题进行 了分析 , 并提 出了改进 建议。 关键 词 : 频 器 ; 速 ; 能 ; 用 变 调 节 应 动 ,电压下降的幅度将取决于启 动电机 的功率 电缆 、 控制线路 、 切换开关等设施 , 总投资 4 0 7. 8 随着变频技 术的 日益成 熟 , 在风机 、 水泵 大小和配电网的容量。电压下降将会导致 同一 万元 , 其中 2台变频器 3 万元。 8 42经济分析 . . 上采用变频器技术 , 不仅便 于实现低速启动 , 无 供电网络 中的电压敏感设备故障跳闸或工作异 级变速调节,更能实现节能降耗 , 对于安全运 常 , 如咒机 、 传感器 、 接近开关和接触器 等均会 辽源市冬季采暖室 内设计温度 t 1℃, . 8 室 = 外采 暖设计 温度 t 一 2 w 2 ℃,采暖期平 均温 度 = 行, 延长设备寿命都有着重要意义。 动 作 出错 。 据有关资料介 绍 , 国风机 、 我 水泵类 负载 23电机将 在低 于额 定转 速 的状 态下 运 t= 8  ̄ ,实际供暖时间为 l 月 1日至 3 - 一 .C 5 1 月 1日共 1 1 (6 4小 时 ) 5 天 32 。 占全 国工业用 电量的 4 %一 O 在锅炉房供热 行 , O 5 %; 可以减少磨损 , 降低噪音 , 有利于延 长电机 3 工程 中 , 风机 、 泵用 电量 占全部用 电的 8 % 和风机的使用 寿命 。 水 0 减少 了噪音对环境的影响。 () 、 1鼓 引风机按额定工况 运行 , 电量 年耗 按 式计算 ) 以上 ; 在全年空调的现代化旅游饭店 、 高级宾馆 2 A具有过载 、 过压、 过流 、 欠压 、 电源缺相 E及 电费 A为( 1 以及办公大楼中 ,风机和水泵设备的用电量 占 等 自动保护功能 。 E‘ I 【 离 + 勰 争h 一 整个建筑用电量的 3 %-0 约 占整个动力用 0 . %, - 4 25 转状态灵活多样 ,可手动控制也可 .运 【9 . 7 . 1 2 9 1 1 ■ ・ 1 9●+ 13 3 , 1 0 T x61 1 t h 电( 即除照明以外 的用电 ) 4 %~ 5 的 0 5 %。 完全实现 自 动控制 , 可与锅炉其他 自 且 控装置 辽源市 电费 为 0 . l h 5元, w・ ,则 电费 A ( = 81 7 O 5 4 0 0 . 1风机 、 水泵 的运行特性 进行电气连锁 ,实现锅炉 的自动保护及计算机 9 01 x . = 9 5 8 5兀 由于风机和水泵 的电力及运行 特性极其 控制 , 不会 因事故影响生产 。 () 、 2鼓 引风机采用变频调速运行 , 由于低 类似 , 此处以风机为例来讨论它的特性。 2 . 6节能效果显著。 由于最终的能耗是与 负荷下运行 , 风机及锅炉效率均有所 降低 , 此处 11 . 压力 与 流 量 6 鼓风机 T . 锅炉 1 5 l 7 5 I = 电机的转速成立方比, 所以采用变频后 , 大大地 近似取引风机 . , H= ( 表示风 机全压 ( 括静风压 和动 节约了成本 , F Q) 包 投资回报更快 , 用户也愿意接受。 O 5 . 。采用 变频调速 , 7 风机按上述运行特性 , 其 3 变 频 器 发 热及 解 决 方案 功率消耗近似等于冬季室 内外温差 比的 3次方 风压 ) 与风量 的关系。 风机轴上的功率 P 变频器 在运行过 程中产生热 量致使设备 关 系 , 年 耗 电 E 和 电 费 A 为 : 其 P面 t茹 ( ) 的温度很高 ,由于变频器本身选用的元件耐温 1 式中 Q 风量 , 3 i; 一 m/ n m 为 15 因此设备本身可 以耐受 , 0 ℃, 但周 围环境 H 全 压 .a 一 P; 温度升高 ,对 同置一室的其他 电器设备威胁甚 3 2 ×【 64 】 ’ r 风机效率。 大 。配 电室 的温度夏季最高可达 6 ℃左右 , 0 特 1 . 机 的转 矩 2风 别是对安装在开关柜上的微机保护装置影 响很 风机的转矩与转速的平方成正 比 大, 轻者可造成误动 , 重者可致设备损坏 。 因此 , = 1 5 1 7× 2 0 0  ̄ 9 0. 9 8=3 6 5 k ・h 0 3 7' W 通常 M = =。= -詈 () () 要 了解一 台变频器的发热量大概是多少 。 , 2 式 中 n 额定转速 ,r Pm; 变频器安装在控制柜中, 可以用以下公式估算 : ( ) 电率及年节 电费 3节 P 额定转速时的轴功率 ,W; k 发热量的近似值= 变频器容量 ( w)5 ( ; K × 5 w)因 节 电 率 = E— / = 9 11 3 6 5 ) ( E ) (8 0 7— 0 3 7, E M,额定转速时的转矩。 为各变频器厂家的硬件都差不多 ,所以上式可 9 1 7 87 % : 8 01 =6 .7 当风机的转速由 I 变化到 I时 , l e ' 风量 Q、 以针对各品牌的产 品。 1 为此 , 在设计过程中 建议 年 节 约 电费= A = 95 85 137 .= A— 40 0 .— 5 18 5 风压 H、 功率 P的变化与转速的关 系为 : 对变频器发热问题做充分考虑,在炎热地区配 3 7 3 3 3 0元 。 Q Q(/ = enn) 电室内最好同时配置空调和轴流风机 ,以保证 () 4 回收 年 限 H }el =I I ) (/ ( ) 室 内的温度 , 3 不影响其它设备正常运行。 回收 期 =总 投 资 额 , 年 节约 的 电 费 = 每 4 2 0 13 3 0 14年 7 803 7 3= . P ( ) _ r 4变频器节能分析 由() 可知 , 3式 风量 与转 速 成 正 比 , 压 与 风 辽 源 市某 公 司二 期 煤 矸 石 热 电 联 产 工 程 。 由以上实际运行数据可 以看 出: 电机变频 转速的平方成正比,轴功率与转速的立方成正 锅炉总额定耗电功率 5 0 W, 6 K 与锅炉匹配 的引 运行不仅满足 了工艺要求 ,同时能节约大量 电 比。 因此 , 当风机 、 水泵需求 下降时 , 调节转速可 风 机 为 Y — 3 1型 1D 风 量 Q= 9 l4 / 能 ,节能效果显著 ;增加的投资短期 内即可收 4 7 一I 8 1 x Om3 h 节约大量能源。例如: 当需要风量下降到 8%, ( 1 7 / n , 压 H= 6 6 a 电机 2 0 W , 0 3 6m3 )全 mi 24 P , 2 K 风 回。 可以采用 调速 的方法使转速 下降到 8%, 0 则风 机效 率 FO7 ;鼓 风机 为 G — 3 1 =. 0 4 7 — 1型 1 D 4 结束语 机的轴功率要下降到原值的(0 即 5 . Q 7 60h(2 3 3 n , 2 5 P , 机 效 率 8%) , 1 %; = 40 / 14 m/ )H= 7 7 a 风 2 mi 风机 、 水泵耗 电是全 国用 电大户 , 根据 其 去除机械损耗 、 电机铜 、 铁损等影 响。节能效率 产O8 , .0 电机 7 K 5 W。鼓 、 引风机耗电 2 5 W, 运行特性 ,变频调速是 目前最优 良的一种调节 9K 也 接 近 4 % 。如 采 用 传 统 的 挡 板 方 式 调 节 风 占该 锅 炉 总耗 电 的 5 .%。 锅 炉 鼓 、 风 机采 方法 。 o 0 7 该 引 量, 虽然也可相应降低能源消耗, 但节约效果与 用 变频调速控制 ,0 7 2 0 年设计并施 工 , 0 年 2 8 0 工程实 测证 明, 风机 、 泵上应用变频 在 水 变频相比, 则有天壤之别。 冬季投入使用 。两年来的运行证明 , 效果 良好 , 器技术 可以低速启 动 , 无级变速调节 , 对安全 、 2变频调速功能与特点 变频调速器工作稳定 , 收到了很好的节 电、 节煤 节能 、 延长设备寿命都有着重要的意义 。 更为重 21 .改善电机 的启动性能 。当电机通过工 效果 。下面把有关 睛况作一介绍。 要是它的节能效果取得了可观的经济效益 。 频直接启动时 , 它将会产生 7 8 的电机额 到 倍 41 .设计方案及投资 参 考 文 献 定电流 。采用变频器启动时频率低 , 转速也低 , 在室外设置温度传感器 , 其温度变化通过 [】 1 原魁 , 刘伟强, 邹伟 等. 变频器基础及应用【 】 M. 启动 电流就小 ,避免工频启动时形成 的大 电流 变送 器 变 成 电的信 号 , 入 鼓 、 机 的 变 频 调 第二 版 . : 金 出版 社 ,04 输 引风 北京 冶 20 . 对电机 、 电缆 、 开关等设 备的冲击 , 因此启动性 速器 , 根据信号的变化改变风机转速 , 控制锅炉 『] 2- 1  ̄雪冰. 风机 、 水泵 变频调速及示范工程节能 能得到改善。 的炉膛温度和供水温度 ,对供热系统实行质调 分 析Ⅲ . 变频世 界 ,0 7 20 . 2 . 2降低 电力线路电压 波动。在电机 工频 节。变频调速器选用 日本三菱 M 一 4A 7 K f】 T 10 一 5 3杨诗 成 , 王喜魁 . 与风机 【 . 泵 M】 第三版. 京: 北 启动时,电流剧增 的同时 ,电压也会大幅度 波 和 MT 10 一 2 K各 1台,并增设有控制柜 、 中国 电 力 出版 社 , 0 7 20. 一4A 20
变频器在风机调速系统中的应用
这 种 控 制方 式 虽然 简 单 易行, 但 从节 能 的角
风 机 负 载 的 最 大 特 点 是 轴 转 矩 与 转 调 速 时 , 电动 机 的 机 械 特 性 属硬 特 性 且 基
度 来 看 是 不 经济 的 。 统 计显 示 , 生 产 成 本 的 速 的 平 方 成 正 比 , 轴 功 率 与 转 速 的 立 方 成 本平 行, 具 有 调 速 范 围宽 , 转 速 稳 定性 好 的 7 %- -2 5 %被 消 耗 在 挡 风 板 或 风 门 及 其 维 护 正 比 。其 关 系 可 表 示 为 : 并 能 获 得 理 想 的 低 速 输 出 转 矩 和 低 +K , 和 特点 。 上, 造 成 了大 量 的 能 源 浪 费 和 设 备 损 耗 , 同 尸 速 过 载 能 力。( 2 ) 改 善 电 机 的启 动 性 能 。 变 ,= +KP , 2 式中 、 分 别 为 电动 时 使控 制 精 度也 受 到 限制 , 影 响 产品 质量 和 机 轴 上 的转 矩 和功 率 , 、 生 产效 率 。 采 用变 频 器驱 动风 机 设 备 运 行, 机 的 空载 转 矩 和 空 载 损 耗 , 可 以 避 免 工频 启动 分 别为 电动 频 器 具 有 软 启 动 功 能 , 、 分 别 时 浪 涌 电流 对 电机 等 电 网设 备 的 冲 击所 造
通 过 改 变 风 机 转 速 来调 节流 量 的 方 案 , 可 为 电 动机 轴 上 的转 矩 和 功 率 , 减 小 电源 容量 的 同 时 , 也 减 为 电动 机 成 的 不 良影 响 , 当工 作 过 程 需 要 风 量 减 少 时 , 以 大大 降低 功 率 损 耗 , 延长 设 备使 用 寿 命 , 转 速 。因此 , 小了风 机 的 机 械 损 耗 。( 3 ) 运 转 状 态 灵活 多 达 到系 统高 效 运 行 的 目的。 降低 转 速 可使 功率 消 耗 减 小 很 多。 例如, 当
风机应用变频器的控制原理
风机应用变频器的控制原理1. 引言风机在工业生产中广泛应用,其工作状态常常需要根据不同的需求进行调节。
传统的风机控制方式是通过调整传统的变压器或电阻器来改变风机的转速。
然而,这种方式存在调节范围有限、能耗高等问题。
随着变频器技术的发展,使用变频器进行风机控制成为了更为普遍的方式。
2. 变频器工作原理变频器是通过改变电机供电的频率和电压来控制电动机的转速的设备。
它包含了电源模块、整流滤波模块、逆变器模块以及控制模块等部分。
2.1 电源模块电源模块接受交流电源,并将其转换为电机所需的直流电源。
它通常包含整流桥和滤波电容器等组件,用于将交流电转换为直流电。
2.2 整流滤波模块整流滤波模块用于将直流电源中的纹波进行滤波,使得输出的直流电压更加稳定。
2.3 逆变器模块逆变器模块是变频器的关键部分,它通过改变输入电流的频率和电压,来控制电机的转速。
逆变器模块通常采用PWM(脉冲宽度调制)技术,通过控制脉冲宽度的变化来改变电机的转速。
2.4 控制模块控制模块接收用户的控制信号,并通过对逆变器模块的控制,来实现对电机的转速调节。
控制模块通常包括开关电源、控制芯片和接口电路等组件。
3. 风机控制原理风机应用变频器进行控制的基本原理是根据实际需求,通过控制变频器的逆变器模块,改变电机的供电频率和电压,从而改变风机的转速。
3.1 风机控制参数在风机控制中,常用的参数包括转速、负载率和输出功率等。
通过控制变频器的输出频率,可以实现对风机的转速调节。
同时,根据风机的负载率和输出功率要求,也可以通过控制变频器的输出电压,来调整风机的转速。
3.2 风机控制策略风机控制中常用的策略包括比例控制、速度闭环控制和矢量控制等。
•比例控制:根据转速设定值和实际转速之间的差距,通过比例放大器产生调节量,从而控制变频器的输出频率。
•速度闭环控制:通过测量电机转速,并与设定值进行比较,不断调整变频器的输出频率,使得实际转速与设定值更加接近。
变频器在风力发电系统中的作用
变频器在风力发电系统中的作用现代能源问题日益突出,风力发电作为一种清洁可再生能源形式,受到了广泛的关注和应用。
风力发电系统中的关键设备之一就是变频器。
本文将重点探讨变频器在风力发电系统中的作用,并详细介绍其工作原理与优势。
1. 变频器的概念与工作原理变频器是一种用于改变交流电频率和电压的电气装置,广泛应用于各种电力系统中。
在风力发电系统中,变频器用于将风机产生的机械能转化为电能并通过电网进行输送。
其工作原理主要包括三个步骤:首先,通过变频器将风机产生的交流电转化为直流电;其次,利用逆变器将直流电转换为可变频的交流电;最后,根据需要将交流电频率与电压调整到适当的范围,然后输入到电网中。
2. 变频器在风力发电系统中的作用(1)提高电能输出效率:风力发电系统的效率受到风速的影响,而风速是时刻变化的。
变频器可以根据实时风速调整风机的转速,使其工作在最佳状态,从而提高发电效率。
(2)保护风机设备:风力发电系统中的风机设备需要长时间运行,但过高或过低的转速都会对设备造成损害。
通过变频器控制风机的转速,可以避免因过高转速而引发的破损或过低转速而导致的功率损失,延长风机的寿命。
(3)实现电网并网:变频器能够将风机产生的交流电能转换为电网所需的标准电能,实现与电网的安全并网。
它可以调整电网的频率、电压等参数,保障电网的稳定运行。
(4)提高系统的稳定性:风力发电系统的工作过程受到诸多因素的影响,如风速、气温等,这些因素会导致系统工作参数的变化。
变频器可以根据不同的工作条件进行实时调整,保持系统的稳定性和可靠性。
3. 变频器在风力发电系统中的优势(1)节能环保:变频器可以根据风速变化实时调整风机的转速,提高风力发电系统的发电效率,从而减少能源的消耗。
同时,由于风力发电是一种清洁能源形式,使用变频器可以减少对环境的污染。
(2)减少电网负荷:风力发电系统的发电量由风速决定,但电网的负荷是时刻变化的。
利用变频器控制风机的输出功率,可以实现电网负荷的平衡,降低电网供电压力。
通风系统风机变频调速装置工作原理
通风系统风机变频调速装置工作原理一、引言通风系统是现代建筑中必不可少的设备,它具有排除有害气体、调节室内温度和湿度等多种功能。
而风机是通风系统的核心组件之一。
近年来,随着科技的进步和环保意识的提高,通风系统风机变频调速装置逐渐被广泛应用。
本文将详细介绍通风系统风机变频调速装置的工作原理,以及其在提高通风系统性能和节省能源方面的重要作用。
二、通风系统风机变频调速装置的工作原理通风系统风机变频调速装置是通过改变风机的供电频率来调节风机的转速,实现风量的调控。
该装置由变频器和传感器两部分组成。
1. 变频器变频器是通风系统风机变频调速装置的核心部分。
它通过改变输入电源的频率来调节电机的转速,进而控制风机的风量输出。
变频器能够根据通风系统的需要实时调整频率,使得风机能够在不同工况下实现精确的风量控制。
2. 传感器传感器用于感知通风系统的工作状态和环境参数,并将这些信息传输给变频器。
常用的传感器包括温度传感器、湿度传感器、风速传感器等。
通过传感器的实时监测,变频器可以根据实际情况来调整风机的转速,以达到最佳的通风效果。
三、通风系统风机变频调速装置的优势和作用通风系统风机变频调速装置具有以下几个优势和作用:1. 高效节能传统的通风系统采用恒定速度供电,无法根据实际需求来调节风量,造成能源浪费。
而风机变频调速装置可以根据实时需求调整风机转速,避免无用功率的浪费,从而实现高效节能。
2. 精确控制通风系统风机变频调速装置可以根据具体需求实现精确的风量控制。
无论是需要大风量还是小风量,该装置都可以满足需求,并保持稳定工作状态。
同时,通过传感器的实时监测,变频器可以随时调整风机的转速,保持恒定的风量输出。
3. 噪音降低相比于传统的恒速风机,通风系统风机变频调速装置可以调整风机的转速,使其在低负荷状态下运行,从而降低噪音产生。
这不仅提升了使用者的舒适性,也减少了周围环境的噪音污染。
4. 延长设备寿命通风系统风机变频调速装置可以通过减少频繁启停和突然负荷变化,降低风机的损耗和磨损,从而延长设备的使用寿命。
变频器的应用及注意事项
变频器的应用及注意事项变频器的应用及注意事项有很多,以下是详细解释:一、变频器的应用:1. 电机控制:变频器常用于对电机的调速控制,通过改变电机的频率和电压,可以实现电机的无级调速,适用于各种机械设备,如风机、泵、输送机、切割机等。
2. 节能降耗:通过变频器能够使电机实现节能效果,通过降低电压和频率来控制电机的转速,减少了电机的能耗,实现了对电机的节能控制。
3. 控制质量:变频器能够实现对电机的精确控制,使电机的加速度、减速度、启动、停止等过程更加平稳,提高了电机的控制质量。
4. 自动化控制:变频器与PLC、DCS等自动化控制系统配合使用,能够实现设备的自动化生产控制,提高生产效率和产品质量。
5. 工艺调整:变频器在生产制造流程中能够实现对设备的工艺参数的精确调整,以适应生产过程中不同的工艺要求。
二、变频器的注意事项:1. 进行电气安装时,应注意选择合适的变频器型号和规格,确保其能够适应所控制的电机的功率和负载特性。
2. 进行电气接线时,应按照变频器的接线图和说明书进行正确接线,避免错接或接反导致设备损坏或安全事故发生。
3. 变频器在使用过程中应注意维护保养,定期检查变频器的散热器、风扇、电容器等元件的工作状态,确保其正常工作。
4. 变频器的工作环境要求较高,应避免通风不良、温度过高或湿度过大的环境中使用,以免影响其正常工作和寿命。
5. 在使用变频器过程中,应根据实际需要进行参数配置,如频率、电压、额定电流等,避免参数设置错误导致设备过载或无法启动。
6. 注意防止冲击负载,如变频器启动时要避免突然加大负载,以免引起过电流或过压,对变频器和电机造成损坏。
7. 充分了解设备的使用规程和操作说明,操作人员应接受专业培训,掌握变频器的正确使用方法,避免误操作引发故障。
8. 变频器的维修和维护工作应由专业人员进行,不要随意拆卸和更换变频器的内部元件,以免损坏设备或引发安全事故。
9. 若要改变变频器的参数配置,应先停止设备运行,并按照说明书的要求操作,确保参数设置正确和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器在风机上的应用变频器在风机调速系统中的地位在很长一段时间内,电力拖动调速系统中,基本上采用直流电动机。
而交流电动机只能应用在不变速拖动系统中,或者对调速要求不高的场合。
原因很简单,就是由于技术问题,交流电动机调速性能差,无法满足要求较高的调速系统的需要。
随着控制技术、电力电子技术、微电子技术和计箅机技术的发展,近年来,变频器技术发展迅猛,高性能的变频器应运而生。
交流电动机调速系统不仅在性能指标上,已超过了传统的直流调速系统,在诸多方面,都优于直流电动机调速。
因此,在各领域中,得到了广泛的使用。
利用变频器,对交流电动机进行调速控制的交流拖动系统,有许多优点。
诸如容易实现对现有电动机的调速控制,可以实现大范围内的高效连续调速控制;容易实现电动机的正反转切换。
可以连续高频度地起停运行;可以适应各种环境下工作,可以用一台变频器对多台电动机进行控制,电源功率因数大,可以组成高性能的控制系统等等。
以往,风机、水泵采用恒速交流电动机拖动,通过调节挡板或阀门开度大小来调节风量和流量。
这势必造成电能的浪费。
若利用变频器调速技术,以调节电动机转速的方式取代调节挡板和阀门,则可以达到节能的目的。
因为这类负载的输人功率和转速的三次方成正比,利用调速使流量减少,则异步电动机的输人电功率按立方规则下降,从而使耗电量大大降低,节能效果十分显著,达到20^以上。
在采用了变频器的交流拖动系统中,异步电动机的调速控制,是通过改变变频器的输出频率实现的。
因此,可以通过控制变频器的输出频率,使电动机工作在较宽广的调速范围内。
并可以达到提高运行效率的目的。
通用性变频器的调速范围可以达到1:10以上,而高性能的矢量控制变频器的调速范围可以达到1:1000。
当采用矢量控制方式的变频器,对异步电动机进行调速时,还可以直接控制电动机的输出转矩。
因此,高性能的矢量控制变频器与变频器专用电动机的组合,在控制性能方面,可以超过髙精度直流伺服电动机的控制性能。
利用电网电源运行的交流调速系统,为了实现正反转切换,必须利用幵闭器等装置对电源进行换相切换。
利用变频器调速控制时,只需通过控制信号,就能改变变频器内部逆变电路换流器件幵关顺序,达到对输出进行换相的目的电网电源运行下的电动机进行正反转切换时,如果在电动机尚未停止时,电源相序进行切换,电动机内部将会产生大于起动电流的电流,有烧毁电动机的危险。
所以通常必须等电动机完全停止后,才能进行换相操作。
而采用变频器的交流调速系统中,可根据需要随时向变频器发出正反转切换控制信号。
变频器将改变输出频率,使电动机按预选设定的斜坡函数规律进行减速。
并在电动机减速至极低范围后,变频器进行换相输出。
相序切换后,变频器的输出频率又按照斜坡函数规律进行加速,从而达到限制加速度的目的。
这样,电动机在整个换相、正反转切换过程中的电流可以很小,避免了冲击大电流和大的机械冲击。
传统的控制电动机起动电流的诸多方法,既复杂效果又不理想。
利用变频器的交流调速系统,可以方便地对变频器进行加减时间的设定,从而解决了电动机起动电流较大,对电网冲击的问题和电动机频繁起动发热的问题。
利用变频器的调速控制系统,电动机可以进行较髙频度的起停运行,而且,电动机功耗和发热较小,对电网冲击较小。
在变频器调速控制系统中,当变频器的输出频率,降至低于电动机的实际转速所对应的频率时,负载的机械能将被转换为电能,并被回馈到变频器,而变频器则可以利用自己的制动回路,将这部分能量以热能消耗或回馈给供电电网,并形成电气制动。
此外,还有些变频器具有直流制动的功能。
当需要制动时,变频器可以提供直流电源加到电动机上,进行直流制动。
由于变频器就是一个可以进行调频调压的交流电源。
可以用一台变频器同时驱动多台电动机,从而节约了设备的投资。
而这对于直流调速系统来说,是很难做到的。
变频器是通过交流一直流一交流的电源变换后,驱动异步电动机的。
所以,利用变频器驱动电动机的功率因索较高,而不受电动机功率因素的影响。
对于直流电动机来说,由于受电刷和反相环等因索的制约,无法进行高速运转。
而异步电动机不存在上述的制约。
理论上讲,异步电动机的转速是正比于电源的频率。
只要有高频电源驱动电动机,电动机就可以实现高速运行。
目前的髙频变频器的输出频率已经可以达到3000出,对二极异步电动机进行驱动时,电动机的转速可高达1800001^1^11。
而且,随着变频器技术的不断发展,高频变频器的输出频率也在不断地提高。
高速驱动也是变频器调速控制的一个很重要的优势。
随着控制理论、交流调速理论的发展,随着变频器技术、电力电子技术、微电子技术、计算机技术的发展,高性能的各种变频器,使变频器调速系统已大大地超过了直流调速系统,以及直流电动机伺服系统。
变频器调速系统将在电力拖动系统中占统治地位,将广泛地应用于各个领域之中。
变频器在风机上的应用发展过程变频器技术的发展,其中主要以变频器控制方式的发展和电力电子器件的发展作为基础。
很久以来,交流调速取代直流调速一直是人们所希望的。
在交流电动机调速控制方面,也进行了大量的研究工作,然而,一直未能取得满意的成果。
直到1964年,法国人A.schcnung和H.stemmler首先提出了把通讯技术的脉宽调制〈简称PWM)技术应用到交流调速系统中。
从此,PWM速技术的研究引起了人们的髙度重视。
20世纪80年代,日本学者提出了磁通轨迹控制方式,使变频变压?技术(即u/f控制方式)成为变频器技术的核心。
研究人员又继续着力于PWM技术的进一步研究,达到了调压调频的目的。
北美、西欧、日本一些发达国家,从20世纪80年代起,生产出了VVVF技术的变频器,而且很快就商业化,广泛地应用于工业生产之中。
第一代变频器的性能尽管不尽人意,但已有较好的机械特性,能够满足一般交流电动机无极调速的要求。
比较适合应用于风机、水泵等以节能为主要目的的调速场合,在这一领域内,迅速得到了普及应用。
上述这种U/f控制方式通用变频器,还不具备转矩控制的能力,只是变频器的原型。
后来厂商,如日本的富士公司、三肯公司、德国的西门子公司,分别采用了新型的U/f控制方法,融人新的箅法,控制技术、功能和新工艺,在性能方面有了很大的改进。
低频性能大大提高,并具备了自寻优运行功能,节电效果更好,已能满足一般工业控制的需要。
我国近年进口的一些变频器绝大部分都是这种类型的性能。
它是我国各领域广泛使用变频器的基础。
1968年德国人哈斯博士首先提出了磁场定向控制理论。
1971年德国的伯拉斯切克又提出了异步电动机转子磁场定向矢量控制方法,并以直流电动机和交流电动机比较的方法,分析这一原理,使人们认识到尽管交流电动机电磁关系复杂,但同样可以实现转矩、磁场分别控制的方法。
该理论提出了对寧链和磁转矩分别采用闭环控制,实现电流和磁场的解耦,进一步实现转子磁场定向矢量-制,使异步电动机的控制特性和他励直流电动机特性相似。
在实用方面,人们进一步分析研究,发现对于一般异步电动机调速控制系统,可以采用较简单的转子磁场定向矢量控制,即所谓转差频率矢量控制。
这是矢量控制型变频器的理论基础。
1992年开始,德国西门子公司相继开发了6SE70系列通用变频器。
它通过PE、VC、SC板可以分别实现频率控制、矢量控制、伺服控制等,并具有转矩控制功能和无跳闸性能。
输出静态特性与普通型U/f控制方式通用变频器有很大的改进。
机械特性硬于工频电网供电的异步电动机。
这种典型的产品,属于髙功能性U/f控制方式通用变频器。
在这个基础上,又开发生产了髙性能型矢量控制通用变频器。
这种变频器在动态性能上,又有了很大的提高。
目前应用最多的还是髙功能型U/f控制方式通用变频器,它的性能足以满足大多数生产机械高质量调速控制的需要,只有特殊应用场合才考虑选用高性能矢量控制通用变频器. 1985年德国迪普布罗克首先提出了,基于六边形乃至圆形磁链轨迹的直接转矩控制理论。
这种直接转矩控制不是通过控制电流磁链等量间接控制转矩。
而是把转矩直接作为控制量来控制。
实际上,就是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制。
1995年,ABB公司首先推出了直接转矩控制型通用变频器。
目前已成为各系列通用变频器的核心技术。
其动态转矩响应已达到小于2mm,在带速度传感器时的静态速度精度达±0.01%.不带速度传感器也可以达到±0.1%的速度控制精度。
其他一些公司,也在以直接转矩控制作为努力目标。
电力电子器件的发展又是变频器技术发展的另一个基础。
第一代以晶闸管(SCR)为代表的电力电子器件出现在20世纪50年代。
它主要是电流控制型开关器件,以小电流控制大电流的变换。
但其开关频率低,且导通后不能自关断。
20世纪60年代有了门极关断晶闸管(CTO),双极型电力晶体管(CTR),是一种电流型自关断电力电于开关器件。
20 世纪70年代开始应用金属氧化物半导体场效应晶体管(MOSFET)、MOS 控制晶体管(MCT)、绝缘栅双极型晶体管(ICBT)。
它们是一种电压型自关断电力电子器件,其开关频率高达劝20kHz,甚至20kHz以上。
20世纪90年代末,智能模块问世且得到应用。
它内部含有ICBT芯片及外围的驱动电路和保护电路,甚至有霍尔传感器和光耦电路。
最近,日立公司开发的通用变频器专用集成功率模块(ISPM),将整流电路、逆变电路、逻辑控制、驱动和保护,电源电路全部集成在一块模块内。
使通用变频器的体积大大缩小,引线减少。
电力电子器件的发展,使通用变频器的性能有了很大的提高。
变频器在风机上的应用的安装环境1.工作温度。
变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。
在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。
2. 环境温度。
温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。
必要时,必须在箱中增加干燥剂和加热器。
在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。
3.腐蚀性气体。
使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。
4. 振动和冲击。
装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。
淮安热电就出现这样的问题。
这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。
设备运行一段时间后,应对其进行检查和维护。
5.电磁波干扰。
变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。