数值分析实验报告(一)(完整)
数值分析综合实验报告
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析实验报告
数值分析实验报告
一、实验背景
本实验主要介绍了数值分析的各种方法。
在科学计算中,为了求解一
组常微分方程或一些极限问题,数值分析是一种有用的方法。
数值分析是
一种运用计算机技术对复杂模型的问题进行数学分析的重要手段,它利用
数学模型和计算机程序来解决复杂的数学和科学问题。
二、实验内容
本实验通过MATLAB软件,展示了以下几种数值分析方法:
(1)拉格朗日插值法:拉格朗日插值法是由法国数学家拉格朗日发
明的一种插值方法,它可以用来插值一组数据,我们使用拉格朗日插值法
对给定的点进行插值,得到相应的拉格朗日多项式,从而计算出任意一个
点的函数值。
(2)最小二乘法:最小二乘法是一种常用的数据拟合方法,它可以
用来拟合满足一定函数的点的数据,它的主要思想是使得数据点到拟合曲
线之间的距离的平方和最小。
(3)牛顿插值法:牛顿插值法是一种基于差商的插值方法,它可以
用来插值一组数据,可以求得一组数据的插值函数。
(4)三次样条插值:三次样条插值是一种基于三次样条的插值方法,它可以用来对一组数据进行插值,可以求得一组数据的插值函数。
三、实验步骤
1.首先启动MATLAB软件。
数值分析实验报告
一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。
二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。
三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算拉格朗日插值多项式L(x)。
(3)利用L(x)计算待求点x0的函数值y0。
2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算牛顿插值多项式N(x)。
(3)利用N(x)计算待求点x0的函数值y0。
3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。
(2)采用高斯消元法求解线性方程组Ax=b。
4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。
(2)采用二分法求解方程f(x)=0的根。
5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)建立线性最小二乘模型y=F(x)。
(3)利用最小二乘法求解模型参数。
四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。
这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。
2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。
在实际应用中,可根据具体问题选择合适的方法。
3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。
对于初始值的选择,应尽量接近真实根。
4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。
数值分析原理实验报告
一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
数值分析第一次实验报告
数值分析实验报告(一)2016级数学基地班尹烁翔320160928411一、问题重述:hamming级数求和二、问题分析级数为∑1k(k+x)∞k=1易知当X=1时,φ(1)=1我们可以考虑这个新级数:φ(x)−φ(1)用这个级数可以使精度更高,误差更小且迭代次数变少。
通分易得:φ(x)−φ(1)=1k(k+x)−1k(k+1)=1−xk(k+x)(k+1)我们还可以继续算得φ(2)及φ(x)−φ(2)这样精度会继续提高,且迭代次数也会减少。
下面考虑误差:由公式可得∑1−xk(k+x)(k+1)∞k=1<1k3<∫1k3∞n−1<10−10要把误差控制在范围内,需要k即迭代次数至少70001次。
三、算法实现:#include<iostream>#include<iomanip>>using namespace std;int main(){double sum;//sum为级数和double x;//x为代入的自变量int k=1;//k为迭代次数for (x=0; x<=10; x=x+0.1)//对0到10以内进行迭代运算,每次加0.1{sum=0;//每迭代完一个x,级数归零for (k=1; k<=70001; k++)//固定x并对k进行运算{sum=sum+1/(k*(k+x)*(k+1));}sum=(1-x)*sum+1.0;cout<<setiosflags(ios::fixed)<<" "<<setprecision(1)<<x;cout<<setiosflags(ios::fixed)<<" "<<setprecision(10)<<sum<<endl;}for (x=11; x<=290; x++)//对11到290以内进行迭代运算,每次加1{sum=0;for (k=1; k<=70001; k++)//固定x{sum=sum+1/(k*(k+x)*(k+1));}sum=(1-x)*sum+1.0;cout<<setiosflags(ios::fixed)<<" "<<setprecision(1)<<x;cout<<setiosflags(ios::fixed)<<" "<<setprecision(10)<<sum<<endl;}for (x=290; x<=300; x=x+0.1)//对290.1到300以内进行迭代运算,每次加0.1 {sum=0;for (k=1; k<=70001; k++)//固定x{sum=sum+1/(k*(k+x)*(k+1));}sum=(1-x)*sum+1.0;cout<<setiosflags(ios::fixed)<<" "<<setprecision(1)<<x;cout<<setiosflags(ios::fixed)<<" "<<setprecision(10)<<sum<<endl;}return 0;}四、数据结果:0.0 1.6449340667 0.1 1.5346072448 0.2 1.4408788415 0.3 1.3600825867 0.4 1.2895778007 0.5 1.2274112777 0.6 1.1721051961 0.7 1.1225193425 0.8 1.07775887270.9 1.03711091781.0 1.0000000000 1.1 0.9659560305 1.2 0.9345909181 1.3 0.9055811887 1.4 0.8786548819 1.5 0.853******* 1.6 0.8301644486 1.7 0.8082346082 1.8 0.78764591881.9 0.76827137672.0 0.7500000000 2.1 0.7327343381 2.2 0.7163884348 2.3 0.7008861540 2.4 0.6861597923 2.5 0.6721489224 2.6 0.6587994241 2.7 0.6460626684 2.8 0.63389482552.9 0.62225627673.0 0.6111111113 3.1 0.6004266954 3.2 0.5901732990 3.3 0.5803237751 3.4 0.5708532792 3.5 0.5617390263 3.6 0.5529600781 3.7 0.5444971556 3.8 0.53633247553.9 0.52844960504.0 0.5208333336 4.1 0.5134695598 4.2 0.5063451894 4.3 0.49944804604.4 0.49276679034.5 0.48629084784.6 0.48001034484.7 0.47391604974.8 0.46799932104.9 0.46225205975.0 0.45666666715.1 0.45123600545.2 0.44595336325.3 0.44081242345.4 0.43580723395.5 0.43093218145.6 0.42618196715.7 0.42155158445.8 0.41703629915.9 0.41263163046.0 0.40833333386.1 0.40413738606.2 0.40003996986.3 0.39603746096.4 0.39212641636.5 0.38830356206.6 0.38456578316.7 0.38091011406.8 0.37733372946.9 0.37383393577.0 0.37040816397.1 0.36705396157.2 0.36376898657.3 0.36055100097.4 0.35739786507.5 0.35430753177.6 0.35127804177.7 0.34830751887.8 0.34539416537.9 0.34253625788.0 0.33973214368.1 0.33698023688.2 0.33427901518.3 0.33162701648.4 0.32902283598.5 0.32646512338.6 0.32395258008.7 0.32148395698.8 0.31905805168.9 0.31667370669.0 0.31432980689.1 0.31202527809.2 0.30975908459.3 0.30753022799.4 0.30533774499.5 0.30318070609.6 0.30105821429.7 0.29896940319.8 0.29691343609.9 0.294889504210.0 0.292896826311.0 0.274534305112.0 0.258600891013.0 0.244625674714.0 0.232254453215.0 0.221215267616.0 0.211295563617.0 0.202326620618.0 0.194172672719.0 0.186723141720.0 0.179886984821.0 0.173588511822.0 0.167764240823.0 0.162360502724.0 0.157331593125.0 0.152638329626.0 0.148246914727.0 0.144128030628.0 0.140256111329.0 0.136608754530.0 0.133166240731.0 0.129911138432.0 0.126827978033.0 0.123902979834.0 0.121123826635.0 0.118479472636.0 0.115959981337.0 0.113556388138.0 0.111260583139.0 0.109065210040.0 0.106963580041.0 0.104949596342.0 0.103017690143.0 0.101162762944.0 0.099380138345.0 0.097665518246.0 0.096014944747.0 0.094424767348.0 0.092891612649.0 0.091412358750.0 0.089984111851.0 0.088604185152.0 0.087270081253.0 0.085979474654.0 0.084730197955.0 0.083520227556.0 0.082347672757.0 0.081210763958.0 0.080107843659.0 0.079037357560.0 0.077997846261.0 0.076987938262.0 0.076006343163.0 0.075051846164.0 0.074123301865.0 0.073219629966.0 0.072339810267.0 0.071482878568.0 0.070647922969.0 0.069834080070.0 0.069040532171.0 0.068266503872.0 0.067511259473.0 0.066774100374.0 0.066054362875.0 0.065351416076.0 0.064664659377.0 0.063993521278.0 0.063337457279.0 0.062695948280.0 0.062068499081.0 0.061454637382.0 0.0608539117 83.0 0.060265891284.0 0.059690163685.0 0.059126334986.0 0.058574027887.0 0.058032881288.0 0.057502549189.0 0.056982699990.0 0.056473015891.0 0.055973191792.0 0.055482935193.0 0.055001964994.0 0.054530011295.0 0.054066814696.0 0.053612125897.0 0.053165704998.0 0.052727321299.0 0.0522967526100.0 0.0518737853101.0 0.0514582132102.0 0.0510498380103.0 0.0506484683104.0 0.0502539197105.0 0.0498660140106.0 0.0494845798107.0 0.0491094512108.0 0.0487404681109.0 0.0483774760110.0 0.0480203256111.0 0.0476688725112.0 0.0473229772113.0 0.0469825047114.0 0.0466473244115.0 0.0463173100116.0 0.0459923394117.0 0.0456722940118.0 0.0453570593119.0 0.0450465242120.0 0.0447405812121.0 0.0444391259122.0 0.0441420572123.0 0.0438492771124.0 0.0435606905125.0 0.0432762052126.0 0.0429957316127.0 0.0427191829128.0 0.0424464746129.0 0.0421775249130.0 0.0419122542131.0 0.0416505852132.0 0.0413924428133.0 0.0411377539134.0 0.0408864476135.0 0.0406384549136.0 0.0403937087137.0 0.0401521437138.0 0.0399136963139.0 0.0396783048140.0 0.0394459089141.0 0.0392164502142.0 0.0389898715143.0 0.0387661174144.0 0.0385451338145.0 0.0383268679146.0 0.0381112684147.0 0.0378982853148.0 0.0376878698149.0 0.0374799743150.0 0.0372745524151.0 0.0370715590152.0 0.0368709499153.0 0.0366726822154.0 0.0364767137155.0 0.0362830036156.0 0.0360915118157.0 0.0359021994158.0 0.0357150281159.0 0.0355299609160.0 0.0353469614161.0 0.0351659940162.0 0.0349870241163.0 0.0348100178164.0 0.0346349421165.0 0.0344617645166.0 0.0342904534167.0 0.0341209780168.0 0.0339533080169.0 0.0337874138170.0 0.0336232666171.0 0.0334608381 172.0 0.0333001006 173.0 0.0331410270 174.0 0.0329835910 175.0 0.0328277666 176.0 0.0326735285 177.0 0.0325208518 178.0 0.0323697123 179.0 0.0322200861 180.0 0.0320719500 181.0 0.0319252812 182.0 0.0317800574 183.0 0.0316362566 184.0 0.0314938575 185.0 0.0313528391 186.0 0.0312131807 187.0 0.0310748622 188.0 0.0309378640 189.0 0.0308021665 190.0 0.0306677509 191.0 0.0305345985 192.0 0.0304026910 193.0 0.0302720107 194.0 0.0301425399 195.0 0.0300142615 196.0 0.029******* 197.0 0.029******* 198.0 0.029******* 199.0 0.029******* 200.0 0.029******* 201.0 0.029******* 202.0 0.029******* 203.0 0.029******* 204.0 0.028******* 205.0 0.028******* 206.0 0.028******* 207.0 0.028******* 208.0 0.028******* 209.0 0.028******* 210.0 0.028******* 211.0 0.028******* 212.0 0.028******* 213.0 0.027******* 214.0 0.027******* 215.0 0.027*******216.0 0.027*******217.0 0.027*******218.0 0.027*******219.0 0.027*******220.0 0.027*******221.0 0.027*******222.0 0.0269466153223.0 0.0268458877224.0 0.0267459700225.0 0.0266468523226.0 0.0265485248227.0 0.0264509777228.0 0.0263542015229.0 0.0262581869230.0 0.0261629247231.0 0.0260684057232.0 0.025*******233.0 0.025*******234.0 0.025*******235.0 0.025*******236.0 0.025*******237.0 0.025*******238.0 0.025*******239.0 0.025*******240.0 0.025*******241.0 0.025*******242.0 0.025*******243.0 0.024*******244.0 0.024*******245.0 0.024*******246.0 0.024*******247.0 0.024*******248.0 0.024*******249.0 0.024*******250.0 0.024*******251.0 0.024*******252.0 0.024*******253.0 0.024*******254.0 0.024*******255.0 0.024*******256.0 0.023*******257.0 0.023*******258.0 0.023*******259.0 0.023*******260.0 0.023*******261.0 0.023*******262.0 0.023*******263.0 0.023*******264.0 0.023*******265.0 0.023*******266.0 0.023*******267.0 0.023*******268.0 0.023*******269.0 0.022*******270.0 0.022*******271.0 0.022*******272.0 0.022*******273.0 0.022*******274.0 0.022*******275.0 0.022*******276.0 0.022*******277.0 0.022*******278.0 0.022*******279.0 0.022*******280.0 0.022*******281.0 0.022*******282.0 0.022*******283.0 0.021*******284.0 0.021*******285.0 0.021*******286.0 0.021*******287.0 0.021*******288.0 0.021*******289.0 0.021*******290.0 0.021*******290.1 0.021*******290.2 0.021*******290.3 0.021*******290.4 0.021*******290.5 0.021*******290.6 0.021*******290.7 0.021*******290.8 0.021*******290.9 0.021*******291.0 0.021*******291.1 0.021*******291.2 0.021*******291.3 0.021******* 291.4 0.021******* 291.5 0.021******* 291.6 0.021******* 291.7 0.021******* 291.8 0.021******* 291.9 0.021******* 292.0 0.021******* 292.1 0.021******* 292.2 0.021******* 292.3 0.021******* 292.4 0.021******* 292.5 0.021******* 292.6 0.021******* 292.7 0.021******* 292.8 0.021******* 292.9 0.021******* 293.0 0.021******* 293.1 0.021******* 293.2 0.021******* 293.3 0.021******* 293.4 0.021******* 293.5 0.021******* 293.6 0.021******* 293.7 0.021******* 293.8 0.021******* 293.9 0.021******* 294.0 0.021******* 294.1 0.021******* 294.2 0.021******* 294.3 0.021******* 294.4 0.021******* 294.5 0.021******* 294.6 0.021******* 294.7 0.021******* 294.8 0.021******* 294.9 0.021******* 295.0 0.021******* 295.1 0.021******* 295.2 0.021******* 295.3 0.021******* 295.4 0.021******* 295.5 0.021******* 295.6 0.021******* 295.7 0.021******* 295.8 0.021******* 295.9 0.021******* 296.0 0.021******* 296.1 0.021******* 296.2 0.021******* 296.3 0.021******* 296.4 0.021******* 296.5 0.021******* 296.6 0.021******* 296.7 0.021******* 296.8 0.021******* 296.9 0.021******* 297.0 0.021******* 297.1 0.021******* 297.2 0.021******* 297.3 0.021******* 297.4 0.021******* 297.5 0.021******* 297.6 0.021******* 297.7 0.021******* 297.8 0.021******* 297.9 0.021******* 298.0 0.021******* 298.1 0.021******* 298.2 0.021******* 298.3 0.021******* 298.4 0.021******* 298.5 0.021******* 298.6 0.021******* 298.7 0.021******* 298.8 0.021******* 298.9 0.021******* 299.0 0.021******* 299.1 0.020******* 299.2 0.020******* 299.3 0.020******* 299.4 0.020******* 299.5 0.020******* 299.6 0.020******* 299.7 0.020******* 299.8 0.020******* 299.9 0.020******* 300.0 0.020*******。
数值分析实验报告
数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。
2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeiostreamusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;kn-1;k++){for(j=k,i=k;jn;j++){if(j==k)temp=fabs(a[j][k]);else if(tempfabs(a[j][k])){temp=fabs(a[j][k]);i=j;}}if(temp==0){cout"无解\n; return;}else{for(j=k;jn;j++){temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;in;i++) {l=a[i][k]/a[k][k];for(j=k;jn;j++)a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}if(a[n-1][n-1]==0){cout"无解\n;return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i=0;i--){temp=0;for(j=i+1;jn;j++)temp=temp+a[i][j]*x[j];x[i]=(b[i]-temp)/a[i][i];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}//平方根法void pfg(double **a,double *b,int n)int i,k,m;double x[8],y[8],temp;for(k=0;kn;k++){temp=0;for(m=0;mk;m++)temp=temp+pow(a[k][m],2);if(a[k][k]temp)return;a[k][k]=pow((a[k][k]-temp),1.0/2.0);for(i=k+1;in;i++){temp=0;for(m=0;mk;m++)temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k]; }temp=0;for(m=0;mk;m++)temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k=0;k--){temp=0;for(m=k+1;mn;m++)temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10]; for(i=0;in;i++){a0[i]=a[i][i];if(in-1)c[i]=a[i][i+1];if(i0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;in-1;i++){b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;in;i++)y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;in;i++){A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout"第一题(Gauss列主元消去法):"endlendl; cout"请输入阶数n:"endl;cinn;cout"\n请输入系数矩阵:\n\n";for(i=0;in;i++)for(j=0;jn;j++){篇三:数值分析实验报告(包含源程序) 课程实验报告课程实验报告。
数值分析实验报告5篇
1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元
数值分析实验报告模板
数值分析实验报告模板篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。
本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。
利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。
即若x0 偏离所求根较远,Newton法可能发散的结论。
并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。
前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。
掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收敛,但精度不够。
熟悉Matlab语言编程,学习编程要点。
体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。
数学原理:对于一个非线性方程的数值解法很多。
在此介绍两种最常见的方法:二分法和Newton法。
对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk)产生逼近解x*的迭代数列{xk},这就是Newton法的思想。
当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。
另外,若将该迭代公式改进为xk?1?xk?rf(xk) 'f(xk)其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。
程序设计:本实验采用Matlab的M文件编写。
其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。
数值分析实验报告(一)(完整)
Newton插值伪代码:
/*输入参数
*x=(x0,x1….,xn),插值节点
*y=(y0,y1,…,yn);被插函数f(x)在插值节点处的函数值
*t求插值函数Pn(x)在t处的函数值
*返回值插值函数Pn(x)在t处的函数值
*/
procedureNewton
forj=0to n
d1jyj;
fori=j:n
d(i,j)=(d(i,j-1)-d(i-1,j-1))./(x0(i)-x0(i-j+1));%求差商表矩阵中各值
end
end
fork=1:m
z=x(k);
result=d(1,1);
temp=1;
fori=2:n
temp=temp*(z-x0(i-1));
result=result+d(i,i)*temp;
ifi≠j
li(t)li(t)*(t-xi)/(xi-xj);
endif
endfor
resultresult+yi*li(t) ;
endfor
returnresult;
end procedure
Lagrange插值子程序lagr1:
functiony=lagr1(x0,y0,x)%x0为插值点的向量,y0为插值点处的函数值向量,x为未知的点向量
数值分析实验报告
姓名
学号
系别
数学系
班级
09信息(2)班
主讲教师
王丹
指导教师
王丹
实验日期
专业
信息与计算科学
课程名称
数值分析
同组实验者
无
一、实验名称:
实验一、插值多项式的收敛性实验
数值分析实验报告1
p
得到m=(00)T
即M0=0 ;M1=;M2=;M3=;M4=0
则根据三次样条函数定义,可得:
S(x)=
接着,在Command Window里输入画图的程序代码,
下面是画牛顿插值以及三次样条插值图形的程序:
x=[ ];
y=[ ];
plot(x,y)
hold on
for i=1:1:5
y(i)= *(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)
Pn=f(x0)+f[x0,x1](x-x0)+ f[x0,x1,x2](x-x0) (x-x1)+···+ f[x0,x1,···xn](x-x0) ···(x-xn-1)
我们要知道牛顿插值多项式的系数,即均差表中得部分均差。
在MATLAB的Editor中输入程序代码,计算牛顿插值中多项式系数的程序如下:
【实验原理】
《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日插值的相应算法和相关性质。
【实验环境】(使用的软硬件)
软件:
MATLAB 2012a
硬件:
电脑型号:联想 Lenovo 昭阳E46A笔记本电脑
操作系统:Windows 8 专业版
处理器:Intel(R)Core(TM)i3 CPU M 350 @
实验内容:
【实验方案设计】
第一步,将书上关于三种插值方法的内容转化成程序语言,用MATLAB实现;第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。
【实验过程】(实验步骤、记录、数据、分析)
实验的主要步骤是:首先分析问题,根据分析设计MATLAB程序,利用程序算出问题答案,分析所得答案结果,再得出最后结论。
数值分析实验报告---高斯消去法 LU分解法
数值分析实验报告---高斯消去法 LU分解法实验一:高斯消去法一、实验目的1. 掌握高斯消去法的原理2. 用高斯消去法解线性方程组3. 分析误差二、实验原理高斯消去法(又称为高斯-约旦消去法)是一种利用矩阵消元的方法,将线性方程组化为改进的阶梯形式,从而解出线性方程组的解的方法。
具体而言,高斯消去法将线性方程组的系数矩阵化为一个上三角矩阵,再利用回带法求解线性方程组的解。
三、实验内容1.1、用高斯消去法解线性方程组在具体实验中,我们将使用高斯消去法来解决下述的线性方程组。
5x+2y+z=102x+6y+2z=14x-y+10z=25为了使用高斯消去法来解这个方程组,首先需要将系数矩阵A进行变换,消除A矩阵中第一列中的下角元素,如下所示:1, 2/5, 1/50, 28/5, 18/50, 0, 49/28接着使用回代法来计算该方程组的解。
回代法的过程是从下往上进行的,具体步骤如下:第三个方程的解:z=49/28;第二个方程的解: y=(14-2z-2x)/6;第一个方程的解: x=(10-2y-z)/5。
1.2、分析误差在使用高斯消去法求解线性方程组时,一般会出现截断误差,导致得到的解与真实解之间存在一些误差。
截断误差的大小和矩阵的维数有关。
为了估计截断误差,我们使用矩阵B来生成误差,在具体实验中,我们将使用下面的矩阵:我们来计算该矩阵的行列式,如果方程组有唯一解,则行列性不为0。
本例中,行列式的值是 -1,因此方程组有唯一解。
然后我们计算真实解和高斯消去法得到的解之间的误差,具体公式如下所示:误差 = 真实解的范数 - 高斯消去法得到的解的范数其中,范数的定义如下:||x||1=max{|xi|}; ||x||2=sqrt{(|x1|^2 + |x2|^2 + ... + |xn|^2)}四、实验步骤1、将高斯消去法的每一个步骤翻译成代码,并保存为一个独立的函数。
2、将代码上传至 Python 交互式环境,并使用高斯消去法来解线性方程组。
数值分析实验报告
数值实验题1实验1.1 病态问题实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。
对数值方法的研究而言,所谓坏问题是指问题本身对扰动敏感,反之属于好问题。
本实验通过对一个高次多项式方程的求解,初步认识病态问题。
实验内容:考虑一个高次的代数多项式201()(1)(2)(20)()k p x x x x x k ==---=-∏ (E.1.1)显然该多项式的全部根为1,2,…,20,共计20个,且每个根都是单重的(也称为简单的)。
现考虑该多项式的一个扰动 19()0p x x ε+=, (E.1.2)其中,ε是一个非常小的数。
这相当于是对方程(E.1.1)中x 19的系数作一个小的扰动。
比较方程(E.1.1)和方程(E.1.2)根的差别,从而分析方程(E.1.1)的解对扰动的敏感性。
实验步骤与结果分析:(一) 实验源程序function t_charpt1_1% 数值实验1.1病态问题% 输入:[0 20]之间的扰动项及小的扰动常数 % 输出:加扰动后得到的全部根 clcresult=inputdlg({'请输入扰动项:在[0 20]之间的整数:'},'charpt 1_1',1,{'19'}); Numb=str2num(char(result));if((Numb>20)|(Numb<0))errordlg('请输入正确的扰动项:[0 20]之间的整数!');return;endresult=inputdlg({'请输入(0 1)之间的扰动常数:'},'charpt 1_1',1,{'0.00001'}); ess=str2num(char(result)); ve=zeros(1,21); ve(21-Numb)=ess;root=roots(poly(1:20)+ve);x0=real(root); y0=imag(root); plot(x0',y0', '*');disp(['对扰动项 ',num2str(Numb),'加扰动',num2str(ess),'得到的全部根为:']); disp(num2str(root));(二)实验结果分析(1)对于x19项的扰动ess,不同的取值对应的结果如下所示。
工程数学—数值分析实验报告(一)
工程数学—数值分析实验报告(一)2010年10月23日郑州轻工业学院 机电工程系制冷与低温专业 10级研究生 王哲一.实验目的通过本实验初步了解学习数值分析的课程内涵,来解决现实生活中,工程应用中的线性方程组的问题,利用高斯迭代解决线性方程组的问题,利用三角变换解决线性方程的问题等等。
主要了解掌握线性方程组的问题的消去解法、迭代解法。
掌握高斯消去法和迭代法。
培养编程与上机调试能力及应用数学软件(excel ,Matlab ,Linggo )等实现这几种方法。
二.实验内容设有线性方程组Ax = b ,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A212222111211为非奇异阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x x 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n b bb b 21关于线性方程组的数值解法一般有两类:直接法与迭代法。
(1)直接法就是经过有限步算术运算,可求得方程组精确解的方法(若计算过程中没有舍入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
(2)迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法。
迭代法具有需要计算机的存贮单元较少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点,但存在收敛性及收敛速度问题。
迭代法是解大型稀疏矩阵方程组(尤其是由微分方程离散后得到的大型方程组)的重要方法。
(3)高斯(Gauss )消去法是解线性方程组最常用的方法之一。
基本思想:是通过逐步消元(行的初等变换),把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组(简单形式)得原方程组的解。
1.高斯消去法解线性方程组基本步骤: 1)消元将原方程组记为A (1)x =b (1),其中A (1)=(a ij (1))=(a ij ),b (1)=b ,(1)第一次消元⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)1()1(2)1(1)1()1(2)1(1)1(2)1(22)1(21)1(1)1(12)1(11)1()1(]|[n nnn n n nb b b a a a a a a a a a b A⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⇒)2()2(2)1(1)2()2(2)2(2)2(22)1(1)1(12)1(1100n nnn n nb b b a a a a a a a]|[)2()2(b A = 其中:n i a a b b a a b b a a n j aa a aai i iii ji ijij,...,3,21,...,3,2)1(11)1(1)1(1)1(1)1(11)1(1)1()2()1(11)1(1)1(1)1(11)1(1)1()2(=⎪⎪⎭⎪⎪⎬⎫-==-=倍的减去—倍行的减去第—2)第k 次消元⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=)()()1(1)()()()()1(1)1(1)1(11)()(0]|[k n k k k nn k nkk knk kkn k k k b b b a a a a a a a b A]|[00)1()1()1()1(1)()1(1)1()1(1,)1(,1)1(1,1)()(1,)()1(1)1(11)1(1)1(11+++++++++++++++=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⇒k k k n k k k k k nnk k n k nk k k k k kn k k k k kk n k k b A b b b b a a a a a a a a a a ank k i a a b b a a bba a k n k k j aa a a a k kkk ik k k k kk kkk ikk ik i k kk k ikk ijk kk k ik k ijk ij,...,2,1,...,2,1)()()()()()()()1()()()()()()()1(++=⎪⎪⎭⎪⎪⎬⎫-=++=-=++倍的减去—倍行的减去第—注:为减少计算量,令,)()(k kkk ik ik aa l =则n k k i bl bbn k k j a l a a k kik k i k i k ij ik k ij k ij ,...,2,1,...,2,1)()()1()()()1(++=⎭⎬⎫-=++=-=++3)当k =n –1时得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)()2(2)1(1)()2(2)2(22)1(1)1(12)1(11)()(]|[n n n nnn nn n b b b a a a a a a b A完成第n-1次消元后得到与原方程组等价的三角形方程组A (n)x=b (n)注:当det(A)≠0时,显然有a ii (i)≠0,(i=1,…,n),称为主元素。
数值分析实验报告
南京信息工程大学数值分析实验报告(一)实验名称数值分析 实验日期 2016.5.13得分指导教师专业 数学与应用数学 年级 大二 班级 应用数学1班 姓名 丁晨 学号 20141323001一、 实验目的(1) 了解插值的基本原理(2) 了解拉格朗日插值,牛顿差值和样条差值的基本思想; 二、实验内容试用4次牛顿插值多项式P 4(x )及三次样条函数S (x )对数据进行插值。
用图给出{(x i,y i ),x i =0.2+0.08i,i=0,1,11,10}P 4(x)及S (x )2.在区间[1,1]上,取n=10,20用两组等距节点对龙格函数f(x)=22511x作三次样条差值,对每个n 分别画出差值函数和f (x )的图形。
3.三、实验求解 1.程序代码: clc;x1=[0.2 0.4 0.6 0.8 1.0];y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:);for j=2:n %求差商 for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end endsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i-1)*df(i); endP4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, 'variational');%调用三次样条函数 q=pp.coefs;q1=q(1,:)*[(x-.2)^3;(x-.2)^2;(x-.2);1]; q1=vpa(collect(q1),5)q2=q(1,:)*[(x-.4)^3;(x-.4)^2;(x-.4);1]; q2=vpa(collect(q2),5)q3=q(1,:)*[(x-.6)^3;(x-.6)^2;(x-.6);1]; q3=vpa(collect(q3),5)q4=q(1,:)*[(x-.8)^3;(x-.8)^2;(x-.8);1]; q4=vpa(collect(q4),5)%求解并化简多项式运行matlab 程序结果如下:P4 =0.98*x - 0.3*(x - 0.2)*(x - 0.4) - 0.625*(x - 0.2)*(x - 0.4)*(x - 0.6) - 0.20833*(x - 0.2)*(x - 0.4)*(x - 0.8)*(x - 0.6) + 0.784q1 =- 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04q2 =- 1.3393*x^3 + 1.6071*x^2 - 0.88929*x + 1.1643q3 =- 1.3393*x^3 + 2.4107*x^2 - 1.6929*x + 1.4171q4 =- 1.3393*x^3 + 3.2143*x^2 - 2.8179*x + 1.86290.10.20.30.40.50.60.70.80.910.40.50.60.70.80.911.1所以4次牛顿差值多项式4()P x =0.98*x - 0.3*(x - 0.2)*(x - 0.4) - 0.625*(x - 0.2)*(x- 0.4)*(x - 0.6) - 0.20833*(x - 0.2)*(x - 0.4)*(x - 0.8)*(x - 0.6) + 0.784三次样条差值多项式()Q x323232321.33930.803570.40714 1.04,[0.2,0.4]1.3393 1.60710.88929 1.1643,[0.4,0.6]1.3393 2.4107 1.6929 1.4171,[0.6,0.8]1.3393 3.21432.8179 1.8629,[0.8,1.0]x x x x x x x x x x x x x x x x ⎧-+-+∈⎪-+-+∈⎪⎨-+-+∈⎪⎪-+-+∈⎩2.三次样条差值: 1.M 文件: x=-1:0.0001:1; y=1./(1+25*x.^2); x1=-1:0.2:1;y1=interp1(x,y,x1,'spline'); plot(x1,y1,'o',x,y) grid on xlabel('x') ylabel('y') y1matlab 运行结果如下: y1 =0.0385 0.0588 0.1000 0.2000 0.5000 1.0000 0.5000 0.2000 0.1000 0.05880.0385。
数值分析实验报告1
数值分析实验报告1数值分析上机实验报告(注:本实验报告中所有程序均为MATLAB语⾔程序)班级:姓名:学号:⼀章1、利⽤数值积分计算n I =21n x ex e -?dx (n=0,1,2,……). ⽬的:定积分数值求解原理:梯形公式法程序:clearformat long ;k=input('k=');m=input('m=');for n=1:kh=1/m;x=0:h:1;f=x.^n.*exp(x.^2);for i=1:ms(i)=(f(i)+f(i+1))*h/2;ends=sum(s);I(n)=exp(-1)*s;endI 运⾏结果:k=9m=1000I =Columns 1 through 60.3160604988 0.2309605799 0.1839401373 0.1535601302 0.1321211422 0.1161015912Columns 7 through 90.1036390735 0.0936475974 0.08544762262、利⽤秦九韶算法计算当0a =5,n a =21n a -+3;n=100,x=0.5;n=150,x=13多项式n p (x )=n a n x +…11n n a x --…1a x +0a 的值。
⽬的:通过调整程序以简化计算步骤,减少运算次数原理:秦久韶算法程序:n=input('n=');x=input('x=');a(1)=5;for k=1:n;a(k+1)=2.*a(k)+3;ends(n+1)=a(n+1);for i=n:-1:1s(i)=x.*s(i+1)+a(i);endPnx=s(1)运⾏结果:n=100x=0.5Pnx =802.0000000n=150x=13Pnx =1.4659714820e+2133、设0Y =28,按递推公式n Y = 1n Y -100Y ,500Y ≈27.982(五位有效数字),试问计算100Y 、500Y 将有多⼤的误差。
数值分析的实验报告
数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。
本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。
实验一:方程求根方程求根是数值分析中的基础问题之一。
我们选取了一个非线性方程进行求解。
首先,我们使用二分法进行求解。
通过多次迭代,我们得到了方程的一个近似解。
然后,我们使用牛顿法进行求解。
与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。
通过比较两种方法的结果,我们验证了牛顿法的高效性。
实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。
我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。
通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。
同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。
实验三:数值积分数值积分是数值分析中的重要内容之一。
我们选取了一个定积分进行计算。
首先,我们使用复化梯形公式进行积分计算。
通过增加分割区间的数量,我们得到了更精确的结果。
然后,我们使用复化辛普森公式进行积分计算。
与复化梯形公式相比,复化辛普森公式具有更高的精度。
通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。
实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。
我们选取了一个常微分方程进行数值解的计算。
首先,我们使用欧拉方法进行数值解的计算。
然后,我们使用改进的欧拉方法进行数值解的计算。
通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。
实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。
我们选取了一个线性方程组进行数值解的计算。
首先,我们使用高斯消元法进行数值解的计算。
然后,我们使用追赶法进行数值解的计算。
通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。
数值分析实验报告
数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。
本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。
二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。
实验所依赖的主要库包括 NumPy、Matplotlib 等。
三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。
2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。
(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。
2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。
(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。
2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。
(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。
2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。
四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。
根据给定的数据点和待求点,计算插值多项式的值。
输出插值结果,并与真实值进行比较。
2、牛顿插值法计算差商表。
构建牛顿插值多项式。
进行插值计算和结果分析。
(二)数值积分1、梯形公式定义积分区间和被积函数。
按照梯形公式计算积分近似值。
分析误差。
2、辛普森公式同样定义积分区间和被积函数。
运用辛普森公式计算积分近似值。
比较与梯形公式的精度差异。
(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。
进行消元操作。
回代求解方程。
输出解向量。
2、 LU 分解法对系数矩阵进行 LU 分解。
数值分析实验报告doc
数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。
2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;k {for(j=k,i=k;j {if(j==k)temp=fabs(a[j][k]);else if(temp {temp=fabs(a[j][k]);i=j;}}if(temp==0){cout return;}elsefor(j=k;j {temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;i {l=a[i][k]/a[k][k];for(j=k;j a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}}if(a[n-1][n-1]==0){cout return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i>=0;i--)temp=0;for(j=i+1;j temp=temp+a[i][j]*x[j]; x[i]=(b[i]-temp)/a[i][i];}for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//平方根法void pfg(double **a,double *b,int n) {int i,k,m;double x[8],y[8],temp;for(k=0;k {temp=0;for(m=0;m temp=temp+pow(a[k][m],2); if(a[k][k] return;a[k][k]=pow((a[k][k]-temp),1.0/2.0); for(i=k+1;i {temp=0;for(m=0;m temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k];}temp=0;for(m=0;m temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k>=0;k--){temp=0;for(m=k+1;m temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;i {printf("x%d=%lf\t",i+1(转自:小草范文网:数值分析实验报告),x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10];for(i=0;i {a0[i]=a[i][i];if(i c[i]=a[i][i+1];if(i>0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;i {b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;i y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i>=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;i {A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout cin>>n;cout for(i=0;i for(j=0;j篇三:数值分析实验报告(包含源程序)课程实验报告课程实验报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
li(t)li(t)*(t-xi)/(xi-xj);
endif
endfor
resultresult+yi*li(t) ;
endfor
returnresult;
end procedure
Lagrange插值子程序lagr1:
functiony=lagr1(x0,y0,x)%x0为插值点的向量,y0为插值点处的函数值向量,x为未知的点向量
fori=j:n
d(i,j)=(d(i,j-1)-d(i-1,j-1))./(x0(i)-x0(i-j+1));%求差商表矩阵ห้องสมุดไป่ตู้各值
end
end
fork=1:m
z=x(k);
result=d(1,1);
temp=1;
fori=2:n
temp=temp*(z-x0(i-1));
result=result+d(i,i)*temp;
n=length(x0); m=length(x);
fori=1:m
z=x(i);
s=0.0;
fork=1:n
p=1.0;
forj=1:n
ifj~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
End
Newton插值算法公式:
余项为
end
y(k)=result;
end
1.编写拉格朗日插值多项式函数内容为:
functionf=lagfun(x)
a=[0.2,0.4,0.6,0.8,1.0];
b=[0.98,0.92,0.81,0.64,0.38];
fori=1:5
L(i)=1;
forj=1:5
ifj~=i
L(i)=L(i)*(x-a(j))/(a(i)-a(j));
三、实验内容及要求:
1.已知数据如下:
0.2
0.4
0.6
0.8
1.0
0.98
0.92
0.81
0.64
0.38
(1)用MATLAB语言编写按Langrage插值法和Newton插值法计算插值的程序,对以上数据进行插值;(2)利用MATLAB在第一个图中画出离散数据及插值函数曲线。
2.给定函数 ,利用上题编好的Langrage插值程序(或Newton插值程序),分别取3个,5个、9个、11个等距节点作多项式插值,分别画出插值函数及原函数 的图形,以验证Runge现象、分析插值多项式的收敛性。
end procedure
Newton插值子程序 Newton:
functiony=newton(x0,y0,x)%牛顿插值法
n=length(x0); m=length(x);
d=zeros(n,n);%d为差商表矩阵
forj=1:n
d(j,1)=y0(j);%差商表第一列
end
forj=2:n %差商表为下三角矩阵
x=0:0.1:1;
plot(x,newton(x0,y0,x),'r');
legend('离散点','Lagrange插值','Newton插值')图形为:
2.Lagrange插值程序
for n=3:2:11
x= -1:0.1:1;
y=1./(1+25.*x.^2);
z=0*x;
x0=-1:2/(n-1):1;
数值分析实验报告
姓名
学号
系别
数学系
班级
09信息(2)班
主讲教师
王丹
指导教师
王丹
实验日期
专业
信息与计算科学
课程名称
数值分析
同组实验者
无
一、实验名称:
实验一、插值多项式的收敛性实验
二、实验目的:
1.理解插值的基本原理;
2.掌握多项式插值的概念、存在唯一性;
3.编写MATLAB程序实现Lagrange插值和Newton插值,验证Runge现象、分析插值多项式的收敛性。
endfor
forj=1to n
fori=jto n
dij(di,j-1-di-1,j-1)/(xi-xi-j+1);
endfor
endfor
resultd11;
temp1;
fori=1to n
temptemp*(t-xi-1);
resultresult+di,i*temp;
endfor
return result;
y0=1./(1+25.*x0.^2);
y1=lagr1(x0, y0, x);plot(x, z, 'r', x, y, 'k:' ,x, y1, 'r')
gtext(['Lagr.',num2str(n)])
hold on
end
title('Lagrange')
legend('Largr插值','f(x)图像')
end
end
end
f=0;
fori=1:5
f=f+L(i)*b(i);
end
画图程序内容为:
x0=[0.2,0.4,0.6,0.8,1.0]; y0=[0.98,0.92,0.81,0.64,0.38];
plot(x0,y0,'o')
hold on
grid on
fplot('lagfun',[0,1]);hold on
三、实验步骤(或记录)
Lagrange插值法的基本思想:
步骤1:构造 处的插值基函数 ,其中,插值节点 处的插值基函数 为 ;
步骤2:以 作为 的系数,使得 通过插值点 ;
步骤3:把所有的 线性叠加,得到通过所有插值点 的插值函数 。
Lagrange插值伪代码:
给定 个插值点 的情况下,求插值函数 在点 处的函数值。
/*输入参数
*x=(x0,x1,….,xn),插值节点
*y=(y0,y1,…,yn);被插函数f(x)在插值节点处的函数值
*t求插值函数Ln(x)在t处的函数值
*返回值插值函数Ln(x)在t处的函数值
*/
procedureLagrange
result0;
fori=1to n
li(t)1;
forj=1to n
其中 有关.
Newton插值伪代码:
/*输入参数
*x=(x0,x1….,xn),插值节点
*y=(y0,y1,…,yn);被插函数f(x)在插值节点处的函数值
*t求插值函数Pn(x)在t处的函数值
*返回值插值函数Pn(x)在t处的函数值
*/
procedureNewton
forj=0to n
d1jyj;
图形为:
拉格朗日插值在高次插值时同原函数偏差大、存在龙格现象,高次插值多项式不收敛。
五、教师评语(或成绩)
教师签字:王丹2011年月日