Buck变换器工作原理介绍
BUCK-BOOST电路原理分析
BUCK/BOOST 电路原理分析
Buck 变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q 为开关管,其驱动电压一般为PWM(Pulse width modulaTIon 脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
Boost 变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q 也为PWM 控制方式,但最大占空比Dy 必须限制,不允许
在Dy=1 的状态下工作。
电感Lf 在输入侧,称为升压电感。
Boost 变换器也
有CCM 和DCM 两种工作方式
Buck/Boost 变换器:也称升降压式变换器,是一种输出电压既可低于
也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电。
BUCK_BOOST_BUCK-BOOST电路的原理
BUCK BOOST BUCK/BOOST电路的原理Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。
LDO的特点:①非常低的输入输出电压差②非常小的内部损耗③很小的温度漂移④很高的输出电压稳定度⑤很好的负载和线性调整率⑥很宽的工作温度范围⑦较宽的输入电压范围⑧外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:】(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
buck变换器工作原理
buck变换器工作原理
Buck变换器是一种常用的DC-DC转换器,它的工作原理是利用电感和开关管等元器件,将高电压输入转换为低电压输出。
其基本结构包括输入滤波器、升压电路、开关控制电路、输出滤波器等部分。
在Buck变换器工作时,开关管周期性地开启和关闭,从而形成了一个高频矩形波形的开关信号。
当开关管导通时,电感中储存的电能会转移到输出端,从而使输出电压升高;当开关管关闭时,输出端的电容会释放能量,从而使输出电压下降。
通过控制开关管的导通和关闭时间,可以实现输出电压的稳定控制。
Buck变换器的优点是体积小、效率高、成本低。
它广泛应用于电子设备、通信设备、汽车电子等领域,成为现代电子技术中不可或缺的组成部分。
- 1 -。
BUCK变换器轻载时三种工作模式原理及应用
BUCK变换器轻载时三种工作模式原理及应用BUCK 变换器是一种常见的 DC-DC 变换器,用于将一个较高电压的直流输入 voltage 输入转换成一个较低电压的直流输出 voltage 输出。
在轻载条件下,Buck 变换器可以采用三种不同的工作模式,即连续导通模式(Continuous Conduction Mode,简称 CCM)、脉冲调制模式(Pulse Width Modulation,简称 PWM)以及脉冲频率调制模式(Frequency Modulation,简称 FM)。
下面将详细介绍这三种工作模式的原理及应用。
1.连续导通模式(CCM):在连续导通模式下,Buck 变换器的开关管(开关管处于导通状态)一直处于导通状态,当负载电流小于或等于开关管的平均电流时,该模式适用。
在这种模式下,输出电压是由输出电感上的电流波形形状决定的。
当负载电流较小时,电感上的电流波形会连续地流过开关管,在每个开关周期开始时,电感电流从零电流重新开始增加,然后继续增加直到达到峰值电流,随后开始减小,最后回到零电流。
因此,在连续导通模式下,开关管的在每个开关周期中被连续地开启和关闭。
在应用方面,连续导通模式的Buck 变换器常用于对输出电压精确度要求较高的场合,例如高性能的电子设备、精密仪器等。
2.脉冲调制模式(PWM):脉冲调制模式是一种开关时间控制模式,适用于轻载和中载条件。
在脉冲调制模式下,开关管的导通时间由控制电路根据负载和输入条件来决定。
随着输出电压的变化,控制电路会调整导通时间,以使输出电压保持在所需的目标值。
在每个开关周期内,开关管的导通时间和断开时间是固定的。
在应用方面,脉冲调制模式的Buck 变换器广泛用于电力转换系统、汽车电子设备等领域。
3.脉冲频率调制模式(FM):脉冲频率调制模式是一种工作频率控制模式,在负载变化较大的情况下,能保持稳定的输出电压。
这种模式下,开关管的导通时间保持不变,而开关频率会根据负载需求进行调整。
BUCK_BOOST_BUCK-BOOST电路的原理
BUCK BOOST BUCK/BOOST电路的原理Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。
LDO的特点:①非常低的输入输出电压差②非常小的内部损耗③很小的温度漂移④很高的输出电压稳定度⑤很好的负载和线性调整率⑥很宽的工作温度范围⑦较宽的输入电压范围⑧外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:】(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
什么是降压变换器如何设计一个降压变换器电路
什么是降压变换器如何设计一个降压变换器电路降压变换器(Buck Converter)是一种电力转换设备,其作用是将输入的电压降低到较低的输出电压。
它在电子设备中广泛应用,例如手机充电器、电脑电源等。
本文将探讨降压变换器的原理和设计一个降压变换器电路的步骤。
一、降压变换器原理降压变换器通过控制开关管的导通和关断,实现将高电压输入转换为低电压输出的过程。
1.1 基本工作原理降压变换器由输入电压源、开关管、电感、二极管和负载等元件组成。
当开关管导通时,输入电压施加在电感上,同时负载电流也经过开关管,此时电感储能。
而当开关管关断时,电感释放能量,以供给负载电流。
通过不断的循环工作,实现了输入电压到输出电压的降低。
1.2 工作模式降压变换器主要有连续导通模式和间断导通模式两种工作模式。
- 连续导通模式:当负载电流为零时,电感电流仍然连续导通,其特点是输出电流连续,适用于负载较大的情况。
- 间断导通模式:当负载电流为零时,电感电流终止,其特点是输出电流存在间断,适用于负载较小的情况。
二、设计一个降压变换器电路的步骤设计降压变换器电路需要考虑电压转换比、电流波动、效率等因素。
以下是一个基本的设计步骤:2.1 确定输入和输出参数首先要确定需要将输入电压转换为多少输出电压,并估计输出电流的大小。
这些参数将决定电路中各元件的选取。
2.2 选择开关管和电感开关管通常选择MOSFET,在设计时要考虑其最大电流和导通电阻。
而电感的选取则需要根据设计的输出电流和电感的电感值来确定。
2.3 选择输出二极管和滤波电容输出二极管选取时要考虑其反向电压和反向恢复时间。
滤波电容的选取需要考虑负载电流的稳定性和纹波电流的大小。
2.4 设计控制电路控制电路通常采用脉宽调制(PWM)控制方式,通过调整开关管导通时间来控制输出电压的稳定性。
2.5 进行模拟和实验验证在设计完成后,进行电路的模拟分析和实验验证,通过实际测量结果来验证设计的准确性和稳定性。
Buck变换器浅析
Buck电路工作原理介绍DC-DC变换器按功率开关电路的结构形式来分,可分为非隔离型(主电路中无高频变压器),隔离型(主电路中有高频变压器),以及具有软开关特性的谐振型等。
非隔离型直流变换器,有三种基本的电路拓扑:降压(Buck)型,升压(Boost)型,反相(Buck-Boost即降压-升压)型,以下详细介绍Buck变换器。
1 Buck变换器电路构成Buck变换器又称为降压电路,其基本拓扑如图1所示图1 Buck电路拓扑结构电路主要元器件包括开关管T(物理实现可以用IGBT,MOSFET),续流二极管D,储能电感L,输出滤波电容C及负载电阻R。
输入直流电源为U s,输出直流电压为U o。
2 Buck变换器工作原理Buck变换器工作在电感电流连续模式下的工作原理如下:开关管的导通与关断受控制电路输出的驱动脉冲控制。
如图1所示,当控制电路脉冲输出高电平时,开关管导通,如图2(a)所示,续流二极管D阳极电压为零,阴极电压为电压电压Us,因此反向截止,开关上流过电流i s流经电感L 向负载R供电;此时L中的电流逐渐上升,在L两端产生左端正右端负的自感电势阻碍电流上升,L将电能转化为磁能存储起来。
经过时间t on后,控制电路脉冲为低电平,开关管关断,如图2(b)所示,但L中的电流不能突变,(a)开关管导通(b)开关管关断图2电流连续模式下 Buck 变换器等效电路这时电感L 两端产生右端正左端负的自感电势阻碍电流下降,从而使D 正向偏置导通,于是L 中的电流经D 构成回路,电流值逐渐下降,L 中储存的磁能转化为电能释放出来供给负载R 。
经过时间t off 后,控制电路脉冲又使开关管导通,重复上述过程。
滤波电容C 的作用是为了降低输出电压U o 的脉动。
续流二极管D 是必不可少的元件,若无此二极管,电路不仅不能正常工作,而且在开关管由导通变为关断时,L 两端将产生很高的自感电势从而损坏开关管。
3 Buck 变换器工作状态及相应元件参数计算为了方便分析稳态特性,简化推导过程,做如下假设:(1)开关管,二极管是理想元件,可在瞬间导通或截止,没有导通压降、导通电阻,截止时无漏电流。
入门级Buck电路原理—简洁而不简单
Buck、Boost、Buck-Boost作为直流开关电源中应用广泛的拓扑结构,属于非隔离的直流变换器。
本期内容小编将对其中的Buck电路展开详细介绍。
*Buck基础拓扑电路降压式(Buck)变换器是一种输出电压≤输入电压的非隔离直流变换器。
Buck变换器的主电路由开关管Q,二极管D,输出滤波电感L和输出滤波电容C构成。
接下来将从:1. 开关整流器基本原理2. 传说中的“伏-秒平衡” 3. 同步整流死区时间等三部分详细介绍Buck电路的工作原理。
让我们打起精神,擦亮眼睛,深刻体会简洁而不简单的Buck电路吧!Part 1 开关整流器基本原理导通时间关断时间在[0,Ton]期间,开关导通;在[Ton,Ts]期间,Q截止。
设开关管开关周期为Ts,则开关频率fs=1/Ts。
导通时间为Ton,关断时间为Toff,则Ts=Ton+Toff。
设占空比为D,则D=Ton/Ts。
改变占空比D,即改变了导通时间Ton的长短,这种控制方式成为脉冲宽度调制控制方式(Pulse Width Modulation, PWM)。
Buck电路特征•输出电压≤输入电压•输入电流断续•输出电流连续•需要输出滤波电感L和输出滤波电容CPart 2 传说中的“伏-秒平衡”伏秒原则,又称伏秒平衡,是指开关电源稳定工作状态下,加在电感两端的电压乘以导通时间等于关断时刻电感两端电压乘以关断时间,或指在稳态工作的开关电源中电感两端的正伏秒值等于负伏秒值。
在一个周期T 内,电感电压对时间的积分为0,称为伏秒平衡原理。
正如本文开头视频中指出,任何稳定拓扑中的电感都是传递能量而不消耗能量,都会满足伏秒平衡原理。
Part 3 同步整流死区时间同步整流是采用极低导通电阻的的MOSFET来取代二极管以降低损耗的技术,大大提高了DCDC的效率。
物理特性的极限使二极管的正向电压难以低于0.3V。
对MOSFET来说,可以通过选取导通电阻更小的MOSFET来降低导通损耗。
Buck变换器工作原理分析和总结
题目: Buck变换器工作原理分析与总结目录一、关于Buck变换器的简单介绍 (2)1、Buck变换器另外三种叫法 (2)2、Buck变换器工作原理结构图 (2)二、Buck变换器工作原理分析 (3)1、Buck变换器工作过程分析 (3)2、Buck变换器反馈环路分析 (4)3、Buck变换器的两种工作模式 (4)1)Buck变换器的CCM工作模式 (5)2)Buck变换器的DCM工作模式 (6)3)Buck变换器CCM模式和DCM模式的临界条件 (7)4)两种模式的特点 (8)4、Buck变换器电感的选择 (8)5、Buck变换器输出电容的选择和纹波电压 (9)三、Buck变换器工作原理总结 (10)Buck 变换器工作原理分析与总结一、关于Buck 变换器的简单介绍1、Buck 变换器另外三种叫法1. 降压变换器:输出电压小于输入电压。
2. 串联开关稳压电源:单刀双掷开关(晶体管)串联于输入与输出之间。
3. 三端开关型降压稳压电源:1) 输入与输出的一根线是公用的。
2) 输出电压小于输入电压。
2、Buck 变换器工作原理结构图GabcWMV Gd图1. Buck 变换器的基本原理图由上图可知,Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。
而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。
二、Buck 变换器工作原理分析1、Buck 变换器工作过程分析图2. Buck 变换器的工作过程为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设:1) 开关元件M1和二极管D1都是理想元件。
它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零;2) 电容和电感同样是理想元件。
电感工作在线性区而未饱和时,寄生电阻等于零。
BUCK_BOOST_BUCK-BOOST电路的原理
BUCK BOOST BUCK/BOOST电路的原理Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。
LDO的特点:①非常低的输入输出电压差②非常小的内部损耗③很小的温度漂移④很高的输出电压稳定度⑤很好的负载和线性调整率⑥很宽的工作温度范围⑦较宽的输入电压范围⑧外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:】(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
Buck变换器工作原理分析和总结
Buck变换器工作原理分析和总结一、简述首先简单地说,Buck变换器就像是一个电力的“翻译官”。
它接收一种电压,然后转换成另一种电压输出。
你可能会问,为什么需要转换电压呢?别着急我们慢慢说,在现代电子设备中,不同的部件需要不同的电压来运行。
而Buck变换器,就是帮助我们调整电压,确保每个部件都能得到合适的能量。
Buck变换器就像一个电力调节器,确保我们的电子设备在不同电压条件下都能稳定运行。
那么它是如何实现这一功能的呢?接下来我们会深入探讨它的工作原理。
1. 介绍Buck变换器的基本概念及其在电源管理领域的重要性好的让我为你介绍一下关于《Buck变换器工作原理分析和总结》中的第一部分内容:介绍Buck变换器的基本概念及其在电源管理领域的重要性。
想必大家对电子设备中的各种电源管理技术都颇感兴趣吧,作为其中的重要一员,Buck变换器可以说是电源管理领域的明星角色。
那究竟什么是Buck变换器呢?简单来说它就像一个灵活的电力调整器,负责把输入的高电压转换成我们设备需要的低电压。
Buck变换器是电源管理领域不可或缺的一部分。
它的基本概念就是把高电压转换成我们设备需要的低电压,确保设备的稳定运行。
而它在电源管理领域的重要性,就像一位优秀的管家,确保电力供应的稳定和高效。
2. 简述文章目的和内容概述接下来让我们简要谈谈本文的目的和内容概述,写这篇文章的目的,是为了帮助大家更好地理解Buck变换器的工作原理,并通过分析和总结,使大家对这一技术有更深入的认识。
毕竟技术虽专业,但也需要我们能接地气地理解和运用。
这篇文章中,首先会介绍一下什么是Buck变换器,以便大家有个初步的了解。
接着我们会深入浅出地讲述它的工作原理,通过简单易懂的语言和生动的比喻让大家更容易明白。
然后我们会深入分析它的实际应用场景以及在实际操作中可能遇到的问题。
当然还会包括如何进行优化和调整的实用技巧,在文章的最后部分,我们会对整个Buck变换器的工作原理进行综合性的总结,帮助大家形成一个清晰的思路和体系。
BUCK-BOOST电路工作原理图文分析
BUCK-BOOST电路⼯作原理图⽂分析BUCK-BOOST 电路⼯作原理图⽂分析【项⽬任务】测试电路如下图4.8⽰,调整函数发⽣器的占空⽐,测量输⼊与输出关系。
Q12,输出波形通道1,驱动波形(a) 测试电路 (b)函数发⽣器信号 (b)输出波形图4.8 BUCK-BOOST 电路(multisim)【信息单】⼀、直流斩波电路的基本原理Buck/Boost 变换器是输出电压可低于或⾼于输⼊电压的⼀种单管直流变换器,其电路如图4.8。
与Buck 和Boost 电路不同的是,电感L f 在中间,不在输出端也不在输⼊端,且输出电压极性与输⼊电压相反。
开关管也采⽤PWM 控制⽅式。
Buck/Boost 变换器也有电感电流连续和断续两种⼯作⽅式,此处以电感电流在连续状态下的⼯作模式。
图4.8是电感电流连续时的主要波形。
图4.10是Buck/Boost 变换器在不同⼯作模态下的等效电路图。
电感电流连续⼯作时,有两种⼯作模态,图4.11(a)的开关管Q 导通时的⼯作模态,图 (b)是开关管Q 关断、D 续流时的⼯作模态。
V o图4.9电路Vi LFi Qi DV图4.10感电流连续⼯作波形V oV o(a) Q 导通 (b) Q 关断,D 续流图5.11 Buck/Boost 不同开关模态下等效电路⼆、电感电流连续⼯作原理和基本关系电感电流连续⼯作时,Buck/Boost 变换器有开关管Q 导通和开关管Q 关断两种⼯作模态。
1.在开关模态1[0~t on ]:t=0时,Q 导通,电源电压V in 加载电感L f 上,电感电流线性增长,⼆极管D 戒指,负载电流由电容C f 提供:f L fin di L V dt=(2-1)oo LDV I R =(2-2)ofo dV C I dt= (2-3)t=t on 时,电感电流增加到最⼤值max L i ,Q 关断。
在Q 导通期间电感电流增加量f L i ?f inL y fV i D T L ?=(2-4)2.在开关模态2[t on ~ T]:t=t on 时,Q 关断,D 续流,电感L f 贮能转为负载功率并给电容C f 充电,fL i 在输出电压Vo 作⽤下下降:f L fo di L V dt=(2-5)f o o oL fo f LDdV dV V i C I C dt dt R =+=+ (2-6)t=T 时,fL i 见到最⼩值min L i ,在t on ~ T 期间fL i 减⼩量fL i ?为:(1)f o o L off y f fV Vi t D T L L ?==- (2-7)此后,Q ⼜导通,转⼊下⼀⼯作周期。
基于BUCK变换器开关电源设计
基于BUCK变换器开关电源设计一、引言开关电源是一种常见的电源系统,其主要由开关电路、滤波电路和稳压电路组成。
其中,开关电路是关键部分,负责将输入电源的直流电压转换为需要的电压形式。
BUCK变换器是开关电源中常用的一种变换器类型,在工业和电子设备中广泛应用。
本文将介绍基于BUCK变换器的开关电源设计的详细步骤和注意事项。
二、BUCK变换器的原理BUCK变换器是一种降压变换器,其工作原理是通过开关管控制输入电源的导通和断开,从而通过电感和电容的锁相环作用,实现输出电压的稳定调节。
具体工作步骤如下:1.开关管导通状态:当开关管导通时,输入电源与电感形成回路,电感里的能量被储存在磁场中,同时电容开始充电。
2.开关管断开状态:当开关管断开时,电感的磁场崩溃,释放能量,使得电流通过二极管回路,电容开始放电。
通过这种开关过程,BUCK变换器可以将输入电源的直流电压降低,达到需要的输出电压。
三、基于BUCK变换器的开关电源设计步骤1.确定输入电源和输出电压要求:根据具体应用需求,确定所需要的输入电压和输出电压,以及电流要求。
2.计算开关管的参数:根据输出电压和电流要求,计算开关管的额定电流和功率,选择合适的开关管类型。
3.计算电感和电容的参数:根据输入电压、输出电压和电流要求,计算出合适的电感和电容参数。
选择合适的电感和电容类型,并进行热稳定计算。
4.设计开关频率:根据应用需求和电路参数,选择合适的开关频率,以达到较高的功率转换效率。
5.设计控制电路:根据选择的开关频率和开关管类型,设计合适的控制电路,实现开关管的正常工作,如脉宽调制控制、开关管的驱动电路等。
6.选择滤波电路:根据输出电压的纹波和稳压要求,选择合适的滤波电路进行设计,如低通滤波器、电容滤波器等。
7.PCB布局和散热设计:根据电路参数和设计要求,进行PCB布局和散热设计,确保电路能够正常工作并具有较高的稳定性和可靠性。
四、注意事项1.在设计过程中,需根据电路参数和工作条件选择合适的元件,如开关管、电感、电容等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Buck 变换器工作原理介绍2.2.1 Buck 变换器的基本工作原理Buck 变换器又称为降压变换器,串联稳压开关电源和三端开关型降压稳压电源。
其基本的原理结构图如图2.2所示。
GabcWMV Gd图2.2 Buck 变换器的基本原理图由上图可知,Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。
而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。
为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设[1]:a 、开关元件M1和二极管D1都是理想元件。
它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零;b 、电容和电感同样是理想元件。
电感工作在线性区而未饱和时,寄生电阻等于零。
电容的等效串联电阻(Equivalent Series Resistance ,ESR )和等效串联电感(Equivalent Series inductance ,ESL )等于零;c 、输出电压中的纹波电压和输出电压相比非常小,可以忽略不计。
d 、采样网络R1和R2的阻抗很大,从而使得流经它们的电流可以忽略不计。
在以上假设的基础上,下面我们对Buck 变换器的基本原理进行分析。
如图2.2所示,当开关元件M1导通时,电压V1与输出电压Vdc 相等,晶体管D1处于反向截至状态,电流01=D I 。
电流11L M I I =流经电感L1,电流线性增加。
经过电容C1滤波后,产生输出电流O I 和输出电压O V 。
采样网络R1和R2对输出电压O V 进行采样得到电压信号S V ,并与参考电压ref V 比较放大得到信号。
如图2.2(a )所示,信号ea V 和线性上升的三角波信号tr V 比较。
当ea tr V V >时,控制信号WM V 和G V 跳变为低,开关元件M1截至。
此时,电感L1为了保持其电流1L I 不变,电感L1中的磁场将改变电感L1两端的电压极性。
这时二极管D1承受正向偏压,并有电流1D I 流过,故称D1为续流二极管。
若O L I I <1时,电容C1处于放电状态,有利于输出电流O I 和输出电压O V 保持恒定。
开关元件截至的状态一直保持到下一个周期的开始,当又一次满足条件tr ea V V <时,开关元件M1再次导通,重复上面的过程。
仔细分析Buck 变换器的原理图可知,它的反馈环路是一个负反馈环路。
如图2.3所示,当输出电压O V 升高时,电压S V 升高,所以误差放大器的输出电压ea V 降低。
由于ea V 的降低,使得三角波tr V 更早的达到比较电平,所以导通时间on T 减小。
因此,Buck 变换器的输入能量降低。
由能量守恒可知,输出电压O V 降低。
反之亦然。
VOVea Ton VO VOVeaTonVOVS VS图2.3 Buck 变换器的负反馈环路2.2.2 Buck 变换器的两种工作模式按电感电流1L I 在每个周期开始时是否从零开始,Buck 变换器的工作模式可以分为电感电流连续工作模式(Continuous Conduction Mode ,CCM )和电感电流不连续工作模式(Discontinuous Conduction Mode ,DCM )两种。
两种工作模式的主要波形图如图2.4所示。
下面分别对这两种工作模式进行分析。
V I I I I I I I I I I V 1V I O I tI I V 1(a)CCM 工作模式 (b )DCM 工作模式图2.4 Buck 变换器的主要工作波形图2.2.2.1 Buck 变换器的CCM 工作模式由定义可知,Buck 变换器的CCM 模式是指每个周期开始时电感L1上的电流不等于零,图2.4(a )给出了Buck 变换器工作在CCM 模式下的主要波形。
设开关M1的导通时间为on T ,截止时间为off T ,工作时钟周期为T ,则易知有offon T T T +=(2-1)开关M1的状态可以分为导通和截止两种状态。
假设输入输出不变,开关M1处于导通状态时,电压dc V V =1,此时电感L1两端的电压差等于O dc V V -,电感电流1L I 线性上升,二极管电流01=D I 。
在开关M1导通的时间内,电感电流的增量为onOdc T O dc L T L V V dt L V V i on *-=-=∆⎰111(2-2)其中,1L i ∆表示开关M1导通时间内电感电流的增量(A ); 1L 表示电感L1的电感量(H )。
当开关M1处于截止状态时,若没有二极管D1的存在,电感L1中的磁场会将电压V1感应为负值,以保持电感中电流1L I 不变。
这种电压极性颠倒的现象成为“电感反冲”。
但此时二极管D1导通,将电压V1钳位在比地低一个二极管正向导通压降的电位。
由假设条件可知,电压V1=0V 。
此时,电感L1两端的电压差等于O V ,电感电流1L I 线性下降,二极管电流11L D I I =。
在开关M1截止的时间内,电感电流的增量为off O T O L T L Vdt L V i off *-=-=∆⎰11'1(2-3)其中,'1L i ∆表示开关M1截止时间内电感电流的增量(A ); 当Buck 变换器处于稳态时,电感电流的增量'11L L i i ∆=∆,所以offO on O dc T L VT L V V *-=*-11(2-4) 整理可得TTV T T T V V on dc off on on dc O **=+=(2-5)若令TT B on=1,则 1*B V V dc O =(2-6)其中,1B 表示开关M1导通时间占空比。
上式表明,输出电压O V 随着占空比1B 变化。
若用G 表示输出电压的电压增益,则CCM 模式下Buck 变化器的电压增益为1B V V G dcO==(2-7)2.2.2.2 Buck 变换器的DCM 工作模式由定义可知,Buck 变换器的DCM 工作模式是指每个周期开始时电感L1上的电流等于零,图2.4(b )给出了Buck 变换器工作在DCM 模式下的主要波形。
由图2.4(b )可知,DCM 工作模式下Buck 变换器共有三种状态:开关管M1导通,二极管D1导通和系统闲置(即开关管M1和二极管D1都关闭)。
设开关M1的导通时间为on T ,截止时间为off T ,二极管导通时间为d T ,系统闲置时间为id T ,工作时钟周期为T ,则易知有idd on off on T T T T T T ++=+=(2-8)假设输入输出不变,开关M1处于导通状态,参考Buck 变换器工作在CCM 模式的公式推导过程,可以推导出DCM 模式下,在开关M1导通的时间内,电感电流的增量为onOdc T O dc L T L V V dt L V V i on *-=-=∆⎰111(2-9)其中,1L i ∆表示开关M1导通时间内电感电流的增量(A )。
同样的,当二极管D1导通,开关M1截止时,参考Buck 变换器工作在CCM 模式的公式推导过程,可以推导出DCM 模式下,在二极管D1的导通时间内,电感电流的增量为d O T O L T L Vdt L V i d *-=-=∆⎰11'1 (5)(2-10)其中,'1L i ∆表示二极管D1导通时间内电感电流的增量(A )。
当系统处于闲置状态时,电感电流1L I 和二极管电流d I 都等于零。
为了维持输出电压O V 和输出电流O I 不变,电容C1处于放电状态。
由假设条件c)可知,此时电容上的电流等于输出电流O I ,即LO O id C R V I I ==)(1(2-11)其中,L R 表示输出负载的阻抗。
当Buck 变换器处于稳态时,电感电流的增量'11L L i i ∆=∆,所以dO on O dc T L VT L V V *-=*-11(2-12) 整理可得don ondc O T T T V V +=*(2-13) 令T T B on =1,TTB d =2,则上式可变为 211*B B B V V dc O +=(2-14)若用G 表示输出电压的电压增益,则DCM 模式下Buck 变换器的增益为 211B B B G += (1)(2-15)另外,由图2.4(b )可知,稳态时输出电流O I 等于电感电流1L I 的平均值,而且等于LOR V ,所以 ()LO O dc O R V T B L V V T B B T I =⎥⎦⎤⎢⎣⎡-+=1121**21*1 (3)(2-16) 化简可得()121211B B B KG+=- (2)(2-17)其中,TR L K L 1=。
联立式(2-15)和(2-17)可解得Buck 变换器DCM 模式下的电压增益为218112B K V V G dcO++==(2-18)2.2.3 Buck 变换器CCM 模式和DCM 模式的临界条件所谓Buck 变换器的临界条件就是指,此时Buck 变换器的工作状态即满足DCM 模式的条件,又满足CCM 模式的条件。
由式(3)我们知道Buck 变换器在DCM 模式下有()LO O dc O R V T B L V V T B B T I =⎥⎦⎤⎢⎣⎡-+=1121**21*1(2-19)因为,此时Buck 变换器又满足CCM 模式的条件,所以()121=+B B ,故有11121*21L O dc O i T B L V V I ∆=-=(2-20)因此,Buck 变换器CCM 模式和DCM 模式的临界条件为O L I i =∆121(4) (2-21)且Buck 变换器工作在CCM 和DCM 模式的判断条件分别为 O L I i CCM <∆121模式的判断条件:O L I i DCM >∆121模式的判断条件:联立式(2-10)和(2-21)可得LO O d OR V I T L V ==1*21 (2-22)由上式可以得出Buck 变换器CCM 模式和DCM 模式临界条件的另一种形式Ld R L T 12=(2-23)由上式可知,若二极管导通时间d T 和电感量1L 固定,Buck 变换器工作在CCM 模式还是DCM 模式由负载电阻L R 决定。
当电阻L R 增大时,工作状态由CCM 模式转化为DCM 模式。
2.2.4 Buck 变换器的效率前面的理论推导,我们都是建立在理想条件的基础上。
这样,开关管导通时,其两端承受的压降等于零;开关元件截止时,流经它的电流等于零。