离散数学及其应用(课后习题)

合集下载

离散数学及应用习题及答案6-3

离散数学及应用习题及答案6-3

§6.3 根树习题6.31.分别画出符合要求的图,如果不能画出,请解释原因。

(1)正则二叉树,4个非叶顶点,5个叶顶点。

(2)正则二叉树,9个叶顶点,高度为3。

(3)正则二叉树,9个叶顶点,高度为4。

解:(1) (2)不能画出,因为高度为3的满正则二叉树的叶子只有8个。

(3)2.求有t 个叶顶点的正则二叉树的最大高度。

解:t 个叶顶点的正则二叉树的顶点数p=2t-1 所以最大高度为t-1。

3.给出一个构造二叉搜索树的算法,要求树的高度最低,并写出这个算法的算法步骤。

解:实际上是构造一颗平衡二叉树,这样左子树与右子树的高度相差不过1.平衡二叉树构建的基本思想:在构建二叉排序树的过程中,每当插入新结点是,先检查是否因插入而破坏了树的平衡性,若是,则找到最小不平衡子树,在保证二叉排序树特性的前提下,调整最小不平衡子树中各节点之间的链接关系,进行左旋或者右旋,使之成为最新的平衡子树。

二叉树上左子树的深度减去右子树的深度的值称为平衡因子BF ,对于平衡因子的处理如下面几种情况:(1) 平衡因子为负数,左旋。

(2) 平衡因子为正数,右旋。

(3) 平衡因子为有正负数,先旋转统一平衡因子的符号,进行双旋转。

4.证明:对于n 个顶点的二叉搜索树,其最小高度为⎡⎤1)1(log 2-+n 。

证明:若二叉树有t 个叶子,则其高度h ≥log 2t ,要使二叉搜索树的高度最小,则需要是平衡二叉树,因此其高度为⎡⎤1)1(log 2-+n 。

5.如果对于每个顶点v 来说,v 的右子树与左子树的高度差不超过1,则称二叉树是平衡的。

试说明图6.7、图6.12和图6.14中的二叉树是否为平衡二叉树。

解:图6.7不是树。

图6.12和6.14都不是平衡二叉树。

6.定义h N 为一个高度为h 的平衡二叉树的最少顶点数,证明:(1)10=N ,21=N ,42=N ;(2)当2≥h 时,有211--++=h h h N N N , 证明:(1) 高度为0时的平衡二叉树只有一个根结点,所以10=N 。

离散数学及其应用集合论部分课后习题答案

离散数学及其应用集合论部分课后习题答案
证明:
34、设A,B为集合,证明:如果 ,则 。
证明:(反证法)
设 ,则 ,
所以 ;
所以
但是 。
与 矛盾。
37、设A,B,C为任意集合,证明: 。
证明:
对任意 ,由于 ,所以 且 所以
因此, 。
P121:习题七
5、设A,B为任意集合,证明
若 ,则 。
证明:
所以有
9、设 ,列出下列关系R
(2)
(3)
解答:
(2)不是,由于 集合较小,
①自反性:
②对称性,
但是传递性不满足, ,但是 。
(3)不是,满足对称性、传递性,但是不满足自反性
取 ,但是 不为奇数,所以 。
(5)满足
①自反性:
②对称性:
③传递性:
下面证明
若 ,则 ,所以
若 ,则 ,所以
所以 ,同理可证,
所以
所以 。因此满足传递性。
27、设 A上的等价关系
(2)不存在反函数,因为不是双射函数;
(3)
22、对于以下集合A和B,构造从A到B的双射函数。
(1)
(2)
(3)
(4)
解答:
(1)
(2)
(3)
(4)
作业答案:集合论部分
P90:习题六
5、确定下列命题是否为真。
(2)
(4)
(6)
解答:(2)假(4)真(6)真
8、求下列集合的幂集。
(5)
(6)
解答:
(5)集合的元素彼此互不相同,所以 ,所以该题的结论应该为
(6)
9、设 , , , ,求下列集合。
(1)
(2)
解答:
(1)

离散数学及其应用第8版答案1

离散数学及其应用第8版答案1

离散数学及其应用第8版答案1.4节1、16.5-(-3)-2的计算结果为()[单选题] *A.3B.4C.0D.6(正确答案)2、50.式子(2+1)(22+1)(24+1)(28+1)…(21024+1)+1化简的结果为()[单选题] *A.21024B.21024+1C.22048(正确答案)D.22048+13、42.已知m、n均为正整数,且2m+3n=5,则4m?8n=()[单选题] *A.16B.25C.32(正确答案)D.644、函数f(x)=-2x+5在(-∞,+∞)上是()[单选题] *A、增函数B、增函数(正确答案)C、不增不减D、既增又减5、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] *A.4B.5C.-6D.-8(正确答案)6、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)7、5.将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是( ) [单选题] *A.关于x轴对称B.关于y轴对称(正确答案)C.关于原点对称D.将原图向x轴的负方向平移了1个单位长度8、25.{菱形}∩{矩形}应()[单选题] *A.{正方形}(正确答案)B.{矩形}C.{平行四边形}D.{菱形}9、11.11点40分,时钟的时针与分针的夹角为()[单选题] * A.140°B.130°C.120°D.110°(正确答案)10、8.如图,在数轴上表示的点可能是()[单选题] * A.点PB.点Q(正确答案)C.点MD.点N11、x? ?1·()=x? ?1,括号内应填的代数式是( ) [单选题] *A. x? ?1B. x? ?1C. x2(正确答案)D. x12、29.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()[单选题] *A.ab=cB.a+b=c(正确答案)C.a:b:c=1:2:10D.a2b2=c213、1.(必修1P5B1改编)若集合P={x∈N|x≤2 022},a=45,则( ) [单选题] *A.a∈PB.{a}∈PC.{a}?PD.a?P(正确答案)14、13.不等式x+3>5的解集为()[单选题] *A. x>1B. x>2(正确答案)C. x>3D. x>415、30°角是()[单选题] *A、第一象限(正确答案)B、第一象限C、第三象限D、第四象限16、1.计算-20+19等于()[单选题] *A.39B.-1(正确答案)C.1D.3917、设函数在闭区间[0,1]上连续,在开区间(0,1)上可导,且(x)>0 则()[单选题] *A、f(0)<0B、f(0)<1C、f(1)>f(0)D、f(1)<f(0)(正确答案)18、15、如果m/n<0,那么点P(m,n)在()[单选题] *A. 第二象限B. 第三象限C. 第四象限D. 第二或第四象限(正确答案)19、8.数轴上一个数到原点距离是8,则这个数表示为多少()[单选题] * A.8或﹣8(正确答案)B.4或﹣4C.8D.﹣420、23.将x-y-6=0改写成用含x的式子表示y的形式为()[单选题] *A. x=y+6B. y=x-6(正确答案)C. x=6-yD. y=6=x21、12.下列方程中,是一元二次方程的为()[单选题] *A. x2+3xy=4B. x+y=5C. x2=6(正确答案)D. 2x+3=022、下面哪个式子的计算结果是9﹣x2() [单选题] *A. (3﹣x)(3+x)(正确答案)B. (x﹣3)(x+3)C. (3﹣x)2D. (3+x)223、如果平面a和平面β有公共点A,则这两个平面就相交()[单选题] *A、经过点A的一个平面B、经过点A的一个平面(正确答案)C、点AD、无法确定24、为筹备班级联欢会,班长对全班同学爱吃哪几种水果做了民意调查,然后决定买什么水果,最值得关注的应该是统计调查数据的( ) [单选题] *A.中位数B.平均数C.众数(正确答案)D.方差25、3.如果两个数的和是正数,那么[单选题] *A.这两个数都是正数B.一个为正,一个为零C.这两个数一正一负,且正数的绝对值较大D.必属上面三种情况之一(正确答案)26、8.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()[单选题] *A.+2B.-3C.+9D.-8(正确答案)27、直线2x+y+m=0和x+2y+n=0的位置关系是()[单选题] *A、平行B、平行C、相交但不垂直(正确答案)D、不能确定28、2005°角是()[单选题] *A、第二象限角B、第二象限角(正确答案)C、第二或第三象限角D、第二或第四象限角29、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)30、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ。

离散数学及应用课后习题答案

离散数学及应用课后习题答案

离散数学及应用课后习题答案【篇一:离散数学及其应用图论部分课后习题答案】p165:习题九1、给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。

(1)g1??v1,e1?,v1?{v1,v2,v3,v4,v5},e1?{(v1,v2),(v2,v3),(v3,v4),(v3,v3),(v4,v5)} (2)g2??v2,e2?,v2?v1,e1?{(v1,v2),(v2,v3),(v3,v4),(v4,v5),(v5,v1)} (3)d1??v3,e3?,v3?v1,e3?{?v1,v2?,?v2,v3?,?v3,v2?,?v4,v5?,?v5,v 1?} (4)d2??v4,e4?,v4?v1,e3?{?v1,v2?,?v2,v5?,?v5,v2?,?v3,v4?,?v4,v 3?} 解答:(1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。

(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。

14、设g是n(n?2)阶无向简单图,g是它的补图,已知?(g)?k1,?(g)?k2,求?(g),(g)。

解答:?(g)?n?1?k2;?(g)?n?1?k1。

15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。

解答:(c)不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d)同构,同构函数为12f(x)345解答:(1)三条边一共提供6度;所以点度序列可能是x?ax?bx?c x?dx?e16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。

①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0,0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1;由于是简单图,①②两种情形不可能图形如下:(2)三条边一共提供6度,所以点度序列可能为①3,3,0;②3,2,1;③2,2,2 由于是简单图,①②两种情形不可能21、在图9.20中,下述顶点序列是否构成通路?哪些是简单通路?哪些是初级通路?哪些是回路?哪些是简单回路?哪些是初级回路?(1)a,b,c,d,b,e;(2)a,b,e,d,b,a;(3)a,d,c,e,b;(4)d,b,a,c,e;(5)a,b,c,d,e,b,d,c;(6)a,d,b,e,c,b,d;(7)c,d,a,b,c;(8)a,b,c,e,b 解答:(1)构成通路,且为初级通路,因为点不重复(2)构成了回路,但是不为简单回路和初级回路,因为有重复的边(a,b) (3)构成了初级通路,因为点不重复;(4)不构成通路,因为边(a,c)不存在;(5)构成通路,但是不为简单通路和初级通路,因为有重复的边(d,c) (6)构成了回路,但是不为简单回路和初级回路,因为有重复的边(d,b) (7)构成了初级通路;(8)简单通路,但是不为初级通路,有重复边。

离散数学及其应用张剑妹课后答案

离散数学及其应用张剑妹课后答案

离散数学及其应用张剑妹课后答案1、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。

记录一被测人员在一周内的体温测量结果分别为+1,-3,-5,+1,-6,+2,-4,那么,该被测者这一周中测量体温的平均值是(??)[单选题] *A.1℃B.31℃C.8℃(正确答案)D.69℃2、37、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是()[单选题] *A.﹣1B.0C.1(正确答案)D.23、下列计算正确的是()[单选题] *A. a2+a2=2a?B. 4x﹣9x+6x=1C. (﹣2x2y)3=﹣8x?y3(正确答案)D. a6÷a3=a24、如果四条不共点的直线两两相交,那么这四条直线()[单选题] *A、必定在同一平面内B、必定在同一平面内C可能在同一平面内,也可能不在同一平面内(正确答案)D、无法判断5、-330°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限6、6.若x是- 3的相反数,|y| = 5,则x + y的值为()[单选题] *A.2B.8C. - 8或2D.8或- 2(正确答案)7、18.下列说法正确的是()[单选题] *A.“向东10米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6℃,记为-6℃,那么+8℃的意义就是下降8℃D.若将高1米设为标准0,高20米记作+20米,那么-05米所表示的高是95米(正确答案)8、下列计算正确的是( ) [单选题] *A. 9a3·2a2=18a?(正确答案)B. 2x?·3x?=5x?C. 3 x3·4x3=12x3D. 3y3·5y3=15y?9、计算的结果是( ) [单选题] *A. -p2?(正确答案)B. p2?C. -p1?D. p1?10、已知二次函数f(x)=2x2-x+2,那么f(0)的值为()。

离散数学及其应用第2版课后练习题含答案

离散数学及其应用第2版课后练习题含答案

离散数学及其应用第2版课后练习题含答案1. 引言《离散数学及其应用》是一本经典的离散数学教材,是计算机科学和数学专业的必修课程。

本文将为读者提供《离散数学及其应用》第2版课后练习题的答案,并希望能够帮助读者加深对离散数学的理解。

2. 答案解析第一章习题 1.11.给定一组七个数字 {1, 3, 3, 4, 6, 9, 12},请给出这组数字的中位数。

答案:中位数为 4。

2.给出两个整数 a 和 b 的三进制表示: a = 111011,b = 101101。

求 a + b。

答案:a + b = 1011000。

3.证明奇奇数的积为奇数。

答案:令两个奇数分别为 2n + 1 和 2m +1,则有:(2n + 1) × (2m + 1) = 4nm + 2n + 2m + 1 = 2(2nm + n + m) + 1,即奇奇数的积还是一个奇数。

习题 1.21.证明:如果一个整数 n 能同时被 2 和 3 整除,则它也能被 6 整除。

答案:首先,n 能同时被 2 和 3 整除,则分别有 n = 2k 和 n = 3m。

联立方程组 2k = 3m,得 k = (3/2)m。

因此,n = 2k = (3m/2) × 2 = 3m× (2/2) = 6m,可以被 6 整除。

2.求 10010 的八进制表示。

答案:将 10010 转换为四位一组的二进制数,得 0010 0100。

将 0010 和 0100 分别转换为八进制数,得 2 和 4。

因此,10010 的八进制表示为 24。

3.已知 547a5 是 11 的倍数,求 a 的值。

答案:根据 11 的倍数的规律,将 547a5 中的奇数位数字相加,再将偶数位数字相加,然后将两个和的差求出来: (5 + 7 + a) - (4 + 5) = 13 + a - 9 = a + 4。

因为547a5 是 11 的倍数,所以 a + 4 也必须是 11 的倍数。

(完整版)离散数学及其应用(课后习题)

(完整版)离散数学及其应用(课后习题)

习题1.12. 指出下列命题是原子命题还是复合命题。

(3)大雁北回,春天来了。

(4)不是东风压倒西风,就是西风压倒东风。

(5)张三和李四在吵架。

解:(3)和(4)是复合命题,(5)是原子命题。

习题1.21. 指出下列命题的真值:(1)若224+>,则太阳从西方升起。

解:该命题真值为T (因为命题的前件为假)。

(3)胎生动物当且仅当是哺乳动物。

解:该命题真值为F (如鸭嘴兽虽是哺乳动物,但不是胎生动物)。

2. 令P :天气好。

Q :我去公园。

请将下列命题符号化。

(2)只要天气好,我就去公园。

(3)只有天气好,我才去公园。

(6)天气好,我去公园。

解:(2)P Q →。

(3)Q P →。

(6)P Q ↔。

习题1.32. 将下列命题符号化(句中括号内提示的是相应的原子命题的符号表示): (1)我去新华书店(P ),仅当我有时间(Q )。

(3)只要努力学习(P ),成绩就会好的(Q )。

(6)我今天进城(P ),除非下雨(Q )。

(10)人不犯我(P ),我不犯人(Q );人若犯我,我必犯人。

解:(1)P Q →。

(3)P Q →。

(6)Q P ⌝→。

(10)()()P Q P Q ⌝→⌝∧→。

习题1.41. 写出下列公式的真值表: (2)()P Q R ∨→。

解:该公式的真值表如下表:2. 证明下列等价公式:(2)()()()P Q P Q P Q ∨∧⌝∧⇔⌝↔。

证明:()(()()) ()()) ()() ()()P Q P Q P Q P Q P Q P Q P Q P Q P Q ⌝↔⇔⌝∧∨⌝∧⌝⇔⌝∧∧⌝⌝∧⌝⇔⌝∧∧∨⇔∨∧⌝∧(4)()()()P Q P R P Q R →∧→⇔→∧。

证明:()()()() () ()P Q P R P Q P R P Q R P Q R →∧→⇔⌝∨∧⌝∨⇔⌝∨∧⇔→∧3. 甲、乙、丙、丁4人参加考试后,有人问他们谁的成绩最好,甲说,不是我。

离散数学及其应用(原书第8版本科教学版)肯尼思奇数题答案

离散数学及其应用(原书第8版本科教学版)肯尼思奇数题答案

离散数学及其应用(原书第8版本科教学版)肯尼思奇数题答案1. 引言离散数学是数学的一个重要分支,研究的对象是离散的数学结构,包括集合、逻辑、代数、图论等。

离散数学在计算机科学、信息技术、密码学等领域有着广泛的应用。

本文主要介绍《离散数学及其应用(原书第8版本科教学版)》一书中的肯尼思奇数题答案。

2. 肯尼思奇数题肯尼思奇数题是《离散数学及其应用》一书中的习题(Chapter 8, Exercise 52)。

题目如下:肯尼思有一袋子里装有若干只标有0或1的球。

每次他从袋子里取出一只球,查看其上的数字,并且将其放回袋子内。

他这样做999次。

最后,他从袋子里取出一个球独立地、查看其上的数字,并根据这个数字决定选课还是买彩票。

假设他在这999次中取出的数字的比例非常接近他最后一次取出的数字的比例:- 如果比例大于等于0.5,则他选择选课;- 如果比例小于0.5,则他选择买彩票。

试问肯尼思选择选课的概率是多少?3. 解答为了解决这个问题,我们可以应用一个离散数学中的概率理论的知识:大数定律(The Law of Large Numbers)。

大数定律指出,对于一个随机试验,若试验次数足够多,那么实验结果呈现的相对频率就接近于该事件的概率。

首先,我们定义一些符号: - N:在肯尼思进行999次试验后,比例大于等于0.5的次数。

- n:在肯尼思进行999次试验后,总共取出的球的数量。

- p:从袋子中取出一只球之后,它上面标有1的概率。

我们的目标是求解肯尼思选择选课的概率。

根据大数定律,我们可以得出以下等式:lim(N/n) = p这里,lim表示随着试验次数趋近无穷大,我们求得的相对频率趋近于概率。

根据题目信息,我们已经知道最后一次取出的球的数字将成为肯尼思决定选课还是买彩票的依据。

因此,我们可以得出以下等式:lim(N/n) = lim(N/(n+1)) = p注意,这个等式的右边是固定的,我们希望求解的是左边的lim(N/n)。

离散数学课后习题答案 (2)

离散数学课后习题答案 (2)

离散数学课后习题答案1. 第一章习题答案1.1 习题一答案1.1.1 习题一.1 答案根据题意,设集合A和B如下:Set A and BSet A and B在此情况下,我们可以得出以下结论:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) }。

因此,习题一.1的答案为:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b,2), (b, 3) }。

1.1.2 习题一.2 答案根据题意,集合A和B如下所示:Set A and BSet A and B根据集合的定义,习题一.2要求我们判断以下命题的真假性:a)$A \\cap B = \\{ 2, 3 \\}$b)$\\emptyset \\in B$c)$A \\times B = \\{ (a, 2), (b, 1), (b, 3) \\}$d)$B \\subseteq A$接下来,我们来逐个判断这些命题的真假性。

a)首先计算集合A和B的交集:$A \\cap B = \\{ x\\,|\\, x \\in A \\, \\text{且} \\, x \\in B \\} = \\{ 2, 3 \\}$。

因此,命题a)为真。

b)大家都知道,空集合是任意集合的子集,因此空集合一定属于任意集合的幂集。

根据题意,$\\emptyset \\in B$,因此命题b)为真。

c)计算集合A和B的笛卡尔积:$A \\times B = \\{ (x, y) \\,|\\, x \\in A \\, \\text{且} \\, y \\in B \\} = \\{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) \\}$。

离散数学课后习题参考答案(可编辑)

离散数学课后习题参考答案(可编辑)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5) P:他今天乘火车去了北京Q:他随旅行团去了九寨沟(7) P:不识庐山真面目Q:身在此山中Q→P,或 ~P→~Q(9) P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3)(4)2、不, 不, 能习题 1.4主合取范式主析取范式3、解:根据给定的条件有下述命题公式:(A→(CD))∧~(B∧C)∧~(C∧D)(~A∨(C∧~D)∨(~C∧D))∧(~B∨~C)∧(~C∨~D) ((~A∧~B)∨(C∧~D∧~B)∨(~C∧D∧~B)∨(~A∧~C)∨(C∧~D∧~C)∨(~C∧D∧~C))∧(~C∨~D) ((~A∧~B)∨(C∧~D∧~B)∨(~C∧D∧~B)∨(~A∧~C)∨(~C∧D∧~C)) ∧(~C∨~D)(~A∧~B∧~C)∨(C∧~D∧~B∧~C)∨(~C∧D∧~B∧~C)∨ (~A∧~C∧~C)∨(~C∧D∧~C∧~C)∨(~A∧~B∧~D)∨(C∧~D∧~B∧~D)∨(~C∧D∧~B∧~D)∨(~A∧~C∧~D)∨(~C∧D∧~C∧~D)(由题意和矛盾律)(~C∧D∧~B)∨(~A∧~C)∨(~C∧D)∨(C∧~D∧~B)(~C∧D∧~B∧A)∨ (~C∧D∧~B∧~A)∨ (~A∧~C∧B)∨(~A∧~C∧~B)∨ (~C∧D∧A)∨ (~C∧D∧~A)∨(C∧~D∧~B∧A)∨(C∧~D∧~B∧~A)(~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨ (~A∧~C∧B∧~D)∨(~A∧~C∧~B∧D)∨ (~A∧~C∧~B∧~D)∨(~C∧D∧A∧B)∨ (~C∧D∧A∧~B)∨ (~C∧D∧~A∧B)∨ (~C∧D∧~A∧~B)∨(C∧~D∧~B∧A)∨(C∧~D∧~B∧~A) (~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨ (~C∧D∧A∧~B)∨(~C∧D∧~A∧B) ∨(C∧~D∧~B∧A)(~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨(C∧~D∧~B∧A) 三种方案:A和D、 B和D、A和C习题 1.51、 (1)需证为永真式(3)需证为永真式为永真式。

离散数学及其应用(徐凤生版)数学习题答案

离散数学及其应用(徐凤生版)数学习题答案

习题一1.判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1)离散数学是计算机专业的一门必修课。

(2)李梅能歌善舞。

(3)这朵花真美丽!(4)3+2>6。

(5)只要我有时间,我就来看你。

(6)x=5。

(7)尽管他有病,但他仍坚持工作。

(8)太阳系外有宇宙人。

(9)小王和小张是同桌。

(10)不存在最大的素数。

解在上述10个句子中,(3)是感叹句,因此它不是命题。

(6)虽然是陈述句,但它没有确定的值,因此它也不是命题。

其余语句都是可判断真假的陈述句,所以都是命题。

其中:(1)、(4) 、(8) 、(9) 、是简单命题,、(2) 、(5) 、(7)、(10) 是复合命题。

2.判断下列各式是否是命题公式,为什么?(1)(P→(P∨Q))。

(2)(⌝P→Q)→(Q→P)))。

(3)((⌝P→Q)→(Q→P))。

(4)(Q→R∧S)。

(5)(P∨QR)→S。

(6)((R→(Q→R)→(P→Q))。

解 (1)是命题公式。

(2)不是命题公式,因为括号不配对。

(3)是命题公式。

(4)是命题公式。

(5)不是命题公式,因为QR没有意义。

(6)不是命题公式,因为R→(Q→R)→(P→Q) 没有意义。

3.将下列命题符号化:(1)我们不能既划船又跑步。

(2)我去新华书店,仅当我有时间。

(3)如果天下雨,我就不去新华书店。

(4)除非天不下雨,我将去新华书店。

(5)张明或王平都可以做这件事。

(6)“2或4是素数,这是不对的”是不对的。

(7)只有休息好,才能工作好。

(8)只要努力学习,成绩就会好的。

(9)大雁北回,春天来了。

(10)小张是山东人或河北人。

解 (1)符号化为⌝(P ∧Q ),其中,P :我们划船,Q :我们跑步。

(2)符号化为Q →R ,其中,R :我有时间,Q :我去新华书店。

(3)符号化为P →⌝Q ,其中,P :天下雨,Q :我去新华书店。

(4)符号化为⌝P →Q ,其中,P :天下雨,Q :我去新华书店。

离散数学及其应用图论部分课后习题答案

离散数学及其应用图论部分课后习题答案
解答:(1)构成通路,且为初级通路,因为点不重复
(2)构成了回路,但是不为简单回路和初级回路,因为有重复的边
(3)构成了初级通路,因为点不重复;
(4)不构成通路,因为边 不存在;
(5)构成通路,但是不为简单通路和初级通路,因为有重复的边
(6)构成了回路,但是不为简单回路和初级回路,因为有重复的边
(7)构成了初级通路;
(8)简单通路,但是不为初级通路,有重复边。
23、用Dijkstra标号法求图9.22中各图从顶点 到其余各点的最短路径和距离。
解答
步骤
1
2
3
4
5
6
7பைடு நூலகம்
到 最短路为 ,路长为6;
到 最短路为 ,路长为3;
到 最短路为 ,路长为5;
到 最短路为 ,路长为6;
到 最短路为 ,路长为12;
到 最短路为 ,路长为7;
那么对于n阶m条边的无向图G是 棵树组成的森林,在任意两棵树中分别找一点进行连一条边,那么得到的图则为n阶m+1条边的无向图G是 棵树组成的森林,
那么 ,所以 。
方法二:设 棵树中,分别有 个顶点和 条边, ,则有
, , ,即可得证。
19、求图10.17中两个带权图的最小生成树。
解答:
P204:习题十一
16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。
解答:
(1)三条边一共提供6度;所以点度序列可能是
①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0,0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1;
由于是简单图,①②两种情形不可能

离散数学及其应用答案徐凤生

离散数学及其应用答案徐凤生

习题1.判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1)离散数学是计算机专业的一门必修课。

(2)李梅能歌善舞。

(3)这朵花真美丽!(4)3+2>6。

(5)只要我有时间,我就来看你。

(6)x=5。

(7)尽管他有病,但他仍坚持工作。

(8)太阳系外有宇宙人。

(9)小王和小张是同桌。

(10)不存在最大的素数。

解在上述10个句子中,(3)是感叹句,因此它不是命题。

(6)虽然是陈述句,但它没有确定的值,因此它也不是命题。

其余语句都是可判断真假的陈述句,所以都是命题。

其中:(1)、(4)、(8)、(9)、是简单命题,、(2)、(5)、(7)、(10)是复合命题。

2.判断下列各式是否是命题公式,为什么?(1)(P→(P∨Q))。

(2)(⌝P→Q)→(Q→P)))。

(3)((⌝P→Q)→(Q→P))。

(4)(Q→R∧S)。

(5)(P∨QR)→S。

(6)((R→(Q→R)→(P→Q))。

解(1)是命题公式。

(2)不是命题公式,因为括号不配对。

(3)是命题公式。

(4)是命题公式。

(5)不是命题公式,因为QR没有意义。

(6)不是命题公式,因为R→(Q→R)→(P→Q)没有意义。

3.将下列命题符号化:(1)我们不能既划船又跑步。

(2)我去新华书店,仅当我有时间。

(3)如果天下雨,我就不去新华书店。

(4)除非天不下雨,我将去新华书店。

(5)张明或王平都可以做这件事。

(6)“2或4是素数,这是不对的”是不对的。

(7)只有休息好,才能工作好。

(8)只要努力学习,成绩就会好的。

(9)大雁北回,春天来了。

(10)小张是山东人或河北人。

解(1)符号化为⌝(P∧Q),其中,P:我们划船,Q:我们跑步。

(2)符号化为Q→R,其中,R:我有时间,Q:我去新华书店。

(3)符号化为P→⌝Q,其中,P:天下雨,Q:我去新华书店。

(4)符号化为⌝P→Q,其中,P:天下雨,Q:我去新华书店。

(5)符号化为P∧Q,其中,P:张明可以做这件事,Q:王平可以做这件事。

DMA#1《离散数学及其应用》第一章部分习题解答(自做,随时可能打脸)

DMA#1《离散数学及其应用》第一章部分习题解答(自做,随时可能打脸)

DMA#1《离散数学及其应⽤》第⼀章部分习题解答(⾃做,随时可能打脸)我读《离散数学及其应⽤》⼀书,所做习题将记录在此,随时打脸,看到哪做到哪写到哪。

本⽂记载第⼀章《基础:逻辑和证明》的练习第⼀章的内容范围很⼴,⽽且从⾼中必修三的基本逻辑学开始,逐渐加深,但开始⼏节的题⽬还不算难(希望后⾯别打脸)1.1 命题逻辑1# a,b,c,d是命题,e,f不是。

其中c是TRUE,d是FALSE,ab请⾃⼰搜索,我是不知道.......2# 命题只有c,e。

其中c⼤概是FALSE吧,e是FALSE。

d和f都不是命题,因为n和x都没有被赋值,因⽽⽆从谈论。

3# a) Linda不⽐Sanjay年轻; b) Mei并不⽐Isabella挣得多(对⽴的是相等和少,写起来⿇烦); c)Moshe不⽐Monica⾼; d) Abby不⽐Ricardo富有。

8# TTFFT9# FTTTT10# a) 本周我没有买彩票(或者买了两张以上);b) 本周我买了⼀张彩票,要么我赢得了百万⼤奖; c) 如果本周我买了⼀张彩票,那么我就赢得百万⼤奖;d) 本周我买了⼀张彩票并且赢得了百万⼤奖;e)我赢的百万⼤奖的充要条件是本周我买了⼀张彩票;f)如果我本周没有买彩票,就不会赢得百万⼤奖;g)我不仅没有在这周买彩票,也没有中奖;h)我要么这周没买彩票,要么就买了⽽且中了奖。

13# (cnblog在哪⾥可以⽤latex,挺难受的。

“与”表⽰为&&,“或”表⽰为||,“⾮”表⽰为not)a) p && q; b) p && (not q); c) not p && not q; d) p||q; e)p → q; f) (p||q)&&(p→not q); g)p ←→ q。

18# TFTT21# 兼或:b,c ; 异或:a,d。

31# 2,16,64,16。

离散数学及其应用数理逻辑部分课后习题答案

离散数学及其应用数理逻辑部分课后习题答案

作业答案:数理逻辑部分P14:习题一1、下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(3 答:简单命题,真命题。

(9)吸烟请到吸烟室去! 答:不是命题。

(12)8是偶数的充分必要条件是8能被3整除。

答:复合命题,假命题。

14、讲下列命题符号化。

(6)王强与刘威都学过法语。

答::p 王强学过法语;:q 刘威学过法语。

符号化为:p q ∧(10)除非天下大雨,他就乘班车上班。

答::p 天下大雨;:q 他乘班车上班。

符号化为:p q →(13)“2或4是素数,这是不对的”是不对的。

答::p 2是素数;:q 4是素数。

符号化为:(())p q ⌝⌝∨15、设:p 2+3=5. :q 大熊猫产在中国。

:r 太阳从西方升起。

求下列复合命题的真值。

(2)(())r p q p →∧↔⌝(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→ 解答: p 真值为1;q 真值为1;r 真值为0.(2)p q ∧真值为1;()r p q →∧真值为1;p ⌝真值为0;所以(())r p q p →∧↔⌝真值为0.(4)p q r ∧∧⌝真值为1,p q ⌝∨⌝真值为0,()p q r ⌝∨⌝→真值为1;所以()(())p q r p q r ∧∧⌝↔⌝∨⌝→真值为1.19、用真值表判断下列公式的类型。

(4)()()p q q p →→⌝→⌝所以为重言式。

(7)所以为可满足式。

P36:习题二3、用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出其成真赋值。

(1)()p q q ⌝∧→ 解答:()(())(())()10p q q p q q p q q p q q ⌝∧→⇔⌝⌝∧∨⇔⌝⌝∨⌝∨⇔⌝⌝∨⌝∨⇔⌝⇔所以为永假式。

(2)(())()p p q p r →∨∨→ 解答:(())()(())()()()1()1p p q p r p p q p r p p q p r p r →∨∨→⇔⌝∨∨∨⌝∨⇔⌝∨∨∨⌝∨⇔∨⌝∨⇔ 所以因为永真式。

离散数学及应用习题及答案5-2

离散数学及应用习题及答案5-2

§5.2 图的连通性习题5.21.证明或否定:(1)简单图G 中有从点u 到点v 的两条不同的通路,则G 中有基本回路。

(2)简单图G 中有从点u 到点v 的两条不同的基本通路,则G 中有基本回路。

解:(1)简单图G 中有从点u 到点v 的两条不同的通道,则G 中有回路。

(2)简单图G 中有从点u 到点v 的两条不同的路,则G 中有回路。

解 (1)不一定:如下图,点1与点3之间有两条通道:(1、2、3)和(1、2、1、2、3),但图中没有回路。

(2)一定:设两条路分别为),,,,,(211v x x x u L m =和),,,,,(212v y y y u L n =。

若对m i ≤≤1,n j ≤≤1有j i y x ≠,则),,,,,,,,,,(12121u y y y y v x x x u n n m -是一条回路。

否则假设l k y x =且是离u 最近的一对(即对k i ≤≤1,l j ≤≤1,不存在j i y x =),则),,,,,,,,,(12121v y y y x x x u l k -是一条回路。

2.设G 是简单图,)(G δ≥2,证明G 中存在长度大于或等于1)(+G δ的基本回路。

证:以图G 中一点v 1出发,与之相邻的点设为v 2,由于)(G δ≥2,则v 2至少还有一个邻接点,设为v 3,若v 3与v 1邻接,则形成长度为1)(+G δ的基本回路,则若v 3不与v 1邻接,则至少还有一个邻接点,设为v 4,若v 4与v 1或v 2邻接,则形成长度为大于或等于1)(+G δ的基本回路,若v 4与v 1和v 2都不邻接,至少还有一个邻接点,设为v 5,…,依次类推,一定可以到达最后一个顶点v i ,由于)(G δ≥2,则除了v i -1外,一定会与前面的某个顶点邻接,就会形成长度为大于或等于1)(+G δ的基本回路。

3.证明:若连通图G 不是完全图,则G 中存在三个点w v u ,,,使E v u ∈)(,,E w v ∈)(,,E w u ∉)(,。

离散数学及其应用课后习题答案

离散数学及其应用课后习题答案

离散数学及其应用课后习题答案【篇一:离散数学及其应用(课后习题)】出下列命题是原子命题还是复合命题。

(3)大雁北回,春天来了。

(4)不是东风压倒西风,就是西风压倒东风。

(5)张三和李四在吵架。

解:(3)和(4)是复合命题,(5)是原子命题。

习题1.21. 指出下列命题的真值:(1)若2?2?4,则太阳从西方升起。

解:该命题真值为t(因为命题的前件为假)。

(3)胎生动物当且仅当是哺乳动物。

解:该命题真值为f(如鸭嘴兽虽是哺乳动物,但不是胎生动物)。

2. 令p:天气好。

q:我去公园。

请将下列命题符号化。

(2)只要天气好,我就去公园。

(3)只有天气好,我才去公园。

(6)天气好,我去公园。

解:(2)p?q。

(3)q?p。

(6)p?q。

习题1.32. 将下列命题符号化(句中括号内提示的是相应的原子命题的符号表示):(1)我去新华书店(p),仅当我有时间(q)。

(3)只要努力学习(p),成绩就会好的(q)。

(6)我今天进城(p),除非下雨(q)。

(10)人不犯我(p),我不犯人(q);人若犯我,我必犯人。

解:(1)p?q。

(3)p?q。

(6)?q?p。

(10)(?p??q)?(p?q)。

习题1.41. 写出下列公式的真值表:(2)p?(q?r)。

解:该公式的真值表如下表:2. 证明下列等价公式:(2)(p?q)??(p?q)??(p?q)。

证明:?(p?q)??((p?q)?(?p??q))??(p?q)??(?p??q))??(p?q)?(p?q) ?(p ?q)??(p?q)(4)(p?q)?(p?r)?p?(q?r)。

证明:(p?q)?(p?r)?(?p?q)?(?p?r)??p?(q?r)?p?(q?r)3. 甲、乙、丙、丁4人参加考试后,有人问他们谁的成绩最好,甲说,不是我。

乙说:是丁。

丙说:是乙。

丁说:不是我。

已知4个人的回答只有一个人符合实际,问成绩最好的是谁?解:设a:甲成绩最好。

b:乙成绩最好。

离散数学与应用数理逻辑部分课后习题答案

离散数学与应用数理逻辑部分课后习题答案
(1)
解答:所以为永假式。( Nhomakorabea)解答:
所以因为永真式。
(3)
解答:
为可满足式。
真值表为
0
0
0
0
0
1
0
0
1
1
0
0
0
1
0
1
0
0
0
1
1
1
0
0
1
0
0
1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
1
1
1
1
1
4、用等值演算法证明下面的等值式。
(2)
解答:
(4)
解答:
5、求下列公式的主析取范式,并求它们的成真赋值。
(1)
解答:
所满足的条件即为
(1)若赵去,钱也去: ;
(2)李、周两人中必有一人去: ;
(3)钱、孙两人中去且仅去一人: ;
(4)孙、李两人同去或同不去: ;
(5)若周去,则赵、钱也同去: 。
将所有条件进行合取,然后求其主析取范式
(过程省略)
所以最终方案有两套:
(1)赵钱周不去,孙李去;(2)赵钱周去,孙李不去。
解答:
(1)命题符号化: A曾到过受害者房间; A在11点以前离开;
A就是谋杀嫌疑犯; 看门人会看见过A;
(2)推理的形式结构:
前提:
结论:
(3)证明
① 前提引入
② 前提引入
③ ①②拒取式
④ 前提引入
⑤ ③④合取
⑥ 前提引入
⑦ ⑤⑥假言推理。
P63:习题四

离散数学及其应用习题答案

离散数学及其应用习题答案

离散数学及其应用习题答案离散数学是一门研究离散结构的数学学科,它在计算机科学、信息科学、电子工程等领域中有着广泛的应用。

通过学习离散数学,我们可以培养出逻辑思维、抽象思维和解决问题的能力。

在学习离散数学的过程中,习题是不可或缺的一部分。

本文将回答一些离散数学中的常见习题,帮助读者更好地理解和应用离散数学的知识。

1. 集合论习题1.1 求解集合的交、并、差运算对于给定的集合A={1,2,3,4}和B={3,4,5,6},求解A∩B、A∪B和A-B。

解答:A∩B={3,4},A∪B={1,2,3,4,5,6},A-B={1,2}。

1.2 判断集合关系对于给定的集合A={1,2,3,4}和B={3,4,5,6},判断A是否是B的子集。

解答:A不是B的子集,因为A中的元素2不属于B。

2. 图论习题2.1 判断图的连通性给定一个无向图G,其顶点集合为V={1,2,3,4},边集合为E={(1,2),(2,3),(3,4)},判断图G是否连通。

解答:图G是连通的,因为任意两个顶点之间都存在一条路径。

2.2 求解最短路径给定一个有向图G,其顶点集合为V={A,B,C,D},边集合为E={(A,B,2),(A,C,3),(B,D,4),(C,D,1)},求解从顶点A到顶点D的最短路径。

解答:最短路径为A-C-D,路径长度为4。

3. 命题逻辑习题3.1 判断命题的真假给定命题P: "如果今天下雨,那么我就带伞",命题Q: "我带了伞",判断P→Q 的真假。

解答:由于P和Q都是真命题,且"真命题→真命题"为真命题,所以P→Q为真命题。

3.2 求解命题的合取范式给定命题P: "如果今天下雨,那么我就带伞",命题Q: "我没有带伞",将P∧Q 转化为合取范式。

解答:P∧Q的合取范式为"(¬P∨¬Q)"。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1.12. 指出下列命题是原子命题还是复合命题。

(3)大雁北回,春天来了。

(4)不是东风压倒西风,就是西风压倒东风。

(5)张三和李四在吵架。

解:(3)和(4)是复合命题,(5)是原子命题。

习题1.21. 指出下列命题的真值:(1)若224+>,则太阳从西方升起。

解:该命题真值为T (因为命题的前件为假)。

(3)胎生动物当且仅当是哺乳动物。

解:该命题真值为F (如鸭嘴兽虽是哺乳动物,但不是胎生动物)。

2. 令P :天气好。

Q :我去公园。

请将下列命题符号化。

(2)只要天气好,我就去公园。

(3)只有天气好,我才去公园。

(6)天气好,我去公园。

解:(2)P Q →。

(3)Q P →。

(6)P Q ↔。

习题1.32. 将下列命题符号化(句中括号内提示的是相应的原子命题的符号表示): (1)我去新华书店(P ),仅当我有时间(Q )。

(3)只要努力学习(P ),成绩就会好的(Q )。

(6)我今天进城(P ),除非下雨(Q )。

(10)人不犯我(P ),我不犯人(Q );人若犯我,我必犯人。

解:(1)P Q →。

(3)P Q →。

(6)Q P ⌝→。

(10)()()P Q P Q ⌝→⌝∧→。

习题1.41. 写出下列公式的真值表: (2)()P Q R ∨→。

解:该公式的真值表如下表:2. 证明下列等价公式:(2)()()()P Q P Q P Q ∨∧⌝∧⇔⌝↔。

证明:()(()()) ()()) ()() ()()P Q P Q P Q P Q P Q P Q P Q P Q P Q ⌝↔⇔⌝∧∨⌝∧⌝⇔⌝∧∧⌝⌝∧⌝⇔⌝∧∧∨⇔∨∧⌝∧(4)()()()P Q P R P Q R →∧→⇔→∧。

证明:()()()() () ()P Q P R P Q P R P Q R P Q R →∧→⇔⌝∨∧⌝∨⇔⌝∨∧⇔→∧3. 甲、乙、丙、丁4人参加考试后,有人问他们谁的成绩最好,甲说,不是我。

乙说:是丁。

丙说:是乙。

丁说:不是我。

已知4个人的回答只有一个人符合实际,问成绩最好的是谁?解:设A :甲成绩最好。

B :乙成绩最好。

C :丙成绩最好。

D :丁成绩最好。

四个人所说的命题分别用P Q R S 、、、表示,则P A ⇔⌝;Q A B C D ⇔⌝∧⌝∧⌝∧;R A B C D ⇔⌝∧∧⌝∧⌝;S D ⇔⌝。

则只有一人符合实际的命题K 符号化为()()()()K P Q R S P Q R S P Q R S P Q R S ⇔∧⌝∧⌝∧⌝∨⌝∧∧⌝∧⌝∨⌝∧⌝∧∧⌝∨⌝∧⌝∧⌝∧()() ()() ()()()()(P Q R S A A B C D A B C D D A A B C D A B C D D A D A B C D A B C D A B C D ∧⌝∧⌝∧⌝⇔⌝∧⌝⌝∧⌝∧⌝∧∧⌝⌝∧∧⌝∧⌝∧⇔⌝∧∨∨∨⌝∧∨⌝∨∨∧⇔⌝∧∧∨∨∨⌝∧∨⌝∨∨⇔⌝∧∧∧∨⌝)()() 0;A B D A B C D A C D ∧∧∨⌝∧⌝∧∧∨⌝∧∧⇔同理,()0;P Q R S A A B C D A B C D D ⌝∧∧⌝∧⌝⇔∧⌝∧⌝∧⌝∧∧⌝⌝∧∧⌝∧⌝∧⇔()0;P Q R S A A B C D A B C D D ⌝∧⌝∧∧⌝⇔∧⌝⌝∧⌝∧⌝∧∧⌝∧∧⌝∧⌝∧⇔ ()() ()() .P Q R S A A B C D A B C D DA ABCD A B C D D A D ⌝∧⌝∧⌝∧⇔∧⌝⌝∧⌝∧⌝∧∧⌝⌝∧∧⌝∧⌝∧⌝⇔∧∨∨∨⌝∧∨⌝∨∨∧⌝⇔∧⌝ 所以,当K 为真时,A D ∧⌝为真,即甲的成绩最好。

习题1.52. 证明下列各蕴含式:(3)()()()P Q R P Q P R →→⇒→→→。

证明:方法一:真值表法(列出命题公式(())(()())P Q R P Q P R →→→→→→的真值表)。

方法二:等值演算法(())(()())(())(()())(())()()()()()()(()())()()()()()1.P Q R P Q P R P Q R P Q P R P Q R P Q P R P Q R P Q P R P Q R P P R Q P R P Q R Q P R P Q P R Q Q P R R Q P R →→→→→→⇔⌝→→∨→→→⇔⌝⌝∨⌝∨∨⌝⌝∨∨⌝∨⇔∧∧⌝∨∧⌝∨⌝∨⇔∧∧⌝∨∨⌝∨∧⌝∨⌝∨⇔∧∧⌝∨⌝∨⌝∨⇔∨⌝∨⌝∨∨∨⌝∨⌝∨∨⌝∨⌝∨⌝∨⇔方法三:分析法(1)直接分析法:若前件()P Q R →→为真,分两种情况:(I )P 为假,则P Q →为真,P R →为真,()()P Q P R →→→为真。

(II )P 为真,则Q R →为真,此时若Q 为真,则R 为真,则P Q →为真,P R →为真,()()P Q P R →→→为真;若Q 为假,则P R →为假,()()P Q P R →→→为真。

综上,若前件为真,后件必为真,故该蕴含式成立。

(2)间接分析法:若后件()()P Q P R →→→为假,则P Q →为真,P R →为假。

由P R →为假可知,P 为真,R 为假。

再由P Q →可知,Q 为真。

此时Q R →为假,()P Q R →→为假,即前件为假。

故蕴含式成立。

5. 叙述下列各个命题的逆换式和逆反式,并以符号写出。

(1)如果下雨,我不去。

解:设P :天下雨。

Q :我去。

逆换式:如果我不去,天就下雨。

符号表示为Q P ⌝→。

逆反式:如果我去,天就不下雨。

符号表示为Q P →⌝。

(2)仅当你走我将留下。

解:设P :我留下。

Q :你走。

逆换式:如果你走,我就留下。

符号表示为:Q P →。

逆反式:如果你不走,我就不留下。

符号表示为:Q P ⌝→⌝。

2. 将下列命题公式用只含∨和⌝的等价式表达,并要求尽可能简单。

(1)().P Q P ∧∧⌝解: ()()P Q P P P Q ∧∧⌝⇔∧⌝∧00.Q ⇔∧⇔ (2)(()).P Q R P Q →∨⌝∧⌝∧解: (())(())P Q R P Q P Q R P Q →∨⌝∧⌝∧⇔⌝∨∨⌝∧⌝∧()()()()P Q R P Q P P Q P Q Q P Q R ⇔⌝∨∨⌝∧⌝∧⇔⌝∧⌝∧∨⌝∧∧∨⌝∧∧⌝ ()()()()()P Q P Q P Q R P Q P Q R ⇔⌝∧∨⌝∧∨⌝∧∧⌝⇔⌝∧∨⌝∧∧⌝ ()()P Q P Q R P Q ⇔⌝∧∨⌝∧∧⌝⇔⌝∧ ().P Q ⇔⌝∨⌝(3)().P Q R P ⌝∧⌝∧⌝→解: ()()P Q R P P Q R P ⌝∧⌝∧⌝→⇔⌝∧⌝∧∨()()()0P Q R P Q P P Q R ⇔⌝∧⌝∧∨⌝∧⌝∧⇔⌝∧⌝∧∨ ().P Q R P Q R ⇔⌝∧⌝∧⇔⌝∨∨⌝习题1.76.求下列命题公式的主析取范式和主合取范式: (1)(()).P Q R P ∨→→解: (())(())P Q R P P Q R P ∨→→⇔⌝⌝∨∨∨(())()()()()P Q R P P Q P P R P Q P R ⇔∨∧⌝∨⇔∨∨∧∨⌝⇔∨∧∨⌝ (())(())P Q R R P Q Q R ⇔∨∨∧⌝∧∨∧⌝∨⌝()()()()P Q R P Q R P Q R P Q R ⇔∨∨∧∨∨⌝∧∨∨⌝∧∨⌝∨⌝ ()()()P Q R P Q R P Q R ⇔∨∨∧∨∨⌝∧∨⌝∨⌝ 013M M M ⇔∧∧(主合取范式)24567.m m m m m ⇔∨∨∨∨(主析取范式)1. 证明()()().P Q P R R S S Q ⌝∨⌝∧⌝→∧→⌝⇒→⌝ 证明: (1)S P (附加前提) (2)R S →⌝ P(3)S R →⌝ T (2)E (4)R ⌝ T (1)(3)I (5)P R ⌝→ P(6)R P ⌝→ T (5)E (7)P T (4)(6)I (8)P Q ⌝∨⌝ P(9)Q ⌝ T (7)(8)I (10)S Q →⌝ CP2.用间接证法证明()P Q R →⌝→,Q P →⌝,S R →⌝,.P S ⇒⌝ 证明: (1)S P (附加前提) (2)S R →⌝ P (3)R ⌝ T (1)(2)I (4)P P (5) ()P Q R →⌝→ P (6)Q R ⌝→ T(4)((5)I (7)Q T(3)(6)I (8) Q P →⌝ P(9)P ⌝ T(7)(8)I (10)P P ∧⌝(矛盾式) T(4)(9)I由(10)得出了矛盾,根据归谬法说明原推理正确。

5.“如果下雨,春游就会改期;如果没有球赛,春游就不会改期。

结果没有球赛,所以没有下雨。

”证明上述论断正确。

解:设P :下雨。

Q :有球赛。

R :春游改期。

则上述论断转化为要证明P R →,Q R ⌝→⌝,Q ⌝.P ⇒⌝证: (1)Q ⌝ P (2)Q R ⌝→⌝ P(3)R ⌝ T (1)(2)I (4)P R → P(5)P ⌝ T (3)(4)I 因此,上述推理正确。

7. 证明R S ∨是前提C D ∨,C R →,D S →的有效结论。

证明: (1)C D ∨ P(2)C D ⌝→ T (1)E (3)D S → P(4)C S ⌝→ T (2)(3)I (5)C R → P(6)R C ⌝→⌝ T (5)E (7)R S ⌝→ T (4)(6)I (8)R S ∨ T (7)E习题2.1用谓词表达式写出下列命题: (5)每个有理数是实数。

解:(()())x Q x R x ∀→,其中()Q x :x 是有理数。

()R x :x 是实数。

(6)有的函数连续。

解:(()())x F x C x ∃∧,其中()F x :x 是函数。

()C x :x 连续。

习题2.22. 将下列命题符号化: (3)没有人登上过木星。

解:设()M x :x 是人。

()A x :x 登上过木星。

则命题可表示为()()()().x M x A x ⌝∃∧3. 符号化下列命题:(2)尽管有人聪明,但未必一切人都聪明。

解:设()M x :x 是人。

()C x :x 聪明。

则命题可表示为 (()())(()()).x M x C x x M x C x ∃∧∧⌝∀→习题2.32. 对下列谓词公式中约束变元进行换名: (1)((,)())(,)x y P x z Q y S x y ∀∃→↔(2)((()(()()))())(,)x P x R x Q x xR x zS x z ∀→∨∧∃→∃解:(1)((,)())(,)u v P u z Q v S x y ∀∃→↔(2)((()(()()))())(,)u P u R u Q u vR v zS x z ∀→∨∧∃→∃3. 对下列谓词公式中自由变元进行代入:(1)((,)(,))(,,)yA x y xB x z x zC x y z ∃→∀∧∃∀ (2)((,)(,))(,)yP x y zQ x z xR x y ∀∧∃∨∀解:(1)((,)(,))(,,)yA s y xB x w x zC x t z ∃→∀∧∃∀ (2)((,)(,))(,)yP s y zQ s z xR x t ∀∧∃∨∀习题2.43. 证明下列等价式:(1)(()())(()()).x P x Q x x P x Q x ⌝∃∧⇔∀→⌝ 证明:(()())x P x Q x ⌝∃∧ (()())x P x Q x ⇔∀⌝∧ (()())x P x Q x ⇔∀⌝∨⌝ (()())x P x Q x ⇔∀→⌝(2)(()())(()()).x P x Q x x P x Q x ⌝∀→⇔∃∧⌝ 证明:(()())x P x Q x ⌝∀→ (()())x P x Q x ⇔∃⌝→ (()())x P x Q x ⇔∃⌝⌝∨ (()())x P x Q x ⇔∃∧⌝习题2.5求下列谓词公式的前束析取范式和前束合取范式: (1)()()()().x P x x Q x ∀→∃ 解:()()()()x P x x Q x ∀→∃()()()()x P x x Q x ⇔⌝∀∨∃ ()()()()x P x x Q x ⇔∃⌝∨∃()(()())x P x Q x ⇔∃⌝∨ (前束析取范式、前束合取范式)(2)()()(()((,)(,))()(,,)).x y z P x z P y z u Q x y u ∀∀∃∧∨∃ 证明:()()(()((,)(,))()(,,))x y z P x z P y z u Q x y u ∀∀∃∧∨∃()()()(((,)(,))()(,,))x y z P x z P y z u Q x y u ⇔∀∀∃∧∨∃ (辖域扩张)()()()()(((,)(,))(,,))x y z u P x z P y z Q x y u ⇔∀∀∃∃∧∨ (辖域扩张)(前束析取范式) ()()()()(((,)(,,))((,)(,,)))x y z u P x z Q x y u P y z Q x y u ⇔∀∀∃∃∨∧∨ (前束合取范式)习题2.61. 证明下列各式。

相关文档
最新文档