§7.1平面向量的概念(2)

合集下载

平面向量的概念

平面向量的概念

平面向量的概念平面向量是数学中的一个重要概念,是指由两个矢量组成的有向线段。

平面向量通常用加粗的小写字母来表示,例如a、b等。

平面向量具有长度和方向两个基本属性,同时也具有加法、减法、数乘等运算,可用于求解各种几何和物理问题。

平面向量的表示方法有两种,一种是初末点法。

即用平面上两个点A(x1,y1)和B(x2,y2)来表示平面向量AB。

向量AB的表示方法为AB=(x2-x1,y2-y1)。

另一种是分量表示法,即将平面向量投影到坐标轴上,用坐标表示向量的长度和方向。

例如,向量AB在x 轴上的投影为x轴方向上的分量a,y轴方向上的投影为y轴方向上的分量b,则向量AB 可以表示为AB=a+b。

平面向量的长度可以用勾股定理求解,即向量AB的长度为√[(x2-x1)²+(y2-y1)²]。

方向可以用夹角cos求解,即两个向量的夹角cosθ=AB·CD/|AB|·|CD|,其中·表示点乘,|AB|和|CD|分别表示向量AB和CD的长度。

平面向量具有加法和减法运算,其运算方法为:对应坐标相加或相减。

例如向量AB 和向量CD的和为向量AC,其坐标为AC=(x2-x1+x4-x3,y2-y1+y4-y3)。

减法也是同样的方法。

数乘则是将向量的长度与方向进行分解,再将其乘以一个实数k,具体计算方法为:向量kAB=k(x2-x1,y2-y1)=(kx2-kx1,ky2-ky1)。

平面向量的重要应用之一是向量叉乘,即将两个向量进行叉乘,得到的结果是一个新的向量,并且该向量垂直于原来的向量。

例如向量AB和向量CD的叉乘为向量n,其坐标为n=AB×CD=[(y2-y1)(z4-z3)-(z2-z1)(y4-y3),(z2-z1)(x4-x3)-(x2-x1)(z4-z3),(x2-x1)(y4-y3)-(y2-y1)(x4-x3)]。

向量叉乘在计算平面和空间中的向量积、平面的法线、对称线等问题中都有着广泛的应用。

平面向量的概念与性质

平面向量的概念与性质

平面向量的概念与性质平面向量是数学中的一个重要概念,它在几何学、物理学和工程学等领域中被广泛应用。

平面向量具有一些独特的性质,其概念和性质对于我们理解和解决许多实际问题至关重要。

一、平面向量的定义平面向量表示平面上的一个有向线段,可以用带箭头的直线段来表示。

平面向量常用字母加箭头上方加粗体来表示,例如向量a表示为→a。

平面向量有大小和方向两个基本属性。

二、平面向量的表示方法1. 分量表示法:平面向量可以由两个分量表示,分别是在x轴和y 轴上的投影。

设平面向量→a的分量分别为a1和a2,那么→a = a1i + a2j,其中i和j分别是x轴和y轴的单位向量。

2. 基点表示法:平面向量还可以通过起点和终点来表示。

以A为起点,B为终点的向量→AB可以简写为→AB。

三、平面向量的运算平面向量有加法和数乘两种基本的运算方式。

1. 加法运算:向量的加法满足平行四边形法则。

设向量→a的起点为A,终点为B,向量→b的起点为B,终点为C,则向量→a + →b的起点为A,终点为C。

2. 数乘运算:向量的数乘是指向量与一个实数的乘积。

设实数k,向量→a的起点为A,终点为B,则k→a的起点仍为A,终点为D,且AB与AD在同一直线上,且向量BD与向量AB方向相同(k>0)或相反(k<0)。

四、平面向量的性质1. 平行性:如果两个向量的方向相同或相反,即平行或反平行,那么这两个向量是平行的。

2. 零向量:零向量是一个特殊的向量,它的大小为0,不具备明确的方向。

3. 模长:向量的模长表示向量的大小,用|→a|来表示。

根据勾股定理,模长可以通过向量的分量计算得到,|→a| = √(a1² + a2²)。

4. 单位向量:模长为1的向量称为单位向量。

可以通过将向量除以它的模长得到单位向量,→a/|→a|。

5. 共线性:如果两个向量的方向相同、相反或平行,即它们可被放大或缩小到重合或相反方向,那么这两个向量是共线的。

平面向量的概念与运算

平面向量的概念与运算

平面向量的概念与运算平面向量是解决平面几何问题的重要工具之一,它具有方向和大小两个基本特征。

本文将介绍平面向量的概念以及其常见的运算。

一、平面向量的概念平面向量是由起点和终点确定的有向线段,一般用小写字母加上→来表示。

例如,向量AB可以表示为→AB。

平面向量的起点在原点O,终点在坐标系中的某一点P,那么向量OP可以用字母加上向上的箭头来表示。

二、平面向量的大小平面向量的大小又称作模或长度,用两点之间的距离来表示。

设有向线段→AB的起点为A(x1, y1),终点为B(x2, y2),那么向量→AB的大小可以用以下公式来计算:|→AB| = √((x2-x1)^2 + (y2-y1)^2)三、平面向量的运算1. 平面向量的加法:设有向线段→AB和→CD,那么它们的和向量→AD可以通过将两个向量首尾相连来得到。

具体计算如下:→AD = →AB + →CD = (x2-x1, y2-y1) + (x4-x3, y4-y3)2. 平面向量的减法:设有向线段→AB和→CD,那么它们的差向量→AC可以通过将第二个向量取负后再进行加法运算得到。

具体计算如下:→AC = →AB - →CD = (x2-x1, y2-y1) - (x4-x3, y4-y3)3. 平面向量的数量积:平面向量的数量积又叫点积或内积,它是两个向量的数量乘积与夹角余弦的乘积。

设有向线段→AB和→CD,夹角为θ,那么它们的数量积A·B可以通过以下公式来计算:A·B = |A| |B| cosθ4. 平面向量的向量积:平面向量的向量积又叫叉积或外积,它是两个向量的数量乘积与夹角正弦的乘积。

设有向线段→AB和→CD,夹角为θ,那么它们的向量积A×B可以通过以下公式来计算:A×B = |A| |B| sinθ四、平面向量的运算性质1. 加法的交换律和结合律:设有向线段→AB,→CD和→EF,那么有:→AB + →CD = →CD + →AB(→AB + →CD) + →EF = →AB + (→CD + →EF)2. 数量积的交换律和结合律:设有向线段→AB和→CD,那么有:A·B = B·A(A·B)·C = A·(B·C)3. 向量积的交换律和结合律:设有向线段→AB和→CD,那么有:A×B = -B×A(A×B)×C = A×(B×C)五、应用举例平面向量的概念与运算在几何、力学等学科中有着广泛的应用。

平面向量的定义

平面向量的定义

平面向量的定义平面向量是数学中重要的概念,它在几何学和物理学等领域有广泛的应用。

通过定义,我们可以清晰地了解平面向量的特点、性质和运算规则。

本文将介绍平面向量的定义以及相关的基本概念和运算规则,以帮助读者更好地理解和应用平面向量。

一、平面向量是由大小和方向共同决定的有向线段,用于表示平面上的位移、力、速度等物理量。

它由起点和终点组成,起点表示向量作用的起始位置,终点表示向量作用的终止位置,而有向线段则表示了向量的方向和大小。

在平面向量中,方向由箭头表示,箭头的末端表示向量的终点。

大小通常使用向量的模或长度来表示,记作 |AB| 或 ||AB||,其中 A 和 B分别表示向量的起点和终点。

二、平面向量的性质1. 平面向量具有位移性质:平面向量可以描述物体的位移,在空间中沿着特定的方向移动。

位移的大小和方向由向量的模和方向决定。

2. 平面向量具有等价性质:两个向量如果具有相同的模和方向,则它们是等价的。

即使起点和终点的位置不同,只要向量的模和方向相同,我们可以认为它们是相等的。

3. 平面向量具有相反性质:对于任意向量 A,在平面上存在一个唯一的向量 -A,它们有相同的模但方向相反。

即 A 和 -A 是相互抵消的力或相反方向的位移。

4. 平面向量具有平移性质:对于平面上任意两点 A 和 B,我们可以通过平移将 A 移动到原点 O,同时将 B 移动到 P,得到表示向量 AB 的平移向量 OP。

在平面向量表示中,起点和终点的具体位置可以任意选择。

三、平面向量的运算1. 平面向量的加法:向量加法是指将两个向量相加得到一个新的向量。

对于任意向量 A 和 B,它们的和记作 A + B,其起点与 A 的起点相同,终点与 B 的终点相同。

2. 平面向量的数乘:数乘是指将一个向量乘以一个实数得到一个新的向量。

对于任意向量 A 和实数 k,它们的数乘记作 kA,其起点与 A 的起点相同,终点位于向量 A 上,且与 A 的终点的距离是 A 的模乘以k 的绝对值。

平面向量的定义与性质

平面向量的定义与性质

平面向量的定义与性质在数学中,平面向量是研究平面上的运动和力学问题时常用的工具之一。

它延伸了我们对于点和线的概念,能够以有序的数对或线段的方式来表示。

一、平面向量的定义平面向量可以用很多不同的方式来定义,其中一种常见的定义是基于向量的长度和方向。

具体来说,对于平面上的两个点A(x1, y1)和B(x2, y2),我们可以定义向量AB为一个有序数对 (x2 - x1, y2 - y1),其中x2 - x1表示向量的横坐标分量,y2 - y1表示向量的纵坐标分量。

这种定义方式可以帮助我们直观地理解平面向量。

例如,如果我们要从点A到点B的位移向量,我们可以将这个向量表示为AB。

二、平面向量的性质1. 向量的相等性:两个平面向量相等当且仅当它们的横坐标分量和纵坐标分量分别相等。

2. 零向量:零向量是一个特殊的向量,所有的横坐标和纵坐标都为0。

它表示没有大小和方向的向量。

3. 平行向量:如果两个向量方向相同或相反,那么它们是平行的。

我们可以通过比较它们的横坐标分量和纵坐标分量来确定其平行性。

4. 相反向量:两个向量方向相反且大小相等时,它们是相反向量。

我们可以通过改变一个向量的横坐标分量和纵坐标分量的符号来得到其相反向量。

5. 与标量的乘法:平面向量可以与标量相乘。

标量乘法可以改变向量的大小,但不会改变其方向。

例如,向量v乘以标量k,表示为kv,它的横坐标和纵坐标分量分别等于kv。

三、平面向量的运算法则1. 向量加法:向量加法满足交换律和结合律。

即对于任意向量u、v 和w,有:u + v = v + u (交换律)(u + v) + w = u + (v + w) (结合律)向量加法可以通过将对应的横坐标和纵坐标分量相加来进行。

2. 向量减法:向量减法等于将减数取相反向量再与被减数相加。

即对于任意向量u和v,有:u - v = u + (-v)向量减法可以通过将被减数的横坐标和纵坐标分量分别减去减数的横坐标和纵坐标分量来进行。

平面向量的基本概念与运算法则

平面向量的基本概念与运算法则

平面向量的基本概念与运算法则平面向量是解决几何问题的重要工具之一,它能够描述物体在平面内的方向和大小,能够进行加减乘除等基本运算,为我们解决问题提供了很大的便利。

本文将介绍平面向量的基本概念和运算法则,帮助读者理解和运用平面向量。

1. 平面向量的定义平面向量是具有大小和方向的量,用箭头来表示。

平面向量通常用线段AB来表示,方向由起点A指向终点B,记作→AB或者AB。

2. 平面向量的表示和坐标平面向量可以使用坐标来表示。

设向量AB的起点为原点O,终点为点P(x,y),则向量→AB可以表示为(x,y)。

其中,x表示向量在x轴上的投影,y表示向量在y轴上的投影。

3. 平面向量的运算法则平面向量有多种基本运算法则,下面依次介绍:(1) 向量的加法:设向量→AB的终点为P(x1,y1),向量→CD的终点为Q(x2,y2),则向量→AB + →CD的终点为R(x1+x2 , y1+y2)。

也就是说,将两个向量的x轴和y轴分量分别相加,得到新的向量的坐标。

(2) 向量的减法:设向量→AB的终点为P(x1,y1),向量→CD的终点为Q(x2,y2),则向量→AB - →CD的终点为R(x1-x2 , y1-y2)。

也就是说,将两个向量的x轴和y轴分量分别相减,得到新的向量的坐标。

(3) 向量的数量乘法:设向量→AB的终点为P(x,y),数k为实数,则k × →AB的终点为R(kx, ky)。

也就是说,将向量的每个分量分别乘以实数k,得到新的向量的坐标。

(4) 向量的点乘法:设向量→AB的终点为P(x1,y1),向量→CD的终点为Q(x2,y2),则→AB · →CD = x1 x2 + y1 y2。

也就是说,将两个向量的x轴和y轴分量分别相乘,再将结果相加,得到点乘法的结果。

4. 平面向量的性质平面向量有一些重要的性质,下面列举几个常用的性质:(1) 平行向量的性质:如果两个向量→AB和→CD平行,则它们可以表示为→AB = k × →CD,其中k为实数。

中职数学 下册 课件-第七章 平面向量

中职数学 下册 课件-第七章 平面向量
第七章 平面向量
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
7.2平面向量的坐标表示 7.2.1平面向量的坐标 7.2.2向量线性运算的坐标表示 7.2.3共线向量的坐标表示
7.3平面向量的内积 7.2.1平面向量的内积 7.2.2内积的坐标表示
a
b
B
a
b
A a+b
C
一般地,设向量a与向量b不共线,在平面上任取一点A
依次作 AB a,BC b,则向量AC 叫做向量a与向量b的和,
距离、位移、身高、力、质量、时间、速度、面积、温度.
数量
向量
距离、身高、 质量、时间、 面积、温度
位移、力、 速度
【新知识】向量的表示
用有向线段表示(规定了起点、方向、长度的 线段)
a 始点
终点
始点
终点
A
B
a 用字母表示 AB, 或
始点
终点
1【.向(模新量)表知的示大识:小】(模向| A)量B: | 的向或有量| a关A|B概或念a 的大小
向量是不能比较大小的,但
向量的模是可以进行大小比较的.
a
| a || b | √
b
a b
×
2.两个基本向量:
零向量: 模 为零的 向量(方向不确定). 表示: 0, | 0 | 0
单位向量: 模为1个单位长度的向量.
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km, 另一架飞机从A处朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向线段表示两架 飞机的位移.
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算

平面向量的概念与运算

平面向量的概念与运算

平面向量的概念与运算平面向量是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。

本文将从平面向量的定义开始,介绍平面向量的概念以及基本运算,包括向量的加法、减法、数乘等,以便读者对平面向量有更深入的理解。

一、平面向量的定义平面向量是具有大小和方向的量,常用有向线段表示。

在平面直角坐标系中,平移一个向量的有向线段,可以得到一个与原始向量大小和方向相同的向量。

平面向量通常用小写粗体字母表示,如a、b。

二、平面向量的表示平面向量可以用其在平面直角坐标系下的坐标表示。

设向量a的终点坐标为(x₁, y₁),起点坐标为(0, 0),则向量a可以表示为a = x₁i +y₁j,其中i和j分别表示x轴和y轴的单位向量。

三、平面向量的加法平面向量的加法遵循平行四边形法则。

设有向线段AB表示向量a,有向线段BC表示向量b,连接向量a的起点与向量b的终点,该有向线段表示向量a + b。

其数学表示为a + b = (x₁ + x₂)i + (y₁ + y₂)j,其中(x₁, y₁)为向量a的坐标,(x₂, y₂)为向量b的坐标。

四、平面向量的减法平面向量的减法可以通过将被减向量取反并进行加法运算得到。

设有向线段AB表示向量a,有向线段BC表示向量b的负向量,连接向量a的起点与向量b的终点,该有向线段表示向量a - b。

其数学表示为a - b = (x₁ - x₂)i + (y₁ - y₂)j,其中(x₁, y₁)为向量a的坐标,(x₂,y₂)为向量b的坐标。

五、平面向量的数乘平面向量的数乘是指将向量的长度进行缩放。

设k为一个实数,向量a乘以k后得到的向量记为ka,则ka = k(x₁i + y₁j) = (kx₁)i +(ky₁)j,其中(x₁, y₁)为向量a的坐标。

六、平面向量的数量积平面向量的数量积又称为内积或点积,用符号·表示。

设有向线段AB表示向量a,有向线段BC表示向量b,则a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和向量b的长度,θ是向量a和向量b之间的夹角。

平面向量的定义和基本性质

平面向量的定义和基本性质

平面向量的定义和基本性质平面向量是指在平面上有大小和方向的向量。

它由起点和终点确定,并且可以用箭头表示。

平面向量常用字母加上一个右箭头来表示,例如AB→表示起点为A,终点为B的向量。

平面向量的定义:定义1:若平面上两个点A和B,可以唯一确定一个向量AB→。

其中向量AB→的起点为点A,终点为点B。

点A称为向量AB→的起点,点B称为向量AB→的终点。

向量AB→可以记作AB→或者→AB。

定义2:若平面上某个向量的起点是原点O,则称该向量为单位向量。

单位向量的长度为1,方向可以是任意的。

基本性质:性质1:平面向量相等的条件是它们的长度相等且方向相同。

对于平面上的两个向量→AB和→CD,当且仅当|→AB|=|→CD|且它们的方向相同时,向量→AB和向量→CD相等。

性质2:平面向量相反的条件是它们的长度相等且方向相反。

对于平面上的两个向量→AB和→CD,当且仅当|→AB|=|→CD|且它们的方向相反时,向量→AB和向量→CD互为相反向量。

性质3:平面向量的运算法则。

3.1 平面向量的加法:设→AB和→CD是平面上的两个向量,则向量→AB+→CD的终点是链接→AB和→CD的链条的终点。

3.2 平面向量的减法:设→AB和→CD是平面上的两个向量,则向量→AB-→CD的终点是链接→AB的起点与→CD的终点的链条的终点。

3.3 数乘:设k是一个实数,→AB是平面上的一个向量,则k→AB的长度是|k||→AB|,方向与→AB相同。

性质4:平面向量的共线性。

对于平面的两个非零向量→AB和→CD,若存在实数k,使得→CD=k→AB,则称向量→AB和→CD共线。

同样地,若存在实数k1和k2,使得→CD=k1→AB+k2→EF,则称向量→AB、→CD和→EF共线。

性质5:平面向量的数量积。

对于平面的两个向量→AB和→CD,它们的数量积定义为|→AB||→CD|cosθ,其中θ为→AB和→CD之间的夹角。

性质6:平面向量的数量积与夹角的关系。

平面向量的概念及线性运算教案

平面向量的概念及线性运算教案

【课题】7.1 平面向量的概念及线性运算【教学目标】知识目标:(1)了解向量、向量的相等、共线向量等概念; (2)掌握向量、向量的相等、共线向量等概念. 能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.【教学重点】向量的线性运算.【教学难点】已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.【教学设计】从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念. 向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a >b ”没有意义,而“︱a ︱>︱b ︱”才是有意义的.教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则.向量的减法是在负向量的基础上,通过向量的加法来定义的.即a -b =a +(-b ),它可以通过几何作图的方法得到,即a -b 可表示为从向量b 的终点指向向量a 的终点的向量.作向量减法时,必须将两个向量平移至同一起点.实数λ乘以非零向量a ,是数乘运算,其结果记作λa ,它是一个向量,其方向与向量a 相同,其模为a 的λ倍.由此得到λ⇔=a b a b ∥.对向量共线的充要条件,要特别注意“非零向量a 、b ”与“0λ≠ ”等条件.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间7.1 平面向量的概念及线性运算*创设情境兴趣导入如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗?图7-1 介绍播放课件引导分析了解观看课件思考自我分析从实例出发使学生自然的走向知识点3*动脑思考探索新知【新知识】在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等.平面上带有指向的线段(有向线段)叫做平面向量,线段的指向就是向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作AB.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作a.图7-2向量的大小叫做向量的模.向量a,AB的模依次记作a,AB.模为零的向量叫做零向量.记作0,零向量的方向是不确定的.总结归纳仔细分析讲解关键词语思考理解记忆带领学生分析引导式启发学生得出结果10aABAB与MN,它们所在的直线平行,两个向量的方向相同;向量CD与PQ所在的直线平行,两个AB与MN,方向相同,模相等;平HG与TK,方向相反,模相等.我们所研究的向量只有大小与方向两个要素.的模相等并且方向相同时,称向量b.也就是说,向量可以在平面内任意平移,具有这种性质的向量叫做自由向量.AB = MN ,GH = -TK . ABCD 中(图7-5),O 为对角线交点DA 相等的向量; DC 的负向量;)找出与向量AB 平行的向量要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向相同或相反.CB =DA ;BA =DC -,CD DC =-; BA //AB ,DC //AB ,CD //AB . 强化练习如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写EF 相等的向量;AD 共线的向量OC 相等的向量;)OC 的负向量;OC 共线的向量.巡视指导A D E FAB DAC 叫做AB 与位BC 的和AC =AB +BC .AB =a , BC =b ,则向量AC 叫做向量+b ,即b =AB +BC =AC (求向量的和的运算叫做向量的加法.上述求向量的和的方三角形法则.可以看到:依照三角形法则进行向量abaAD=BC,AB+AD=AB+BC=AC这说明,在平行四边形AC所表示的向量就是AB与AD的和.这种求和向量加法的平行四边形法则.平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质:总结归纳AB表示船速,AC 为水流速度,由向量加法的平行四边形法则,AD 是船的实际航行速度,显然22AD AB AC=+=12又512tan =∠CAD ,利用计算器求得6723'≈︒1.即船的实际航行速度大小是流方向)的夹角约6723'︒.过程行为行为意图间图7-12 讲解说明思考求解62*运用知识强化练习练习7.1.21.如图,已知a,b,求a+b.2.填空(向量如图所示):(1)a+b =_____________ ,(2)b+c =_____________ ,(3)a+b+c =_____________ .3.计算:(1)AB+BC+CD;(2)OB+BC+CA.启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳65*创设情境兴趣导入在进行数学运算的时候,减去一个数可以看作加上这个数的相反数.质疑引导分析思考参与分析引导启发学生思考66*动脑思考探索新知与数的运算相类似,可以将向量a与向量b的负向量的和定义为向量a与向量b的差.即总结归纳(图1-15)bbaa (1)(2)第1题图=OA,b OB,则OA OB OA OB OA BO BO OA BA-=+-+=+=.()=-=BA(7.OA OB观察图7-13可以得到:起点相同的两个向量a、b,b仍然是一个向量,叫做a与b的差向量,其起点是减的终点,终点是被减向量a的终点.OA=a,OB=b,连接BA为所求的差向量,即BA= a-b .【想一想】当a与b共线时,如何画出 b .*运用知识-=_______________AB AD过 程行为 行为 意图 间(2)BC BA -=______________, (3)OD OA -=______________.2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .启发 引导 提问 巡视 指导 思考 了解 动手 求解可以 交给 学生 自我 发现 归纳72 *创设情境 兴趣导入观察图7-15可以看出,向量OC 与向量a 共线,并且OC =3a .图7−15质疑 引导 分析思考 参与 分析引导启发学生思考74 *动脑思考 探索新知一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为||||||a a λ=λ (7.3) 若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有 λ⇔=a b a b ∥ (7.4)一般地,有 0a = 0,λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对总结 归纳思考 归纳带领 学生 分析a a aaOAB C过 程行为 行为 意图 间于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则:()()111=-=-a a a a , ;()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 . 【做一做】请画出图形来,分别验证这些法则.向量加法及数乘运算在形式上与实数的有关运算规律相类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的运算中.但是,要注意向量的运算与数的运算的意义是不同的.仔细 分析 讲解 关键 词语理解 记忆 理解 记忆引导 启发 学生 得出 结论78 *巩固知识 典型例题例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD .解 AC+b ,BD =b −a ,=a 因为O 分别为AC ,BD 的中点,所以1122==AO AC (a +b )=12a +12b ,强调 含义 说明思考 求解 领会注意 观察 学生 是否 理解 知识 点图7-16OD=12BD=12(a+12b和−12a+12AO、OD可以用向量λa+μb叫做a, b的一个.如果l =λa+μb向量的加法、减法、数乘运算都叫做OA,使OA=12(向量、向量的模、向量相等是如何定义的?向量的大小叫做向量的AB的模依次记作AB.a与向量的模相等并且方向相同时,称向量相等,记作*归纳小结本次课学了哪些内容?重点和难点各是什么?过程AB+BC+CD;(OB+BC+CA.活动探究读书部分:教材书面作业:教材习题7.A组(必做);7.1 B 【教师教学后记】。

平面向量的概念

平面向量的概念
第七章 平面向量
7.1平面向量的概念方向的量叫做向量(物理学中 叫做矢量). 只有大小没有方向的量叫做数量(物理学中 叫做标量).

2. 有向线段(向量的几何表示): 具有方向的线段,以A为起点, B为终点的有向线段记作.

注: 与表示两条不同的向量.
3.向量的模:有向线段的长度, 记作||.
想一想: 如图,在等腰梯形ABCD中,两个 向量和互为相反的向量吗?向量和 相等吗?
例 如图,在平行四边形ABCD中,分别写出: (1)与向量,相同的向量; (2)向量的相反向量.


作业:P38 练习

注:向量的模是一个数量,是非负数.

4.向量要素: 大小、方向.


有向线段3要素: 起点、方向、长度.
5.相等向量、平行向量、共线向量、零向量、单位向量、相反向量:




(1)相等向量: 大小相等且方向相同的向 量. (2)平行向量: 两个方向相同或相反的非 零向量(或共线向量). 例如:向量a、b平行,记 作a//b, 零向量与任意向量平行, 即0//a. 判断:零向量平行零向量, 即0//0.( )




注:在向量中共线向量 就是平行向量,(直线共 线就是同一条直线了,向 量共线是指两向量是平行 向量) (3)零向量:长度等于0 的向量,记作,即||=0. 零向量的方向是任意的; 且零向量与任何向量都平 行,垂直. (4)单位向量:模等于1 向量||=1. (5)相反向量:模相等 方向相反的两向量.

高一数学讲义 第七章 平面向量

高一数学讲义 第七章  平面向量

高一数学讲义 第七章 平面向量7.1 向量的基本概念及表示现实生活中,有些量在有了测定单位之后只需用一个实数就可以表示,例如温度,时间,面积,这些只需用一个实数就可以表示的量叫作标量.还有些量不能只用一个实数表示,例如位移,力,速度等既有大小又有方向的量,这些既有大小又有方向的量叫作向量.向量既有大小又有方向,因此向量不能比较大小.数学中常用平面内带有箭头的线段来表示平面向量.以线段的长来表示向量的大小:以箭头所指的方向(即从始点到终点的方向)来表示向量的方向.一般地,以点P 为始点,点Q 为终点的向量记作PQ .为书写简便,在不强调向量的起点与终点时,向量也可以用一个小写的字母并在上面画一个小箭头来表示,如a .PQ 的大小叫作PQ 的模,记作PQ ,类似地,a 的模记作a . 1.零向量:长度为0的向量叫做零向量,记作0;0的方向是任意的. 2.单位向量:长度为1的向量叫做单位向量.3.平行向量:方向相同或相反的向量叫做平行向量(也叫共线向量). 4.相等向量:长度相等且方向相同的向量叫做相等向量.5.负向量:与a 的模相等,方向相反的向量叫作a 的负向量,记作a -.我们规定:0的相反向量仍是零向量.易知对任意向量a 有()a a --=.向量共线与表示它们的有向线段共线不同:向量共线时表示向量的有向线段可以是平行的,不一定在一条直线上;而有向线段共线则线段必须在同一条直线上.规定。

与任一向量平行.图7-1图7-1三个向量a 、b 、c 所在的直线平行,易知这三个向量平行,记作a b c ∥∥,我们也可以称这三个向量共线.例l .如图7-2所示,128A A A 、是O 上的八个等分点,则在以128A A A 、及圆O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少??A 8A 7A 6A 5A 4A 3A 2A 1图7-2解:(1)模等于半径的向量只有两类,一类是()128i OA i =、共8个;另一类是()128iAO i =、也有8个.两类合计16个. (2)以128A A A 、为顶点的O 的内接正方形有两个,一个是正方形1257A A A A ;另一个是正方形2468A A A A .在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的√2倍的向量共有42216⨯⨯=个. 注意:(1)在模等于半径的向量个数的计算中,要计算i OA 与()128i AO i =、两类.一般地我们易想到()128i OA i =、这8个,而易遗漏()128iAO i =、这8个.(2的两个向量,例如边13A A 对应向量13A A 与31A A ,因此与(1)一样,在解题过程中主要要防止漏算.认为满足条件的向量个数为8是错误的.例2.在平面中下列各种情形中,将各向量的终点的集会分别构成什么图形? (1)把所有单位向量的起点平移到同一点O .(2)把平行于直线l 的所有单位向量的起点平移到直线l 上的p 点. (3)把平行于直线l 的所有向量的起点平移到直线l 的点p . 解:(1)以点O 为圆心,l 为半径的圆.(2)直线l 上与点p 的距离为1个长度单位的两个点. (3)直线l .例3.判断下列命题的真假:①直角坐标系中坐标轴的非负轴都是向量; ②两个向量平行是两个向量相等的必要条件;③向量AP 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上; ④向量a 与向量b 平行,则a 与b 的方向相同或相反; ⑤四边形ABCD 是平行四边形的宽要条件是AB DC =.解:①直角坐标系中坐标轴的非负半轴,虽有方向之别,但无大小之分,故命题是错误的.②由于两个向量相等,必知这两个向量的方向与长度均一致,故这两个向量一定平行,所以,此命题正确; ③不正确.AB 与CD 共线,可以有AB 与CD 平行;④不正确.如果其中有一个是零向量,则其方向就不确定;⑤正确.此命题相当于平面几何中的命题:四边形ABCD是平行四边形的充要条件是有一组对边平行且相等.1.下列各量中是向量的有__________.(A)动能(B)重量(C)质量(D)长度(F)作用力与反作用力(F)温度2.判断下列命题是否正确,若不正确,请简述理由.①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④共线的向量,若起点不同,则终点一定不同.3.回答下列问题,并说明理由.(1)平行向量的方向一定相同吗?(2)共线向量一定相等吗?(3)相等向量一定共线吗?不相等的向量一定不共线吗?4.命题“a b∥,b c∥()∥,则a bA.总成立B.当0a ≠时成立C.当0b ≠时成立D.当0c ≠时成立5.已知正六边形ABCDEF(见图7-3),在下列表达式中:①BC CD EC+;③FE ED++;②2BC DC+;④2ED FA-;与AC相等的有__________.CF图737.2向量的加减法两个向量可以求和.一般地,对于两个互不平行的向量a、b,以A为共同起点平移向量,有AB a=,=叫作a和b这两个向量的和,即AD b=,则以AB、AD为邻边的平行四边形ABCD的对角线AC c+=.求两个向量和的运算叫做向量的加法.上述求两个向量的和的方法称为向量加法的平行四a b c边形法则,见图7-4.平行四边形法则B图74又AD BC = AB BC AC ∴+=由此发现,当第二个向量的始点与第一个向量的终点重合时.这两个向量的和向量即为第一个向量的始点指向第二个向量终点的向量.此法则称为向量加法的三角形法则,地图7-5.三角形法则图75特殊地.求两个平行向量的和,也可以用三角形法则进行(如图7-6):(b )(a )a BA图76显然,对于任何a ,有0a a +=;()0a a +-=. 对于零向量与任一向量a ,有00a a a +=+=.向量的加法具有与实数加法类似的运算性质,向量加法满足交换律与结合律: 交换律:a b b a +=+结合律:()()a b c a b c ++=++与实数的减法相类似,我们把向量的减法定义为向量加法的逆运算.若向量a 与b 的和为向量c ,则向量b 叫做向量c 与a 的差,记作b c a =-.求向量差的运算叫做向量的减法.由向量加法的三角形法则以及向量减法的定义.我们可得向量减法的三角形法则,其作法:在平面内取一点O,作OA a=-,即a b-声可以表示为从向量b的终点指向向=,则BA a b=,OB b量a的终点的向量.注意差向量的“箭头”指向被减向量,见图7-7.CB图77此外,我们可以先做向量b的负向量OB b′,可根据向量加法的平行四边形法则得()=-OC a b=+-.易知向量OC BA=,因此,()+-=-.a b a b例1.如图7-8所示,已知向量a,b,c,试求作和向量a b c++.图78分析:求作三个向量的和的问题,首先求作其中任意两个向量的和,因为这两个向量的和仍为一个向量,然后再求这个新向量与另一个向量的和.即可先作a b+,再作()++.a b c解:如图7-9所示,首先在平面内任取一点O,作向量OA a=+,=,再作向量AB b=,则得向量OB a b然后作向量BC c=++即为所求.=,则向量OC a b cO图79例2.化简下列各式(1)AB CA BC ++; (2)OE OF OD DO -+--.解:(1)原式()0AB BC CA AB BC CA AC CA AC AC =++=++=+=-= (2)原式()()0OE OF OD DO EO OF EF =+-+=+-=例3.用向量方法证明:对角线互相平分的四边形是平行四边形.分析:要证明四边形是平行四边形只要证明某一组对边平行且相等.由相等向量的意义可知,只需证明其一组对边对应的向量是相等向量.已知:如图7-10,ABCD 是四边形,对角线AC 与BD 交于0,且AO OC =,DO OB =.ODCBA图710求证:四边形ABCD 足平行四边形. 证明:由已知得AO OC =,BO OD =,AD AO OD OC BO BO OC BC =+=+=+=,且A D B C ,,,不在同一直线上,故四边形ABCD 是平行四边形.例4.已知平面上有不共线的四点O A B C ,,,.若320OA OB OC -+=,试求AB BC的值.解:因为23OA OC OB +=,所以()2OB OA OC OB -=-.于是有2AB BC =-.因此2AB BC=.基础练习1.若对n 个向量12n a a a ,,,存在n 个不全为零的实数12n k k k ,,,,使得11220n n k a k a k a +++=成立,则称向量12n a a a ,,,为“线性相关”,依此规定,能说明()110a =,,()211a =-,,()322a =,“线性相关”的实数123k k k ,,依次可以取____________________(写出一组数值即可,不必考虑所有情况).2.已知矩形ABCD 中,宽为2,长为AB a =,BC b =,AC c =,试作出向量a b c ++,并求出其模的大小.3.设a ,b 为两个相互垂直的单位向量.已知OP a =,OR ra kb =+.若PQR △为等边三角形,则k ,r 的取值为( )A.k r == B.k r =C.k r ==D.k r = 4.若A B C D 、、、是平面内任意四点,则下列四式中正确的是( )①AC BD BC AD +=+ ②AC BD DC AB -=+ ③AB AC DB DC --=④AB BC AD DC +-=A .1B .2C .3D .45.设a 表示“向东走10km ”,b 表示“5km ”,c 表示“向北走10km ”,d 表示“向南走5km ”.说明下列向量的意义.(1)a b +;(2)b d +;(3)d a d ++.6.在图7-11的正六边形ABCDEF 中,AB a =,AF b =,求AC ,AD ,AE .FC图7117.3 实数与向量的乘法如图7-12,已知非零向量a ,可以作出a a a ++和()()()a a a -+-+-.P Q M N aaa-a图712aOC OA AB BC a a a =++=++,简记3OC a =;同理有()()()3PN PQ QM MN a a a a =++=-+-+-=-.观察得:3a 与a 方向相反相反且33a a -=.一般地,实数λ与向量a 的积是一个向量,记作:a λ.a λ的模与方向规定如下:(1)a a λλ=;(2)a λ的方向定义为:0λ>时a λ与a i 方向相同;0λ<时a λ与a i 方向相反;0λ=或0a =时规定:0a λ=.以上规定的实数与向量求积的运算叫作实数与向量的乘法(简称向量的数乘).向量数乘的几何意义就是:把向量a 沿向量a 的方向或反方向放大或缩小,a λ与a 是互相平行的向量.对于任意的非零向量a ,与它同方向的单位向量叫做向量a 的单位向量,记作0a .易知01a a a =.向量共线定理:如果有一个实数λ,使()0b a a λ=≠,那么b 与a 是共线向量;反之,如果b 与()0a b ≠是共线向量,那么有且只有一个实数λ,使得b a λ=.通过作图,可以验证向量数乘满足以下运算定律:当m 、n ∈R 时,有 1.第一分配律()m n a ma na +=+. 2.第二分配律()m a b ma mb +=+. 3.结合律()()m na mn a =. 例1.计算:(1)()()63292a b a b -+-+;(2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭;(3)()()()64222a b c a b c a c -+--+--+. 解:(1)原式18121893a b a b b =---+=-. (2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭17732367a b a b ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ 77106262b a a b =+--=. (3)原式66648442a bc a b c a c =-+-+-+-()()()64468642a a a b b c c c =-++-++-- 62a b =+.例2.已知O 为原点,A ,B ,C 为平面内三点,求证A ,B ,C 三点在一条直线上的充要条件是OC OA OB αβ=+,且αβ∈R ,,1αβ+=.分析:证明三点共线可从三点构成的其中两个向量存在数乘关系.证明必要条件也是从向量共线时向量的数乘关系入手.证明:必要性.设A B C ,,三点共线,则AC 与AB 共线.于是存在实数λ,使AC AB λ=. 而AC OC OA =-,AB OB OA =-,()OC OA OB OA λ∴-=-.()1OC OB OA λλ∴=+-. 令λβ=,1λα-=,有()11αβλλ+=-+=, OC OA OB αβ∴=+,且1αβ+=.充分性.若OC OA OB αβ=+,且1αβ+=,则()1OC OA OB ββ=-+,()OC OA OB OA β=+-,()OC OA OB OC β-=-,AC AB β∴=,β∈R . AC ∴与AB 共线,而A 为AC 与AB 的公共端点,A B C ∴,,三点在一条直线上.在证明必要性时,A B C ,,三点共线还可用AB kBC =,AC kBC =表示.本题的结论还可有更一般的形式:A B C 、、三点在一条直线上的充要条件是存在实数h ,k ,l ,使0hOA kOB lOC ++=,且1h k l ++=,l k h ,,中至少有一个不为0.例3.如图7-13,设O 为ABC △内一点,PQ BC ∥,且PQt BC=,,OB b =,OC c =,试求OP ,OQ . 解:由平面几何知,APQ ABC ⨯△∽△,且对应边之比为t ,图713故AP AQ PQt AB AC BC===, 又A P B 、、与A Q C 、、分别共线,即知 AP t AB =,AQ t AC =.()()OP OA AP OA t AB OA t OB OA a t b a ∴=+=+=+-=+-,即()1OP t a tb =-+,()()OQ OA AQ OA t AC OA t OC OA a t c a =+=+=+-=+-, 即()1OQ t a c =-+.例4.设两非零向量1e 和2e 不共线,(1)如果12AB e e =+,1228BC e e =+,()123CD e e =-,求证A B D ,,三点共线. (2)试确定实数k ,使12ke ke +共线. (1)证明12AB e e =+,()121212283355BD BC CD e e e e e e AB =+=++-=+=,AB BD ∴,共线,又有公共点B A B D ∴,,三点共线.(2)解12ke e +与12e ke +共线,∴存在λ使()1212ke e e ke λ+=+, 则()()121k e k e λλ-=-,由于1e 与2e 不共线, 只能有010k k λλ-=⎧⎨-=⎩则1k =±.例5.在ABC △中,F 是BC 中点,直线l 分别交AB AF AC ,,于点D ,G ,E (见图7-14).如果AD AB λ=,AE AC μ=,λ,μ∈R .证明:G 为ABC △重心的充分必要条件是113λμ+=.l GF E DCB A图714解:若G 为ABC △重心,则()221332AG AF AB AC ==⋅+=13AD AE λμ⎛⎫+ ⎪ ⎪⎝⎭. 又因点D G E ,,共线,所以,()113AD AE AG t AD t AE λμ⎛⎫=+-=+ ⎪ ⎪⎝⎭, 因AD ,AE 不共线,所以,13t λ=且113t μ=-,两式相加即得113λμ+=. 反之,若113λμ+=,则()2xAG xAF AB AC ==+()12x AD AE t AD t AE λμ⎛⎫=+=+- ⎪ ⎪⎝⎭, 所以,2x t λ=且12x t μ=-,相加即得23x =,即G 为ABC △重心. 基础练习1.已知向量a 、b 是两非零向量,在下列四个条件中,能使a 、b 共线的条件是( ) ①234a b e -=且23a b e +=-;②存在相异实数λ、u ,使0a ub λ+=; ③0xa yb +=(其中实数x y 、满足0x y +=); ④已知梯形ABCD 中,其中AB a =、CD b =. A .①② B .①③C .②④D .③④2.判断下列命题的真假:(1)若AB 与CD 是共线向量,则A B C D ,,,四点共线. (2)若AB BC CA ++=0,则A B C ,,三点共线. (3)λ∈R ,则a a λ>.(4)平面内任意三个向量中的每一个向量都可以用另外两个向量的线性组合表示. 3.已知在ABC △中,D 是BC 上的一点,且BDDCλ=,试求证:1AB AC AD λλ+=+. 4.已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线.5.已知在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,求证:四边形ABCD 是梯形.6.已知()2cos A αα,()2cos B ββ,()10C -,是平面上三个不同的点,且满足关系式CA BC λ=,求实数λ的取值范围.7.已知梯形ABCD 中,2AB DC =,M N ,分别是DC AB 、的中点,若1AB e =,2AD e =,用1e ,2e 表示DC BC MN 、、.8.四边形ABCD 是一个梯形,AB CD ∥且2AB CD =,M N 、分别是DC 和AB 的中点,已知AB a =,AD b =,试用a ,b 表示BC 和MN .9.已知a b 、是不共线的非零向量,11c a b λμ=+,22d a b λμ=+,其中1122λμλμ、、、为常数,若c d ma nb +=+,求m n 、的值.10.设a 、b 是不共线的两个非零向量,OM ma =,ON nb =,OP a b αβ=+,其中m n αβ、、、均为实数,0m ≠,0n ≠,若M P N 、、三点共线,求证:1mnαβ+=.11.在ABC △中,BE 是CD 交点为P .设AB a =,AC b =,AP c =,AD a λ=,(01λ<<),()01AE b μμ=<<,试用向量a ,b 表示c .12.在平面直角坐标系中,O 为坐标原点,设向量()12OA =,,()21OB =-,若OP xOA yOB =+且12x y ≤≤≤,则求出点P 所有可能的位置所构成的区域面积.7.4 向量的数量积数量积定义:一般地.如果两个非零向量a 与b 的夹角为α.我们把数量cos a b α⋅叫做a 与b 的数量积(或内积),记作:a b ⋅,即:cos a b a b α⋅=⋅,其中记法“a b ⋅”中间的“⋅”不可以省略,也不可以用“×”代替.特别地,a b ⋅可记作2a .规定:0与任何向量的数量积为0.非零向量夹角的范围:0≤口≤Ⅱ.投影的定义:如果两个非零向量a 与b 的夹角为α,则数量cos b θ称为向量b 在a 方向上的投影.注意:投影是一个数量.数量积的几何意义:如图7-15,我们把cos b α<叫做向量b 在a 方向上的投影,即有向线段1OB 的数量.图715当π02α<≤时,1OB 的数量等于向量1OB 的模1OB ; 当ππ2α<≤时,1OB 的数量等于向量1OB 的模-1OB ; 当π2α=时,1OB 的数量等于零. 当然,cos a α即为a 在b 方向上的投影.综上,数量积的几何意义:a b ⋅等于其中一个向量a 的模a 与另一个向量b 在a 的方向上的投影cos b α的乘积.向量的数量积的运算律: ①a b b a ⋅=⋅②()()()a b b a b λλλ⋅⋅=⋅(λ为实数)③()a b c a c b c +⋅=⋅+⋅ 鉴于篇幅这里仅证明性质②:证明:(1)若0λ>,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,(2)若0λ<,()()()cos πcos cos a b a b a b a b λλθλθλθ⋅=-=--=,()cos a b a b a b λλλθ⋅=⋅=,()()()cos πcos a b a b a b λλθλθ⋅=-=--=cos a b λθ. (3)若0λ=,则()()()0a b a b a b λλλ⋅=⋅=⋅=. 综合(1)、(2)、(3),即有()()()a b a b a b λλλ⋅=⋅=⋅.例1.已知4a =,5b =,当(1)a b ∥,(2)a b ⊥,(3)a 与b 的夹角为30︒时,分别求a 与b 的数量积.解:(1)a b ∥,若a 与b 同向,则0θ=︒,cos04520a b a b ∴⋅=⋅︒=⨯=; 若a 与b 反向,则180θ=︒,()cos18045120a b a b ∴⋅=⋅︒⨯⨯⨯-=-. (2)当a b ⊥时,90θ=︒,cos900a b a b ∴⋅=⋅︒=.(3)当a 与b 的夹角为30︒时,cos3045a b a b ⋅=⋅︒=⨯= 例2.空间四点A B C D 、、、满足3AB =,7BC =,11CD =,9DA =,则AC BD ⋅的取值有多少个?解:注意到2222311113079+==+,由于0AB BC CD DA +++=, 则()()2222222DA DA AB BC CDAB BC CD AB BC BC CD CD AB ==++=+++⋅+⋅+⋅()()2222AB BC CD AB BC BC CD =-+++⋅+,即222220AC BD AD BC AB CD ⋅=+--=,AC BD ∴⋅只有一个值0.例3.已知a b 、都是非零向量,且3a b +与75a b -垂直,4a b -与72a b -垂直,求a b 、的夹角. 解:由()()223750716150a b a b a a b b +⋅-=⇒+⋅-= ①()()22472073080a b a b a a b b -⋅-=⇒-⋅+=②两式相减:22a b b ⋅=代入①或②得:22a b =. 不妨设a b 、的夹角为θ,则221cos 22a b ba bbθ⋅===,又因为0πθ≤≤,60θ∴=︒.例4.在凸四边形ABCD 中,P 和Q 分别为对角线BD 和AC 的中点,求证:2222224AB BC CD DA AC BD PQ +++=++.证明:联结BQ ,QD ,因为BP PQ BQ +=,DP PQ DQ +=, 所以()()2222BQ DQ BP PQ DP PQ +=+++ 222222BP DP PQ BP PQ DP PQ =+++⋅+⋅()22222BP DP PQ BP DP PQ =++++⋅ 2222BP DP PQ =++①又因为BQ QC BC +=,BQ QA BA +=,0QA QC +=, 同理222222BA BC QA QC BQ +=++② 222222CD DA QA QC QD +=++③由①、②、③可得()()2222222224222BA BC CD QA BQ QD AC BP PQ ++=++=++= 2224AC BD PQ ++.得证.例5.平面四边形ABCD 中,AB a =,BC b =,CD c =,DA d =,且a b b c c d d a ⋅=⋅=⋅=⋅,判断四边形ABCD 的形状.证明:由四边形ABCD 可知,0a b c d +++=(首尾相接)()a b c d ∴+=-+,即()()22a bc d +=+展开得222222aa b b c c d d +⋅+=+⋅+a b c d ⋅=⋅,222a b c d ∴+=+①同理可得2222a dbc +=+② ①-②得2222b a ac =⇒=,b d ∴=,ac =,即AB CD =,BC DA =, 故四边形ABCD 是平行四边形.由此a c =-,bd =-.又a b b c ⋅=⋅,即()0b a c -=()20b a ∴⋅=即a b AB BC ⊥⇒⊥, 故四边形ABCD 是矩形.例6.已知非零向量a 和b 夹角为60︒,且()()375a b a b +⊥-,求证:()()472a b a b -⊥-.证明:因为a 和b 夹角为60︒,所以1cos602a b a b a b ⋅=⋅⋅︒=⋅;又因为()()375a b a b +⊥-,所以,即()()3750a b a b +⋅-=.22222217161571615781502a ab b a a b b a a b b +⋅-=+⨯⋅-=+⋅-=. ()()7150a b a b ∴+⋅-=,0a b ∴-=,即a b =.因为()()22222214727308730871582a b a b a a b b a a b b a a b b -⋅-=-⋅+=-⨯+=-+,把a b =代入上式消去b 得()()2247271580a b a b a a a a -⋅-=-+=.所以()()472a b a b -⊥-.基础练习1.已知a b c 、、是三个非零向量,则下列命题中真命题的个数为( ) ①a b a b a b ⋅=⋅⇔∥; ②a b 、反向a b a b ⇔⋅=-⋅; ③a b a b a b ⊥⇔+=-; ④a b a c b c =⇔⋅=⋅. A .1B .2C .3D .42.已知向量i j ,为相互垂直的单位向量,28a b i j +=-,816a b i j -=-+,求a b ⋅.3.如图7-16所示,已知平行四边形ABCD ,AB a =,AD b =,4a=,2b =,求:OA OB ⋅.C图7164.设6a =,10b =,46a b -=,求a 和b 的夹角θ的余弦值. 5.已知a b ⊥,2a =,3b =,当()()32a b a b λ-⊥+时,求实数λ的值.6.已知不共线向量a ,b ,3a =,2b =,且向量a b +与2a b -垂直.求:a 与b 的夹角θ的余弦值. 7.已知3a =,4b =,且a 与b 不共线,k 为何值时,向量a kb +与a kb -互相垂直? 8.在ABC △中,已知4AB AC ⋅=,12AB BC ⋅=-,求AB .9.在ABC △中,AB a =,BC b =,且0a b ⋅>,则ABC △的形状是__________. 10.已知向量()24a =,,()11b =,.若向量()b a b λ⊥+,则实数λ的值是__________.11.如图7-17,在四边形ABCD 中,4AB BD DC ++=,0AB BD BD DC ⋅=⋅=,4AB BD BD DC ⋅+⋅=,求()AB DC AC +⋅的值.图717DCBA能力提高12.如图7-18,在Rt ABC △中,已知BC a =,若长为2a 的线段PQ 以点A 为中点.问PQ 与BC 的夹角θ为何值时,BP CQ ⋅的值最大?并求出这个最大值.PQ图71813.已知ABC △中满足()2ABAB AC BA BC CA CB =⋅+⋅+⋅,a b c 、、分别是ABC △的三边.试判断ABC △的形状并求sin sin A B +的取值范围.14.设边长为1的正ABC △的边BC 上有n 等分点,沿点B 到点C 的方向,依次为121n P P P -,,,,若1121n n S AB AP AP AP AP AC -=⋅+⋅++⋅,求证:21126n n S n-=.15.在ABC △中,AB a =,BC c =,CA b =,又()()()123c b b a a c ⋅⋅⋅=∶∶∶∶,则ABC △三边长之比a b c =∶∶__________.16.在向量a b c ,,之间,该等式()()())132a b c a b b c c a ⎧++=⎪⎨⋅⋅⋅=-⎪⎩∶∶∶成立,当1a =时,求b 和c 的值.17.若a b c ,,中每两个向量的夹角均为60︒,且4a =,6b =,2c =,求a b c ++的值. 7.5 向量的坐标表示及其运算向量的坐标表示在平面直角坐标系中,每一个点都可用一对实数()x y ,来表示,那么,每一个向量可否也用一对实数来表示?前面的平面向量分解告诉我们,只要选定一组基底,就有唯一确定的有序实数对与之一一对应. 我们分别选取与x 轴、y 轴方向相同的单位向量i ,j 作为基底,由平面向量的基本定理.对于任一向量a ,存在唯一确定的实数对()x y ,使得()a xi y j x y =+∈R ,,我们称实数对()x y ,叫向量a 的坐标,记作()a x y =,.其中x 叫向量a 在x 轴上的坐标,y 叫向量a 在y 轴上的坐标,见图7-19.图719注意:(1)与a 相等的向量的坐标也是()x y ,.(2)所有相等的向量坐标相同;坐标相同的向量是相等的向量. 平面向量的坐标运算(1)设()11a x y =,,()22b x y =,,则()1212a b x x y y +=++,. (2)设()11a x y =,,()22b x y =,,则()1212a b x x y y -=--,. (3)设()11A x y ,,()22B x y ,,则()2121AB OB OA x x y y =-=--,. (4)设()11a x y =,,λ∈R ,则()a x y λλλ=,.(5)设()11a x y =,,()22b x y =,,则()1212a b x x y y ⋅=+. 向量平行的坐标表示设()11a x y =,,()22b x y =,,且0b ≠,则()1212a b x x y y =+∥. 向量的平行与垂直的充要条件设()11a x y =,,()22b x y =,,且0b ≠,0a ≠则 12210a b b a x y x y λ⇔=⇔-=∥. 121200a b a b x x y y ⊥⇔⋅=⇔+=.重要的公式(1)长度公式:2221a a a x y ===+()()11a x y =,(2)夹角公式:()())1122cos a x y b x y θ===,,,.(3)平面两点间的距离公式: (()())1122A B d AB AB AB x A x y B xy ==⋅=,,,,.(4)不等式:cos a b a b a b θ⋅=≥.例1.已知()12a a a =,,()12b b b =,,且12210a b a b -≠,求证:(1)对平面内任一向量()12c c c ,,都可以表示为()xa yb x y +∈R ,的形式; (2)若0xa yb +=,则0x y ==.证明:(1)设c xa yb =+,即()()()()1212121122c c x a a y b b a x b y a x b y =+=++,,,,, 111222.a xb yc a x b y c +=⎧∴⎨+=⎩,12210a b a b -≠,∴上述关于x y ,的方程组有唯一解.1221122112211221.c b c b x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩,1221122112211221c b c b a c a c c a b a b a b a b a b --∴=+--. (2)由(1)的结论,0c =,即120c c ==,则 122112210c b c b x a b a b -==-,122112210a c a c y a b a b -==-,0x y ∴==. 小结:证明(1)的过程就是求实数x ,y 的过程,而12210a b a b -≠是上面二元一次方程组有唯一解的不可缺少的条件.另外,本题实际上是用向量的坐标形式表述平面向量基本定理.其中1x λ=,2y λ=,这里给出了一个具体的求12λλ,的计算方法.例2.向量()10OA =,,()11OB =,,O 为坐标原点,动点()P x y ,满足0102OP OA OP OB ⎧⋅⎪⎨⋅⎪⎩≤≤≤≤,求点()Q x y y +,构成图形的面积.解:由题意得点()P x y ,满足0102x x y ⎧⎨+⎩≤≤≤≤,令x y uy v +=⎧⎨=⎩,则点()Q u v ,满足0102u v u -⎧⎨⎩≤≤≤≤,在uOv 平面内画出点()Q u v ,构成图形如图7-20所示,∴其面积等于122⨯=.图720例3.在直角坐标系中,已知两点()11A x y ,,()22B x y ,;1x ,2x 是一元二次方程222240x ax a -+-=两个不等实根,且A B 、两点都在直线y x a =-+上. (1)求OA OB ⋅;(2)a 为何值时OA 与OB 夹角为π3. 解:(1)12x x 、是方程222240x ax a -+-=两个不等实根,()224840a a ∴∆=-->解之a -<()212142x x a =-,12x x a +=又A B 、两点都在直线y x a =-+上,()()()()2212121212142y y x a x a x x a x x a a ∴=-+-+=-++=- 121224OA OB x x y y a ∴⋅=+=-(2)由题意设1x =,2x =112y x a x ∴=-+==,同理21y x =(()22212121224OA OB xx x x x x x ∴==+=+-=当OA 与OB夹角为π3时,π1cos 4232OA OBOA OB ⋅==⨯= 242a ∴-=解之(a =- a ∴=即为所求. 例4.已知()10a =,,()21b =,. ①求3a b +;②当k 为何实数时,ka b -与3a b +平行,平行时它们是同向还是反向?解:①()()()31032173a b +=+=,,,,2373a b ∴+=+ ②()()()102121ka b k k -=-=--,,,. 设()3ka b a b λ-=+,即()()2173k λ--=,,, 12731313k k λλλ⎧=-⎪-=⎧⎪∴⇒⎨⎨-=⎩⎪=-⎪⎩.故13k =-时,它们反向平行.例5.对于向量的集合(){}221A v x y x y ==+,≤中的任意两个向量12v v 、与两个非负实数αβ、;求证:向量12v v αβ+的大小不超过αβ+.证明:设()111v x y =,,()222v x y =,,根据已知条件有:22111x y +≤,22221x y +≤, 又因为(12v v αβα+==其中12121x x y y +所以12v v αβααβαβ+=+=+≤. 基础练习1.已知()21a =,,()34b =-,,求a b +,a b -,34a b +的坐标. 2.设O 点在ABC △内部,且有230OA OB OC ++=,求ABC △的面积与AOC △的面积的比. 3.已知平行四边形ABCD 的三个顶点A B C ,,的坐标分别为(-2,1),(-1,3),(3,4),求顶点D 的坐标.4.已知向量i ,j 为相互垂直的单位向量,设()12a m i j =+-,()1b i m j =+-,()()a b a b +⊥-,求m 的值.5.已知等腰梯形ABCD ,其中AB CD ∥,且2DC AB =,三个顶点()12A ,,()21B ,,()42C ,,求D 点的坐标.6.如图7-21所示,已知()20OA =,,(1OB =,将BA 绕着B 点逆时针方向旋转60︒,且模伸长到BA 模的2倍,得到向量BC .求四边形AOBC 的面积S .图7217.如图7-22所示,已知四边形ABCD 是梯形,AD BC ∥,2BC AD =,其中()12A ,,()31B ,,()24D ,,求C 点坐标及AC 的坐标.图7228.已知向量()2334a x x x =+--,与AB 相等,其中()12A ,,()32B ,,求x . 9.平面内有三个已知点()12A -,,()70B ,,()56C -,,求 (1)AB ,AC ;(2)AB AC +,AB AC -;(3)122AB AC +,3AB AC -. 10.已知向量()12a =,,()1b x =,,2u a b =+,2v a b =-,且u v ∥,求x . 11.已知()23a =,,()14b =-,,()56c =,,求()a b c ⋅,和()a b c ⋅⋅.12.已知两个非零向量a 和b 满足()28a b +=-,,()64a b -=--,,求a 与b 的夹角的余弦值. 能力提高13.已知平面上三个向量a ,b ,c 均为单位向量,且两两的夹角均为120︒,若()1ka b c k ++>∈R ,求k 的取值范围.14.已知OA ,OB 不共线,点C 分AB 所成的比为2,OC OA OB λμ=+,求λμ-. 7.6 线段的定比分点公式与向量的应用线段的定比分点公式设点P 是直线12P P 上异于1P 、2P 的任意一点,若存在一个实数()1λλ≠-,使12PP PP λ=,则λ叫做点P 分有向线段12P P 所成的比,P 点叫做有向线段12P P 的以定比为λ的定比分点.当P 点在线段12P P 上时0λ⇔≥;当P 点在线段12P P 的延长线上时1λ⇔<-; 当P 点在线段21P P 的延长线上时10λ⇔-<<;设()111P x y ,,()222P x y ,,()P x y ,是线段12P P 的分点,λ是实数且12P P PP λ=,则121211x x x OP y y y λλλλ+⎧=⎪⎪+⇔=⎨+⎪=⎪+⎩()12121111OP OP OP tOP t OP t λλλ+⎛⎫⇔=+-= ⎪++⎝⎭.()1λ≠-由线段的定比分点公式得:中点坐标公式设()111P x y ,,()222P x y ,,()P x y ,为12P P 的中点,(当1λ=时) 得121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩三角形的重心坐标公式ABC △三个顶点的坐标分别为()11A x y ,、()22B x y ,、()33C x y ,,则ABC △的重心的坐标是12312233x x x y y y G ++++⎛⎫ ⎪⎝⎭,. 利用向量可以解决许多与长度、距离及夹角有关的问题.向量兼具几何特性和代数特性,成为沟通代数、三角与几何的重要工具,同时在数学、物理以及实际生活中都有着广泛的应用. 三角形五“心”向量形式的充要条件设O 为ABC △所在平面上一点,角A ,B ,C 所对边长分别为a ,b ,c 则(1)O 为ABC △的外心222OA OB OC ⇔==. (2)O 为ABC △的重心0OA OB OC ⇔++=.(3)O 为ABC △的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC △的内心0aOA bOB cOC ⇔++=. (5)O 为ABC △的A ∠的旁心()aOA b OB cOC ⇔=+.例1.如图7-23所示,已知矩形ABCD 中,()21A ,,()54B ,,()36C ,,E 点是CD 边的中点,联结BE 与矩形的对角线AC 交于F 点,求F 点坐标.图723解:四边形ABCD 是矩形,E 是CD 边的中点,ABF CEF ∴△∽△,且2AB CE =2AF CF ∴=即点F 分AC 所成的比2λ=.设()F x y ,.由(21)A ,,(36)C ,,根据定比分点坐标公式得2238123x +⨯==+,12613123y +⨯==+ F ∴点坐标是81333⎛⎫⎪⎝⎭,. 例2.证明:()cos cos cos sin sin αβαβαβ-=+.证明:在单位圆O 上任取两点A ,B ,以Ox 为始边,以OA ,OB 为终边的角分别为β,α,见图7-24.β,sin β)B (cos α图724则A 点坐标为()cos sin ββ,,B 点坐标为()cos sin αα,;则向量()cos sin OA ββ=,,()cos sin OB αα=,,它们的夹角为αβ-,1OA OB ==,cos cos sin sin OA OB αβαβ⋅=+, 由向量夹角公式得:()cos cos cos sin sin OA OB OA OBαβαβαβ⋅-==+,从而得证.注意:用同样的方法可证明()cos cos cos sin sin αβαβαβ+=-.例3.证明柯西不等式()()()2222211221212x y x y x x y y +⋅++≥.证明:令()11a x y =,,()22b x y =,(1)当0a =或0b =时,12120a b x x y y ⋅=+=,结论显然成立; (2)当当0a ≠且0b ≠时,令θ为a ,b 的夹角,则[]0πθ∈,1212cos a b x x y y a b θ⋅=+=.又cos 1θ≤,a b a b ∴⋅≤(当且仅当ab ∥时等号成立). 1212x x y y ∴+()()()2222211221212x y x y x x y y ∴+⋅++≥(当且仅当1212x x y y =时等号成立). 例4.给定ABC △,求证:G 是ABC △重心的充要条件是0GA GB GC ++=.证明:必要性 设各边中点分别为D E ,,F ,延长AD 至P ,使DP GD =,则2AG GD =GP =. 又因为BC 与GP 互相平分,所以BPCG 为平行四边形,所以BG PC ∥,所以GB CP =. 所以0GA GB GC GC CP PG ++=++=.充分性 若0GA GB GC ++=,延长AG 交BC 于D ,使GP AG =,联结CP ,则GA PG =. 因为0GC PG PC ++=,则GB PC =,所以GB CP ∥,所以AG 平分BC .同理BG 平分CA .所以G 为重心. 例5 ABC △外心为O ,垂心为H ,重心为G .求证:O G H ,,为共线,且12OG GH =∶∶. 证明:首先()()2112333OG OA AG OA AM OA AB AC OA AO OB OC =+=+=++=+++= ()13OA OB OC ++. 其次设BO 交外接圆于另一点E ,则联结CE 后得CE BC ⊥. 又AH BC ⊥,所以AH CE ∥.又EA AB ⊥,CH AB ⊥,所以AHCE 为平行四边形.所以AH EC =. 所以OH OA AH OA EC OA EO OC OA OB OC =+=+=++=++, 即3OH OG =,所以OG 与OH 共线,所以O G H ,,共线. 即12OG GH =∶∶. 注意:O G H ,,所在的直线称为欧拉线.例6.已知ABC △,AD 为中线,求证()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭(中线长公式). 证明:以B 为坐标原点,以BC 所在的直线为x 轴建立如图7-25所示的直角坐标系,图725设()A a b ,,()0C c ,,02c D ⎛⎫⎪⎝⎭,,则()22222024c c AD a b ac a b ⎛⎫=-+-=-++ ⎪⎝⎭,()()22222222221122244BC c c AB AC a b c a b a b ac ⎛⎫⎡⎤⎪+-=++-+-=+-+⎢⎥ ⎪⎣⎦⎝⎭, 从而()2222122BC AD AB AC ⎛⎫ ⎪=+- ⎪⎝⎭,()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭. 例7.是否存在4个两两不共线的平面向量,其中任两个向量之和均与其余两个向量之和垂直?解:如图7-26所示,在正ABC △中,O 为其内心,P 为圆周上一点,满足PA ,PB ,PC ,PO 两两不共线,有POCBA图726()()PA PB PC PO +⋅+=()()PO OA PO OB PO OC PO +++⋅++()()22PO OA OB PO OC =++⋅+ ()()22PO OC PO OC =-⋅+ 2240PO OC =-=有()PA PB +与()PC PO +垂直. 同理可证其他情况.从而PA ,PB ,PC ,PO 满足题意、故存在这样四个平面向量.例8.已知向量1OP ,2OP ,3OP 满足条件1230OP OP OP ++=,1231OP OP OP ===,求证:123PP P △是正三角形.解:令O 为坐标原点,可设()111cos sin P θθ,,()222cos sin P θθ,,()333cos sin P θθ, 由123OP OP OP +=-,即()()()112233cos sin cos sin cos sin θθθθθθ+=--,,, 123123cos cos cos sin sin sin θθθθθθ+=-⎧⎪⎨+=-⎪⎩①② 两式平方和()1212cos 11θθ+-+=,()121cos 2θθ-=-,由此可知12θθ-的最小正角为120︒,即1OP 与2OP 的夹角为120︒, 同理可得1OP 与3OP 的夹角为120︒,2OP 与3OP 的夹角为120︒, 这说明123P P P ,,三点均匀分布在一个单位圆上, 所以123PP P △为等腰三角形. 基础练习1.在ABC △中,若321AB BC BC CA AB CA⋅⋅⋅==,则tan A =__________. 2.已知P 为ABC △内一点,且满足3450PA PB PC ++=,那么PAB PBC PCA S S S =△△△∶∶__________. 3.如图7-27,设P 为ABC △内一点,且2155AP AB AC =+,求ABP △的面积与ABC △的面积之比. PCA图7274.已知ABC △的三顶点坐标分别为()11A ,,()53B ,,()45C ,,直线l AB ∥,交AC 于D ,且直线l 平分ABC △的面积,求D 点坐标. 5.已知()23A ,,()15B -,,且13AC AB =,3AD AB =,求点C D 、的坐标. 6.点O 是平面上一定点,A B C ,,是此平面上不共线的三个点,动点P 满足AC AB OP OA AB AC λ⎛⎫ ⎪=++ ⎪⎝⎭,[)0λ∈+∞,.则点P 的轨迹一定通过ABC △的__________心.能力提高7.设x y ∈R ,,i j 、为直角坐标系内x y 、轴正方向上的单位向量,若()2a xi y j =++,()62b xi y j =+-且2216a b +=.(1)求点()M x y ,的轨迹C 的方程;(2)过定点()03,作直线l 与曲线C 交于A B 、两点,设OP OA OB =+,是否存在直线l 使四边形OAPB 为正方形?若存在,求出l 的方程,或不存在说明理由.8.(1)已知4a =,3b =,()()23261a b a b -⋅+=,求a 与b 的夹角θ;(2)设()25OA =,,()31OB =,,()63OC =,,在OC 上是否存在点M ,使MA MB ⊥,若存在,求出点M 的坐标,若不存在,请说明理由. 9.设a b 、是两个不共线的非零向量()t ∈R (1)记OA a =,OB tb =,()13OC a b =+,那么当实数t 为何值时,A B C 、、三点共线? (2)若1a b ==且a 与b 夹角为120︒,那么实数x 为何值时a xb -的值最小?10.设平面内的向量()17OA =,,()51OB =,,()21OM =,,点P 是直线OM 上的一个动点,求当PA PB ⋅取最小值时,OP 的坐标及APB ∠的余弦值.11.已知向量()11m =,,向量n 与向量m 夹角为3π4,且1m n ⋅=-. (1)求向量n ;(2)若向量n 与向量()10q =,的夹角为π2,向量22sin 4cos 2A p A ⎛⎫= ⎪⎝⎭,,求2n p +的值.12.已知定点()01A ,,()01B -,,()10C ,.动点P 满足:2AP BP k PC ⋅=. (1)求动点P 的轨迹方程;(2)当0k =时,求2AP BP +的最大值和最小值.13.在平行四边形ABCD 中,()11A ,,()60AB =,,点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若()35AD =,,求点C 的坐标; (2)当AB AD =时,求点P 的轨迹.14.已知向量()22a =,,向量b 与向量a 的夹角为3π4,且2a b ⋅=-, (1)求向量b ;(2)若()10t =,且b t ⊥,2cos 2cos 2C c A ⎛⎫= ⎪⎝⎭,,其中A C 、是ABC △的内角,若三角形的三内角A B C 、、依次成等差数列,试求b c +的取值范围.。

初中数学知识点平面向量的概念与性质

初中数学知识点平面向量的概念与性质

初中数学知识点平面向量的概念与性质初中数学知识点:平面向量的概念与性质在初中数学学习中,平面向量是一个重要的概念。

它是一个有大小和方向的量,可以用箭头表示。

本文将介绍平面向量的概念和性质,帮助同学们更好地理解和运用这一数学概念。

一、平面向量的定义平面向量是由大小和方向决定的有向线段。

我们通常用字母加箭头的形式表示平面向量,如AB→。

其中,A和B分别为向量的起点和终点。

二、平面向量的表示方法平面向量可以用坐标表示或者用点表示。

1. 坐标表示法对于平面上的平面向量AB→,我们可以用A和B的坐标表示向量的坐标。

设A的坐标为(x1, y1),B的坐标为(x2, y2),则向量AB→的坐标表示为(x2 - x1, y2 - y1)。

2. 点表示法我们也可以用点C表示向量AB→,其中C为起点为坐标原点的向量CB→。

这种表示方法在运算中比较方便,可简化计算。

三、平面向量的运算平面向量之间可以进行加法和数乘运算。

1. 加法运算设有平面向量AB→和CD→,则向量AB+CD→等于将向量CD→的起点与向量AB→的终点相连的向量。

换言之,向量的加法就是将一个向量的终点与另一个向量的起点相连得到的向量。

2. 数乘运算数乘运算是指将一个实数与一个向量相乘得到一个新的向量。

数乘运算的结果是将向量的大小进行伸缩,在不改变其方向的情况下使其变大或者变小。

四、平面向量的性质平面向量具有以下性质:1. 相等性质两个向量相等,当且仅当它们的起点和终点坐标相等。

即如果两个向量的起点和终点坐标分别相等,则这两个向量相等。

2. 相反性质向量的相反向量,是指大小相等方向相反的向量。

例如向量AB→与向量BA→就是相反向量。

3. 平行性质两个向量平行,当且仅当它们的终点和起点之间的坐标差与一个实数的数量积为零。

即如果两个向量的坐标差与一个实数的数量积为零,则这两个向量平行。

4. 共线性质如果两个向量共线,那么它们一定是平行的,并且它们之间存在一个实数倍的关系。

7.1 向量的概念和向量的几何表示

7.1 向量的概念和向量的几何表示

概念分析
以点A 为起点,点 B为终点的有向线段可以 表示向量,如图7-2所示,记做向量AB .
向量的大小叫做向量的模.向量a ,向量 AB的模分别记为
a,AB . 大小为0的向量叫做零向量,记做0,零向量的方向是任意的. 大小为1的向量叫做单位向量. 大小相等且方向相同的向量叫做相等向量. 大小相等且方向相反的向量叫做相反向量.如图7-3.
第七章 平面向量
7.1 向量的概念和向 量的几何表示
观察归纳 形成概念
(1)踢足球时,用力越大,球就飞的越远,并且球总 是沿着其所受的力的方向飞去.
(2)如图7-1,用力朝水平方向推箱子,当力足够大时, 箱子向右运动.
探究: 力是一个既有大小又有方向的量.大家还能例举几个这
样的量吗?
归纳总结 概括定义

教材
P74 习题 7.1第1、2、3题

再见
定义:既有大小又有方向的量叫做向量.
在自然界中,有许多既有大小又有方向的量,如力、
位移、速度等.
代数表示
向量的表示:
(1)向量可以用黑体字母a,b,c,…表示,手写为
a,
b,
c

(2)向量可以用有向线段(具有方向的线段)来表示,有 向线段的长度表示向量的大小,有向线段的方向表示向量 的方向.
几何表示
方向相同或相反的非零向量叫做平行向量.平行 向量又叫共线向量如图7-4. 规定:零向量与任何一个向量平行.
案例分析:
案例分析:
案例分析:
随堂练习:
课堂小结:
向量பைடு நூலகம்定义:
向量的表示:
向量模的表示:
特殊向量: (1)零向量: (2)单位向量: (3)相等向量: (4)相反向量: (5)共线向量(平行向量):

平面向量概念

平面向量概念

平面向量概念1. 概念定义平面向量是指在平面上具有大小和方向的量。

它由两个有序实数对(x,y)表示,其中x表示向量在x轴上的投影,y表示向量在y轴上的投影。

平面向量通常用小写字母加上一个箭头来表示,如→a。

2. 重要性平面向量是数学中的重要概念,具有广泛的应用。

它在几何、物理、工程等领域中起着重要作用。

2.1 几何应用平面向量可以用于描述平面上的点、直线、曲线等几何对象的位置、方向和形状。

通过向量的加法、减法、数乘等运算,可以得到平面上的向量和向量之间的关系,从而解决几何问题。

2.2 物理应用在物理学中,平面向量用于描述物体的位移、速度、加速度等物理量。

通过向量的运算,可以分析物体的运动规律,解决物理问题。

2.3 工程应用在工程领域中,平面向量可以用于描述力、力矩、电场强度等物理量。

通过向量的运算,可以分析结构的受力情况、电场的分布等问题,为工程设计和分析提供依据。

3. 平面向量的基本运算3.1 加法设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a+→b=(x1+x2, y1+y2)。

向量加法满足交换律和结合律。

3.2 减法设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a-→b=(x1-x2, y1-y2)。

减法可以看作加法的逆运算。

3.3 数乘设有向量→a=(x, y)和实数k,则k→a=(kx, ky)。

数乘改变向量的大小,但不改变其方向。

3.4 数量积设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a与向量→b的数量积为→a·→b=x1x2+y1y2。

数量积的结果是一个实数,表示两个向量的夹角的余弦值乘以两个向量的模的乘积。

3.5 向量积设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a与向量→b的向量积为→a×→b=x1y2-y1x2。

向量积的结果是一个向量,其大小表示两个向量构成的平行四边形的面积,方向垂直于这个平行四边形。

初中数学知识归纳平面向量的概念和性质

初中数学知识归纳平面向量的概念和性质

初中数学知识归纳平面向量的概念和性质平面向量是初中数学中一个重要的概念,它在解决几何和代数问题时起着重要的作用。

本文将对初中数学中的平面向量的概念和性质进行归纳总结,帮助同学们更好地理解和应用平面向量。

一、概念平面向量是有大小和方向的量,用箭头表示。

在平面直角坐标系中,一个平面向量可以表示为有序数对(a, b),其中a和b分别是该向量在x轴和y轴上的分量。

平面向量的长度即为它的模,记作|AB|,表示向量AB的长度。

二、向量的运算1. 向量的加法:将两个向量的对应分量相加,得到一个新的向量。

如向量AB与向量CD相加得到向量AC。

2. 向量的减法:将两个向量的对应分量相减,得到一个新的向量。

如向量AB减去向量CD得到向量AD。

3. 数乘:将向量的每个分量都乘以一个常数k,得到一个新的向量。

如向量AB乘以k得到向量kAB。

三、向量的性质1. 相等性:如果两个向量的对应分量相等,则这两个向量相等。

即对于向量AB = (a, b)和向量CD = (c, d),当且仅当a = c且b = d时,向量AB等于向量CD。

2. 位移性:如果一个向量平移后的位置与另一个向量的位置相同,则这两个向量相等。

3. 伸缩性:如果一个向量的每个分量都乘以一个常数k,那么它的长度也会伸缩k倍。

4. 零向量:所有分量都为0的向量称为零向量,记作0。

零向量与任何向量相加都得到其本身,即对于任意向量A,A + 0 = A。

5. 负向量:给定一个向量A,存在一个向量B,使得A + B = 0,那么向量B称为向量A的负向量,记作-B。

6. 三角形法则:对于平面上任意三个点A、B和C,以A和B为起点分别画向量AB和BC,以C为起点画向量AC,则向量AC等于向量AB和向量BC的和。

7. 重要定理:对于平面上任意三个点A、B和C,以A和B为起点分别画向量AB和BC,以C为起点画向量CA,则有向量AB + 向量BC + 向量CA = 0。

综上所述,平面向量是有大小和方向的量,可以表示为有序数对。

平面向量的概念共41页文档

平面向量的概念共41页文档
平面向量的概念
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生


29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
41

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.判断下列各组向量是否平行?
都是平行向量,平行向量方向要么相同,要么相反。相等的向量、相反的向量都属于共线向量。
2、向量与线段的区别是什么?
向量既有大小又有方向,而线段只有大小没有方向。
例1:判断下列命题是否正确?
解:⑴×⑵×⑶×⑷√⑸×
例2:如图,设O是边长为1的正六边形ABCDEF的中心,
①写出以O为起点和以E为终点的向量并求它们的模;
(6)两个非零向量相等的条件是什么?
(7)共线向量一定在同一直线上.
书P37练习1、2、3
本节课主要学习了平面向量的相等、相反、共线的三种关系。要清楚平行(共线)的向量方向可能相同也可能是相反的;共线向量也不一定都在一条直线上;注意零向量与任何向量都平行。
课本038页习题1、2、4、5
教学重点
相等向量、相反向量、平行向量的条件及识别
教学难点
相等、相反、平行向量的区分;共线向量的理解
更新、补充、删节内容
课外作业
教学反思
授课主要内容或板书设计
7.1平面向量的概念(2)
五、向量的关系
1、相等:
2、相反:
3、平行:
规定:零向量与任何向量都平行
平行向量也叫共线向量的由来
课堂教学安排
教学过程
②写出与向量 , 相等的向量;
③写出与向量 , 共线的向量.
解:①以o为起点的向量有: ;以E为终点的向量有: ;
② ;
③ ;
判断下列命题真假或给出问题的答案:
(1)平行向量的方向一定相同.
(2)不相等的向量一定不平行.
(3)与零向量相等的向量是什么向量?
(4)存在与任何向量都平行的向量吗?
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?
2、相反:长度相等且方向相反的向量称作相反向量.
向量 与 相反,记作
3、平行(共线):如果两个非零向量方向相同或方向相反,我们就说这两个向量互相平行.把这两个向量叫做平行向量或共线向量.
向量 与 平行,记作
规定:零向量与任何向量平行,即
平行向量也叫共线向量的由来:
任一组平行向量都可以平移到同一直线上,如图所示:
主要教学内容及步骤
一、温故知新、情境导入
二、讲授新课
(巩固练习)
三、例题精讲:
四、巩固练习
五、课堂小结:
六、作业布置:
1、向量的定义是什么
我们把既有大小,又有方向的量称为向量。
2、向量的两个要素是什么?零向量和单位向量是否有方向?
(五)向量的关系:
1、相等:长度相等且方向相同的向量称作相等向量.
向量 与 相等,记作
授课章节
名称
7.1平面向量概念(2)
授课课时
2
授课形式
数形结合Байду номын сангаас
使用教具
多媒体
教学目的
知识目标:
(1)识记相等向量、相反向量、平行向量的定义,并会用字母和有向线段表示。
(2)能根据给定的条件,判定相等向量、相反向量、平行向量
能力目标:通过学习平面向量培养学生观察能力、逻辑思维能力、计算能力。
情感目标:通过学习平面向量感受数学应用的广泛性和重要性。
相关文档
最新文档