高等数学(1)
高数(一)第一章练习题
高等数学(一)(第一章练习题)一、 单项选择题1.设f (1-cos x )=sin 2x, 则f (x )=( A )A.x 2+2xB.x 2-2xC.-x 2+2xD.-x 2-2x2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D )A.2x 2B.x 2xC.x 2xD.22x3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)4.函数2x x y -=的定义域是( D )A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]5.设函数=-=)x 2(f 1x x )x 1(f ,则( A ) A.x 211- B.x 12- C.x 2)1x (2- D.x)1x (2- 6.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( )A.x+3B.x-3C.2xD.-2x7.设f(x+1)=x 2-3x+2,则f(x)=( B )A.x 2-6x+5B.x 2-5x+6C.x 2-5x+2D.x 2-x 8.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )A .[a,3a]B .[a,2a]C .[-a,4a]D .[0,2a]9.函数y=ln(22x 1x 1--+)的定义域是( C )A .|x|≤1B .|x|<1C .0<|x|≤1D .0<|x|<110.函数y=1-cosx 的值域是( C )A.[-1,1]B.[0,1]C.[0,2]D.(-∞,+∞) 11.设函数f(x-1)=x 2-x,则f(x)=( B )A .x(x-1)B .x(x+1)C .(x-1)2-(x-1)D .(x+1)(x-2)12.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D )A.[0,2]B.[0,16]C.[-16,16]D.[-2,2]13.设f(t)=t 2+1,则f(t 2+1)=( D )A.t 2+1B.t 4+2C.t 4+t 2+1D. t 4+2t 2+2 14.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x15.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞) 16.函数f(x)=arcsin(2x-1)的定义域是( D )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]17.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B ) A.(a a 2,1) B.(aa 1,2) C.(a ,2a) D.(a a ,2] 18.函数f (x )=2211⎪⎭⎫ ⎝⎛--x 的定义域为( B ) A .[]1,1- B .[]3,1- C .(-1,1)D .(-1,3) 19.函数f (x )=21sin 2x x++是( C )A.奇函数B.偶函数C.有界函数D.周期函数 20.函数f (x )=ln x - ln(x -1)的定义域是( C )A .(-1,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) 二、填空题1.已知f (x +1)=x 2,则f (x )=________.2.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________.3.函数y=x ln ln 的定义域是 .4.若f(x+1)=x+cosx 则f(1)=__________.5.函数y=1+ln(x+2)的反函数是______.6..函数y=arcsin(x-3)的定义域为___________。
高等数学 (一)
高等数学= = = = = = = = = = = = 骨头= = = = = = = = = = = = 对象:函数方法:极限思想:以不变代替变消除误差取极限内容:微积分(1)一元函数微积分||空无穷级数|间他们的应用|解|析常微分方程|(2)多元函数微积分(一)一元函数微积分:(1)微分学:函数、极限、连续;导数、微分----中值定理(4个;证明题)----(导数与微分的应用)(2)积分学:不定积分;定积分;定积分的应用↓维数↓增加↓(二)多元函数微积分(1)微分学:函数、极限、连续;偏导、全微分;应用(极值)(2)积分学:****;重积分(二重积分;3重积分、线积分和面积分<数一>);应用注意:一元函数微积分与多元函数微积分之间的联系和差别肉一、函数1.概念X↔I→→f→→y↔Rf(x)注意:(1)定义域(3点:0不能做除数、负数不能开平方、0和负数不能有对数)(2)函数的表达式与自变量的表示符号无关:y=f(x)与y=f(t)相同(函数关系不变)(3)由实际问题所建立的函数(极限的定义域;导函数的定义域;幂级数的和函数的表达式与定义区间)需要自己建立函数关系确定函数的定义域,根据实际问题<后面加>2.函数的特性(1)奇偶性(从定义来理解和证明应用)f(-x)=f(x),偶图形关于y轴对称[(y,-x )>>(y,x);y1=y2时候x1+x2=0且x1+x2=0时候y1=y2]f(-x)=-f(x),奇图形关于原点对称 [(y,-x )>>(-y,x);y1+y2=0时x1+x2=0且x1+x2=0时y1+y2=0] 注意:①奇偶函数运算:两个偶函数的和、差、积为偶函数奇函数与偶函数的积为奇函数两个奇函数的积为偶函数任何一个函数都可以写成一个奇函数和偶函数的和f(x)=1/2[f(x)+f(-x)]+1/2[f(x)-f(-x)]奇偶性在求导积分中的应用(后讲)②周期性f(x+T)=f(x),f(x)以T为周期注意:周期性在求导、函数特性、积分中的应用(画图中的应用)周期性与奇偶性都只能通过定义证明③增减性若x1,x2↔I,x1<x2有f(x1)<f(x2)或者f(x1)>f(x2)则f(x)在I区间内严格单调增或者减注意:(1)在证明不等式的时候常遇到<=或>=,称为不减或者不增,考点也属于增减性(2)函数的增减性与讨论的区间有关(题型:确定函数的增减区间;例如y=x^2)增减区间的交换点,极值(导数值为零)(3)增减性由导数的符号判定(微分学的应用之一)(4)增减性是证明不等式的一个重要工具(后讲)④有界性假定y=f(x),x↔I,存在M>0,对所有|f(x)|<=M成立则称f(x)有界图形-有界:有上下界注意:(1)有上界(单调减 , f(x)<=M有下界(单调增 , f(x)>=-M(2)有界性与讨论的区间有关(3)有界的讨论与极值有关(后讲)3.函数的分类(1)反函数y=f(x)→x=f^-1(y)条件:单调注意:y=f(x),x=f^-1(y) 代表同一条曲线(图形相同)y=f(x)与y=f ^-1(x)关于一三象限对称(2)基本初等函数①幂函数②指数函数(双曲函数)③对数函数④三角函数⑤反三角函数要求:对这五类基本函数的定义域、值域、特性要非常清楚(1-2,28Min-32Min)(3)复合函数y=f(u),u=w(x)y=f[w(x)]u的值域↔y的定义域注意:①并非所有函数都可以复合②考研:一拆多(4)初等函数经过有限次的四则运算或复合得基本初等函数(5)参数方程{X=x(t)Y=y(t)}得到y=y(x)(6)隐函数F(x,y)=0(易于理解函数,或者难用x表现y或者y表示x<求解函数时使用>)实际上是复合函数(7)分段函数①y=f(x)={f(x),x<=0-f(x),x>0} ②y=|f(x)|③ y=max[f(x),g(x)] x ↔(a,b)真正讨论时需要转化为①类讨论(1-2,41Min-43Min ) ④y=[f(x)]取整函数(1-2,44Min-45Min )二、极限 1.定义:数列的极限(ε-N 语言)0X Xon lim ()()U Xo ()lim ()()123lim(....)1/2*(1)/^21/2^2^2^2^2lim ()lim ()11sin lim ()()x x f x A f x f x f x f xo n n n n n n n n f x g x x xf xg x →→→∞=∃∞++++=+=⇒若存在,则()使其内,有界与无关函数的极限(ε-δ语言)lim 00,|f(X)-A|<X XoXn A εδδε→=⇔∀>∃>使0<|X-Xo|<时注意:ε是任给的,N 、δ是存在的但不唯一 δ=δ(a ),N= N (ε)lim 00,n>N |Xn-A|>=x Xn A N εε→∞≠⇔∃>∀>使时(1)极限的结构极限{变化过程,对自变量来讲(自变量的变化过程,δ、N ); 变化趋势,对函数而言,ε}(1-3,13Min-19Min ) (2)单边极限(分段函数;函数极限) 左极限0(0)lim ()X Xof f x x -→-=右极限0(0)lim ()X Xof f x x+→+=000lim ()(0)(0)X X f x A f f A x x →=⇔-=+=lim ()()lim ()()lim ()()()()()X X X f x f f x f f x f f A f f A→-∞→+∞→∞=-∞=+∞=∞∞=⇔+∞=-∞=2.极限的性质(1)唯一性(2)局部保号性(极限大于零则函数大于零<局部内>;1-3,30Min-35Min ) 注意:0X Xo()()0(0),lim ()A>=0f x f x f x A x x →><=若在=及其附近有定义,且存在,则(3)局部有界性(有极限的函数必有界<局部内>)lim ()U Xo ()x x f x A f x →=∃若存在,则()使其内,有界注意:上述性质对x →∞也成立,U (Xo )→|X|充分大3.极限的判别准则(1)单调有界数列必有极限(1-4,8-10MIN ) 注意:单调增有上界 ⇒ 极限存在 单调减油下界 ⇒ 极限存在数列的极限与前有限项无关 X Xolim ()()f x f xo →与无关4.极限的四则运算和差积商的极限与极限的和差积商相等 注意:(1)参加运算的极限只有有限次,且每一项的极限都存在n 123lim(....)1/2*(1)/^21/2^2^2^2^2n n n n n n n n →∞++++=+= (2)极限的和差①lim ()f x 存在,lim ()g x 不存在⇒lim(()())f x g x ±不存在 ②lim ()f x 不存在,lim ()g x 不存在⇒lim(()())f x g x ±有可能存在 ③lim ()f x 存在,lim(()())f x g x ±也存在⇒lim ()g x 存在注意:上述三条在反常积分、无穷级数中的应用 (2)极限的乘积若lim ()f x 存在,lim ()g x 不存在(其中一个极限为0)或lim ()f x 不存在,lim ()g x 也不存在( 101010101…与010*******…) 但lim ()()f x g x 都有可能存在5.无穷大,无穷小lim ()f x =0 ,()f x 无穷小 lim ()g x =∞,()g x 无穷大注意:① 无穷大于无穷小与过程有关② 同一过程下,无穷大与无穷互为倒数,0除外③ 无穷大属于极限不存在的情况下(也就是说极限的四则运算不适用于无穷大)④ 无穷大一定是无界的,无界不一定是无穷大(如y=11sin x x)(1-4,31-36Min ) 6.无穷小的比较不同的函数趋向于0的速度不一样 (1)假设lim α(x )=0;lim β(x )=0 若lim α(x )/ β(x )=∂∂≠0的常数,则α(x )与β(x )同介 ∂=1,则α(x )与β(x )等价表示为则α(x )~β(x ) (2)反身性;传递性① α(x )~α(x )② α(x )~β(x )⇔β(x )~α(x )③ α(x )~β(x ),β(x )~λ(x )⇔α(x )~λ(x ) (3)若limf (x )/g (x )=a a=0,f (x )比g (x )高阶 表示为f (x )=0(g (x ))(4)∂=∞,f (x )比g (x )低阶注意:①若lim f (x )/ g (x )=a ≠0 则称f (x )是 g (x )的K 阶无穷小 ②limf (x )=A ⇔f (x )=A+α 其中lim α(x )=0③常利用无穷小的等价函数求极限7.两个重要的极限(1)0sin lim 1x x x →=(通过图形证明)002(sin )^21cos 12lim lim .1/2^24()^22x x x x x x →→-==2222111cos 112.lim cos 12000n lim(lim lim ()()lim ()lim ()()lim 0y lim lim (0)!lim n cos )(1cos 1)x x x x x x x x x x nn n n x xx f x f f x Xo Xo Xo f x f XnYn a n x x x x a y αβλ→----→→→→→→∞→∞→∞→∞∂℘∈∃∀====⇔====>+- (1)f(Xo)有定义(2)存在(3)求222111( (12)n n n +++++推广型-(第一种重要极限的求极限法:配分母): lim (*)=0则lim[sin (*)/(*)]=1如002(sin )^21cos 12lim lim .1/2^24()^22x x x x x x →→-==(2-1,18-19Min ) 注意:x →0时,sinx ~x 1-cox ~1/2x^2 tanx ~x (2)10limlim 1(1)(1)xxx x x x→→∞==++推广型-(第二种重要极限的求极限法:拆底数-配指数):lim (*)=0lim (1+*)^1/*=0 例:2222111cos 112.lim cos 120lim(lim cos )(1cos 1)x x x x x x x x x x x →----→→===+- (2-1,24-25Min)极限的计算方法:四则运算,等价无穷小代换,求极限的两个方法三、连续1.定义 等价定义定义1:设f (x )在Xo 及其附近有定义△X →y 的增量△y=f (Xo+△X )- f (Xo )若00lim ,f x x x x y o ∆→∆=则称()在=点连续定义2:0lim ()(),()x x x x f x f f x x →=若则称在=点连续(极限值等于函数值)注意:①0lim ()(),()x x x f x f f x Xox -→=若则称在=点左连续若f (Xo+0)=f (Xo )0()x x f x 则称在=点右连续② 若f (x )在(a ,b )内点点都连续,则称f (x )在(a ,b )内连续③ 若f (x )在(a ,b )内连续,在x=a 点右连续,在x=b 左连续,则称f (x )在[a ,b]上连续2.连续函数的运算(连续是由极限定义的,因此极限的运算法则可以用在连续上)(2-1,38Min )注意:基本初等函数在定义域内连续 初等函数在定义区间内连续例:y=arcsin (x^2+1)在x=0点不连续但有定义,因为x=0点附件没有定义 3.间断点00lim ()()lim ()lim ()()x x x f x f f x f x f Xo Xo Xox x →→→=⇔=(1)f(Xo)有定义(2)存在(3)存在定义:若f (x )在Xo 点,上述三条至少有一条不成立,则称x=Xo 为f (x )的间断点 注意:间断点的分类 (1)若f (Xo-0),f (Xo+0)都存在则称Xo 为第一类间断点 特例:f (Xo-0)=f (Xo+0)则称Xo 为可去间断点 f (Xo-0)≠f (Xo+0)则称Xo 为跳跃间断点 例1:y=f (x )={sinx/x,x ≠0;2,x=0} 则x=0为可去间断点(若x=0时y=1,则函数连续) 例2:y=f (x )={x+1,x<0;x-1,x>0}(x=0处无定义,函数不连续)则x=0为跳跃间断点(2)若f (Xo-0),f (Xo+0)至少有一类不存在则称Xo 为第二类间断点 例1:y=1/x 在x=0处为第二类间断点(无穷间断点)例2:y=sin (1/x )在x=0点为第二类间断点(震荡型,图形) 注意:无穷间断点与求渐近线;反常积分中的应用例:y =1个,x=-1)(2-2,9-11Min )4.闭区间上连续函数的性质设y=f (x )在[a,b]上连续,则(1)y=f (x )在[a,b]上必有最大值与最小值,即∃X1,X2∈ [a,b],∀x ∈ [a,b]有 f (x )<=f (X2)(区间上的最大值)f (x )>=f (X1)(去见上的最小值) 最大值最小值是唯一一个数,但是取得最大值最小值的点可以不止一个;最大值与最小值可以是同一个值,此时函数为常数 (2)介值定理f (x )必取得最大值和最小值之间的一切值 注意:①闭区间上的连续函数一定是有界的②f (x )在[a ,b]上连续,f (a )f (b )<0,则至少∃℘∈(a ,b )使得f (℘)=0 例1:设Xn ,Yn 满足lim 0x XnYn →∞=则成立的是A 若Xn 发散,则Yn 必发散 Xn (010203…) Yn(000000…)B 若Xn 无界,则Yn 必有界 Xn (010203…) Yn(102030…)C 若Xn 有界,则Yn 必为无穷小 Yn (010203…) Xn (000000…)D 若1/ Xn 无穷小,则Yn 必为无穷小乘积的极限等于极限的乘积(2-2,31-34Min ) 例2:证明:limlim (0)!nn n n a n a y→∞→∞=>存在(2-2,36-41Min )证明极限存在:单调有界(有递推关系的首先想到),加别定理(放大一下缩小一下,但是放大缩小后的极限要相同)例3:222n 111lim n(...)12nnnn→∞+++++求(2-2,43-44Min )例4: 求极限 (1)limx (2-2,47-48Min )注意:四则运算要求参与运算的极限都存在,因此本题的原型不能使用积商的极限等于极限的积商方法:遇到根号通常进行有理化 (2)3113lim()11x x x →---(2-2, 48-50Min ) 方法:无穷大减无穷大通常进行通分,然后再进行补充(化简) (3)练习x →例5:等价无穷小(2-3,5-7Min)A 1-()ln(1()10B C D +→-当x ()常用的三个等价无穷小1,,ln(1)(1)xx x x x x eαα-++答案:B 例6:已知极限求表达式里的一个常数(2-3,9-12Min )011lim[()]1a A B C D xx a x xe →--=已知则为()0()1()2()3答案:C 例7:Xlim 8ax 2a x-ax →∞=+已知求()现象-分析-方法:1的无穷次大,拆底数配指数 答案:a=ln2 注意:10011111 (i)...a a a a nn n n mm x n nxxx xb x b x b x b x ---→∞-++++++++要看其最高次={00a b,n=m ;∞,n>m;0,n<m} 例8:(2-3,18-23Min )x sin 0(,0)a+ba xb a b --=>证明方程至少有一正根,且不大于现象-分析-方法:作左方看做函数→函数有零值→介值定理→零值定理 初等函数→连续不大于→≦→分类讨论 例9:(2-3,26-30Min )()()lim ()()()x f x f x f x →∞-∞+∞-∞+∞设在,连续,且存在,证明在,有界闭区间上连续必有界,有极限的函数必有界(局部有界)导数与微分一、导数1、定义两个实际问题:一曲线在一点的切线,方法----利用割线逼近一点的切线,二是物理上的瞬时速度,先求平均速度然后用时间间隔趋向于零近似的得到瞬时速度 但是他们都有误差,因此要取极限(哲学上讲:是质变),由割线上升到导数,由平均数上升到瞬时速。
高数一试题及答案
《 高等数学(一) 》复习资料一、选择题1. 若23lim53x x x kx →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim21x x kx →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+5. 211limsin x x x→-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( )A 1B 2C 3D 47. 求函数43242y x x =-+的拐点有( )个。
A 1 B 2 C 4 D 08. 当x →∞时,下列函数中有极限的是( )。
A. sin xB. 1x eC. 211x x +- D. arctan x9.已知'(3)=2f ,0(3)(3)lim2h f h f h→--=( ) 。
A. 32 B. 32- C. 1 D. -110. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。
A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定 12. [()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C )A.2222(ln )(ln )f x f x x 'B. 24(ln )f x x 'C. 224(ln )(ln )f x f x x 'D. 222(ln )()f x f x x '14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C +15.2ln xdx x =⎰( D )A.2ln x x C +B.ln xC x+ C.2ln x C + D.()2ln x C + 16. 211limln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( )A 1B 0C 2-D 2 18. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A )A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x -D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求dx x⎰. 3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分8⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求⎰11. 求2212x xe dx -⎰12. 求3x⎰13. 求21ln exdx x⎰14.求⎰三、解答题1. 若(1lim 36x x →∞=,求a2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型4. 设2sin ,.xy xy x e y '+=求5.求y =6. 求由方程cos sin x a ty b t =⎧⎨=⎩ 确定的导数x y '.7. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin yy y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1yy xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解. 4. 求方程3595xy y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题 1-5: DABAA 6-10:DBCDD 11-15: BCCBD 16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求⎰.解:13(43ln )(ln )dx x d x x =+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1xx x dx x =-+⎰ 21arctan ln(1)2x x x C =-++.4. 求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C=+.5. 求2356xdxx x+-+⎰.解:由上述可知23565623xx x x x+-=+-+--,所以2356()5623xdx dxx x x x+-=+-+--⎰⎰115623dx dxx x=-+--⎰⎰5ln26ln3x x C=--+-+.6.求定积分8⎰t=,即3x t=,则23dx t dt=,且当0x=时,0t=;当8x=时,2t=,于是28222000313ln(1)3ln312t dtt t tt⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算2cosx xdxπ⎰.解:令2u x=,cosdv xdx=,则2du xdx=,sinv x=,于是2220000cos sin(sin)2sin2sinx xdx x d x x x x xdx x xdxπππππ==-=-⎰⎰⎰⎰.再用分部积分公式,得2000cos2cos2(cos)cosx xdx xd x x x xdxππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰002(cos)sin2x x xπππ⎡⎤=-=-⎣⎦.8. 求2128dxx x+-⎰.解:221113(1)(1)ln28(1)963(1)xdx d x Cx x x x-+=+=++-+-++⎰⎰12ln64xCx-=++.9.求⎰解:令u=32x u=-,23dx u du=,从而有22311311u udu duu u-+==++⎰⎰213(1)3(ln1)12uu du u u Cu=-+=-++++⎰11. 求2212xxe dx-⎰解:2222222411112x x xxe dx e dx e e e-----===-⎰⎰12.求3x⎰解:333223(3)(3)3x x x C=--=--+⎰13. 求21lne x dxx⎰解:22111ln111ln(ln)ln ln333ee exdx xd x x ex====⎰⎰14.求⎰解:3322222121(3)(3)(3)233x x C x C=--=-⋅-+=--+⎰三、解答题1.若(1lim36xx→∞=,求a解:因为223x=,所以9a=否则极限不存在。
(完整word版)《高等数学(1)》练习题库
华中师范大学网络教育 《高等数学(1)》练习测试题库一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2x )=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 2 3.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim21x x x ( ) A.1 B.0 C.2 D.1/2 7.设=+∞→x x xk)1(lim e 6 则k=( )A.1B.2C.6D.1/6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x2-1B. x3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logx相切,则()aA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、-8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是()A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x xx 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 xx x x sin 1sin lim20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( ) A 、0 B 、1/2 C 、1 D 、2 43、若函数f(x)在(a,b )内存在原函数,则原函数有( )A 、一个B 、两个C 、无穷多个D 、都不对44、若∫f(x)dx=2e x/2+C=( )A 、2e x/2B 、4 e x/2C 、e x/2 +CD 、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、B、2 C、31/2D、21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56、设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111A.1-──B.1+ ──C. ────D.xxx1-x157、x→0 时,xsin──+1是()xA.无穷大量B.无穷小量C.有界变量D.无界变量58、方程2x+3y=1在空间表示的图形是()A.平行于xoy面的平面B.平行于oz轴的平面C.过oz轴的平面D.直线59、下列函数中为偶函数的是()A.y=e^xB.y=x^3+1C.y=x^3cosxD.y=ln│x│60、设f(x)在(a,b)可导,a〈x_1〈x_2〈b,则至少有一点ζ∈(a,b)使()A.f(b)-f(a)=f'(ζ)(b-a)B.f(b)-f(a)=f'(ζ)(x2-x1)C.f(x2)-f(x1)=f'(ζ)(b-a)D.f(x2)-f(x1)=f'(ζ)(x2-x1)61、设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( ) A.充分必要的条件 B.必要非充分的条件 C.必要且充分的条件 D 既非必要又非充分的条件二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( ) 13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( ) 26、∫49 x 1/2(1+x 1/2)dx=( ) 27、∫49 x 1/2(1+x 1/2)dx=( ) 28、∫49 x 1/2(1+x 1/2)dx=( ) 29、∫49 x 1/2(1+x 1/2)dx=( ) 30、∫49 x 1/2(1+x 1/2)dx=( ) 31、∫49 x 1/2(1+x 1/2)dx=( ) 32、∫49 x 1/2(1+x 1/2)dx=( )33、满足不等式|x-2|<1的X 所在区间为 ( ) 34、设f(x) = [x] +1,则f (л+10)=( ) 35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( ) 37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46、函数y=arcsin√1-x^2 +──────的定义域为_________√1-x^2_______________。
高等数学 第一章
函数 y f ( x )
反函数 x ( y )
W
W
o
D
x
o
D
x
三、复合函数
1、复合函数
设 y u, u 1 x ,
2
y 1 x
2
定义 设函数 y f ( u) 的定义域为 D f , 而函数
u ( x ) 的值域为 Z , 若 Z D , 则称函数 f y f [( x )] 为 x 的复合函数.
一、 函数的有界性
f ( x) 2 x 1,
三、 函数的周期性 四、 函数凹凸性
x0
.
1.函数的有界性 y
M y=f(x)
y
M
o
有界 -M
x X
o
-M
x0
X
无界
x
设函数 f ( x ) 在区域 有界: X D, M 0, 则称
上有定义, x X 使得 f ( x ) M ;
第一章
函数
第一节 函数的定义
一、 基本概念 二、 函数概念
一、函数概念
1 函数定义 定义:设 x和 y是两个变量, D 是一个给定 的数集. 如果对于每个数 x D , 变量 y 按 照一定法则,总有确定的数值与之对应, 则称 y 是 x 的函数, 记作 y f ( x ) . 数集D叫 做这个函数的定义域. x叫做自变量, y 叫做因变量. f 叫做函数关系. 单值函数: 自变量在定义域内任取一个 数值时, 对应的函数值总是只有一个的 函数. 否则叫多值函数.
中心
a 的 去心邻域:
a
a
a
半径
x
o
0 U (a ) { x 0 x a },
高数1内容
高数1内容
高等数学一是大学本科阶段的一门数学基础课程,主要涵盖了数列、极限、函数、导数、积分等内容。
在数列部分,学习了数列的定义、数列的极限以及常见的数列求和公式。
掌握了数列的性质和收敛性质,还学习了由递推公式给出的数列如何求出通项公式。
在极限部分,学习了极限的概念和性质。
重点掌握了极限的四则运算和夹逼定理,在计算极限时运用相关的方法和技巧。
在函数部分,学习了函数的概念、性质以及基本的初等函数。
重点掌握了常见函数的图像和性质,以及函数的运算法则和复合函数的求导法则。
在导数部分,学习了导数的概念和性质。
通过求导的方法,计算了常见函数的导数,并掌握了求高阶导数的技巧。
还学习了利用导数解决函数极值、最大值和最小值等优化问题。
在积分部分,学习了积分的概念和性质。
通过积分的定义和性质,计算了不定积分和定积分,并掌握了积分运算的一些基本法则。
还学习了定积分在几何、物理等领域的应用,如计算曲线的弧长和曲线围成的面积等。
在高等数学一课程中,还加强了对数学证明的要求,提高了数学思维和问题解决能力。
通过理论与实践相结合的教学方法,帮助学生掌握数学的基本概念和方法,为后续的学习打下坚实的数学基础。
高等数学(一)学习笔记
π ,n ∈ Z)},为奇函数, π 为周期, 2
周期内单
π , 2
π ],则 y=arc sinx 为定义在区间 D 上的单值函数(即为反正弦函数。)单加 2 反余弦函数:y=Arccosx 定义域 D={ x 一 1 ≤ x ≤ 1},为多值函数,2 π 为周期。若限制值域为[0, + π ],则 y=arc cosx 为定义在区间 D 上的单值函数(即为反余弦函数。)单减 反正切函数:y=Arctgx 定义域 D={ x 一 ∞ ≤ x ≤ + ∞ },为多值函数, π 为周期。若限制值域为[-
x → x0
定理一:如果 lim
x → x0
f ( x) = A ,而且 A>0(或 A<0),那幺就存在着点 x0 的某一去心邻域,当 x 在该邻 f ( x ) = A , 那幺 A ≥ 0(或 A ≤ 0).
域时,就有 f(x)>0(或 f(x)<0). 定理二:如果在点 x0 的某一去心邻域内 f(x) ≥ 0(或 f(x ≤ 0), 而且 lim 可证明:f( x0 -0)=f( x0 +0)为 lim
x →∞
7、无穷小和无穷大 (1)、无穷小,极限为 0,则称函数为无穷小(当 x →
x0 或 x → ∞ ). x0 或 x → ∞ ),具有极限
A、定理一(无穷小与函数极限的关系):在自变量的同一变化过程中(x →
的函数等于它的极限与一个无穷小之和;反之,如果一函数可表示为一常数和无穷小之和,则这常数 即为这函数的极限。 B、运算法则:I,有限个无穷小的和也是无穷小。II,有界函数与无穷小的积是无穷小(常数与无穷 小的积是无穷小;有限个无穷小的积也是无穷小) C、无穷小的比较:
高等数学(一)练习题及答案
《高等数学(一)》练习题一一.是非题1.函数1()cos f x x x=的定义域是[1,0)(0,1]-。
( ) 2.函数2sin y x x =+是偶函数。
( )3. 函数()y f x =在点0x x =不连续,则函数()y f x =在该点处不可导。
( ) 4.若)(x f 当0x x →时的左、右极限都存在,则)(x f 的极限存在。
( ) 5. )(2)()(lim/0a f hh a f h a f h =--+→。
( ) 6.函数()sin f x x =是有界函数.( ) 7.函数1()f x x=在(,0)-∞上是减函数.( ) 8. 极限10lim 2xx →存在.( )9.两个无穷小的乘积一定是无穷小. ( ) 10.初等函数在其定义域内都是连续的.( )11.函数()f x 在点x a =处有定义,是当x a →时()f x 有极限的充分必要条件。
( )12.函数31y x =+的反函数是y =( )二、单项选择题 1.函数y =的定义域是:( ) A. (1,)-+∞ B. [1,)-+∞ C. (1,)+∞ D. [1,)+∞2.设2,1,()1,1x e x f x x x ⎧<-=⎨-≥-⎩,则(1)f =( )。
A. 1-B. 0C. 1D. 2 3. 函数()y f x =在点x a =连续是()y f x =在该点处有极限的( )。
A.充要条件B.充分非必要条件C.必要非充分条件偶函数D.无关条件4.要使函数()f x x=在点0x =处连续,则(0)f =( )。
A. 2B. 1C. 1.5D. 05.设函数2,01,()3,12x x f x x x ≤<⎧=⎨-≤≤⎩,则()f x 的连续区间为( )A. [0,1)(1,2]B. [0,1)C. [1,2]D. [0,2] 6.函数y =的定义域是( )。
A. (1,)-+∞ B. [1,)-+∞ C. (1,)+∞ D. [1,)+∞7.设2,1,()1,1x e x f x x x ⎧<-=⎨-≥-⎩,则(0)f =( )。
高等数学第一章
连续
桥梁
第一节 函数
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素. 通常用大写字母表示集合 用小写字母表示集合的元素.
没有任何元素的集合称为空集,记作
表示 M 中排除 0 与负数的集 . M
注: M 为数集
* 表示 M 中排除 0 的集 ; M
一、基本概念——集合的表示法
则称函数f ( x )在X上有界.否则称无界.
y M y=f(x) o -M x 有界 X y
M
o
-M
x0
X
无界
x
注:有界性和定义区间有关.
二、函数——性质 2.函数的单调性:
设函数 f ( x )的定义域为 D, 区间I D, x1 , x2 I , 当 x1 x2
若 f ( x1 ) f ( x2 ) , 称 f ( x) 为 I 上的 单调增函数 ; 若 f ( x1 ) f ( x2 ) , 称 f ( x) 为 I 上的 单调减函数 .
二、函数——举例
例 A,B两地间的汽车运输,旅客携带行李按下列标准支付 运费:不超过10公斤的不收行李费;超过10公斤而不超过30 公斤的,每公斤收运费0.50元;超过30公斤而不不超过100 公斤的,每公斤收运费0.80元。试列出运输行李的运费y与行 李的重量x之间的函数关系式,写出其定义域,并求出所带行 李分别为18公斤和60公斤的甲、乙两旅客各应支付多少运费?
)2 解: f ( 1 2
1 2
2
1 1 , 0 t 1 t 1 f (t ) 2 t 1 , t 定义域 D [0 , )
值 域 f ( D ) [0 , )
高等数学(一)1课程教学大纲
第一章矢量与坐标
【目的要求】能正确理解矢量的概念,并且能灵活运用这些概念解决一些具体问题;掌握矢量的线性关系及矢量的分解;熟练掌握矢量各种运算的定义、性质、法则以及矢量的各种位置关系及其对应的代数表示式,在此基础上能进行正确的证明、计算;能正确理解矢量的坐标与点的坐标的内在联系和区别,掌握矢量运算的坐标表示及其各种位置关系的坐标表示,并且能熟练地进行运算和论证。
三、泰勒公式
四、函数单调性的判别法
五、函数的极值及其求法
六、函数的最大值和最小值
七、函数的凹凸性与拐点
八、函数图形的描绘
九、曲率
●实践教学内容与安排(4学时)
一、第一章习题
二、描绘函数图形
【作业与思考】第一章部分习题
思考:函数一阶导、二阶导数与函数极值点和拐点有哪些联系?
第六章定积分
【目的要求】掌握积分概念,性质,换元积分法和分部积分法、有理函数、三角函数有理式、简单无理式的积分方法。
【作业与思考】第三章部分习题
思考:微分与积分的联系。
学时分配表
课程内容
学时
理论
第一章中值定理与导数应用
16
第二章不定积分
10
第三章定积分
10
实践
一各章节习题
19
二描绘函数图形
2
三讨论:定积分与不定积分换元法的区别
1
考核
1.第一、二章内容
2
合计
60
教学策略与方法建议:以讲授法为主,辅以练习法、谈话法、讨论法、引导发现法。教学策略上宜以问题的呈现引发学生思考,帮助学生建立数学模型,找出解决问题的一般方法,从而建立概念,掌握有关数学思想方法,巩固定理和法则。
【重点与难点】重点是求导公式及法则。难点是导数与微分概念。
《高等数学(一)》期末复习题(答案)
《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。
高等数学(一)答案解析
高等数学(一)答案解析一、单项选择题1.当x →0时,以下函数是无穷小量的是 A.x eB.()ln 2x +C.sin xD.cos x【解析】0limsin 0x x →=【考点】无穷小的定义;等价无穷小 【答案】C2.平面2348x y z -+=与直线12234x y z-+==-的位置关系是 A.平行B.垂直C.相交但不垂直D.直线在平面上【解析】直线的方向向量(2,-3,4)和平面的法向量一致,故垂直直线过(1,-2,0),带入平面方程等式成立,点在平面内,故相交 【考点】平面与直线的位置关系 【答案】B3.微分方程780y y y '''+-=的通解为 A.812x x y C e C e -=+ B.812x x y C e C e --=+ C.812x x y C e C e =+D.812x x y C e C e -=+【解析】27801,8r r r r +-=⇒==- 【考点】齐次微分方程通解 【答案】D4.曲线32231y x x =+-的拐点是 A.11,22⎛⎫-- ⎪⎝⎭B.11,22⎛⎫- ⎪⎝⎭C.()1,0-D.()0,1-【解析】322111166;1260,2312222y x x y x x y ⎛⎫⎛⎫'''=+=+=⇒=-=⨯-+--=- ⎪ ⎪⎝⎭⎝⎭【考点】拐点的计算 【答案】A5.以下级数收敛的为 A.232112n n n n ∞=-+∑B.1sin 3n n π∞=∑C.211ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑D.213ln 21n nn ∞=+∑【解析】排除法:通项趋于0(n →∞)AC 符合,BD 不符合;而23211A :~2n n n n -+,由11nn -∑发散知A 发散;故选C 【考点】级数的敛散性 【答案】C 二、填空题 6.函数()f x =的定义域为 .【解析】1033xx -≥⇒≥ 【考点】定义域 【答案】[)3,+∞ 7.曲线12ln y x x=+在点(1,1)点处的切线方程为 .【解析】1221221,|1x x y y x x x=-''=-+==,切线:()()111y x y x -=-⇒= 【考点】曲线在一点切线方程 【答案】y=x8.若()1,[2()3()]8bbaaf x dx f xg x dx =+=⎰⎰,则()baf g x dx =⎰.【解析】[2()3()]23()8bbaaf xg x dx g x dx +=+=⎰⎰,则()2bag x dx =⎰【考点】定积分的性质 【答案】29.已知两点A (-1,2,0)和B (2,-3AB 同方向的单位向量为 .【解析】222(3,3(5)36AB =-+-+=单位化:3515,,6626⎛⎛-=- ⎝⎭⎝⎭【考点】向量的表达;单位化【答案】152,,266⎛⎫- ⎪ ⎪⎝⎭10.已知函数(),f x y 在R 2上连续,设12201(,)(,)xxI dx f x y dy dx f x y dy -=+⎰⎰⎰⎰,则交换积分顺序后I = .【解析】2;22y x x y y x x y ===-⇒=-【考点】二重积分【答案】2120(,)yy d y f x y dx -⎰⎰ 三、解答题11.求极限3223lim 2x x x x x x →∞+-++【解析】32222322lim lim 222x x x x x x x x x x x →∞→∞+--==++++ 12.求极限203sin limxx t dt x →⎰【解析】2220322000sin sin 1limlim lim 333xx x x t dt x x x x x →→→===⎰ 13.求不定积分ln x x+ 【解析】2ln ln 12ln ln 2(ln )2x x x dx x xd x x x c x x+=+==+⎰⎰ 14.求过点(1,-2,2)且与两平面x +2y-z =1和2x+y+3z =2都垂直的平面方程. 【解析】该平面法向量为121(7,5,3)213i j kn =-=--该平面方程为()()()7152320x y z --+--=,化简:7x -5y -3z =11 15.已知函数sin yz x x=,求2z x y ∂∂∂.【解析】sin cos z y y yx x x x∂=-∂ 22211sin cos cos cos sin sin z y y y y y y y y yx y y x x x x x x x x x x x∂∂⎛⎫=-=-+= ⎪∂∂∂⎝⎭ 16.计算二重积分()22cos Dx y dxdy +⎰⎰,其中D 是由直线3,33y x y x ==与圆222x y π+=所围成的第一象限的闭区域. 【解析】()222222232206111cos cos cos sin sin626262212Dy x y dxdy d r rdr r dr r ππππππππππθ+=====⎰⎰⎰⎰⎰17.求微分方程x y y e x '+=+的通解. 【解析】设()()1,x p x q x e x ==+则()11dx dx x y e C e x e dx -⎡⎤⎰⎰=++⎢⎥⎣⎦⎰()x x x e C e x e dx -⎡⎤=++⎢⎥⎣⎦⎰()x x x e C e x de -⎡⎤=++⎢⎥⎣⎦⎰212x x x x e C e xe e -⎡⎤=++-⎢⎥⎣⎦112x x Ce e x -=++-18.求幂级数201n n x n +∞=+∑的收敛域及和函数.【解析】(1)321lim||12n n n x n x n x ++→∞+=<+ x =1时,011n n ∞=+∑发散 x =-1时,200(1)(1)11n nn n n n +∞∞==--=++∑∑收敛 收敛域为[-1,1)(2)设2100()11n n n n x x S x x n n ++∞∞====++∑∑记110()1n n x S x n +∞==+∑,则()()1S x xS x =()11011x n n S x x∞+='==-∑ 101()ln(1)1xS x dx x x==---⎰()()ln 1S x x x =--19.求曲线24y x =-+与直线y =-2x +4所围成图形的面积. 【解析】画图象;()2204(24)S x x dx =-+--+⎰()2202x x dx =-+⎰232013x x ⎛⎫=-+ ⎪⎝⎭ 43=20.证明:当x >1时,ln 3x x +>. 【解析】设()ln 3F x x x =+-1()1F x x '=+-= 1x =时()0F x '=,()0F x =x >1时,()0F x '>,()F x 单调递增 故x >1时,()0F x >,即ln 3x x +>21.设函数()f x 在[0,1]上连续,且()11f =,证明:对于任意λ∈(0,1),存在ξ∈(0,1),使得2()f λξξ=. 【解析】 由结论处2()f λξξ=提示可设()()2F x x f x λ=-,则()F x 在[0,1]上连续且()00F λ=-<,()()110,01F λλ=-><<则()()010F F <,由零点定理,至少存在一点ξ∈(0,1),使得()0F ξ=,即()2f λξξ=2020年山东专升本考试 高等数学(Ⅲ)参考答案一、单选题二、填空题 11、[3,+∞) 12、2 13、24x e 14、4 15、6e -三、计算题16、由()11x f x x +=-,可知11()11[()]1()111x f x x f f x x x f x x +++-===+---.17、2222221limlim lim 132(2)(1)1x x x x x x x x x x →→→--===-+---18、0011lim lim 122x x x x e x e x →→+-+==19、()00sin 0lim ()lim x x a x f f x b a b x +'+→→⎛⎫==+=+ ⎪⎝⎭ ()000lim ()lim ,(0)22x x x f f x a a f +--→→⎛⎫==-=-= ⎪⎝⎭且 ∵函数()f x 在点x =0处连续,∴22a b a +=⎧⎨-=⎩,即a =-2,b =420、222ln(21)21dy x xx dx x =+++,122ln 33x dy dx =∴=+ 21、2222cos 431132cos43sin 42x x dx xdx dx x C x x x-=-=++⎰⎰⎰ 22t =,则2x t =,2dx tdt =,且当x =1时,t =1;当x =4时,t =2 2422211111ln 22(12ln )24ln t tdt t dt tdt t +∴==+=+⎰⎰⎰⎰22211124ln 4(ln )28ln 2418ln 22t t t t dt dt '=+-=+-=-⎰⎰四、应用题23、2()66126(2)(1)f x x x x x '=--=-+, 令()0f x '=,解得122,1x x ==- 而()126,(2)180,(1)180f x x f f ''''''=-=>-=-<∴()f x 的极小值为f (2)=-15,()f x 的极大值为f (-1)=1224、211222010111131ln ln 24488x x dx x dx x x x x ⎛⎫⎛⎫⎛⎫-+-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰山东省2020年专升本考试真题高等数学(III )一、单选题(本大题共10个小题,每小题3分,共30分) 1.以下区间是函数sin y x =的单调递增区间的是 A.0,2π⎡⎤⎢⎥⎣⎦B.[]0,πC.,2ππ⎡⎤⎢⎥⎣⎦D.3,zππ⎡⎤⎢⎥⎣⎦2.当x →0时,以下函数是无穷小量的是 A.x eB.1x +C.sin xD.cos x3.cos x x '⎛⎫= ⎪⎝⎭A.sin xB.sin x -C.2sin cos x x xx +D.2sin cos x x xx --4.极限ln lim 2x xx →+∞=+A.0B.1C.2D.+∞5.函数3y x =+dy =A.23x dx ⎛+ ⎝⎭ B.23x dx ⎛⎝C.2x dx ⎛ ⎝⎭D.2x dx ⎛⎝6.2tan x d t dt dx =⎰ A.2tan2x xB.22tan x xC.tan 2xD.2tan x7.不定积分()f x dx '=⎰ A.()f xB.()f x 'C.()f x C +D.()f x C '+8.点x =1是函数211x y x -=-的 A.连续点B.可去间断点C.跳跃间断点D.无穷间断点9.设()y y x =是由方程y e x y =-所确定的隐函数,则y'=10.己知函数()f x 在[-1,2]上连续,且01()2f x dx -=⎰,10(2)1f x dx =⎰,则21()=f x dx -⎰A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题3分,共15分) 11.函数y =的定义域为.12.曲线y =2ln x +1在点(1,1)处切线的斜率k =.13.已知函数()2x f x e =,则()=f x '' . 14.若1()2f x dx =⎰,1[3()2]f x dx -=⎰.15.极限10lim(12)xx x →-=.三、计算题(本大题共7个小题,每小题6分,共42分) 16.已知函数()11x f x x +=-,()1,x ∈+∞,求复合函数()f f x ⎡⎤⎣⎦ 17.求极限222lim32x x x x →--+18.求极限01lim 2x x e x x→+-19.已知函数sin ,0()2,0,02a xb x x f x x x a x ⎧+>⎪⎪==⎨⎪⎪-<⎩在x =0处连续,求实数a ,b 的值 20.已知函数()2ln 21y x x =+,求1x dydx = 21.求不定积分222cos 43x x dx x -⎰22.求定积分41⎰四、应用题(本大题共2个小题,第23小题6分,第23小题7分,共13分) 23.求函数()3223125f x x x x =--+的极值,并判断是极大值还是极小值. 24.求曲线1y x =与直线y=x ,14y x =所围成的在第一象限内的图形的面积.山东省2020年专升本真题试卷高等数学(二)答案解析一、单项选择题1.当x →0时,以下函数是无穷小量的是A.21x + C.sin xD.cos x 【解析】0limsin 0x x →=【考点】无穷小的定义;等价无穷小【答案】C2.以直线y =0为水平渐近线的曲线的是A.x y e =B.ln y x =C.tan y x =D.3y x =【解析】lim .0x x e A →-∞=(或根据四个函数图像判断)【考点】水平渐近线【答案】A3.若()2b a f x dx =⎰,()1b a g x dx =⎰,则[3()2()]ba f x g x dx -=⎰A.1B.2C.3D.4 【解析】[3()2()]32214ba f x g x dx -=⨯-⨯=⎰【考点】定积分的性质【答案】D4.微分方程2sin y dyx xdx e +=的通解为A.2cos y e x x C =++B.2cos y e x x C =-+C.2sin y x e x C =++D.2sin y x e x C =+-【解析】22sin cos y y e dy x xdx e x x C =+⇒=-+⎰⎰【考点】可分离变量微分方程通解【答案】B5.已知函数(),f x y 在R 2上连续,设21320(,)y y I d y f x y dx -=⎰⎰,则交换积分顺序后I = A.231320010(,)(,)xx dx f x y dy dx f x y dy -+⎰⎰⎰⎰B.213320010(,)(,)x x dx f x y dy dx f x y dy -+⎰⎰⎰⎰C.13320010(,)(,)x x dx f x y dy dx f x y dy -+⎰⎰⎰ D.31320010(,)(,)xx dx f x y dy dx f x y dy -+⎰⎰⎰ 【解析】2(0,1)x y y x y =⇒=;3322x x y y -=-⇒= 【考点】二重积分【答案】D二、填空题6.函数()3f x x =-的定义域为 .【解析】303x x ->⇒>【考点】定义域【答案】(3,+∞)7.已知函数()332f x x x =+-,()tan g x x =,则=4f g π⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦ .【解析】3[()](tan )3tan 2f g x x x =+-tan 14π⎛⎫= ⎪⎝⎭,所以=24f g π⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦【考点】复合函数【答案】28.曲线2ln y x x =+在点(1,2)点处的切线斜率为 . 【解析】112,3x y y x=''=+=【考点】曲线在一点切斜率;导数的应用【答案】39.曲线1y x=与直线x =1,x =3及x 轴所围成图形的面积为 . 【解析】311ln3ln1ln3dx x=-=⎰ 【考点】定积分的应用【答案】ln310.已知函数()2arctan 2z x y =,则全微分dz = . 【解析】2222222222arctan(2),,2arctan(2)1(2)1414z z x x x y x dz x y dx dy x y y y y ∂∂====+∂∂+++ 【考点】全微分【答案】2222arctan(2)14x dz x y dx dy y=++ 三、解答题11.求极限2211lim 322x x x x →⎛⎫- ⎪-+-⎝⎭【解析】22222111(1)21lim lim lim lim 1322(1)(2)(1)(2)1x x x x x x x x x x x x x x →→→→---⎛⎫-====- ⎪-+------⎝⎭ 12.求极限2030sin lim x x t dt x →⎰【解析】2220322000sin sin 1lim lim lim 333x x x x t dt x x x x x →→→===⎰ 13.已知函数2,0()1,0,0x x b x f x x ae b x ⎧->⎪==⎨⎪+<⎩在x =0处连续,求实数a ,b 的值【解析】在x =0处连续,则00lim ()lim ()(0)1x x f x f x f +-→→=== 20lim 11x x b b b +→-=-=⇒=-0lim 112x x ae b a b a a -→+=+=-=⇒= 14.求不定积分1ln x dx x +⎰【解析】21ln 1ln 1ln ln ln ln (ln )2x x dx dx dx x xd x x x C x x x +=+=+=++⎰⎰⎰⎰15.求定积分20π(1)cos x xdx -⎰.【解析】20(1)cos x xdx π-⎰2200cos cos x xdx xdx ππ=-⎰⎰2222200000sin sin sin sin 1cos 1222xd x x x x xdx x πππππππ=-=--=+-=-⎰⎰16.求微分方程1x y y e '+=+的通解.【解析】设()()1,1x p x q x e ==+则()111dx dx x y e C e e dx -⎡⎤⎰⎰=++⎢⎥⎣⎦⎰ ()1x x x e C e e dx -⎡⎤=++⎢⎥⎣⎦⎰ ()1x x x e C e de -⎡⎤=++⎢⎥⎣⎦⎰ 212x x x e C e e -⎡⎤=++⎢⎥⎣⎦ 112x x Ce e -++ 17.已知函数sin y z x x=,求2z x y ∂∂∂. 【解析】sin cos z y y y x x x x∂=-∂22211sin cos cos cos sin sin z y y y y y y y y y x y y x x x x x x x x x x x∂∂⎛⎫=-=-+= ⎪∂∂∂⎝⎭ 18.计算二重积分D xydxdy ⎰⎰,其中D 是由直线y=x ,y =5x 与y=-x + 6所围成的闭区域. 【解析】153601x x D x x xydxdy dx xydy dx xydy -+=+⎰⎰⎰⎰⎰⎰ 13320112186x dx x x dx =+-⎰⎰ ()314230139232023x x x =+-=+= 19.假设某产品的市场需求量Q (吨)与销售价格P (万元)的关系为Q (P )=45-3P ,其总成本函数为C (Q )=20+3Q ,P 为何值时利润最大,最大利润为多少?【解析】设利润为2()(453)[203(453)]354155f P QP C P P P P P =-=--+-=-+-()65409f P P P '=-+=⇒=P <9,f (P )单调递增;P >9,f (P )单调递减故P =9时利润最大,f (9)=88(万元)20.设函数()f x 在[1,2]上连续,在(1,2)内可导,且f (1)=4f (2),证明:存在(1,2)ξ∈,使得2()()0f f ξξξ'+=.【解析】由结论处2()()0f f ξξξ'+=提示可设()()2F x x f x =,则()F x 在[1,2]上连续,在(1,2)内可导且F (1)=f (1),F (2)=4f (2)=F (1),则由罗尔定理,至少存在一点(1,2)ξ∈,使得2()2()()0F f f ξξξξξ''=+=,则2()()0f f ξξξ'+=。
知识点总结高数一
知识点总结高数一一、极限与连续1. 极限的概念及性质极限是数列或函数在趋于某个值时的性质,其定义包括数列极限和函数极限两种情况。
数列极限定义为:对于任意的ε>0,存在N∈N,使得当n>N时,|an-a|<ε成立。
函数极限定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-L|<ε成立。
极限的性质包括唯一性、有界性、局部性、夹逼性等。
2. 极限运算法则极限运算法则包括四则运算法则、复合函数极限法则、比较大小法则、夹逼定理等,通过这些法则可以简化极限运算的复杂性。
3. 无穷小与无穷大无穷小是指当自变量趋于某个值时,函数值无穷小于此值的函数。
无穷大则是指当自变量趋于某个值时,函数值无穷大于此值的函数。
在极限运算中,无穷小和无穷大的性质十分重要。
4. 连续的概念及性质连续函数的定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-f(a)|<ε成立。
连续函数的性质包括局部性、初等函数的连续性、复合函数的连续性等。
二、导数与微分1. 导数的概念与求导法则导数是函数在某一点处的变化率,导数的定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h。
求导法则包括基本导数公式、和差积商的求导法则、复合函数求导法则等。
2. 高阶导数与隐函数求导高阶导数为求导多次的结果,隐函数求导是指对于包含多个变量的函数,通过对某个变量求导来求得函数在该点的导数。
3. 微分的概念与微分公式微分是函数在某一点处的局部线性近似,微分的定义为:df(x)=f'(x)dx。
微分公式包括基本微分公式、换元法、分部积分法等。
4. 隐函数与参数方程的导数隐函数与参数方程的导数是指对于包含多个变量的方程,通过对某个变量求导来求得函数在该点的导数。
三、微分中值定理与泰勒公式1. 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理等,它们描述了函数在某些条件下的性质,对于函数的研究有重要意义。
高等数学一
高等数学一引言高等数学一是大学数学教育中的一门基础课程,也是理工科学生必修的一门数学课程。
通过学习高等数学一,可以培养学生的数学思维能力和解决实际问题的能力,为学生将来的专业学习打下坚实的数学基础。
本文将介绍高等数学一的内容和学习方法,帮助学生更好地掌握这门课程。
一、高等数学一的内容概述高等数学一主要涵盖以下几个部分:1.数列与函数–数列的概念与性质–等差数列、等比数列和常数列的性质与求和公式–递推数列与通项公式–函数的概念与性质–初等函数的图像与性质2.极限与连续–极限的概念与性质–无穷小与无穷大–一元函数的极限–函数的连续性与间断点–中值定理与罗尔定理3.导数与微分–导数的概念与性质–高阶导数与导数的计算–函数的微分与微分近似–高阶微分的公式与应用4.微分中值定理与泰勒展开–罗尔中值定理与拉格朗日中值定理–洛必达法则与极限的计算–泰勒公式的导出与应用5.不定积分与定积分–不定积分的概念与性质–基本积分计算公式–定积分的概念与性质–牛顿-莱布尼茨公式与定积分的计算6.微积分基本定理与曲线长度–微积分基本定理–曲线长度的计算二、高等数学一的学习方法学习高等数学一需要一定的数学基础和学习方法。
以下是一些学习高等数学一的方法和技巧:1.培养数学思维能力高等数学一是一门较为抽象的数学课程,需要学生具备较强的数学思维能力。
学生可以通过大量的练习题,培养自己的数学思维能力。
同时,要培养一种合理的思维方式,把握问题的本质,掌握基本的数学思维方法。
2.理解概念与性质在学习高等数学一时,要重点理解每个概念和性质的定义和含义。
掌握好概念和性质的关系,对后续的知识学习有很大的帮助。
可以通过绘制简单的图形、列举实际问题等方式,加深对概念和性质的理解。
3.多做题目与习题高等数学一是一门需要大量练习的学科,通过做题目可以加深对知识点的理解和掌握。
可以根据课后练习题的难易程度,合理安排自己的学习时间和方式。
同时,还可以多参加数学竞赛等活动,锻炼自己的数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、函数微分 1、定义:对于自变量在点x处的改变量 可表示为 A 0( )( 0)
其中A为不依赖于的常数,则称函数y=f(x)在点x处 可微,称A为函数y=f(x)在点x处的微分,记为dy, 即dy=A x
。
y
x
x
x
规定自变量的微分就是它的改变量:dx=△x
2、函数可微的充要条件,函数y=f(x)在 点x处可微的充分必要条件是它在该点处 可导,且dy= f ' (x)dx
6、高阶导数。函数y=f(x)的导数一般仍 是x的函数,它的导数称为此函数的二阶 导数,记为,或,即
y' ' ( y' )'
( n 1)
d
d
2
y
2
一般地,函数y=f(x)的n-1阶导(函)数的导数称 为f(x)的n阶导数,即 )]' y [(y (n=2,3,4,…)
( n)
x
d dy ( ) dx dx
五、罗彼塔法则
1、掌握罗彼塔法则的条件,会熟练准 确地运用罗彼塔法则求“”、“”型未 定式的极限。 2、会将“0﹒”,“”,“1”,“”, “0”等未定式化为“”或“”型,再用 罗彼塔法则求极限。
六、函数的单调性和极值
1、掌握利用导数判别函数单调区间的方法。 2、知道如何运用函数单调性证明不等式。 3、理解函数的极值和极值点的概念,掌握求 函数极值和极值点的方法和步骤,会熟练地求 解。 4、会解决简单的最大(小)值实际问题。
Lim
f’(x)=
Δx→0
f(x+Δx0)-f(x)/Δx
分段函数在分段点处的导数的求法是:用导数定义求出 分段点的左、右导数后确定。
6、可导与连续的关系,若函数f(x)在点 处可导,则它在点处必连续;若函数f(x) 在点处连续,但在该点未必可导,也就 是说,函数连续是可导的必要条件,但 不是充分条件。
f(x) g(x)=
(
f ( x) 1 g ( x)
g ( x) 或 1 f ( x)
lim
3、其他类型的未定式,如 0型都可以采取一定方 法通过恒等变形转化成两种基本类型,再用罗彼塔法则求解。
, ,1 , 0 ,
0
0
(3)若u(x)v(x)是幂指函数型,如等未定式的极限。一般可用 取对数法先转化成0 型,再转化成二种基本类型,用罗彼塔 法则求解。 0
结论:必有
lim xa
f ( x)
lim xa
g ( x)
(2)在点a的某个邻域内; (点a可以除外)可导,且 g ' ( x) 0 (3)
lim f ' ( x) A(或) x a g ' ( x)
结论:必有
lim f ' ( x) f ( x) A(或) x a g ( x) x a g ' ( x)
x a n
三、函数的微分
1、理解微分的定义,明确可导与微之 间的关系。 2、理解一阶微分形式的不变性,会熟 练地求出函数的微分。 3、记住利用微分近似计算函数改变量 和函数近似值的公式,会用微分计算函 数的近似值
四、中值定理
1、会叙述罗尔定理,拉格朗日中值定 理和柯西定理,掌握三定理的条件和结 论。 2、了解三定理之间的关系、作用,罗 尔定理和拉格朗日中值定理的几何意义。
d F ( x f ( x)) 0 dx
求得,即隐函数求导法则是:把方程两边对x 求导,注意y是x的函数,然后从求导后得到的 等式中解出。5、对数求导法则。若u(x)、v(u) 分别可导,则幂指函数y=u可用对数求导法求 出。对数求导法则是:先将函数两边取对数, 然后化成隐函数求导数,它适用于幂指函数和 含有多个因子等较复杂的函数。
四、中值定理 1、罗尔定理、条件:如果函数f(x)满足 ;(1)在闭区间[a,b] 上连续;(2) 在开区间(a,b) 内可导;(3)且两端 点函数值相等,即f(a)=f(b)
5、微分在近似计算中的应用 (1)求函数增量的近似值公式 (2)求函数在某点附近的函数值的近 似公式: f(x) f ( x0) ( x x0)
二、初等函数求导数
1、熟记求导的四则运算法则,导数的基本公 式,熟练掌握利用四则运算和导数基本公式求 导数。 2、熟练掌握复合函数求导法则,会求隐函数 和反函数的导数,会利用对数求导法则求导数。 3、理解高阶导数的定义,掌握求二阶导数的 p 方法,会求一些简单函数(如 (x), e , sin x, ln(1 x), (1 x) 等) 的n阶导数。
因此求微分dy,只要求出导数(x),再 乘以dx即可。从而根据导数的基本公式 和四则运算法则,可以得到函数微分的 基本公式及其运算法则。
f'
3、微分形式的不变性,对函数y=f(u)来 说,不论u是自变量还是中间变量。函数 微分dy=(u)du的形式是完全一样的,这 就叫微分形式的不变性。 利用一阶微分形式的不变性,可以计 算复合函数的微分,进而得到函数的导 数。 4、微分的几何意义,函数y=f(x)的微 分dy,在几何上就是过点M(x,y)的切 线的纵坐标的改变量。
(9)(secx) =secxtenx , (10)csc(x) =-csc x cot x (11)(arcsinx) =1/√ 1-x (-1<x<1)
2 ,
,
_
(12)(arccosx) =1/√ 1-x (-1<x<1)
2
,
_
(13)(arctamx) =1/1+x , 2 (14)(arc cotx) =-1/1+x
Байду номын сангаас
结论:在(a,b)内至少存在一点,使得 f ' ( ) =0 罗尔定理在确定方程的根中的作用: 若f(x)满足定理条件,则方程f(x) =0的两 个根之间必有方程 f ' ( x) 0 的一个根。 2、拉格朗日中定值定理,条件:如 果函数f(x)满足:(1)在闭区间[a,b] 上连续;(2)在开区间(a,b)内可 导。
,
2
对导数基本公式的记忆要准确熟练,它 是求导数的基础,并由它们可推导出微 分公式和积分公式,公式中带“余”字 的三角函数、反三角函数均有负号
[c u( x)]' cu' ( x)
(u v)' u'v'
(u v)' u' v uv'
u u ' v uv' ( )' (v 0) 2 v v
高等数学(1)学习方法指导 (二) [内容] 第三章 导数与微分; 第四
章 导数的应用
[基本要求] 一、导数概念 1、理解导数由具体的变化率问题抽象而产生 的概念,知道导数值与导数的联系与区别。 2、理解函数的导数与变化率的关系,导数的 几何意义,掌握求曲线在一点的切线的方法。 3、理解函数可导与连续之间的关系。 4、能利用定义求函数在一点处导数的方法, 会求分段函数在分段点处的导数。
[内容提要] 一、导数概念
导数是由具体的变化率问题(变速直线 运动的瞬时速度和曲线的切线的斜率) 抽象而产生的,它以极限为基础,是极 限概念的具体应用。
1、定义:设函数y=f(x)在点的某个邻域 内有定义,当自变量在处取得改变量, 函数f(x)取得相应的改变量=f(+)-f(),如 果当0时,极限存在. 存在,则称此极限值为函数f(x)在点处的 导数,并称函数f(x)在点处可导.
y x x
0Δ lim→0△y/Δx=∞ 1 χ lim lim 0 Δx 2 →0+Δy/Δx与Δx →Δy/Δx存在
lim
x
0
y x
。 2、左导数和右导数
若=存在,称之为f(x)在点处的左导数, 记作; 若=存在,称之为函数f(x)在点处的右 导数,记作。 函数y=f(x)在点处可导的充分必要条 件是f(x)在点处的左、右导数都存在且相 等。
(1)
(2)
在点a的某个邻域内(点 a可以除外)可导,且
f ' ( x) (3) x a g ' ( x) A(或) lim
g ' ( x) 0
;
结论:必有
f ( x) x a g ( x)
lim
f ' ( x) A(或) x a g ' ( x)
lim
x a改成x 法则也有效
3、复合函数求导法则,若函数y=f(u)及 u=均可导,则 , dy/dx=f (u) 即复合函数的导数等于复合函数对中间 变量的导数乘以中间变量对自变量的导 数。 法则适用于有限次复合的函数。
即复合函数的导数等于复合函数对中间 变量的导数乘以中间变量对自变量的导 数。 法则适用于有限次复合的函数。 4、隐函数求导法则。若y=f(x)是由方 程F(x.,y)=0确定的可导函数,则其导 数可由方程
( a< b 成 立 , 或 ) f(b)=f(a)+ f ' ( )(b a) (称中值公式)。 说明:罗尔定理和拉格朗日中值定 理的条件是严格的,条件不满足, 结论就不一定成立;但条件仅是充 分条件,即若定理条件不满足,结 论也有可能成立
f ' ( ) f (b) f (a) ba