第八章组合变形构件的强度习题
第八章 组合变形
例题
[ 已知: 例8.1 已知: = 15kN , e = 300mm, 许用拉应力σ 1 ] = 32 MPa, P
试设计立柱直径d 试设计立柱直径d。
解: 将力P向立柱轴线简化,立柱 向立柱轴线简化, 将力 向立柱轴线简化 承受拉伸和弯曲两种基本变 形 任意横截面上的轴力和弯矩 为:
FN = P = 15kN
cos ϕ sin ϕ + I I z y
2 2
ω= ω
2
y
+ω
2
z
Fl 3 = 3E
ωz I z tanψ = = tan ϕ ωy I y
I 一般情况下, z ≠ I y , 故 ϕ ≠ ψ ,这表明挠度所在 一般情况下, 的平面与外力作用平面并不重合。 的平面与外力作用平面并不重合。
以矩形截面的悬臂梁为例,在端部C点受力F 以矩形截面的悬臂梁为例,在端部C点受力F,F通过截面 ϕ 形心,与y轴夹角为 形心, 建立坐标系, 建立坐标系,将F分解 分解 成沿y和 的分量 成沿 和z的分量
Fy = F cosϕ
Fz = F sin ϕ
图6.4
梁的斜弯曲可看成由Fy、Fz分别产生的两个平面弯 Fy、 曲叠加而成。且危险截面均为固定端处截面。 曲叠加而成。且危险截面均为固定端处截面。其上弯矩 值为: 值为:
σ1
σw
4×15×103 32×15×103 ×300 + ≤ 32 2 3 πd πd
d = 114mm
所示起重机的最大吊重F=12kN,许用应 例8.2 图a所示起重机的最大吊重 所示起重机的最大吊重 , 试为横梁AB选择合适的工字钢 选择合适的工字钢。 力 [σ ] = 100MPa ,试为横梁 选择合适的工字钢。 的受力图, 解:根据横梁AB的受力图,由 根据横梁 的受力图 平衡方程可得: 平衡方程可得:
材料力学习题
材料力学作业册学院:专业:年级:班级:学号:姓名:前言本作业题册是为适应当前我校教学特色而统一筛选出来的题集,入选题目共计72个,教师可根据学时情况有选择性的布置作业。
本题册中列出的题目仅是学习课程的最基本的作业要求,老师根据情况可适当增加部分作业,部分学生如果有考研或者其他方面更高的学习要求,请继续训练其他题目。
本题册仅用于学生课程训练之练习,任何人不得将其用于商业目的,违者将追究其法律责任。
由于时间仓促,并限于编者水平有限,缺点和错误在所难免,恳请大家提出修改建议。
王钦亭wangqt@ 2013年2月27日目录第一章绪论 (1)第二章拉伸与压缩 (2)第三章扭转 (7)第四章弯曲应力 (11)第五章弯曲变形 (18)第六章简单超静定问题 (20)第七章应力状态与强度理论 (25)第八章组合变形与连接件计算 (32)第九章压杆稳定 (36)第十章能量法 (41)第十一章动荷载.交变应力 (49)附录I 截面的几何性质 (53)第一章绪论1-1 材料力学的中所讲的构件失效是指哪三方面的失效?1-2 可变形固体的基本假设有哪些?1-3 材料力学中研究的“杆”,有什么样的几何特征?1-4 材料力学中,杆件的基本变形有哪些?第二章 拉伸与压缩2-1(SXFV5-2-1)试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
2-2(SXFV5-2-2)一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为2f kx (k 为常数),试作木桩的轴力图。
A2-3(SXFV5-2-3)石砌桥墩的墩身高=10 m l ,其横截面尺寸如图所示。
荷载 1 000 kN F =,材料的密度33=2.3510 kg/m ρ⨯。
试求墩身底部横截面上的压应力。
2-4(SXFV5-2-6)一木桩受力如图所示。
柱的横截面为边长200 mm 的正方形,材料可认为符合胡克定律,其纵向弹性模量10 GPa E =。
如不计柱的自重,试求: (1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4)柱端A 的位移。
《材料力学》课程讲解课件第八章组合变形
强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4
组合变形习题及参考答案
组合变形一、判断题1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。
( )2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。
( )3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。
( )4.正方形杆受力如图1所示,A点的正应力为拉应力。
( )图 15. 上图中,梁的最大拉应力发生在B点。
( )6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。
( )图 27.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。
( )8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。
( )图 39. 矩形截面的截面核心形状是矩形。
( )10.截面核心与截面的形状与尺寸及外力的大小有关。
( )11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。
( )12.计算组合变形的基本原理是叠加原理。
()二、选择题1.截面核心的形状与()有关。
A、外力的大小B、构件的受力情况C、构件的截面形状D、截面的形心2.圆截面梁受力如图4所示,此梁发生弯曲是()图 4A、斜弯曲B、纯弯曲C、弯扭组合D、平面弯曲三、计算题1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。
图 52.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。
3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为,试校核挡土墙的强度。
图 6 图 74.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。
(材料力学课件)第8章组合变形作业
F
4
d2
4
80103 222 106
F
组
52.61MPa[ ]130MPa
bF 1
合 变
(2) 挤压强度计算
形 作 业
bsF Abbss4F d 4282011003106
题 90.91MPa[bs]
Fs
Fs
Fs
3F/4
Fs
F
1F
(3) 板拉伸强度计算
上板轴力图
F/4
(+)
2 孔 F 面 A N 4 ( b 3 F 2 d d ) 4 ( 8 1 0 3 2 8 0 2 1 0 3 1 2 ) 0 1 0 6 0 1.7 6 M 6 [P ] a
故接头符合强度条件
8-27 解: (1) 由剪切强度条件
b
F
F
F A ss b F l 255 01 10 30 0 3l[]1160
a
l
l
第 得: l0.2m (2) 由挤压强度条件
8 章 组
b s F A b bs s a F ba 5 2 0 1 5 1 30 0 3 0[b]s 1 0 160
作
业 题
1 O 1 A C 1 A O C 2.7 1 1 (22 .4 3 ) 8 3.4 3 M 5 Pa
2 0
3 O 3 O A C C 3 A 1.7 1 4 2.7 1 1 9 .9M 7 Pa
8-20 解: (1) 剪切强度计算
Fs FAs
轴 卡环
380
30 40
第 A F s 3 18 4 4 0 5 1 0 3 0 1 00 63.3 0M 7 Pa
8 章
故卡环符合剪切强度条件
[混凝土习题集]—8—钢筋混凝土构件的变形和裂缝宽度验算
第八章混凝土构件变形和裂缝宽度验算一、填空题:1、钢筋混凝土构件的变形或裂缝宽度过大会影响结构的、性。
2、规规定,根据使用要求,把构件在作用下产生的裂缝和变形控制在。
3、在普通钢筋混凝土结构中,只要在构件的某个截面上出现的超过混凝土的抗拉强度,就将在该截面上产生方向的裂缝。
4、平均裂缝间距就是指的平均值。
5、平均裂缝间距的大小主要取决于。
6、影响平均裂缝间距的因素有、、、。
7、钢筋混凝土受弯构件的截面抗弯刚度是一个,它随着和而变化。
8、钢筋应变不均匀系数的物理意义是。
9、变形验算时一般取同号弯矩区段截面抗弯刚度作为该区段的抗弯刚度。
10、规用来考虑荷载长期效应对刚度的影响。
二、判断题:1、混凝土结构构件只要满足了承载力极限状态的要求即可。
()2、混凝土构件满足正常使用极限状态的要为了保证安全性的要求。
()3、构件中裂缝的出现和开展使构件的刚度降低、变形增大。
()4、裂缝按其形成的原因,可分为由荷载引起的裂缝和由变形因素引起的裂缝两大类。
()5、实际工程中,结构构件的裂缝大部分属于由荷载为主引起的。
()6、引起裂缝的变形因素包括材料收缩、温度变化、混凝土碳化及地基不均匀沉降等。
()7、荷载裂缝是由荷载引起的主应力超过混凝土抗压强度引起的。
()8、进行裂缝宽度验算就是将构件的裂缝宽度限制在规允许的围之。
()9、规控制温度收缩裂缝采取的措施是规定钢筋混凝土结构伸缩缝最大间距。
()10、规控制由混凝土碳化引起裂缝采取的措施是规定受力钢筋混凝土结构保护层厚度。
()11、随着荷载的不断增加,构件上的裂缝会持续不断地出现。
()L主要取决于荷载的大小。
()12、平均裂缝间距cr是所有纵向受拉钢筋对构件截面的配筋率。
()13、有效配筋率te14、平均裂缝宽度是平均裂缝间距之间沿钢筋水平位置处钢筋和混凝土总伸长之差。
()15、最大裂缝宽度就是考虑裂缝并非均匀分布,在平均裂缝宽度的基础上乘以一个增大系数而求得的。
( )16、当纵向受拉钢筋的面积相等时,选择较细直径的变形钢筋可减小裂缝宽度。
组合变形的强度计算
组合变形的强度计算 组合变形的概念拉伸与弯曲的组合一.组合变形的概念1.组合变形:在外力的作用下,构件若同时产生两种或两种以上基本变形的情况在小变形和线弹性的前提下,可以采用叠加原理研究组合变形问题所谓叠加原理是指若干个力作用下总的变形等于各个力单独作用下变形的总和(叠加)在复杂外载作用下,构件的变形会包含几种简单变形PRzxyPP2、组合变形的研究方法——叠加原理叠加原理应用的基本步骤:①外力分析:将载荷进行分解,得到与原载荷等效的几组载荷,使构件在每一组载荷的作用下,只产生一种基本变形.②内力分析:分析每种载荷的内力,确定危险截面.③应力分析:分别计算构件在每种基本变形情况下的危险将各基本变形情况下的应力叠加,确定最④强度计算:二.弯曲与拉伸(的组合杆件在外力作用下同时产生弯曲和拉伸(压缩)变形称为弯曲与拉伸(压缩)的组合偏心拉伸:弯曲与拉伸的组合变形链环受力立柱受力拉伸与弯曲组合的应力分析ϕϕsin p p cos p p y x ==A P x ='σy I M x l P M zy =''-=σ)(作用下:z T W M A N max max +=σzC W M A N max max -=σ危险截面处的弯矩抗弯截面模量y I M A N z +=''+'=σσσ根据叠加原理,可得x 横截面上的总应力为[]T z max max T W M A N σσ≤+=[]c zmax max C W M A N σσ≤-=强度条件为例:悬臂吊车,横梁由25 a 号工字钢制成,l =4m ,电葫芦重Q 1=4kN ,起重量Q2=20kN , α=30º, [σ]=100MPa,试校核强度。
取横梁AB为研究对象,受力如图b所示。
梁上载荷为P =Q1+Q2= 24kN,斜杆的拉力S 可分解为X B和Y B(1)外力计算横梁在横向力P和Y A、Y B作用下产生弯曲;同时在X A和X B作用下产生轴向压缩。
8组合变形-lt
x A 解:
①外力分析:
150 P1
B 200
C 100 D y z P2z
Mx A
弯 扭 组 合 变 形
Mx C 100 D
P2y
x
150
B 200
y
p.6
例
题
例
题
例8-4 图示空心圆杆,内径d=24mm,外径D=30mm,P1=600N,[]=100MPa,试用第三强度 理论校核此杆的强度。 80º P2 z
x
YC 9.1kN , YD 2.1kN
T(kNm)
1.5
1.5kNm B
D x
x
p.4
A
C
例
题
例
题
例8-3 钢制圆轴上装有胶带轮A和B,二轮的直径都是D=1 m,重量是P=5 kN,A轮上胶带的张 力是水平方向,B轮上胶带的张力是垂直方向,大小如图示;圆轴的许用应力[σ]=80MPa;试按 第三强度理论求轴所需的直径。 5kN B A C D (3)求可能危险截面C和B上的合成弯矩: 2kN 5kN 2kN 2 2 2 2
P1
②内力分析:危险面内力为:
x A 150 B 200 C 100 D y
MZ
M max 71.3Nm M n 120Nm
③应力分析:
My (Nm)
Mz (Nm) Mn (Nm)
Mn
(Nm)
(N m)
71.25
X
x x
2 2 M max M n * 3 W
My (Nm)
40
X
120
Mmax 71.3
求传动轴的外力偶矩及传动力
p.9
例
题
例
题
【练习】混凝土结构设计原理作业习题及答案
第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为_软钢___________和硬钢。
2、对无明显屈服点的钢筋,通常取相当于残余应变为 0.2% 时的应力作为假定的屈服点,即条件屈服强度。
3、碳素钢可分为低碳钢、中碳钢和高碳钢。
随着含碳量的增加,钢筋的强度提高、塑性降低。
在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为普通低合金钢。
4、钢筋混凝土结构对钢筋性能的要求主要是强度高、塑性好可焊性好、对混泥土的粘结锚固性能好。
5、钢筋和混凝土是不同的材料,两者能够共同工作是因为两者能牢固粘结在一起、线膨胀系数相近、混泥土能保护钢筋不被锈蚀6、光面钢筋的粘结力由化学胶结力、摩擦力、钢筋端部的锚固力三个部分组成。
7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越高、直径越粗、混凝土强度越低,则钢筋的锚固长度就越长。
8、混凝土的极限压应变包括弹性应变和塑性应变两部分。
塑性应变部分越大,表明变形能力越大,延性越好。
9、混凝土的延性随强度等级的提高而降低。
同一强度等级的混凝土,随着加荷速度的减小,延性有所提高,最大压应力值随加荷速度的减小而减小。
10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力减少,钢筋的应力增加。
11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力减少,钢筋的应力增加。
12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力增加,钢筋的应力减少。
二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。
N2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。
Y3、混凝土双向受压时强度比其单向受压时强度降低。
N4、线性徐变是指徐变与荷载持续时间之间为线性关系。
Y5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。
Y6、强度与应力的概念完全一样。
N7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。
第八章组合变形习题集
8-2 人字架及承受的荷载如图所示。
试求m-m 截面上的最大正应力和A 点的正应力。
m解:(1)外力分析,判变形。
由对称性可知,A 、C 两处的约束反力为P/2 ,主动力、约束反力均在在纵向对称面内,简支折将发生压弯组合变形。
引起弯曲的分力沿y 轴,中性轴z 过形心与对称轴y 轴垂直。
截面关于y 轴对称,形心及惯性矩1122123122328444A A 20010050200100(100100)125A +A 200100+200100200100200100(12550)12100200100200(300125100)123.0810 3.0810C z zzy y y I I I -+⨯⨯+⨯⨯+===⨯⨯⨯=+=+⨯⨯-⨯++⨯⨯--=⨯=⨯mmmm m(2)内力分析,判危险面:沿距B 端300毫米的m-m 横截面将人字架切开,取由左边部分为研究对象,受力如图所示。
梁上各横截面上轴力为常数:,m-m 250(1.80.3sin )(1.80.3202.5(k 22250cos =100(k )22y N P M P F ϕϕ=⨯-=⨯-=⋅=⨯=N m)N(3)应力分析,判危险点,如右所示图①m-m 截面上边缘既有比下边缘较大的弯曲压应力,还有轴力应力的压应力,故该面上边缘是出现最大压应力。
m mmax33410010202.510(0.30.125)(Pa) 2.5115.06MPa 117.56MPa 2(0.20.1) 3.0810N zF M y A I σ---=+⋅-⨯⨯=-⨯-=--=-⨯⨯⨯上② A 点是压缩区的点,故m m33410010202.510(0.30.1250.1)(Pa) 2.549.31MPa 51.83MPa 2(0.20.1) 3.0810N a a zF M y A I σ--=+⋅-⨯⨯=-⨯--=--=-⨯⨯⨯注意:最大拉应力出现在下边缘m mmax33410010202.5100.125(Pa) 2.582.18MPa 79.68MPa2(0.20.1) 3.0810N zF M y A I σ---=+⋅-⨯⨯=+⨯=-+=⨯⨯⨯下8-3 图示起重机的最大起吊重量为W=35kN ,横梁AC 由两根NO.18槽钢组成。
组合变形构件的强度练习题
组合变形构件的强度一、单项选择题:1.在偏心拉伸(压缩)情况下,受力杆件中各点的应力状态为( )。
A .单向应力状态; B.二向应力状态;C.单向或二向应力状态; D.单向应力状态或零应力状态。
2.圆截面折杆ABCDEF 在端部受一对集中力P 作用,力P 与Z 轴平行,如图所示。
该折杆处于弯扭组合变形状态的部分是( )。
A .杆BC 和杆DE ; B.杆CD ; C.杆BC 、杆CD 和杆DE ; D.无。
个那么好吗c3.圆截面悬臂梁受载如图,固定端横截面上的最大拉、压应力为( )。
A .)(zyy W MzW M +±;B. )32(322dM M z y π+±;C.)16(322dM M z y π+±; D. )(1z y zM M W +±。
题2图题3图4.图(1)杆件承受轴向拉力F ,若在杆上分别开一侧、两侧切口如图(2)、图(3)所示。
令杆(1)、(2)、(3)中的最大拉应力分别为、m ax 1σ、m ax 2σ和m ax 3σ,则下列结论中( )是错误的。
A. m ax 1σ一定小于m ax 2σ B. m ax 1σ一定小于m ax 3σ C. m ax 3σ一定大于m ax 2σD. m ax 3σ可能小于m ax 2σ5.某构件横截面上危险点处的应力:弯曲正应力zW M =σ,扭转切应力tW T =τ。
按第三强度理论的强度条件为( )。
A .tW T M 22+=σ≤[σ]; B.2)(42)(t W T z W M +=σ≤[σ]; C.2)(32)(tW T z W M +=σ≤[σ]; D.tW T zW M +=σ≤[σ]。
6.图示刚架BACD ,处于弯扭组合变形的是( )段。
A .AB ,CD 段; B.AC ,CD 段; C.AB,AC 段; D.CD 段。
题7图题4图 题6图7.图示结构中AB 杆将发生( )。
A .弯曲变形; B.拉伸变形;C.弯曲和拉伸的组合变形; D.弯曲和压缩的组合变形。
组合变形——精选推荐
第八章 组合变形判断 拉弯组合1、“斜弯曲时中性轴一定过截面的形心而且中性轴上的正应力为零。
”2、“当载荷不在梁的主惯性平面内,梁一定产生斜弯曲”3、“拉弯组合变形时,中性轴一定不过截面的形心”4、“杆件发生斜弯曲时,杆件变形的总挠度方向一定与中性轴相垂直。
”5、“只要杆件横截面上的轴力为零,则该横截面上的正应力各处为零”6、“承受偏心拉伸的杆件,其中性轴仍然通过截面的形心”7、“拉弯组合变形和偏心拉伸组合变形的中性轴位置都与载荷的大小无关。
”选择 拉弯组合1、应用叠加原理的前提条件是: 。
A :线弹性构件; B :小变形杆件;C :线弹性、小变形杆件;D :线弹性、小变形、直杆; 2、矩形截面偏心受压杆件发生 变形。
A :轴向压缩、平面弯曲B :轴向压缩、平面弯曲、扭转 C:轴向压缩、斜弯曲 D :轴向压缩、斜弯曲、扭转3、平板上边切h/5,在下边对应切去h/5,平板的强度。
A :降低一半;B :降低不到一半;C :不变;D :提高了;4、AB 杆的A 处靠在光滑的墙上,B 端铰支,在自重作用下发生变形, AB 杆发生 变形。
A :平面弯曲B :斜弯;C :拉弯组合;D :压弯组合;5、简支梁受力如图:梁上 。
A :AC 段发生弯曲变形、CB 段发生拉弯组合变形 B :AC 段发生压弯组合变形、CB 段发生弯曲变形C :两段只发生弯曲变形D :AC 段发生压弯组合、CB 段发生拉弯组合变形6、图示中铸铁制成的压力机立柱的截面中,最合理的是 。
7、矩形截面悬臂梁在自由端受到力P 的作用,如图。
OP 为载荷的作用线,已知I Z <I Y 。
则该梁横截面的 。
A :中性轴位于1、3象限,挠度方向可能为Of 1 B :中性轴位于1、3象限,挠度方向可能为Of 2C :中性轴位于2、4象限,挠度方向可能为Of 1D :中性轴位于2、4象限,挠度方向可能为Of 28、矩形截面拉弯组合变形时,对于横截面的中性轴有以下的结论。
材料力学第八章-组合变形
12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算
材料力学组合变形答案
材料力学组合变形答案【篇一:材料力学组合变形及连接部分计算答案】,试求危险截面上的最大正应力。
解:危险截面在固定端m,,==返回8-2 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为梁的尺寸为m,,如图所示。
已知该梁材料的弹性模量mm,mm;许用应力;;许可挠度。
试校核梁的强度和刚度。
解:=,强度安全,==返回刚度安全。
8-3(8-5) 图示一悬臂滑车架,杆ab为18号工字钢,其长度为m。
试求当荷载作用在ab的中点d处时,杆内的最大正应力。
设工字钢的自重可略去不计。
解:18号工字钢,,ab杆系弯压组合变形。
,,====返回8-4(8-6) 砖砌烟囱高重kn,受m,底截面m-m的外径的风力作用。
试求:m,内径m,自(1)烟囱底截面上的最大压应力;(2)若烟囱的基础埋深许用压应力m,基础及填土自重按,圆形基础的直径d应为多大?计算,土壤的注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。
解:烟囱底截面上的最大压应力:=土壤上的最大压应力=:即即解得:返回m8-5(8-8) 试求图示杆内的最大正应力。
力f与杆的轴线平行。
解:固定端为危险截面,其中:轴力,弯矩,,z为形心主轴。
=a点拉应力最大==b点压应力最大==因此返回8-6(8-9) 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。
试求:(1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密度为);(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?解:以单位宽度的水坝计算:水压:混凝土对墙底的压力为:墙坝的弯曲截面系数:墙坝的截面面积:墙底处的最大拉应力为:【篇二:材料力学b试题8组合变形】心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e和中性轴到形心的距离d之间的关系有四种答案: (a)e?d;(b) e?d;(c) e越小,d越大; (d) e越大,d越大。
混凝土结构设计原理-第八章钢筋混凝土构件裂缝及变形的验算习题+答案
第八章钢筋混凝土构件裂缝及变形的验算一、填空题1.混凝土构件裂缝开展宽度及变形验算属于正常使用极限状态的设计要求,验算时材料强度采用标准值。
2.增加截面高度是提高钢筋混凝土受弯构件刚度的最有效措施。
3. 裂缝宽度计算公式中的,σsk是指裂缝截面处纵向手拉刚筋的应力,其值是按荷载效应的标准组合计算的。
4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而曾大。
用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距小(大、小)些。
5.钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在同号弯矩范围内,假定其刚度为常数,并按最大弯矩截面处的刚度进行计算。
6.结构构件正常使用极限状态的要求主要是指在各种作用下裂缝宽度和变形值不超过规定的限值。
7.裂缝间纵向受拉钢筋应变的不均匀系数Ψ是指裂缝间钢筋平均应变与裂缝截面钢筋应变之比,反映了裂缝间受拉区混凝土参与工作的程度。
8.平均裂缝宽度是指受拉钢筋合力重心位置处构件的裂缝宽度。
9. 钢筋混凝土构件裂缝宽度计算中,钢筋应变不均匀系数ψ愈小,说明裂缝之间的混凝土协助钢筋抗拉的作用抗拉作用越强。
10.钢筋混凝土受弯构件挠度计算与材料力学方法(2Mlf aEI=)相比,主要不同点是前者沿长向有变化的抗弯刚度。
11. 混凝土结构的耐久性与结构工作的环境有密切关系,纵向受力钢筋的混凝土保护层厚度由所处环境类别决定。
12.混凝土的耐久性应根据结构的使用环境和设计使用年限进行设计。
二、选择题1. 计算钢筋混凝土梁的挠度时,荷载采用(B )A、平均值;B、标准值;C、设计值。
2. 当验算受弯构件挠度时,出现f>[f]时,采取(C )措施最有效。
A、加大截面的宽度;B、提高混凝土强度等级;C、加大截面的高度;D、提高钢筋的强度等级。
3. 验算受弯构件裂缝宽度和挠度的目的是(B )。
A、使构件能够带裂缝工作;B、使构件满足正常使用极限状态的要求;C、使构件满足承载能力极限状态的要求;D、使构件能在弹性阶段工作。
材料力学期末复习题库(你值得看看)
第一章一、选择题1、均匀性假设认为,材料内部各点的是相同的。
A:应力B:应变 C :位移 D :力学性质2、各向同性认为,材料沿各个方向具有相同的。
A:力学性质B:外力 C :变形 D :位移3、在下列四种材料中,不可以应用各向同性假设。
A:铸钢B:玻璃 C :松木D:铸铁4、根据小变形条件,可以认为:A:构件不变形 B :构件不破坏C:构件仅发生弹性变形 D :构件的变形远小于原始尺寸5、外力包括:A:集中力和均布力B: 静载荷和动载荷C:所有作用在物体外部的力D: 载荷与支反力6、在下列说法中,正确的是。
A:内力随外力的增大而增大;B:内力与外力无关;C:内力的单位是N或KN;D:内力沿杆轴是不变的;7、静定杆件的内力与其所在的截面的有关。
A:形状;B:大小;C:材料;D:位置8、在任意截面的任意点处,正应力σ与切应力τ的夹角α=。
A:α=90O;B:α=45O;C:α=0O;D:α为任意角。
9、图示中的杆件在力偶M的作用下,BC段上。
A:有变形、无位移; B :有位移、无变形;C:既有位移、又有变形;D:既无变形、也无位移;10、用截面法求内力时,是对建立平衡方程而求解的。
A:截面左段B:截面右段C:左段或右段D:整个杆件11、构件的强度是指,刚度是指,稳定性是指。
A:在外力作用下抵抗变形的能力;B:在外力作用下保持其原有平衡态的能力;C:在外力的作用下构件抵抗破坏的能力;答案:1、D2、A3、C4、D5、D6、A7、D8、A9、B10、C11、C、B、A二、填空1、在材料力学中,对变形固体作了,,三个基本假设,并且是在,范围内研究的。
答案:均匀、连续、各向同性;线弹性、小变形2、材料力学课程主要研究内容是:。
答案:构件的强度、刚度、稳定性;3、为保证构件正常工作,构件应具有足够的承载力,固必须满足方面的要求。
答案:构件有足够的强度、足够的刚度、足够的稳定性。
4、下列图示中实线代表变形前,虚线代表变形后,角应变为。
工程力学_浙江大学中国大学mooc课后章节答案期末考试题库2023年
工程力学_浙江大学中国大学mooc课后章节答案期末考试题库2023年1.关于磁悬浮列车减小摩擦的方法,正确的说法是参考答案:使摩擦面脱离接触2.材料不同的两物块A和B叠放在水平面上,其中物块A放在物块B上,物块B放在地面上。
在物块B上作用一力,已知物块A重0.5kN,物块B重0.2kN,物块A、B间的摩擦系数f1=0.25,物块B与地面间的摩擦系数f2=0.2,拉动B物块所需要的最小力为参考答案:0.14kN3.一物块重600N,放在不光滑的平面上,静摩擦因数fs=0.3,动摩擦因数f=0.2,在左侧有一推力150N,物块有向右滑动的趋势。
则其此时所受的摩擦力以及最大静摩擦力分别是多少参考答案:150N、180N4.零杆不受力,所以它是桁架中不需要的杆,可以撤除参考答案:错误5.用10N的力拉着木箱在水平面上运动时,木箱受到的摩擦力是10N参考答案:错误6.用50N的力推桌子没有推动,是因为推力小于摩擦力参考答案:错误7.重心和形心是否重合取决于材料是否匀质参考答案:正确8.物体越重受到的摩擦力就越大参考答案:错误9.材料经过冷作硬化后,其比例极限和塑性分别参考答案:提高,下降10.假设一拉伸杆件的弹性模量E=300GPa,比例极限为 sp=300MPa,杆件受一沿轴线的拉力,测得轴向应变为e=0.0015,则该拉应力s的大小为参考答案:300MPa£s£450MPa11.受轴向拉伸的杆件,其最大切应力与轴线的角度为4512.一等直拉杆在两端承受拉力作用,若其一段为钢,另一段为铝,则两段的参考答案:应力相同,变形不同13.脆性材料与塑性材料相比,其拉伸性能的最大特点是参考答案:没有明显的屈服阶段和塑性变形14.现有一两端固定、材料相同的阶梯杆,其大径与小径的横截面积之比为4:1,杆的大径与小径长度相同,在大径与小径交界处施加一轴向力P,则杆的大径与小径所受轴力之比为参考答案:4:115.在低碳钢的拉伸实验中,材料的应力变化不大而变形显著增加的是参考答案:屈服阶段16.下列结论中哪些是正确的?①若压杆中的实际应力不大于该压杆的临界应力,则杆件不会失稳;②受压杆件的破坏均由失稳引起;③压杆临界应力的大小可以反映压杆稳定性的好坏;④若压杆中的实际应力大于scr=πE2/λ2,则压杆必定破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章组合变形构件的强度习题
一、填空题
1两种或两种以上基本变形同时发生在一个杆上的变形,称为()变形、计算题
1如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm,两轴承间的距离
l=80cm,轴的许用应力=80Mpa。
试按第三强度理论设计轴的直径d。
2、图示手摇铰车的最大起重量P=1kN,材料为Q235钢,[可=80 MPa。
试按第三强度理论选择铰车的轴的直径。
400 400
cqj
□
3、图示传动轴AB由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重G=5kN,半
径R=0.6m,胶带紧边张力F1=6kN,松边张力F2=3kN。
轴直径d=0.1m,材料许用应力
[d=50MPa。
试按第三强度理论校核轴的强度。
F
4、如图所示,轴上安装有两个轮子,两轮上分别作用有F=3kN及重物Q,该轴处于
平衡状态。
若[d=80MPa。
试按第四强度理论选定轴的直径d
5、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度gc=140mm,承受集中载荷F 的作用,许用应力[d=160Mpa,若AB轴的抗弯截面系数W Z=3000mm3,。
试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。
(注:写出解题过程)
6、如图所示,由电动机带动的轴上,装有一直径 D =1m的皮带轮,皮带紧边张力为
2F=5KN,松边张力为F=2.5KN,轮重F P=2KN,已知材料的许用应力[q|=80Mpa,试按第三强度理论设计轴的直径d。
7、如图所示,有一圆杆AB长为l,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。
试按第三强度理论建立该圆杆的强度条件。
圆杆材料的许用应力为[可。
8如图所示的手摇绞车,已知轴的直径
D=36cm,两轴承间的距离l=80cm轴的许用应力(T =80Mpa。
试按第三强度理论校核该轴的强度。
9、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度l Bc=140mm,承受集中载荷
F=2.3KN的作用,许用应力[d=160Mpa,若AB轴的抗弯截面系数W Z=3000mm3。
试利用第四强度理论,按AB轴的强度条件校核AB轴的强度。
10、图示手摇铰车的轴的直径d=30 mm,材料为Q235钢,[d=80 MPa。
试按第三强度理论求铰车的最大起重量P。
3
3 2 3 2
、0.2 1 103 0.18 1 103
32
3 2
3 2
80 106 0.2 1 10
0.
18 1 10
0.0325m 32
・5mm
所以绞车的轴的最小直径为32.5mm
1解: 788 r3
2、解: 二、计算题
1 -788
4
36
10 2
80 10 141.84 M 2 T 2
0.1d 3
(1)轴的计算简图
OA8P
400 400
、填空题1组合
3 157.6 103(N mm) 3 10 (N mm)
157.6 103 2 141.84 103 2
0.1d 3
80
解得d > 30mm
0.2P 0 1SP
T 0.18P
(2)强度计算 第三强度理论: • M 2 T 2
r3
W
Z
323 , 0.2P 2
d 3
0.18P 2
d 3
32
画出铰车梁的内力图:
险截面在梁中间截面左侧,M max
•:
1.8kN m
4.2kN m
(1) 外力分析,将作用在胶带轮上的胶带拉力 F i 、F 2向轴线简化,结果如图b . 传动轴受竖向主动力:
附加力偶为:
故此轴属于弯扭组合变形。
(2) 内力分析
(3) 强度校核
2)内力分析,做内力图
3、解
:
F G F , F 2
5 6 3 14kN ,
此力使轴在竖向平面内弯曲。
M e F 1
F 2 R 6 3 0.6 1.8kN m ,此外力偶使轴发生变形。
分别画出轴的扭矩图和弯矩图如图(c )、 (d ) 危险截面上的弯矩M
4.2kN m ,扭矩 T
1.8kN m
M 2 T 2 W Z
故此轴满足强度要求 4、解:1)外力分析
、4.2 103 2
0.13 32
1.8 10
46.6MPa
F 1 Q 0.5
Q 2F 6kN
(b)
Me
r 4
T 3kN m M 7.65kN.m
m u 3)求直径M 2 T 2
eq3
M 2W
0.75T 2 r4 d M 2 T 2
I 1
2
2 (M1d 0〃5T
5、 解: 111mnY
V z 0.1 d 3
7.65 32 60
0、1&65 10学 0.75 (3 106))
0.1 d 3
d 101m m
N
mm
F __m B
80MPa
150F N mm
T 140F N mm JM 2
T 2
W
150F 2
140F 2
3000
[]160Mpa
F 2353N 2.4kN
故此结构的许可载荷F 为2.4kN
6、解:简化力系 1.
F i F P F 2F 2 2.5 5 9.5kN (F P F 2F) 800 9.5 10—800 1.9 106N mm 1.9kN 4 D (2F F)-
2 1 2.5 - 2 r
3 W Z
1.25kN m 6 2 6
2
1.9 106 1.25 106
d 3
[]80MPa 32 解得: 7、解: d 66mm M=PXl T= PXR
■ M 2 T 2
r3
9、解:
0.1d 3
M
4
36 800 — 2 80 3
10 160 10 (N mm)
10 ,M 2 T 2
0.1d 3
3
144 10 (N mm)
160 103 $ 144 103 2
0.1 323
65.7MPa 80MPa
故轴的强度足够
M 150F N mm
故此结构的强度足够。
10、解:(1)轴的计算简
图
(2)强度计算
0-033280 106 788N
32 ”0.20.18
所以绞车的最大起重量为788N
.-■mB
r4
,M 2 0.75T2
W
.150 2.3 103
3000
0.75 140 2.3
147.9MPa [ ]160MPa
O.1SP
画出铰车梁的内力图:
危险截面在梁中间截面左侧
T 0.18P
M max 0.2P
0 1SP
r3
M2T2
W Z
32
d3 '
2 2
0.2P 0.18P
第三强度理论
P d3
2 2
32、0.2 0.18
T 140F N mm
2。