数学3.1.1《函数的平均变化率》教案(1)(新人教B版选修1-1)

合集下载

新人教B版高中数学(选修1-1)3.1.1《函数的平均变化率》

新人教B版高中数学(选修1-1)3.1.1《函数的平均变化率》
r V
2019/2/12
3
3V . 4
当空气容积V从 0增加到1 L时, 气球半径增加了 r 1 r 0 0.62cm , r 1 r 0 气球的平均膨胀率为 0.62dm / L . 10 类似地,当空气容量从1 L增加到2 L时, 气球半径 增加了r 2 r 1 0.16dm , r 2 r 1 气球的平均膨胀率为 0.16dm / L . 21 可以看出, 随着气球体积逐渐变大, 它的平均膨 胀率逐渐变小了. 思考 当空气的容量从 V1 增加到V2时, 气球的平 均膨胀率是多少 ?
1.1变化率与导数
丰富多彩的变化率问题随处可见. 让我们从其中的两个问题, 开始变 化率与导数的学习吧!
2019/2/12
1.1.1函数的平均变化率
2019/2/12
问题1 气球膨胀率 很多人都吹过气球 .回忆一下吹气球的过程 , 可以发现, 随着气球内空气容量的 增加, 气球 的半径增加得越来越慢 .从数学的角度, 如何 描述这种现象呢? 我们知道, 气球的体积V 单位 : L 与半径 r (单 4 3 位 : dm)之间的函数关系是 V r r , 3 如果把半径r表示为体积V的函数, 那么
x是一个整体符号 , 而不是与 x相乘.
可把x 看作是相对于x1 的一个" 增量" , 可用 x1 x代替x2 ; 类似地, f f x2 f x1 . f 于是, 平均变化率可表示为 . x
2019/2/12
y
y f x f x 2 f x 1 f x2 f x1
2019/2/12
问题 2 高台跳水 人们发现 , 在高台跳水运动中 , 运动员相对于水 面的高度 h 单位 : m 与起跳后的时间t 单位 : s 2 存在函数关系 h t 4.9t 6.5t 10. 如果我们用运动员某段 时间内的平均速度 v描 述其运动状态 , 那么 在0 t 0.5这段时间里 , h0.5 h0 v 4.05 m / s ; 0.5 0 在1 t 2这段时间里 , h2 h1 v 8.2 m / s . 21

高中数学第三章导数及其应用3.1导数3.1.1函数的平均变化率教案新人教B版选修1_1

高中数学第三章导数及其应用3.1导数3.1.1函数的平均变化率教案新人教B版选修1_1

3.1.1 函数的平均变化率预习导航平均变化率思考1直线的斜率k ,倾斜角θ及直线上两点坐标之间有什么关系?提示:设点A 的坐标为(x 0,y 0),点B 的坐标为(x 1,y 1)(x 0≠x 1),自变量x 的改变量x 1-x 0记为Δx ,函数值的改变量y 1-y 0记为Δy ,即Δx =x 1-x 0,Δy =y 1-y 0. 直线AB 的倾斜角为α,斜率为k ,则有k =tan_α=y 1-y 0x 1-x 0=Δy Δx. 思考2平均变化率的取值一定是正数吗?提示:不一定.平均变化率可正、可负,也可以为零,平均变化率为0,函数f (x )并不一定没有发生变化.精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂; 幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

高中数学新人教B版选修1-1课件:第三章导数及其应用3.1.1函数的平均变化率(第1课时)

高中数学新人教B版选修1-1课件:第三章导数及其应用3.1.1函数的平均变化率(第1课时)

1.如果物体的运动规律是 s=s(t),那么物体在 t 到 t+Δt 这段 时间内的平均变化率就是物体在这段时间内的平均速率,即 v = Δs Δt.
2.解答此类题目,首先要明确自变量与函数值的实际意义, 然后利用定义求平均变化率,并结合题意回答有关问题.
一质点作直线运动,其位移 s 与时间 t 的关系为 s(t)=t2+1, 该质点在 2 到 2+Δt(Δt>0)之间的平均速度不大于 5,求 Δt 的取值 范围.
题目类型二、平均变化率的比较
试比较正弦函数 y=sin x 在 x=0 和 x=π2附近的平均变 化率的大小.
【思路探究】 先求出 y=sin x 在 x=0 和 x=π2附近的平均变 化率,再作差比较.
【自主解答】 当自变量从 0 变到 Δx 时,函数的平均变化率

k1=sin
Δx-sin Δx
2.函数 f(x)=2x 在 x1=1 到 x2=1+Δx 的平均变化率怎样计算 呢?
【提示】 fxx22- -fx1x1=f11++ΔΔxx- -1f1=21+ΔΔxx-2×1=2.
已知函数 y=f(x)在点 x=x0 及其附近有定义,令 Δx=x-x0; Δy=y-y0= f(x)-f(x0) = f(x0+Δx)-f(x0) ,则当 Δx≠0 时,比 值fx0+ΔΔxx-fx0=ΔΔyx叫做函数 y=f(x)在 x0 到 x0+Δx 之间的平均 变化率.
2.求函数 f(x)的平均变化率的步骤: (1)求函数值的增量 Δy=f(x2)-f(x1); (2)计算平均变化率ΔΔyx=fxx22- -fx1x1.
1.下列说法错误的是( ) A.函数的平均变化率可以大于零 B.函数的平均变化率可以小于零 C.函数的平均变化率可以等于零 D.函数的平均变化率不能等于零 【解析】 根据比值:fx0+ΔΔxx0-fx0,当 Δx0≠0 时,f(x0+Δx) -f(x0)可以为零,所以函数的平均变化率可以等于零. 【答案】 D

函数的平均变化率教案

函数的平均变化率教案

函数的平均变化率教案教学目标:1. 理解函数的平均变化率的定义和意义;2. 学会计算函数的平均变化率;3. 能够应用函数的平均变化率解决实际问题。

教学内容:第一章:函数的平均变化率的概念1.1 引入函数的平均变化率的概念1.2 解释函数的平均变化率的含义1.3 举例说明函数的平均变化率的应用第二章:函数的平均变化率的计算2.1 引入计算函数的平均变化率的方法2.2 讲解如何计算函数的平均变化率2.3 给出计算函数的平均变化率的例题第三章:函数的平均变化率的性质3.1 引入函数的平均变化率的性质3.2 讲解函数的平均变化率的性质3.3 给出函数的平均变化率的性质的证明第四章:应用函数的平均变化率解决实际问题4.1 引入应用函数的平均变化率解决实际问题的方法4.2 讲解如何应用函数的平均变化率解决实际问题4.3 给出应用函数的平均变化率解决实际问题的例题第五章:巩固练习5.1 给出巩固练习的题目5.2 讲解巩固练习的解法5.3 给出巩固练习的答案教学资源:1. 教学PPT;2. 教材或教案;3. 练习题。

教学评估:1. 课堂参与度;2. 练习题的完成情况;3. 学生对函数的平均变化率的理解程度。

教学步骤:Step 1:引入函数的平均变化率的概念(10分钟)1. 讲解函数的平均变化率的定义;2. 举例说明函数的平均变化率的应用。

Step 2:讲解计算函数的平均变化率的方法(15分钟)1. 讲解如何计算函数的平均变化率;2. 给出计算函数的平均变化率的例题。

Step 3:讲解函数的平均变化率的性质(15分钟)1. 讲解函数的平均变化率的性质;2. 给出函数的平均变化率的性质的证明。

Step 4:应用函数的平均变化率解决实际问题(10分钟)1. 讲解如何应用函数的平均变化率解决实际问题;2. 给出应用函数的平均变化率解决实际问题的例题。

Step 5:巩固练习(15分钟)1. 给出巩固练习的题目;2. 讲解巩固练习的解法;3. 给出巩固练习的答案。

函数的平均变化率教案

函数的平均变化率教案

函数的平均变化率教案一、教学目标1. 让学生理解函数的平均变化率的定义及其几何意义。

2. 培养学生利用导数求函数的平均变化率的能力。

3. 引导学生运用函数的平均变化率解决实际问题。

二、教学内容1. 函数的平均变化率的定义2. 函数的平均变化率的计算3. 函数的平均变化率的应用三、教学重点与难点1. 教学重点:函数的平均变化率的定义及其计算方法。

2. 教学难点:函数的平均变化率在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解函数的平均变化率的定义、计算方法及其应用。

2. 利用几何图形和实例,帮助学生形象理解函数的平均变化率。

3. 开展小组讨论,引导学生运用函数的平均变化率解决实际问题。

五、教学过程1. 导入:通过举例,如物体在直线运动中的速度变化,引入函数的平均变化率的概念。

2. 新课讲解:讲解函数的平均变化率的定义,引导学生理解函数的平均变化率的几何意义。

讲解如何利用导数求函数的平均变化率,并通过示例进行演示。

3. 案例分析:给出几个实际问题,让学生运用函数的平均变化率进行解决,巩固所学知识。

4. 课堂练习:布置一些有关函数的平均变化率的练习题,让学生独立完成,检测学习效果。

提出一些拓展问题,激发学生的学习兴趣。

六、课后作业1. 复习本节课的内容,重点掌握函数的平均变化率的定义及其计算方法。

2. 完成课后练习题,巩固所学知识。

3. 思考并解答拓展问题,提高运用能力。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生完成的课后作业,评估学生对函数的平均变化率的理解和应用能力。

3. 小组讨论:评估学生在小组讨论中的表现,包括合作态度、问题解决能力等。

八、教学反思在课后对教学情况进行反思,分析学生的学习效果,针对存在的问题调整教学方法和要求,以提高教学质量。

九、教学资源1. PPT课件:制作精美的PPT课件,辅助讲解函数的平均变化率的概念和计算方法。

版高中数学 第三章 导数及其应用 3.1.1 函数的平均变化率学案(含解析)新人教B版选修1-1

版高中数学 第三章 导数及其应用 3.1.1 函数的平均变化率学案(含解析)新人教B版选修1-1

3.1.1 函数的平均变化率学习目标1。

理解平均变化率的意义.2.会求函数在某一点附近的平均变化率.知识点函数的平均变化率1.函数的平均变化率的定义已知函数y=f(x)在点x=x0及其附近有定义,令Δx=x-x0;Δy=y-y0=f(x)-f(x0)=f(x0+Δx)-f(x0).则当Δx≠0,比值错误!=错误!叫做函数y=f(x)在x0到x0+Δx之间的平均变化率.2.平均变化率的实质:函数值的改变量与自变量的改变量之比.3.作用:刻画函数在区间[x0,x0+Δx]上变化的快慢.4.几何意义:已知P1(x1,f(x1)),P2(x2,f(x2))是函数y=f(x)的图象上两点,则平均变化率错误!=错误!表示割线P1P2的斜率.1.在平均变化率的定义中,自变量x的增量Δx>0。

( ×)2.对于函数f(x)在区间[x1,x2]内的平均变化率也可以表示为错误!。

( √)3.错误!=错误!是f(x)在区间[x0,x0+Δx](Δx>0)上的平均变化率,也可以说是f(x)在x=x0处的变化率.(×)题型一函数的平均变化率命题角度1 求函数的平均变化率例1 求函数f(x)=x2在x=1,2,3附近的平均变化率,取Δx的值为错误!,哪一点附近的平均变化率最大?考点题点解在x=1附近的平均变化率为k1=错误!=错误!=2+Δx;在x=2附近的平均变化率为k2=错误!=错误!=4+Δx;在x=3附近的平均变化率为k3=错误!=错误!=6+Δx。

若Δx=错误!,则k1=2+错误!=错误!,k2=4+错误!=错误!,k3=6+错误!=错误!,由于k1<k2〈k3,故在x=3附近的平均变化率最大.反思感悟求平均变化率的主要步骤(1)先计算函数值的改变量Δy=f(x2)-f(x1).(2)再计算自变量的改变量Δx=x2-x1。

(3)得平均变化率错误!=错误!.跟踪训练1 已知函数f(x)=x2+2x-5的图象上的一点A(-1,-6)及邻近一点B(-1+Δx,-6+Δy),则错误!=________.考点平均变化率的概念题点求平均变化率答案Δx解析错误!=错误!=-1+Δx2+2-1+Δx-5--6Δx=Δx。

2018-2019学年人教B版选修1-1函数的平均变化率教案

2018-2019学年人教B版选修1-1函数的平均变化率教案

函数的平均变化率学习目标:1.会求函数在某一点附近的平均变化率.2.会利用导数的定义求函数在某点处的导数.(重点难点)3.了解平均变化率与瞬时变化率的关系.(易混点)[自 主 预 习·探 新 知]1.函数的平均变化率(1)定义式:Δx Δy =x2-x1f(x2.(2)实质:函数值的改变量与自变量的改变量之比.(3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢.(4)几何意义:已知P 1(x 1,f (x 1)),P 2(x 2,f (x 2))是函数y =f (x )的图象上两点,则平均变化率Δx Δy =x2-x1f(x2表示割线P 1P 2的斜率.思考:Δx ,Δy 的取值一定是正数吗?[提示] Δx ≠0,Δy ∈P .2.函数y =f (x )在x =x 0处的瞬时变化率(1)定义式:lim Δx →0 Δx Δy =lim Δx →0 Δx f(x0+Δx .(2)实质:瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值.(3)作用:刻画函数在某一点处变化的快慢.3.函数f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δx Δy =lim Δx →0Δx f(x0+Δx .[基础自测]1.思考辨析(1)Δy 表示f (x 2)-f (x 1),Δy 的值可正可负也可以为零. ( )(2)瞬时变化率是刻画某函数值在区间[x 1,x 2]上变化快慢的物理量.( )(3)函数f (x )=x 在x =0处的瞬时变化率为0. ( )[答案] (1)√ (2)× (3)×2.已知函数f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( )A .0.40B .0.41C .0.43D .0.44B [Δy =f (2+Δx )-f (2)=2.12-4=0.41.]3.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内的平均速度为( )A .0.41B .3C .4D .4.1D [Δ=Δt Δs = 2.1-23+2.12-(3+22=4.1.][合 作 探 究·攻 重 难]求函数的平均变化率2则Δx Δy=( )A .4B .4xC .4+2ΔxD .4+2(Δx )2(2)汽车行驶的路程s 和时间t 之间的函数图象如图311,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为,,,则三者的大小关系为__________.图311(3)球的半径从1增加到2时,球的体积平均膨胀率为__________.[解] (1)Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-(2×12-1)=2(Δx )2+4Δx∴Δx Δy=2Δx +4,故选C.(2)由题意知,=k OA ,=k AB ,=k BC .根据图象知<<.(3)Δv =34π×23-34π×13=328π.∴Δr Δv =328π.[答案] (1)C (2)<< (3)328π1.(1)函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为________,当x 0=2,Δx =0.1时平均变化率的值为________.(2)已知函数f (x )=-x 2+x 的图象上的一点A (-1,-2)及临近一点B (-1+Δx ,-2+Δy ),则Δx Δy =________.(1)6x 0+3Δx 12.3 (2)-Δx +3 [(1)函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为(x0+Δx f(x0+Δx=Δx +2=Δx 6x0·Δx +3(Δx=6x 0+3Δx .当x 0=2,Δx =0.1时,函数y =3x 2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.(2)∵Δy =f (-1+Δx )-f (-1)=-(-1+Δx )2+(-1+Δx )-[-(-1)2+(-1)]=-(Δx )2+3Δx ,∴Δx Δy =Δx -(Δx=-Δx +3.]求瞬时速度若一物体的运动方程为s =3t2+2,t ≥3(路程单位:m ,时间单位:s).求:(1)物体在t =3 s 到t =5 s 这段时间内的平均速度;(2)物体在t =1 s 时的瞬时速度.[思路探究] (1)先求Δs ,再根据=Δt Δs求解.(2)先求Δt Δs ,再求lim Δx →0 Δt Δs . [解] (1)因为Δs =3×52+2-(3×32+2)=48(m),Δt =2 s ,所以物体在t =3 s 到t =5 s 这段时间内的平均速度为Δt Δs =248=24(m/s).(2)因为Δs =29+3[(1+Δt )-3]2-29-3×(1-3)2=[3(Δt )2-12Δt ](m),所以Δt Δs =Δt 3(Δt =3Δt -12(m/s), 则物体在t =1 s 时的瞬时速度为lim Δx →0 Δt Δs=lim Δx →0 (3Δt -12)=-12(m/s).2.质点M 按规律s =2t 2+3作直线运动(位移单位:cm ,时间单位:s).求质点M 在t =2时的瞬时速度以及在[1,3]上的平均速度.[解] v =lim Δx →0 Δt s(2+Δt =lim Δx →0Δt 2×(2+Δt =lim Δx →0 (2Δt +8)=8(cm/s), =3-1s(3=22×32+3-(2×12+3=8(cm/s).求函数在某点处的导数求函数在某点处的导数的步骤和求瞬时速度的步骤有何异同?提示:根据函数在某点处的导数的定义知,两者步骤完全相同.(1)函数y =在x =1处的导数为__________.(2)如果一个质点由定点A 开始运动,在时间t 的位移函数为y =f (t )=t 3+3, ①当t 1=4,Δt =0.01时,求Δy 和比值Δt Δy;②求t 1=4时的导数.[思路探究] (1)→Δx Δy →Δy Δx(2)①→Δt Δy②→Δt Δy →Δy Δt[解析] (1)Δy =-1,Δx Δy =Δx 1+Δx -1=+11,lim Δx →0 +11=21,所以y ′|x =1=21.[答案] 21(2)①Δy =f (t 1+Δt )-f (t 1)=3t 12·Δt +3t 1·(Δt )2+(Δt )3,故当t 1=4,Δt =0.01时,Δy =0.481 201,Δt Δy=48.120 1.②lim Δx →0 Δt Δy =lim Δx →0 [3t 12+3t 1·Δt +(Δt )2]=3t 12=48,故函数y =t 3+3在t 1=4处的导数是48,即y ′|t 1=4=48.3.求函数y =x -x 1在x =1处的导数.[解] ∵Δy =(1+Δx )-1+Δx 1-11=Δx +1+Δx Δx ,∴Δx Δy =1+Δx =1+1+Δx 1.当Δx →0时,Δx Δy→2,∴f ′(1)=2,即函数y =x -x 1在x =1处的导数为2.[当 堂 达 标·固 双 基]1.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则Δx Δy 等于( )A .4B .4xC .4+2ΔxD .4+2(Δx )2 C [Δx Δy =Δx f(1+Δx =Δx 2(1+Δx =4+2Δx .]2.一质点的运动方程是s =4-2t 2,则在时间段[1,1+Δt ]内相应的平均速度为( )A .2Δt +4B .-2Δt -4C .4D .-2Δt 2-4ΔtB [=Δt 4-2(1+Δt =Δt -4Δt -2(Δt =-2Δt -4.]3.一质点按规律s (t )=2t 2运动,则在t =2时的瞬时速度为__________. 8 [s (2+Δt )-s (2)=2(2+Δt )2-2×22=2(Δt )2+8Δt .∴lim Δt →0 Δt s(2+Δt =lim Δt →0 Δt 2(Δt =lim Δt →0 (2Δt +8)=8.]4.设f (x )=ax +4,若f ′(1)=2,则a =________.2 [f ′(1)=lim Δt →0 Δx f(1+Δx =lim Δt →0 Δx a(1+Δx =a ,又∵f ′(1)=2,∴a =2.]5.求函数y =2x 2+4x 在x =3处的导数.[解] Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3)=2(Δx )2+16Δx ,∴Δx Δy =Δx 2(Δx =2Δx +16.y ′|x =3=lim Δt →0 Δx Δy =lim Δt →0 (2Δx +16)=16.。

人教B版高中数学选修函数的平均变化率学案

人教B版高中数学选修函数的平均变化率学案

§3.1.1变化率问题【学习目标】了解平均变化率的定义。

理解公式并会用公式来计算函数在指定区间上的平均变化率。

【自学点拨】[问题1] 已知函数()x f ,则变化率可用式子_____________,此式称之为函数()x f 从1x 到2x 的___________.习惯上用x ∆表示12x x -,即x ∆=___________,可把x ∆看做是相对于1x 的一个“增量”,可用+1x x ∆代替2x ,类似有=∆)(x f __________________,于是,平均变化率可以表示为_______________________[问题2] 在吹气球问题中,当空气容量V 从0增加到1L 时,气球的平均膨胀率为__________ 当空气容量V 从1L 增加到2L 时,气球的平均膨胀率为__________________ 当空气容量从V 1增加到V 2时,气球的平均膨胀率为_______________[问题3]在高台跳水运动中,,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态?在5.00≤≤t 这段时间里,v =_________________在21≤≤t 这段时间里,v =_________________在21t t t ≤≤这段时间里,v =_________________ [问题4]对于公式,应注意:(1)平均变化率公式中,分子是区间两端点间的函数值的差,分母是区间两端点间的_______的差。

(2)平均变化率公式中,分子、分母中同为被减数的是右端点,减数是左端点,一定要同步。

[问题5] 平均变化率=∆∆x f12)()(x x x f x f --表示什么?【课前练习】1、函数()2x x f =在区间[]3,1-上的平均变化率是( ) x 2 AA 、4B 、2C 、41D 、43 2、经过函数22x y -=图象上两点A 、B 的直线的斜率(1,5.1==B A x x )为_______;函数22x y =在区间[1,1.5]上的平均变化率为_________________3、如果质点M 按规律23t s +=运动,则在时间[2,2.1]中相应的平均速度等于______【课后练习】1、 已知函数1)(2+-=x x f ,分别计算()x f 在下列区间上的平均变化率 (1)[1,1.01] (2)[0.9,1] (3)[0.99,1] (4)[1,1.001]2、 已知一次函数)(x f y =在区间[-2,6]上的平均变化率为2,且函数图象过点(0,2),试求此一次函数的表达式。

函数的平均变化率教案

函数的平均变化率教案

函数的平均变化率教案教案:函数的平均变化率一、教学目标1.了解函数的平均变化率的概念和意义。

2.掌握计算函数在给定区间内的平均变化率的方法。

3.掌握函数的平均变化率在实际问题中的应用。

二、教学准备1.准备一些能够让学生实际体验函数的平均变化率的例子。

2.准备一些函数图像,以帮助学生理解平均变化率的概念。

3.检查计算函数平均变化率的方法和公式。

三、教学过程第一部分:引入概念1.导入问题:首先,向学生提出以下问题:如果我们关注一些物体的运动,我们如何描述它的平均速度?请学生回答。

引导学生思考速度的概念:速度是距离关于时间的变化率,即速度等于位移与时间的比值。

3.定义平均变化率:引导学生思考平均变化率的定义:若函数f(x)在区间[a,b]上连续,则函数在这个区间的平均变化率为:平均变化率=(f(b)-f(a))/(b-a)解释上述定义的含义。

引导学生通过举例来解释平均变化率的意义和计算方法。

第二部分:计算平均变化率1.案例讲解:通过一个实际问题来计算平均变化率。

例如,一辆汽车在段时间内的行驶距离。

假设汽车在0到5秒之间的行驶距离由函数f(t)=2t^2表示。

按照平均变化率的定义,可以计算出从0到5秒的平均变化率为:平均变化率=(f(5)-f(0))/(5-0)2.练习训练:让学生计算以下函数在给定区间内的平均变化率:a)f(x)=3x-1,在区间[1,5]上的平均变化率。

b)g(t)=t^2+2,在区间[-2,3]上的平均变化率。

第三部分:平均变化率的应用1.实际问题应用:给学生提供一些实际问题的例子,并要求他们计算相应的平均变化率。

例如:一个婴儿的身高和年龄的关系由函数h(t)=0.05t^2+0.5t表示(其中t表示年龄,单位为岁,h(t)表示身高,单位为米)。

学生需要计算出从1到5岁之间身高的平均变化率。

2.探究问题:让学生思考平均变化率的物理和经济含义,并展示一些相关问题的实际应用。

例如,学生可以考虑一张成绩单上各门功课的平均变化率,或者市场上其中一种商品的价格随时间的变化率。

函数的平均变化率教案

函数的平均变化率教案

函数的平均变化率教案引入问题:在学习函数的过程中,我们经常会遇到一个重要的概念,函数的平均变化率。

那么,什么是函数的平均变化率呢?它又有什么重要意义呢?本节课我们将围绕这一主题展开讨论和学习。

一、基本概念为了理解函数的平均变化率,我们首先需要了解函数的概念。

函数可以简单地理解为一种特殊的关系,它将一个集合中的每一个元素,都对应到另一个集合中的一个元素。

用数学符号表示,函数可以写成f(x)=y或y=f(x),其中x称为自变量,y称为因变量。

平均变化率=(函数值在b处的值-函数值在a处的值)/(b-a)二、计算方法在计算函数的平均变化率时,我们可以按照以下步骤进行:1.首先,我们需要找到区间[a,b]内的两个点:点A和点B。

点A的坐标为(a,f(a)),点B的坐标为(b,f(b))。

2.接下来,我们需要根据公式计算函数在这个区间内的平均变化率。

公式为:平均变化率=(f(b)-f(a))/(b-a)3.最后,我们将计算出的值进行整理和分析,可以得出函数在这个区间内的平均变化率是多少,以及这个平均变化率的意义和特点。

三、应用举例理解平均变化率的概念后,我们可以通过一些具体的例子来加深对其应用的理解。

例子1:假设一辆汽车在一段时间内的速度变化如下所示:时间(小时):012345速度(km/h):0 20 40 60 80 100我们可以选择一个区间[2,5],然后计算这个区间内的平均速度变化率。

按照前面的计算方法,我们可以得到:平均速度变化率 = (80 - 40) / (5 - 2) = 40 / 3 ≈ 13.33 km/h 这个平均速度变化率的值告诉我们,这辆汽车在这个区间内平均每小时的速度增加了13.33公里。

例子2:假设一条直线的方程为y=2x+1、我们可以选择一个区间[1,3],然后计算这个区间内的平均斜率变化率。

按照前面的计算方法,我们可以得到:平均斜率变化率=(2*3+1-2*1-1)/(3-1)=(7-2)/2=5/2=2.5这个平均斜率变化率的值告诉我们,这条直线在区间[1,3]内的平均斜率变化率为2.5四、总结和思考通过本节课的学习,我们对函数的平均变化率有了初步的了解。

《3.1.1函数的平均变化率》教学案1

《3.1.1函数的平均变化率》教学案1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 《3.1.1函数的平均变化率》教学案1 《《3. .1. .1 函数的平均变化率》教学案教学目标:1、知识目标:通过生活实例使学生理解函数增量、函数的平均变化率的概念;掌握求简单函数平均变化率的方法,会求函数的平均变化率;理解函数的平均变化率的含义,引出函数的瞬时变化率概念,简单应用为下一节导数概念的学习打好基础. 2、能力目标:使学生在研究过程中熟悉数学研究的途径:背景数学表示应用,培养学生独立思考,解决问题的能力和在生活中建立数学模型,用数学理论解释生活问题、应用数学的能力. 3、情感目标:使学生通过学习,了解简单的情景蕴涵建立模型解决问题的一般思想方法,鼓励学生主动探究、不惧困难,勇于挑战自我的思想品质.并养成学生探究总结型的学习习惯. 教学重点:函数自变量的增量、函数值的增量的理解教学难点:函数平均变化率的理解. 教学过程:一、引入:1、情境设置:(图片)巍峨的珠穆朗玛峰、攀登珠峰的队员两幅陡峭程度不同的图片 2、问题:当陡峭程度不同时,登山队员的感受是不一样的,如何用数学来1 / 5反映山势的陡峭程度,给我们的登山运动员一些有益的技术参考呢?3、引入:让我们用函数变化的观点来研讨这个问题. 二、例举分析:(一)登山问题例:如图,是一座山的剖面示意图:A是登山者的出发点,H是山顶,登山路线用y=f(x)表示 HD1 D Fy 问题:当自变量x表示登山者的水平位置,函数值y表示登山者所在高度时,陡峭程度应怎样表示?分析:1、选取平直山路AB放大研究若 ) , ( ), , (1 1 0 0y x B y xA 自变量x的改变量:0 1x x x = 函数值y的改变量:0 1y y y = 直线AB的斜率:xyx xy yk==0 10 1 说明:当登山者移动的水平距离变化量一定( x 为定值)时,垂直距离变化量( y )越大,则这段山路越陡峭; 2、选取弯曲山路CD放大研究方法:可将其分成若干小段进行分析:如CD 1 的陡峭程度可用直线CD 1 的斜率表示.(图略) 结论:函数值变化量( y )与自变量变化量 ) ( x 的比值xy反映了山坡的陡峭程度.各段的xy不同反映了山坡的陡峭程度不同,也就是登山高度在这段山路上的平均变化量不同.当xy越大,说明山坡高度的平均变化量越大,所以山坡就越陡;当xy越小,说明山坡高度的平---------------------------------------------------------------最新资料推荐------------------------------------------------------均变化量小,所以山坡就越缓.所以,k kk kx xx f x fxy=++11) ( ) (高度的平均变化成为度量山的陡峭程度的量,叫做函数f(x)的平均变化率. 三、函数的平均变化率与应用. 1、定义:已知函数 ) ( x f y = 在点0x x = 及其附近有定义,令0x x x = ;B ) , (1 1y x A( ) ,0 0y x 0x0y1x1yO y x ) ( ) ( ) ( ) (0 0 0 0x f x x f x f x f y y y + = = = .则当 0 x 时,比值xyxx f x x f= + ) ( ) (0 0叫做函数 ) ( x f y = 在0x 到x x +0之间的平均变化率. 2、例题解析例1.求2x y = 在0x 到x x +0之间的平均变化率. 解:当自变量从0x 变到 x x +0时,函数的平均变化率为x xxx x xxxf x x f + = += +02020 0 02) ( ) ( ) (.当 x 取定值,0x 取不同数值时,该函数的平均变化率也不一样.可以由图看出变化. 例2.求xy1= 在0x 到 x x +0之间的平均变化率. 解:当自变量从0x 变到 x x +0时,函数的平均变化率为0 00 0 0 0) (11 1) ( ) (x x x xx x xxx f x x f + = += + 变式:某市2004年4月20日最高气温为33.4℃,而此前的两天,4月19日和4月18日最高气温分别为24.4℃和18.6℃,短短两天时间,气温陡增14.8℃,闷热中的人们无不感叹:天气热得太快了!但是,如果我们将该市2004年3月18日最高气温3.5℃与4月18日最高气温18.6℃进行比较,我们发现两者温差为15.1℃,甚至超过了14.8℃.而人们却不会发出上述感叹.这3 / 5是什么原因呢?原来前者变化得太快,而后者变化得缓慢. 问题:当自变量t表示由3月18日开始计算的天数,T表示气温,记函数 ) (t g T = 表示温度随时间变化的函数,那么气温变化的快慢情况应当怎样表示?分析:如图:1、选择该市2004年3月18日最高气温3.5℃与4月18日最高气温18.6℃进行比较, C T t01 . 15 5 . 3 6 . 18 , 30 = = = ,由此可知 5033 . 0 tT; 2、选择该市2004年4月18日最高气温18.6 0 C与4月20日33.4 0 C进行比较 C T t08 . 14 6 . 18 4 .33 , 2 = = = ,由此可知 4 . 7 tT 结论:函数值的平均变化率tT反映了温度变化的剧烈程度. 各段的tT不同反映了温度变化的剧烈程度不同,也就是气温在这段时间内的平均变化量不同.当tT越大,说明气温的平均变化量越大,所以升温就越快;当tT越小,说明气温的平均变化量小,所以升温就越缓. 四、课堂练习:甲乙二人跑步路程与时间关系以及百米赛跑路程和时间的关系分别如图 (1)(2)所示,试问:(1)甲乙二人哪一个跑得快? (2)甲乙二人百米赛跑,快到终点时,谁跑得比较快甲乙路程 y 甲乙100m 2030 342102030A(1,3.5) B(32, 18.6) 0C(34, 33.4) T(℃) t(天)2 10 五、课堂小结:---------------------------------------------------------------最新资料推荐------------------------------------------------------ (1) (2)5 / 5。

高二数学(选修人教B版)函数的平均变化率1教案

高二数学(选修人教B版)函数的平均变化率1教案

教案下面是一个曲线的一个局部图形,你能判断它是直的还是弯曲的吗?如果显示出网格线,能否判断呢?这个图的全貌其实是这样的:如果我们用一个“高倍显微镜”来看曲线的一个局部,都可以近似地把它看成直线段.所以,我们也可以把弯曲的山路看成许多平直的小段组成.从学生的知识经验理解“以直代曲”.类比双曲线,理解弯曲山路中的“以直代曲”.概念的形成(四)构造数学模型表示山坡陡峭程度假设下图是一座山的剖面示意图.爬山者上升的高度y可以看成水平行进距离x的函数,这座结合函数的概山的山坡剖面图则可以看作函数y =f (x )的图象,建立平面直角坐标系如图所示.我们把山路分成许多近似平直的小段.对于AB 这一段平直的山路,放大如下图:坡度为: 1010tan y y yx x xθ-∆==-∆. 对于CD 这一段弯曲的山路,可以分成许多段,比如第一小段CD 1可以近似地看成直线段,于是这一段山路的陡峭程度可表示为:32323232()()y y f x f x y x x x x x --∆==-∆-. 一般地,任何一小段山路的陡峭程度可以表示为:11()()k k k k f x f x y x x x ++-∆=∆-.念,以函数图象表示山坡的剖面图,将实际问题数学化.用数学语言表达山路的陡峭程度.O y x D 1x 3AB k =y B -y A x B -x A =f (x 1)-f (x 0)x 1-x 0=ΔyΔx =tan θ.概念的 巩固例 求函数y =x 在x 0到x 0+∆x 之间的平均变化率. 解:当自变量从x 0变到x 0+∆x 时,函数的平均变化率为0000()()()1f x x f x x x x x x +∆-+∆-==∆∆.思考与总结:(1)函数y =2x 在x 0到x 0+∆x 之间的平均变化率是什么?你有什么发现?函数y =2x 在x 0到x 0+∆x 之间的平均变化率是2. 我们发现,一次函数在任何一个区间内的平均变化率等于它的一次项系数,几何意义就是直线的斜率. (2)求函数的平均变化率的主要步骤:①求自变量的增量Δx =x 2-x 1;②求函数值的增量Δy =f (x 2)-f (x 1);③求函数的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.(3)求函数在x 0附近的平均变化率,常用f (x 0+Δx )-f (x 0)Δx 的形式来表达.例 求函数y =x 2在x 0到x 0+∆x 之间的平均变化率. 解:当自变量从x 0变到x 0+∆x 时,函数的平均变化率为2200000()()()2f x x f x x x x x x x x +∆-+∆-==+∆∆∆.计算与探索: (1)当∆x =13,x 0=1,2,3时,求函数的平均变化率;(2)当x 0=1,∆x =13,12,1时,求函数的平均变化率.通过例题研究具体函数在x 0到x 0+∆x 之间的平均变化率,并研究它随着x 0及∆x 变化而变化的规律,加深和巩固对函数的平均变化率的理解.【思考】(请同学们自行思考)(1)如果10x-<∆<,它们的大小关系如何?你能结合函数的图象来解释吗?(2)与y x=的平均变化率比较,它们的大小关系如何呢?例两工厂经过治理,污水的排放流量(W)与时间(t)的关系,如图所示.试指出哪一个厂治污效果较好?分析:这是一个应用问题.读图的关键点是“治污效果”用什么量来刻画——考查函数的平均变化率的应用.解:甲、乙两厂在相同的时间内都将污水排放流量治理到标准要求.甲厂原来的排放流量较大,因而平均变化率较大,所以甲厂的治污效果较好.课堂小结本节课学习的主要内容是函数的平均变化率.学习过程从生活情境到数学情境,再到数学概念以及几何意义,初步体会了“以直代曲”的思想和数形结合的方法.概括本节课的主要知识与思想方法.布置作业(1)求223y x x=-+在2到94之间的平均变化率.(2)试比较正弦函数siny x=在0到π6之间和π3到π2之间的平均变化率,哪一个较大?延伸巩固函数的平均变化率的概念.。

函数的平均变化率教案

函数的平均变化率教案

函数的平均变化率教案一、教学目标:1. 让学生理解函数的平均变化率的定义及意义。

2. 让学生掌握计算函数的平均变化率的方法。

3. 培养学生运用函数的平均变化率解决实际问题的能力。

二、教学内容:1. 函数的平均变化率的定义2. 函数的平均变化率的计算方法3. 函数的平均变化率在实际问题中的应用三、教学重点与难点:1. 教学重点:函数的平均变化率的定义及计算方法。

2. 教学难点:函数的平均变化率在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解函数的平均变化率的定义及计算方法。

2. 采用案例分析法,分析函数的平均变化率在实际问题中的应用。

3. 采用互动教学法,引导学生积极参与讨论,提高学生的思维能力。

五、教学过程:1. 导入新课:通过生活中的实例,引出函数的平均变化率的概念。

2. 讲解函数的平均变化率的定义:解释函数的平均变化率的含义,让学生理解其本质。

3. 讲解函数的平均变化率的计算方法:详细讲解如何计算函数的平均变化率,并通过示例进行演示。

4. 案例分析:给出实际问题,让学生运用函数的平均变化率进行解答,巩固所学知识。

5. 课堂小结:回顾本节课所学内容,让学生总结函数的平均变化率的定义、计算方法及其应用。

6. 布置作业:设计适量作业,让学生巩固所学知识,提高解题能力。

六、教学评价:1. 评价学生对函数的平均变化率的定义和计算方法的掌握程度。

2. 评价学生运用函数的平均变化率解决实际问题的能力。

3. 评价学生在课堂讨论中的参与度和思维能力的发展。

七、教学反馈:1. 通过课堂提问,了解学生对函数的平均变化率的定义和计算方法的掌握情况。

2. 收集学生提交的作业,评估学生运用函数的平均变化率解决实际问题的能力。

3. 听取学生的课堂反馈,了解学生在讨论中的表现和思维能力的发展。

八、教学拓展:1. 引导学生进一步研究函数的瞬时变化率,探讨其与平均变化率的关系。

2. 引入实际应用案例,让学生了解函数的平均变化率在其他领域的应用。

高中数学人教版选修1-1 3.1.1变化率问题 教案1

高中数学人教版选修1-1 3.1.1变化率问题 教案1

3.1.1变化率问题教学目标知道平均变化率的定义。

会用公式来计算函数在指定区间上的平均变化率。

教学重点:平均变化率的含义教学难点:会用公式来计算函数在指定区间上的平均变化率。

教学过程:情景导入:展示目标: 知道平均变化率的定义。

会用公式来计算函数在指定区间上的平均变化率。

检查预习:见学案合作探究:探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2;:在高台跳水运动中,,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度v粗略地描述其运动状态?交流展示:学生交流探究结果,并完成学案。

精讲精练:例1过曲线3==上两点(1,1)y f x x()+∆+∆作曲线的割线,求出当0.1P和(1,1)Q x y∆=时割x线的斜率.例2已知函数2=,分别计算()()f x xf x在下列区间上的平均变化率:(1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]有效训练练1. 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.练2. 已知函数()21f x x =+,()2g x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及()g x 的平均变化率.反思总结1.函数()f x 的平均变化率是2.求函数()f x 的平均变化率的步骤:(1)求函数值的增量(2)计算平均变化率当堂检测1. 21y x =+在(1,2)内的平均变化率为( )A .3B .2C .1D .02. 设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( )A .0()f x x +∆B .0()f x x +∆C .0()f x x ∆D .00()()f x x f x +∆-3. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆4.已知212s gt =,从3s 到3.1s 的平均速度是_______5. 223y x x =-+在2x =附近的平均变化率是____6、已知函数12)(2-==x x f y 的图象上一点(1,1)及邻近一点(1+x ∆,+1(f x ∆)),求xy ∆∆ T(月)6 3 9 12【板书设计】:略【作业布置】:略。

人教B版高中数学选修(1-1)-3.1教学教案:函数的平均变化率2

人教B版高中数学选修(1-1)-3.1教学教案:函数的平均变化率2

3.1.1 平均变化率一.教材依据函数的平均变化率二.设计思想指导思想:(1)用已知探究未知的思考方法(2)用逼近的思想考虑问题的思考方法.设计理念:为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数.随着对函数的深入研究,产生了微积分.导数概念是微积分的基本概念之一,导数是对事物变化快慢的一种描述,是研究客观事物变化率和优化问题的有力工具.理解和掌握导数的思想和本质显得非常重要.正如《数学课程标准(实验)解读》中所说的,以前是,“先讲极限概念,把导数作为一种特殊极限来讲,于是,形式化的极限概念就成了学生学习的障碍,严重影响了对导数思想和本质的认识和理解;”“….这样造成的结果是:因为存在着夹生饭现象,大学不欢迎;中学感受不到学导数的好处,反而加重了学生的负担,因此也不欢迎.” 故为了让学生充分认识导数的思想和本质,先要理解和掌握平均变化率的概念.在设计这节课时,我把重点放在(1)通过大量实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;(2)掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法.三.教学目标1.通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;2.掌握平均变化率的概念及其计算步骤,体会逼近的思想和用逼近的思想思考问题的方法;3.掌握求函数在指定区间上的平均变化率,能利用平均变化率解析生活中的实际问题;4.通过分析实例,初步探究由平均变化率过渡到瞬时变化率的过程,让学生体会用已知探究未知的思考方法.四.教学重点1.通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;2.掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法;五.教学难点1.如何从数学的角度描述吹气球过程中的现象“随着气球内空气容量的增加,气球的半径增加得越来越慢?”2.掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法;六.教学准备1.认真阅读教材、教参,寻找有关资料;2.向有经验的同事请教;3.从成绩好的学生那里了解他们预习的情况和困惑的地方.七.教学过程1.教学基本流程:。

高中数学_3.1.1 函数的平均变化率教学设计学情分析教材分析课后反思

高中数学_3.1.1 函数的平均变化率教学设计学情分析教材分析课后反思

函数的平均变化率本节课是普通高中课程标准实验教科书人教B版选修(文)1-1第三章导数及其应用中的内容,(理)2-2第一章中的内容,《平均变化率》。

为更好地把握这一课时内容,便于学生学习和理解,对本课时教学设计给予如下说明:一、教学内容分析:平均变化率主要通过大量的生活实例借助直观图形逐步引入“平均变化率”的概念,并在此基础上给出了它的两种应用——在生活中的应用以及在数学内部的应用。

本节课应着力渗透“局部以直代曲”思想、“数形结合”思想以及“极限(逼近)”思想,以便更好地为研究、学习后续的“瞬时变化率”乃至“导数的概念”奠定基础。

这节课是在学生在学习了函数、指、对数函数、幂函数、三角函数等知识后安排的一节内容,学生已经具备了一定的函数知识的素养。

本节课目的是在为导数的引出作必要的铺垫,在导数教学中起着承上启下的作用。

学好这一节,学生将会为以后理解导数的概念等知识打下一个良好的基础,同时学生对函数也有了更为完整的知识结构。

二、学生情况分析:同学们在物理中已经充分理解平均速度的概念,为函数的平均变化率打下了良好的基础。

且在之前的学习中,具备一定的用数形结合思想解决问题的能力,这为从数与形两方面考察函数的平均变化率提供了知识准备。

而平均变化率来自生活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗透数学思想关注数学文化的目的,学生也能够很容易理解这种方法.但学生仅是比较熟悉平均速度,对于变量变化的快慢的认识以及表示比较模糊,还有,由实际问题抽象成函数表示,这些都给学生学习本节内容造成一定困难。

三、教学目标:知识与技能:(1)了解平均变化变化率的概念;(2)会求函数在指定区间上的平均变化率;(3)能利用平均变化率解决或说明生活中的实际问题。

情感、态度与价值观:(1)以实际生活为背景,引出平均变化率的相关内容,让学生感受到事物相联系的观点;(2)通过数形结合的手段解决问题,让学生体会到“无形不直观,无数不入微”的辩证思想;(3)通过本节的学习,体会数学模型在实际生活中的应用,提高数学的应用意识。

《3.1.1函数的平均变化率》教学案3

《3.1.1函数的平均变化率》教学案3

《3.1.1函数的平均变化率》教学案
教学目标:
1.知识与技能
理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率;
2.过程与方法
通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型;
3.情感、态度与价值观
感受数学模型在刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力.
教学重点:
平均变化率的模型建立与对平均变化率的实际意义和数学意义的理解
教学难点:
平均变化率的概念与生活现象中模型的形成过程并对此做出数学解释
教学关键:
将学生头脑中的感性认知,通过多个事例,在不同的情境下,进行相同的计算程序.由此学生抽象建构出函数平均变化率的概念.并突出知识产生过程中蕴含的数学思想方法,特别是数形结合的数学能力和“以直代曲”的转化能力.
教学过程:
的方法,可以用比值
引导学生先分析平直山路OA段的斜率表示
山路的陡峭程度;再进一步研究曲线的如何表
①从图象上看,
图象,那一段更“陡峭”?
②如何量化曲线在
结论:平均变化率反映了函数在某个区间上平均变化的趋势(变化快慢),或说在某个区间上
问题1:那个企业的治污效果好一些?
结论:曲线越“陡峭”
化率的绝对值越大
例3:如图所示,已知函数在区间[-1,1]上的平均变化率
问题:结合图象分析用
曲线段的陡峭程度是否准确?。

《3.1.1函数的平均变化率》导学案(新部编)1

《3.1.1函数的平均变化率》导学案(新部编)1

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《3.1.1函数的平均变化率》导学案学习目标:(一)知识目标感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程,体会数学的博大精深以及学习数学的意义.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景.(二)能力目标体会平均变化率的思想及内涵(三)情感态度与价值观使学生拥有豁达的科学态度,互相合作的风格,勇于探究,积极思考的学习精神 学习重点:平均变化率的实际意义与数学意义学习难点:对生活现象作出数学解释自主学习:一、问题情境(1)情境某人走路的第1秒到第34秒的位移时间图象如图所示:(2)问题1:“从A 到B 的位移是多少?从B 到C 的位移是多少?”问题2:“AB 段与BC 段哪一段速度较快?”二、师生活动(1)速度快慢是生活用语,怎样将它数学化?(2)曲线上BC 之间一段几乎成了直线,由此联想到如何量化直线的倾斜程度?(3)由点B 上升到C 点必须考察C B y y -的大小,但仅注意到C B y y -的大小能否精确量化BC 段陡峭的程度?为什么?(4)在考察C B y y -的同时必须考察C B x x -,函数的本质在于一个量的改变本身就隐含着这种改变必定相对于另一个量的改变而言.三、建构数学(1)通过比较位移在区间[]1,32上的平均变化率0.5与位移在区间[]32,34上的平均变化率7.4,感知曲线陡峭程度的量化.(2)一般地,给出函数()f x 在区间[]12,x x 上的平均变化率()()2121f x f x x x -- (3)回到位移曲线图中,从数和形两方面对平均变化率进行意义建构(4)用平均变化率来量化一段曲线的陡峭程度是“粗糙不精确的”,但应注意当21x x -很小时,这种量化便由“粗糙”逼迫“精确”.四、例题讲解 例1.求2x y =在0x 到x x ∆+0之间的平均变化率.解:当自变量从0x 变到x x ∆+0时,函数的平均变化率为x x xx x x x x f x x f ∆+=∆-∆+=∆-∆+02020002)()()(.当x ∆取定值,0x 取不同数值时,该函数的平均变化率也不一样.可以由图看出变化.例2.求xy 1=在0x 到x x ∆+0之间的平均变化率. 解:当自变量从0x 变到x x ∆+0时,函数的平均变化率为000000)(111)()(x x x x x x x x x f x x f ∆+-=∆-∆+=∆-∆+五、回顾小结由平均变化率的实际意义到数学意义,体现了实际问题数学化的过程,建立的数学模型具有抽象的特征,也蕴含着数学应用的广阔性.由于平均变化率只是一种粗略的刻画,从而有待于进一步精确化,随之而来的便是新的数学模型的建立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变化率
一.内容与内容解析
微积分的创立是数学发展中的里程碑,它的发展和广泛应用,开创了近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段,导数概念是微积分的核心概念之一,它是研究函数增减、变化快慢、最大(小)等问题最一般、最有效的工具,也是解决运动、速度、等实际问题的最有力的工具。

以气球平均膨胀率问题和高台跳水平均速度问题为背景,引出平均变化率的概念。

设函数在上有定义,设,,则称为函数从
到的平均变化率。

记(自变量的增量),(函数的增量),
则平均变化率可表示为。

本质是对应函数的增量与自变量的增量的比值;表示函数在某一范围内平均的变化趋势(增减)和快慢程度。

在高台跳水问题中,通过从平均速度到瞬时速度的过程抽象出瞬时速度的概念,再抽象出瞬时变化率的概念。

设函数在及其附近有定义,在附近给自变量以增量,
则函数有相应的增量,若趋近于0时,
趋近于一个确定的值,则称这个确定的值为当趋近于0时的极限,记作。

设函数在及其附近有定义,若存在,则称它为函数在的瞬时变化率,也称它为函数在的导数,记作或
,即。

本质是函数在某一点的导数,就是函数在该点的瞬时变化率,而瞬时变化率就是函数在这一点附近平均变化率的极限(当自变量增量趋近于0)。

二.目标和目标解析
本节课要求学生能借助对气球平均膨胀率问题和高台跳水平均速度问题的研究,提炼出平均变化率的概念,并能正确理解平均变化率的定义。

通过实例、直观感知、讨论、探究,理解瞬时速度的含义、感受逼近的思想。

通过探究归纳出瞬时变化率的概念,并能理解瞬时变化率就是导数。

三.教学问题诊断分析
学生已有的知识结构是,进入高中后对函数的认识有了一定的积累,在两年多的时间里从生活和与其他学科的交汇中逐步提高了这方面的能力,在物理学中已经学习过加速度的定义(是速度的变化量与发生这一变化所用时间的比值),抽象概括思想也逐步深入学生心中,转化成了学生自己的知识技能,这些为学好平均变化率奠定扎实的基础.
但是由于新教材是以模块的形式进行展开教学的,文科学生选修这一系列。

文科学生的数学一直都是弱项,他们的感性思维比较强,理性思维比较弱,如果没有掌握好概念性的问题,他们极容易在解题时钻牛角尖,因此若能让学生主动参与到平均变化率学习过程中,让学生体会到自己在学“有价值的数学”,就会激发学生的学习数学的兴趣,树立学好数学的自信心。

教学的难点是对生活现象和物理问题如何作出合理的数学阐释,概括抽象函数的平均变化率,逼近思想下的瞬时变化率的理解。

教学重点是平均变化率、瞬时变化率的理解。

方式是特殊到一般、具体到抽象、实际问题到数学问题的过程。

四.教学支持条件分析
为了有效实现教学目标,可以借助计算机辅助教学,增加课堂上知识之间的交互性,用气球做试验,提高学生的兴趣和课堂效率.
五.教学设计
(ⅰ)课题引入
利用幻灯片展示微积分的创立与自然科学中四类问题的处理直接关系。

导数是微积分的核心概念之一。

它是研究函数增减、变化快慢、最大(小)等问题最一般、最有效的工具,也是解决运动、速度、等实际问题的最有力的工具。

引出学习本章的意义及重要性。

设计意图:利用熟悉的问题激发学生的兴趣与情感,为新课程的自然引入提供契机。

(ⅱ) 问题链设计
(1)老师吹气球,学生观察,思考每次吹入差不多大小的气体,气球变大的速度一样吗?
设计意图:从简单的背景出发,利用学生原有的知识经验培养学生观察、总结的能力,激发学生求知欲望。

(2)从数学的角度如何研究呢?
(3)从图象上观察:取相同的观察的变化情况?取相同的观察变化相同吗?那
哪段上气球变大得快呢,为什么?
(4)若取不同的、那哪段上气球变大得快呢,为什么?
设计意图:从特殊到一般进一步理解平均膨胀率
(5)气球的平均膨胀率是一个特殊的情况,我们把这一思路延伸到函数上,能否归纳出函数的平均变化率?
设计意图:从平均膨胀率抽象出平均变化率,引出平均变化率的概念。

(6)观看十米跳台,那么在0秒到0.5秒时间段内的平均速度是多少,在1秒到2秒时间段内呢,在时间段内?
(7)在某一段时间里的平均变化率分别为正数,负数,0的时候,其运动状态是怎样的?
(8)你认为用平均速度描述运动员的运动状态有什么问题吗?
设计意图:体会平均速度可以描述运动员某段时间内运动的快慢,但不能表示运动员的运动状态,激发学生的求知欲,自然的引出瞬时速度的概念。

(9)根据物理中的知识,运动员在每一个时刻必有瞬时速度,那么如何求瞬时速度呢?(10)当趋近于0时,平均速度有什么样的变化趋势?
(11)从物理角度看趋近于0,平均速度趋近于什么?
设计意图:从实例出发引出平均速度与瞬时速度的关系
(12)运动员在某一时刻的瞬时速度怎样表示?
(13)函数在处的瞬时变化率怎样表示?
设计意图:从特殊到一般抽象出函数瞬时变化率(导数)的概念。

让学生体会从一般到特殊。

(14)请同学们回想一下,我们这节课都进行了哪些活动?学习了哪些概念?
设计意图:通过复习本节课的内容,使学生对所学的知识有一个系统的认识。

相关文档
最新文档