福建省泉州市七年级数学上册 3.1 代数式教案 北师大版【精品教案】
七年级数学上册 第三章《代数式》教案 (新版)北师大版
第三章《代数式》教案(新版)北师大版一、学生起点分析本节课是教材第三章《字母表示数》的第二节,在此之前,学生对有理数及有理数的运算有了一定的基础,在第一节中对于字母表示数已具有一定的认知水平,并且学生从小学开始就已经和字母有了接触,从小学到初中的数的运算实质就是代数式的运算,在此基础上导入代数式和代数式值的内容,对学生来说无疑是一个良好的时机.学生主动参与意识增强,课堂氛围进一步浓烈,分析能力和综合思维能力都有了一定程度的提高,很多同学都已能够将数学知识与生活实际联系起来,这样将有利于学生掌握代数式和代数式值的意义,解决有关代数式的运用问题.二、教学任务分析本课时的教学内容直奔教学主题――代数式的意义,降低了教学的难度,有效地克服了学生的心里障碍,并结合上一节的内容很自然地引入了代数式值的意义,再通过具体的情境来列代数式并求其值,然后通过反问代数式还能表示哪些实际意义,将教学活动引向高潮,激发学生联想、类比,进一步拓展学生的思维,同时也进一步调动了学生学习的积极性,最后教材提供了一个刻画有趣现象的经验公式――蟋蟀叫的次数与温度的关系,既使学生感悟了数学建模的思想,又使学生在轻松愉快的环境中加深了对代数式和求代数式值的理解.教学中要充分利用实际的背景,争取学生主动参与,通过丰富有趣的活动让学生经历符号化的过程,以及运用它推断代数式所反映规律的过程,同时也可以借助多媒体辅助教学来提供更多的实际背景,从而拓展学生的思维,在进行从语言到代数式、从代数式到语言转化的过程中,要注重培养学生正确运用数学语言进行表达和交流的能力.根据以上分析,确定本节课的教学目标如下:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值.(知识与技能)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.(过程与方法)3.在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心。
3.1 代数式(教案)北师大版(2024)数学七年级上册
第三章整式及其加减3.1代数式第1课时用字母表示数1.能用字母表示数量关系.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识;2.理解代数式的概念,能用代数式表示简单实际问题中的数量关系.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示教材第77页图3-1,提出问题:(1)按图3-1的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.学生小组交流后回答,教师讲评,并进一步讲解第(4)题的两种思考方法:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒[4+3(x-1)]根.上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x+x+(x+1)]根火柴棒.教师:今天这节课,我们就来学习用字母表示数.二、探究新知1.用含字母的式子表示数量关系教师:通过探究,我们发现字母可以表示任何一个数.(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流.学生汇报答案后,教师讲评:列代数式时,先找出题目中表示运算关系的词,然后理清关系,分清运算顺序,最后按代数式的书写格式规范地列出代数式.2.代数式的概念(1)今年李华m岁,去年李华________岁,5年后李华________岁.(2)a个人n天完成一项工作,那么平均每人每天的工作量为________.(3)某商店上月的收人为a元,本月收人比上月收入的2倍还多10元,本月收人是________元.(4)如果正方体的棱长是a-1,那么正方体的体积是________,表面积是________.学生独立完成后汇报答案.教师点评、分析:像这样用运算符号把数和字母连接而成的式子叫作代数式.课件出示练习:指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.学生思考后举手回答.教师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?学生讨论交流,教师指导、评价.3.代数式的书写要求(1)数字与字母、字母与字母相乘,“×”通常用“·”表示或省略不写,并把数字写在字母的前面.带分数与字母相乘时,应把带分数化为假分数;注:数字与数字相乘,“×”不能用“·”表示,也不可省略.(2)除法运算应写成分数的形式;(3)代数式中相同字母或因式的积用乘方形式表示;(4)代数式为和或差的形式,且后面有单位时,要把代数式用括号括起来.三、课堂练习1.教材第78页“随堂练习”.2.填空.(1)一个三角形的三条边的长分别是a,b,c,则这个三角形的周长为a+b+c;(2)张强比王华大3岁,当张强a岁时,王华的年龄是(a-3)岁;(3)圆的半径是R厘米,它的面积是πR2.四、课堂小结通过本节课的学习,你有什么收获?先让学生举手分享自己的收获,教师再简单归纳:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数和公式,这样给我们研究问题带来了很大的方便.五、课后作业教材第82页习题3.1第1,2,3题.本节课的内容是今后进一步学习代数知识的基础.用字母表示数对学生来说比较抽象,在教学过程中,用实物或生活事例讲解,让学生体会、认识到用字母表示数在实际生活和学习中的广泛应用,感受到数学就在身边,体现了数学与生活的联系.同时,重视引导学生经历用字母表示数的过程,初步感受代数的思想,在解决问题的过程中深化了对数学知识的认识.本节课讲练相结合,鼓励学生参与其中,调动他们的学习积极性.第2课时列代数式1.理解代数式的概念,能用代数式表示简单实际问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示问题:如图为一阶梯的纵截面,一只老鼠沿阶梯的两边A -B -C 的路线逃跑,一只猫同时沿阶梯(折线)A -C -B 的路线去追,结果在距离C 点0.6 m 的D 处猫捉住老鼠,已知老鼠的速度是猫的89 ,你能求出阶梯A -C 的长度吗?教师:要想解决这个问题,让我们先来学习本节课的内容.二、探究新知1.列代数式课件出示问题:列代数式,并求值.某景点的门票价格:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37名成人、15名学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费(10x +5y )元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.因此,他们应付门票费445元.学生思考后汇报答案,教师追问:代数式10x+5y还可以表示什么?.教师:通过上面的练习,同学们思考一下,实际问题中该怎样列代数式呢?关键是什么?学生分小组讨论后汇报答案,教师点评并进一步指出:(1)列代数式,要以不改变原题叙述的数量关系为原则(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系列成代数式,是为今后学习列方程解应用题做准备,一定要牢固掌握.课件出示问题:营养学家通常用身体质量指数(简称BMI)衡量人体胖瘦程度,这个指数等于人体体重(单位:kg)与人体身高(单位:m)平方的商.对于成年人来说,BMI在18.5与24之间,体重适中;BMI低于18.5,体重过轻;BMI高于24,体重超重.(1)设一个人的体重为w kg,身高为h m,请用含w,h的代数式表示这个人的BMI.(2)张老师的身高为1.75 m,体重为65 kg,他的体重是否适中?(3)BMI对未成年人的胖瘦程度也有一定参考意义,请计算你的BMI.2.求代数式的值填写下表,并观察5n+6和n2这两个代数式的值的变化情况.(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生举手回答,教师进一步讲解:我们知道,表示数的字母具有任意性和确定性,如5n+6中n可取任何有理数,当给出未知数(字母)的值时,如n=5,则5n+6就是一个确定的值.一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.课件出示练习:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.学生解答并写出解答过程,教师点评并提出问题:求代数式的值应分哪几步?学生:求代数式的值的步骤:(1)代入;(2)计算.教师点评,并指出求代数式的值时需注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.三、课堂练习1.教材第79页“随堂练习”第1~3题.四、课堂小结1.怎样列代数式?2.怎样求代数式的值?3.列代数式时应该注意哪些事项?五、课后作业1.教材第82页习题3.1第2,3,4题.代数式是以后数学学习的基础.本节课通过生动的实例,导入新课.在教学过程中,讲练相结合,使学生深刻了解列代数及求代数式的值的意义.在课堂上,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错、归纳、创新中学习新知识.利用实际例子,引出代数式在实际背景下所表示的意义,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.在解题的过程中,注意规范学生的书写格式,对于发现的问题及时处理.第3课时整式1.理解单项式及单项式的系数、次数的概念,会确定一个单项式的系数和次数;2.掌握多项式及其项、次数的概念,会确定一个多项式的项和次数;3.理解整式的概念,会判断一个代数式是否为整式.重点掌握单项式、多项式及其相关概念和整式的概念.难点单项式的系数和次数,多项式的次数与项数.一、导入新课课件出示问题:请用含字母的式子表示:一个组合柜如图3-2所示,内部用隔板纵向分隔成5个独立的小柜子(如图3-3),柜门由5个完全相同的长方形组成.(1)若要在5个柜门的周边都贴上装饰条,则所需装饰条的总长度是多少?(2)若要给柜门外表面喷漆,则需要喷漆的面积是多少(边框缝隙忽略不计)?(3)设柜子的进深为c(如图3-2),则整个柜子的容积是多少(柜门、隔板及背板的厚度忽略不计)?二、探究新知1.单项式教师:观察上面所列代数式,它们包含哪些运算?有何共同运算特征?学生小组讨论后,派代表回答,教师适当点拨.并讲解单项式的概念:即由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如5ab,5abc,3v,6p.课件出示问题:下列代数式中哪些是单项式?(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5.学生完成后举手回答.教师直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式的系数的概念并板书:单项式中的数字因数叫作这个单项式的系数.接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式的次数的概念并板书:单项式中所有字母的指数和叫作单项式的次数.课件出示练习:判断下列说法是否正确.(1)-7xy2的系数是7;(2)-x 2y 3和x 3都没有系数;(3)-ab 3c 2的次数是0+3+2;(4)-a 3的系数是-1;(5)-32x 2y 3的次数是7;(6)πr 2h 的系数是π.学生完成后汇报答案,教师点评并强调:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和时不能省略.2.多项式课件出示问题:(1)一个数比x 的2倍小3,则这个数是________;(2)x 的13 与y 的12 的差是________.教师:观察以上两小题所得出的代数式,它们与单项式有何区别与联系?学生思考后举手回答,教师补充完善.教师引导学生自己归纳出多项式的概念,并补充完善:像这样,几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.其中,不含字母的项,叫作常数项.例如,多项式x 2-2x +5有三项,它们是x 2,-2x ,5,其中5是常数项.一个多项式含有几项,就叫作几项式.多项式中次数最高的项的次数,叫作这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.单项式和多项式统称为整式.课件出示练习:判断下列说法是否正确.(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.学生完成后汇报答案,教师点评并强调:多项式的次数不是所有项的次数之和,而是最高次项的次数.三、课堂练习1.请列出下列问题中的代数式,并指出其中:①哪些是单项式?单项式的系数和次数分别是多少?②哪些是多项式?多项式的次数是多少?(1)如图3-4,一个十字形花坛铺满了草皮,这个花坛草地面积是多少?(2)当水结冰时,其体积大约会比原来增加1/9,x m3的水结成冰后体积是多少?(3)如图3-5,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b ,c .这个箱子露在外面的表面积是多少?(4)某件商品的成本价为a 元,按成本价提高15%标价,后又以八折(即按标价的80%)销售,这件商品的售价为多少元?2.教材第82页“随堂练习”.3.填空.(1)若正方形的边长为a ,则正方形的面积是a 2;(2)若三角形的一边长为a ,且这边上的高为h ,则这个三角形的面积为12 ah ;(3)若正方体的棱长为x ,则正方体的表面积是6x 2;(4)若m 为有理数,则它的相反数是-m ;(5)小明每个月从零花钱中储存x 元钱用来捐款,一年下来小明捐款12x 元.【答案】1.(1)ab -4c 2,多项式,次数是2 (2)109 x ,单项式,次数是1 (3)ab +ac +bc ,多项式,次数是2 (4)0.92a ,单项式,次数是1四、课堂小结1.单项式及单项式的系数、次数分别是什么?2.多项式及其次数、项数、常数项分别是什么?3.什么是整式?五、课后作业教材第82页习题3.1第5,6,8,9题.“整式”属于“代数式”的领域,是在学习了用字母表示数,用代数式表示实际问题中的数量关系的基础上,进一步研究用含字母的式子表示实际问题的数量关系.整式是代数式中最基本的式子,是实际的需要,也是今后学习分式、一元二次方程等知识的基础,起到承前启后的作用.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念.对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟.。
北师大版(2024)七年级数学上册+3.1+代数式+第一课时+字母代表数++课件
3.1 代数式
第1课时
代数式的概念
学习目标
1.理解用字母表示数的意义.(重点)
2.能用字母表示以前学过的运算律和计算公式.
3.能用代数式表示一些简单问题中的数量关系.(难点)
一只青蛙 1 张嘴,2 只眼睛 4 条腿,1 声扑通跳下水;
两只青蛙 2 张嘴,4 只眼睛 8 条腿,2 声扑通跳下水;
(3) 如果用 n表示所搭正方形的个数, 那么搭 n 个这样的正方形需要多少根火柴?
1.用火柴棒按下面方式搭图,填写表格
图形编号
11
2
2
3
3
火柴棒根数
7
12
17
44
22
…
…
n
5n+2
二 用字母表示数
在上面的活动中,我们借助字母描述了正方
形的个数和火柴棒的根数之间的关系.
你能否举出一些字母表示数和数量关系的例子?
母的前面.如 3×y,应 写成 3y,不能写成 y3;
注:数字与数字相乘,“×”不能用“·”表示, 也不可省略.
(2)带分数与字母相乘,带分数必须化成假分数.如 3 ×y,应
写成
y,不能写成 3 y;
(3)除法运算要写成分数的形式.如 a÷(x-y)应写成
.
−
(4)相同字母或因式相乘时应写成幂的形式.如 aaa(x-y)(x-y)应
1、2ห้องสมุดไป่ตู้3题.
三只青蛙 3 张嘴,6 只眼睛 12 条腿,3 声扑通跳下水;
十只青蛙__10__张嘴,__20__只眼睛___40_条腿,__10__声扑通跳下水;
一百只青蛙_100___张嘴,___200_只眼睛__400__条腿,__100__声扑通跳下水;
3.1代数式课时2教学设计2024—-2025学年北师大版数学七年级上册
四、教学方法与策略
1. 针对本章节内容,采用讲授与讨论相结合的教学方法,通过案例研究激发学生兴趣,引导他们探索代数式的性质和化简方法。结合项目导向学习,设计实际问题,让学生在实践中运用所学知识。
作用与目的:
- 巩固代数式的性质和化简方法,提升解题技能。
- 拓宽学生的知识视野,激发学习兴趣。
- 通过反思,帮助学生形成良好的学习习惯,促进个人成长。
六、拓展与延伸
1. 拓展阅读材料:
- 《数学之美》:介绍数学在日常生活和科技发展中的重要作用,特别是代数式在解决问题中的应用。
- 《趣味代数》:通过丰富的实例和趣味问题,展示代数式的灵活运用和化简技巧。
- 解答疑问:及时解答学生在活动中产生的疑问。
学生活动:
- 听讲并思考:认真听讲,对老师提出的问题进行思考。
- 参与课堂活动:在小组竞赛中积极参与,尝试解决实际问题。
- 提问与讨论:对不懂的问题提出疑问,与同学和老师讨论。
教学方法/手段/资源:
- 讲授法:确保学生掌握代数式的性质和化简方法。
- 实践活动法:通过竞赛,增强学生对知识点的应用。
- 数学写作:鼓励学生撰写数学小论文或研究报告,分享他们在代数式学习中的发现和心得。
七、内容逻辑关系
① 重点知识点:
- 代数式的概念及其性质
- 代数式的化简方法与技巧
- 代数式在实际问题中的应用
② 逻辑关系词句:
- 代数式的定义:用字母表示数的式子,它是数学表达的基本形式。
七年级数学上册 3.2.1 代数式教案 (新版)北师大版-(新版)北师大版初中七年级上册数学教案
课题:.1代数式教学目标:1.了解代数式的概念,能用代数式表示简单问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义;3.能解释一些简单代数式的实际背景或几何意义,发展符号感.教学重点与难点:重点:理解具体代数式的意义,能用代数式表示简单的数量关系,并能进行简单代数式求值. 难点:准确列出代数式,从不同的角度给代数式赋予实际意义.课前准备:多媒体课件.教学过程:一、创设情境,引入新课活动:复习回顾问题:用字母表示下列数量关系1.用火柴棒拼摆正方形,如下图所示,如果用x 表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴棒?请用不同式子来表示这个数量关系?2.填空:(1)边长为a cm 的正方形的周长是cm,面积是cm 2;(2)钢笔每支2元,铅笔每支0.5元,m 支钢笔和n 支铅笔共____________元;(3)温度由2℃下降t ℃后是℃;(4)小亮用t 秒走了s 米,他的速度是为米/秒.处理方式:让学生独立思考理解题意,学生在黑板上写出数量关系式.其他纠错互评,规X 答案.[1.〔4+3(x-1)〕根;〔x+x+(x+1)〕根;(3x+1)根.2.①4a ,a 2;② (2m +n );③ (t -2);④ts . 问题:仔细观察以上式子,它们有什么共同的特点?处理方式:学生畅所欲言对数量关系式的特点,教师引入课题.(课题:代数式(1)) 设计意图:通过复习上一节知识内容,承接先前的若干实例,回顾具体代数式所表达的含义.在于降低教学难度,激发兴趣,调动了学生学习数学的积极性.二、自主探索,合作交流活动1:认识代数式问题:谈谈你对代数式的认识?处理方式:学生自主学习,畅所欲言,师给予评价,教师从而归纳代数式的意义:用运算符号把数字和字母连接而成的式子称为代数式.教师进而强调:①运算符号包括:加、减、乘、除、乘方; ②单独的一个数或字母也是代数式. ③ 用具体数值代替代数式中的字母,就可以求出代数式的值.设计意图:让学生经历代数式概念产生的过程,使学生在数学活动过程中建构自己的数学知识结构,获得对概念的理解,发展数学能力.巩固练习:1.判断下列各式哪些是代数式31ab ,7,4x -3,2y +7=4,321x y -+,q ,x -2>5,7-3=4,0,2a +3b . 2.用代数式表示:(1)圆的半径为r cm ,它的周长为______cm,它的面积为______cm 2;(2)某种瓜子的单价为16元/千克,则n 千克需_______元;(3)某市出租车收费标准为:起步价10元,3千米后每千米价1.8元,则某人乘坐出租车x(x >3)千米的付费为______元;(4)在一次募捐活动中,七年级每位同学捐款m ,共有n 名学生,则一共捐款_____元.3. 当x =6,y =2时,求代数式2x-5y 的值.处理方式:对学生的解答给予反馈,尤其对于(1)中的2y +7=4,x -2>5,7-3=4很多学生不易判断,教师要特别指出的是:一般的用“=、≠、≥、≤”连接的式子不是代数式;对于(2)、(3)题,注意强调代数式的书写,以及代数式的值的解题要求.设计意图:通过练习,学生及时巩固新知,理解概念,让学生对新知的认识再上一台阶. 活动2:典例讲评例 列代数式,并求值.(1)某公园的门票价格是:成人票每X10元,学生票每X5元.一个旅游团有成人x 人,学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人.15个学生,那么他们应付多少门票费?处理方式:学生理解题意,自主探究,然后小组内讨论、交流;教师同时巡视指导,参与小组讨论.请一名学生给全体同学讲解板演.然后借助多媒体展示解答过程.参考答案;解:(1)该旅游团应付的门票费是(10x+5y)元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15 =445.因此,他们应付445元门票费.设计意图:让学生从实际问题中抽象出数学问题,学会列代数式和求代数式的值,体验数学来源于生活,又为现实生活服务;并用多媒体展示解题过程,进一步规X学生的解题格式,让学生体会数学的规X性,严密性.活动3:代数式在现实生活中的意义问题:在例题中,10x+5y表示的是x个成人,y个学生进公园的门票费,那么它还可以表示什么呢?请大家编写能用此式来表达的情景.处理方式:教师举例引导,对于10x+5y,如果用x(m/s)表示小明跑步的速度,用y(m/s)表示小明走路的速度,那么10x+5y表示他跑步10s和走路5s所经过的路程.然后要求学生在独立思考的基础之上,建立自己的情景框架,小组交流,随后全班交流.教师给予鼓励和引导,并作出积极的评价,共同归纳: 10x+5y可以赋于很多的实际的意义,投影展示学生思考的多种结果.设计意图:让学生充分体会代数式在现实背景中的意义,提高学生活学活用知识的能力和习惯,将学生的知识进行深化和升华.活动4:深化新知做一做现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体体重(㎏)与人体身高(m)平方的商。
代数式北师大版数学初一上册教案
代数式北师大版数学初一上册教案代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子或含有字母的数学表达式。
在复数范围内,代数式分为有理式和无理式。
以下是整理的代数式北师大版数学初一上册教案,欢迎大家借鉴与参考!《代数式》学案一、学习目标(1)在具体情境中进一步理解字母表示数的意义,通过判断,并理解代数式的意义。
(2) 初步掌握列代数式的方法,能根据要求正确列出相应的代数式。
(3)通过学习,培养学生正确规范的数学语言表达能力。
二、学习重点难点代数式的意义以及正确地列出代数式。
三、学习过程1.(1)我们知道用字母可以表示数,请你填空。
①七年级一班有男生20人,女生n人,那么共有学生_________人。
②买苹果s千克用了4元钱,买1千克苹果需要________元。
③长方形的长和宽分别是a厘米和b厘米,正方形的边长是c厘米,长方形与正方形面积的和是_______。
(2) 上述各问题中出现的如20+n、、4n、(ab+c2)以及以前学习的n-m、2(a+b)、ab+ac等式子,都称为代数式。
(3)指出下列哪些是代数式:_______________________ (填序号)(1) m+5 (2)2x-y+1 (3) 2+3+5 (4) 3lt;xlt; p=(5) (m-5n)2 (6) abc (7)a (8) 2+x=32.(1)例1 填空:①甲数用a表示,乙数比甲数大3,那么乙数是______________.②甲数用a表示,甲、乙两数的和为10,那么乙数是______________.③甲数用a表示,甲数是乙数的5倍,那么乙数是______________.④甲数用a表示,乙数比甲数的平方少2,那么乙数是______________.⑤长方形的长和宽分别为 a cm、b cm .则该长方形的周长为________cm(1)自主归纳。
结合上面所有练习中出现的问题,能否总结出代数式的书写格式?(2)下列代数式中符合书写要求的是________ ,并说明理由。
3.1 代数式 第二课时代数式的值 课件-2024-2025学年北师大版数学七年级上册
.
18.6在18.5与24之间,体重适中
3.1 代 数 式
知识.巩固
人体血液的质量占人体体重的7%~8%。
(1)如果某人体重是akg,那么他的血液质量大约在什么范围内?
(2)小亮体重是35kg,他的血液质量大约在什么范围内?
(3)估计你自己的血液质量。
解:(1)7%akg~8%a kg
x -
;
y
;
(3)一本数学本x元,一本语文本y元,5本数学本和3本语文本共
(4)今年面粉产量由m kg增长10%后,达到 (1+10
%)m
kg.
(5x+3y)元;
3.1 代 数 式
知识.巩固
1,代数式6a可以表示什么
1. 购物问题:一本书的价格是a元,那么买6本书的总费用就是6a元.
2. 几何问题:一个正六边形的边长是a厘米,那么其周长就是6a厘米.
解:(1)该旅游团应付的门票费是(10x+5y)元.
(2)把x=37,y=15代入代数式,得
10x+5y =10×37+5×15 =445.
因此,他们应付445元门票费.
代数式10x+5y
还可以表示那些
生活中的问题?
3.1 代 数 式
情景导入
例如:1,用x(m/s)表示小明跑步的速度,用y(m/s)表示小明走路的速度
)
A.1
B.-1
C.-5
D.5
5. 下图是一个“数值转换机”的示意图,若输入x,y的值分别为4,-2
,则输出的结果是(D
A.15
)
B.5
C.-5
D.-15
随堂练习
6.已知a=2, b=-3,求代数式(−) +
北师大版2024新版七年级数学上册课件:3.1 课时3 代数式的值
课堂练习
4.观察右图,回答下列问题: 0.5x
(1)标出未注明的边的长度;
y0.5x
2x
(2)阴影部分的周长是__4_x_+__6_y_;
y x
(3)阴影部分的面积是_4_x_y_-_0_._5_x_y_;
(4)当x=5.5,y=4时,阴影部分的周长是___4_6____,
面积是___7_7____.
n2 先超过100
典型例题
例2 下面是2个数值转换机,请将图补充完整.
输入x
×6 6x
-3 输出 ① 6x-3
数值转换机
输入x
-3 x-3
×6
输出 ② 6(x-3)
探究新知
归纳: 代数式的值是由其所含的字母的取值所确定的,并随字母
取值的变化而变化,字母取不同的值时,代数式的值可能不同, 也可能相同.
典型例题
例4 已知a2-a-4=0, 求4a2-2(a2-a+3)-(a2-a-4)-4a的值.
分析:根据目前的知识水平,无法直接求出a的具体的值, 我们就要考虑特殊的求值方法: 根据已知可得a2-a=4, 所以化简后利用整体代入解决.
典型例题
解:因为a2-a-4=0,所以a2-a=4, 所以4a2-2(a2-a+3)-(a2-a-4)-4a =4a2-4a-2(a2-a+3)-(a2-a-4) =4(a2-a)-2(a2-a+3)-(a2-a-4) =4×4-2×(4+3)-(4-4) =2. 所以当a2-a-4=0时,原式=2.
课堂练习
5.若2b-a=5,求代数式5(a﹣2b)2﹣3(a﹣2b)﹣60的值.
解:因为2b﹣a=5,所以a﹣2b=﹣5, 所以原式=5×(﹣5)2﹣3×(﹣5)﹣60
最新北师大版七年级数学上册《代数式》名师教案
3.2 代数式第1课时代数式家作1:第93页的6、7。
练习册:订正、补充完成第51—54页。
完成周练八,须家长签名。
订正第三章家作本及其练习册的错题。
预习:课本第94—97页教学内容、过程安排(包括德育渗透、教学方法、教学手段、学法指导等)分析、评价反思、体会一、从学生原有的认知结构提出问题1.用代数式表示乙数:(投影)(1)乙数比x大5; (x+5)(2)乙数比x的2倍小3; (2x-3)(4)乙数比x大16%. ((1+16%)x)(应用引导的方法启发学生解答本题)2.在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式.本节课我们就来一起学习这个问题.二、讲授新课例1 用代数式表示乙数:(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%.分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什励志名言:1、学习从来无捷径,循序渐进登高峰。
——高永祚2、立志宜思真品格,读书须尽苦功夫。
——阮元3、读书是易事,思索是难事,但两者缺一,便全无用处。
——富兰克林4、学习要有三心,一信心,二决心,三恒心。
——陈景润5、不读书的人,思想就会停止。
——狄德罗6、“先生不应该专教书,他的责任是教人做人;学生不应该专读书,他的责任是学习人生之道。
”。
——陶行知7、天赋如同自然花木,要用学习来修剪。
——培根学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:1、泰山不是垒的,学问不是吹的。
天不言自高,地不语自厚。
2、学习如钻探石油,钻得愈深,愈能找到知识的精髓。
先学爬,然后学走。
3、星星使天空绚烂夺目;知识使人增长才干。
4、宽阔的河平静,博学的人谦虚。
秀才不怕衣衫破,就怕肚子没有货。
七年级数学上册(北师大版)配套教学教案:32第1课时代数式.doc
全新修订版(教案)七年级数学上册老师的必备资料家长的帮教助手学生的课堂再现北师大版3.2代数式1.在具体情境中,进一步理解字母表示数的意义.2.能解释一些简单代数式的实际背景或几何意义.一、情境导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些W.(2 )设刃表示一个数,则它的相反数是__________ ;(3 )铅笔的单价是x元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是元.(4 ) 一辆汽车的速度是v千米/时,行驶1小时所走过的路程为_____________ 千米.2.观察所列代数式包含哪些运算,有何共同的运算特征.二、合作探究探究点一:代数式的识别A.3个B.4个C.5个D.6个解析:代数式是用运算符号把数和字母连接而成的式子,m-7?>l是用不等号“〉”连接而成的式子、$ =兀卅是用等号“=”连接而成的式子,它们都不是代数式. 而x2, p + q, yah, 2016都是代数式.故选第1课时代数式数据回答下列问题:列车在冻土地段行驶时,有下列式子'.x t m - n>\ ,p + q , 2小时能行驶多少千米?3小时呢?/小时瓠,s =兀用,2016 ,代数式有(呢?正方形的面积是1.思考:(1 )若正方形的边长为G,则B.方法总结:明确代数式的意义是正确识别代数式的前提•式子中有关系符号(如等号或不等号)的都不是代数式.探究点二:列代数式方法总结:描述一个代数式的意义, 可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.探究点四:根据实际问题列代数式和;(2 ) x与2的和的平方;(3 ) x的平方与2的和;(4 ) x与2的平方的和.解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)中是先平方再求和,即? + 22; (2)中是先求和再平方,即(x +2) 2; (3)中是先兀的平方再求和,即/ + 2; (4)中是先2的平方再求和,即兀+2?.解:(1 )?+4;(2)(X +2)2;(3)?+ 2 ;( 4 )x + 4.方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.探究点三:代数式的意义(1 ) 2a・ Z? ; ( 2 ) 2 ( a ・ b).解析:解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.解:(1 ) 26/与b的差;或a的2倍与b 的差;或用d表示一本作业本的价格,用b 表示一只铅笔的价格,则2a ■"表示买两本作业本比买一支铅笔多的钱数;(2)2与a(1圧明同学买2本练习册花了n元,那么买m本练习册要花多少元?(2 )正方体的棱长为忍,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了几元,得出买1本练习册花㊁元,再根据买了m本练习册,即可列出算式.(2)根据正方体的棱长为a 和表面积公式、体积公式列岀式子.解:(1 ) T买2本练习册花了H兀,・;买1本练习册花号元,•:买⑵本练习册要花* mn 元;(2 ) :•正方体的棱长为a,•:它的表面积是6/ ;它的体积是/.方法总结:此题考查了列代数式, 用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.三、板书设计代数式错误!用代数式表示:(1 ).工与2的平方用代数式表示下列各式: 下列代数式可以表示什么?教学过程中,应拓展学生的思维,培养"的积;或a与b的差的2倍.他们观察.分析及抽象思维能力.语言能力. 创造能力和类比联想能力.。
北师大版2024新版七年级数学上册课件:3.1 课时2 代数式
课堂小结
5.(1)代数式6a可以表示什么? (2)代数式(1+8%)x可以表示什么? 解:(1)(答案不唯一)①如果a表示正六边形的边长,那么 代数式6a可以表示正六边形的周长. ②如果a表示一本书的价格,那么6a可以表示买6本这种 书的价格; (2)(答案不唯一)若x表示某件物品的原价,那么(1+8%)x 表示价格提高8%后的价格.
典型例题
例3 (1)一个两位数的个位数字是a,十位数字是b (b≠0),
请用代数式表示这个两位数.
(2)如何用代数式表示一个三位数?
个位上的数字是a,表示a个一.
解:(1)这个两位数是10b+a.
十位上的数字是b (b≠0),表示b个十.
(2)个位上的数字用a表示,十位上的数字用b 表示,
百位上的数字用c (c≠0)表示. 这个三位数是100c+10b+a.
课堂小结
1.下列各式不是代数式的是( A )
A.S=πR2
B.1
C.1a
D.m+n
课堂小结
2. (1)x与2的平方和; (2)x与2的和的平方; (3)x的平方与2的和.
解:(1)x2+4. (2)(x+2)2. (3)x2+2.
课堂小结
4.国庆节期间,李老师一家四口开车去森林公园游玩, 若门票每人a元,进入园区每辆车收费30元,李老师一 家开一辆车进园区所需费用是_(_4_a_+__3_0_) 元.
探究新知 归纳:列代数式的注意事项: (1)抓住关键词语,如 “大”“小”“多”“少”“和”“差”“积”“商”“倍”等,弄 清题目中的量及各量之间的关系. (2)厘清运算顺序,通常按照“先读先写”的顺序列式,并正确运用 括号. (3)对层次较多的题目,可以采取“浓缩原题,分段处理,最后组装” 的方式来处理. (4)在具体情境中,运用公式或根据数量关系列代数式.
2021年七年级数学上册 代数式教案 北师大版
2019-2020年七年级数学上册代数式教案北师大版一、教学设计思路这一节的主要内容是代数式的概念以及一些简单的代数式所反映的数量关系,会列简单的代数式. “代数式”的引入是借助于一些学生熟悉的用字母表示数的例子,引导学生去体会用字母代替数的一般规律与简洁性,并由此提炼出代数式的概念.代数式的书写注意事项不比过分渲染,以免使知识模式化、僵硬化,让学生了解一些通常的约定就可以了. 例题教学时以学生交流、思考为主,老师引导每个同学独立思考,通过有实际背景的问题,进一步理解列代数式和求代数式的意义,并感受数学与日常生活及其他学科的紧密联系.二、教学目标:知识与技能:1.能解释一些简单代数式的实际背景或几何意义,发展符号感;2.能在做题时注意到书写代数式的注意事项;3.在具体情境中能求出代数式的值,并解释它的实际意义.过程与方法:在用代数式表示数量与数量之间关系的过程中,进一步体会用字母表示数的意义,提高抽象概括的能力、分析问题解决问题的能力;情感态度价值观:通过将实际问题中的数量关系用代数式表示,增强符号感,体会数学与日常生活及其他学科的紧密联系,增强数学的应用意识.三、教学重点和难点重点:根据实际问题列出代数式;能用实际背景或几何意义解释代数式求代数式的值;理解代数式的概念.难点:根据实际问题列出代数式及解释代数式的意义四、教法学法合作交流与自主探索相结合.五、教学用具投影仪、胶片六、课时安排1课时七、教学过程1.情景导入阅读代数小史:韦达(1540─1603年),法国数学家,年青时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码.韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步.当时韦达在欧洲被尊称为“代数之父”.韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”).1579年,韦达出版《应用于三角形的数学定律》.这是欧洲第一本使用六种三角函数的系统的平面、球面三角学.主要著作有《分析方法入门》(1591)、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》等.由于韦达做出了许多重要贡献,成为十六世纪法国最杰出的数学家.师: 通过阅读,你能说出韦达为什么被称为“代数之父”吗?你还知道数学家韦达的什么故事?(意图:通过学生了解数学家的知识,认识数学与人类生活的密切联系,体会数学在人类发展历史中的作用,激起学生学习数学的兴趣)2. 提出问题:师:韦达的主要成就就是用字母表示数,你能用含字母的式子填空吗?.(1)长方形的长为a ,宽为b ,周长是_______,面积是________.(2)我校”五笔高手”每分钟打字x 个,五分钟打________子.(3)3个m 相乘得_________.(意图:让学生体会到数学来源于生活 ,用字母来表示数量关系 .)3.得出结论:师: 像8, y , 5x , 2(a +b ), ab , m ,等式子都是代数式(algebraic e x pression ).单独一个数或一个字母也是代数式.提问:这些代数式有哪些共同的特征.(1)这些式子中,都含有数字或表示数字的字母;(2)它们都是用运算符号连接起来的.注意:单独的一个数或一个字母,也是代数式,如5,a ,m 等都是代数式.说明:(1)这里的运算是指加、减、乘、除、乘方、开方(可以提出“开方”这个词,以后要学).(2)强调代数式仅指用“运算”符号连接数或字母而得到的算式,代数式中不含有等号或不等号.如S =ab 是等式,也可表示长方形面积公式.它不是代数式,而ab 是代数式.练习:举出五个含有加、减、乘、除、乘方运算的代数式(每一个代数式至少含有两种运算).(3)代数式里的每个字母都表示数,因此数的一些运算规律也适用于代数式.如:2x +2y =2(x +y )23434222++-=+-x x x x4.例题教学:老师可根据实际情况,从实际生活中举几个列代数式的例子.例1 为了吸引顾客某公园的门票价格是:成人票每人10元,儿童票每人5元.(1)如果一个旅游团有x 名成人和y 名儿童,你能用代数式表示这个旅游团应付的门票费吗?(2)如果这个旅游团有30名成人和15名儿童,那么应付多少门票费?)(3)在第一节中用200代替4+3(x-1)中的x, 你能得到搭200个正方形所需要的火柴棒数量吗?(策略:通过学生独立思考,再与同伴合作交流.)(老师进行评价,多用鼓励性的语言,并规范做题格式)老师总结出根据问题的要求,用具体数值代替代数式中的字母,就可以求出代数式的值.想一想:代数式10x+5y还可以表示什么?例2 在某地,人们发现某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)(1)用代数式表示该地当时的温度.(2)当蟋蟀1分钟叫的次数分别是80、100和120时,该地当时的温度约是多少?分析:本题是人们在日常生活中收集了大量数据,并进行分析的基础上得到的一个经验.在书写代数式时,一定要注意运算顺序,另外,在计算时,注意结果取的是近似值,取整数即可.解:(1)用c表示蟋蟀1分钟叫的次数,则该地当时的温度为:+3(2)把c=80,100和120分别代入+3,得≈14.≈17≈20因此,当蟋蟀1分钟叫的次数分别是80、100和120时,该地当时的温度大约分别是14℃、17℃和20℃.5. 巩固练习:(1)用代数式表示① f的11倍再加上2可以表示为______________②数a与它的的和可以表示为_________③一个教室有2扇门和4扇窗户,n个这样的教室共有___________扇门和_________扇窗户④产量由m千克增长15%后,达到_________千克(2)在某地,人们发现某种蟋蟀叫的次数与气温之间有如下的近似关系:用蟋蟀 1分钟叫的次数除以7,然后再加上3,就近似地得到该地当时的气温(℃)①用代数式表示该地当时的气温②当蟋蟀1分钟叫的次数分别是80,100和120时,该地当时的气温大约分别是多少?(老师针对学生回答的情况作小结)6. 小结回顾:让学生谈谈本节的收获,教师作出点评、补充.本节主要学习了代数式的概念,以及代数式的读法和写法,并初步学习用代数式表示简单的数量和数量关系.学习代数式要特别注意以下几点:(1)代数式中含有加、减、承、除、开方、乘方等运算符号,不含有等号或不等号,单独的一个数(或字母)也是代数式.(2)代数式与公式不同,公式是等式,但不是代数式,代数式是不含“=”号的.(3)代数式的书写要严格遵照其书写规定:①代数式中的“×”,简写为“·”或省略不写,数字与字母相乘时,数字要写在字母的前面,如果是带分数,要化成假分数,数字与数字相乘仍用“×”.②在代数式中遇到除法运算时,一般按分数的形式表示.(4)代数式的读法没有统一的规定,一般以能够简明的体现出代数式的运算顺序,不至于引起误会为主.7.布置作业:习题3.28.板书设计26219 666B 晫30407 76C7 盇28898 70E2 烢n32639 7F7F 罿927643 6BFB 毻23625 5C49 屉625773 64AD 播z28983 7137 焷35680 8B60 譠38806 9796 鞖%。
七年级数学上册 代数式教案 北师大版【精品教案】
教学设计代数式一、教学设计思路会列简单这一节的主要内容是代数式的概念以及一些简单的代数式所反映的数量关系,引导学生去体的引入是借助于一些学生熟悉的用字母表示数的例子,“代数式”. 的代数式代数式的书写注意事项.会用字母代替数的一般规律与简洁性,并由此提炼出代数式的概念例题教. 让学生了解一些通常的约定就可以了僵硬化,以免使知识模式化、不比过分渲染,学时以学生交流、思考为主,老师引导每个同学独立思考,通过有实际背景的问题,进一步 . 理解列代数式和求代数式的意义,并感受数学与日常生活及其他学科的紧密联系二、教学目标:知识与技能:.能解释一些简单代数式的实际背景或几何意义,发展符号感;1 .能在做题时注意到书写代数式的注意事项;2 . .在具体情境中能求出代数式的值,并解释它的实际意义3 过程与方法:提高进一步体会用字母表示数的意义,在用代数式表示数量与数量之间关系的过程中,抽象概括的能力、分析问题解决问题的能力;情感态度价值观:体会数学与日常生活及其他增强符号感,通过将实际问题中的数量关系用代数式表示, . 学科的紧密联系,增强数学的应用意识三、教学重点和难点重点:根据实际问题列出代数式;能用实际背景或几何意义解释代数式求代数式的值; . 理解代数式的概念难点:根据实际问题列出代数式及解释代数式的意义四、教法学法合作交流与自主探索相结合.五、教学用具投影仪、胶片六、课时安排课时1 七、教学过程 1 专心爱心用心情景导入1. 阅读代数小史:年),法国数学家,年青时学习法律当过律师,后从事政治活动,韦达(1540─1603当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码.韦达还致力于数学研究,带来了代数学理论研究未知数及其乘幂,第一个有意识地和系统地使用字母来表示已知数、韦达讨论了方程根的各种有理变换,.的重大进步.当时韦达在欧洲被尊称为“代数之父”发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”).年,韦达出版《应用于三角形的数学定律》.这是欧洲第一本使用六种三角函数1579)、《论方程的识别与修1591的系统的平面、球面三角学.主要著作有《分析方法入门》(正》、《分析五章》、《应用于三角形的数学定律》等.由于韦达做出了许多重要贡献,成为十六世纪法国最杰出的数学家.吗“代数之父”你能说出韦达为什么被称为,通过阅读: 师你还知道数学家韦达的什么? ? 故事通过学生了解数学家的知识,认识数学与人类生活的密切联系,体会数学在人:(意图激起学生学习数学的兴趣),类发展历史中的作用 : 提出问题2. 韦达的主要成就就是用字母表示数:师. 你能用含字母的式子填空吗?,ba ________. 面积是_______,周长是,宽为,)长方形的长为1(x2(. 子________五分钟打,个)我校”五笔高手”每分钟打字m_________. 相乘得个3)3((意图).,用字母来表示数量关系让学生体会到数学来源于生活: : 得出结论3.3xmabbaxy5, 8, 像: 师ealgebraic 等式子都是代数式(,, , )+(2, .单)pression 2 专心爱心用心独一个数或一个字母也是代数式. . 提问:这些代数式有哪些共同的特征)它们都是用运算符号连接起来2()这些式子中,都含有数字或表示数字的字母;1( . 的 . 等都是代数式m,a,5注意:单独的一个数或一个字母,也是代数式,如说明:()这里的运算是指加、减、乘、除、乘方、开方(可以提出“开方”这个词,以后1 . 要学))强调代数式仅指用“运算”符号连接数或字母而得到的算式,代数式中不含有等2( . 是代数式ab它不是代数式,而.是等式,也可表示长方形面积公式ab=S如.号或不等号练习:举出五个含有加、减、乘、除、乘方运算的代数式(每一个代数式至少含有两种 . 运算)(. )代数式里的每个字母都表示数,因此数的一些运算规律也适用于代数式 3 )y+x(2=2y+2x如:.例题教学:4 从实际生活中举几个列代数式的例子.,老师可根据实际情况元,儿童票每人10为了吸引顾客某公园的门票价格是:成人票每人 1 例元.5yx 名儿童,你能用代数式表示这个旅游团应付的门名成人和)如果一个旅游团有1(? 票费吗名儿童,那么应付多少门票费?)15名成人和30)如果这个旅游团有2(xx)3(个正方形所需要的火200你能得到搭, 中的)1-(4+3代替200在第一节中用 ? 柴棒数量吗)(策略:通过学生独立思考,再与同伴合作交流.)(老师进行评价,多用鼓励性的语言,并规范做题格式就可以求出代数式的值.用具体数值代替代数式中的字母,老师总结出根据问题的要求,还可以表示什么?10x+5y想一想:代数式分钟1用蟋蟀:人们发现某种蟋蟀叫的次数与温度之间有如下的近似关系,在某地2 例,就近似地得到该地当时的温度3,然后再加上7叫的次数除以) ℃( . )用代数式表示该地当时的温度1( 3 专心爱心用心时,该地当时的温度约是多少?120和100、80分钟叫的次数分别是1)当蟋蟀2(.并进行分析的基础上得到的一个经验本题是人们在日常生活中收集了大量数据,分析:在书写代数式时,一定要注意运算顺序,另外,在计算时,注意结果取的是近似值,取整数 . 即可c表示蟋蟀)用1(解:分钟叫的次数,则该地当时的温度为:1c+3 7cc得+3,分别代入120和=80,100)把2(14. ≈7712110017 ≈20 ≈77℃、14该地当时的温度大约分别是,时120和100、80分钟叫的次数分别是1当蟋蟀,因此℃.20℃和17 5. 巩固练习:)用代数式表示1(f ______________ 可以表示为2倍再加上11的①1a_________ 的和可以表示为与它的数②8n③_________扇门和___________个这样的教室共有扇窗户,4扇门和2一个教室有扇窗户m千克_________%后,达到15千克增长产量由④2(分1)在某地,人们发现某种蟋蟀叫的次数与气温之间有如下的近似关系:用蟋蟀,就近似地得到该地当时的气温(℃)3,然后再加上7钟叫的次数除以用代数式表示该地当时的气温①该地当时的气温大约分别是多少?时,120和100,80分钟叫的次数分别是1当蟋蟀② (老师针对学生回答的情况作小结)小结回顾:6. . 让学生谈谈本节的收获,教师作出点评、补充并初步学习用代数式表示简以及代数式的读法和写法,本节主要学习了代数式的概念, . 单的数量和数量关系 4 专心爱心用心学习代数式要特别注意以下几点:代数式中含有加、减、承、除、开方、乘方等运算符号,不含有等号或不等号,)1(. 单独的一个数(或字母)也是代数式 . 代数式与公式不同,公式是等式,但不是代数式,代数式是不含“=”号的)2(代数式的书写要严格遵照其书写规定:)3(代数式中的“×”,简写为“·”或省略不写,数字与字母相乘时,数字要写在字① . 母的前面,如果是带分数,要化成假分数,数字与数字相乘仍用“×” . 在代数式中遇到除法运算时,一般按分数的形式表示②不一般以能够简明的体现出代数式的运算顺序,代数式的读法没有统一的规定,)4(. 至于引起误会为主7. 布置作业:3.2 习题板书设计8.代数式3.2 .练习 3.列代数式2.代数式:1 注意:(学生板演)2 例 1 例 5 专心爱心用心。
七年级数学上册 3.1代数式教案 北师大版
一、课题二、教学目标1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;2、初步培养学生观察、分析及抽象思维的能力;3、通过本节课的教学,教育学生为建设有中国特色社会主义而刻苦学习三、教学重点和难点重点:用字母表示数的意义难点:正确地说出代数式所表示的数量关系四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、引言数学是一门应用非常广泛的学科,是学习和研究现代科学技术必不可少的基础知识和基本工具学好数学对于把我国建设成为有中国特色的社会主义强国具有十分重要的作用中学的数学课,是从学习代数开始的除了学习代数以外,同学们还将陆续地学习平面几何、立体几何、解析几何等内容学习代数与学习其它学科一样,首先要有明确的学习目的和正确的学习态度没有坚持不懈努力,没有顽强的克服困难的精神,是不可能学好代数的在开始学习代数的时候,大家要注意代数与小学数学的联系和区别,自觉地与算术对比:哪些和小学数学相同或类似,哪些有严格的区别,逐步明确代数的特点代数的一个重要特点是用字母表示数,下面我们就从用字母表示数开始初中代数的学习(一)、从学生原有的认知结构提出问题1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?(通过启发、归纳最后师生共同得出用字母表示数的五种运算律) (1)加法交换律 a+b=b+a ; (2)乘法交换律 a ·b=b ·a ; (3)加法结合律 (a+b)+c=a+(b+c); (4)乘法结合律 (ab)c=a(bc); (5)乘法分配律 a(b+c)=ab+ac指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”; (2)上面各种运算律中,所用到的字母a ,b ,c 都是表示数的字母,它代表我们过去学过的一切数2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要025小时,试问步行、骑车、乘汽车的速度分别是多少?3、若用s 表示路程,t 表示时间,ν表示速度,你能用s 与t 表示ν吗?4、(投影)一个正方形的边长是a 厘米,则这个正方形的周长是多少?面积是多少? (用I 厘米表示周长,则I=4a 厘米;用S 平方厘米表示面积,则S=a 2平方厘米) 此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a ,5,15÷3,4a ,a+b ,ts以及a 2等等都叫代数式那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容三、讲授新课 1、代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式学习代数,首先要学习用代数式表示数量关系,明确代数上的意义2、举例说明 例1 填空:(1)每包书有12册,n 包书有__________册;(2)温度由t ℃下降到2℃后是_________℃; (3)棱长是a 厘米的正方体的体积是_____立方厘米; (4)产量由m 千克增长10%,就达到_______千克 (此例题用投影给出,学生口答完成)解:(1)12n ; (2)(t-2); (3)a 3; (4)(1+10%)m例2 、说出下列代数式的意义: (1) 2a+3 (2)2(a+3); (3)ab c (4)a-dc (5)a 2+b 2 (6)(a+b) 2解:(1)2a+3的意义是2a 与3的和;(2)2(a+3)的意义是2与(a+3)的积; (3)ab c 的意义是c 除以ab 的商; (4)a-dc的意义是a 减去dc的差;(5)a 2+b 2的意义是a ,b 的平方的和;(6)(a+b)2的意义是a 与b 的和的平方 说明:(1)本题应由教师示X 来完成;(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a 的2倍加上3”或“a 的2倍与3的和”等等例3 、用代数式表示: (1)m 与n 的和除以10的商; (2)m 与5n 的差的平方; (3)x 的2倍与y 的和; (4)ν的立方与t 的3倍的积分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面解:(1)10nm ; (2)(m-5n)2(3)2x+y ; (4)3t ν3(四)、课堂练习 1、填空:(投影)(1)n 箱苹果重p 千克,每箱重_____千克;(2)甲身高a 厘米,乙比甲矮b 厘米,那么乙的身高为_____厘米; (3)底为a ,高为h 的三角形面积是______;(4)全校学生人数是x ,其中女生占48%,则女生人数是____,男生人数是____ 2、说出下列代数式的意义:(投影) (1)2a-3c ; (2)ba 53; (3)ab+1; (4)a 2-b23、用代数式表示:(投影)(1)x 与y 的和; (2)x 的平方与y 的立方的差; (3)a 的60%与b 的2倍的和; (4)a 除以2的商与b 除3的商的和 (五)、师生共同小结 首先,提出如下问题: 1、本节课学习了哪些内容?2用字母表示数的意义是什么?3、什么叫代数式?教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号七、练习设计1、一个三角形的三条边的长分别的a ,b ,c ,求这个三角形的周长2、X 强比王华大3岁,当X 强a 岁时,王华的年龄是多少?3、飞机的速度是汽车的40倍,自行车的速度是汽车的31,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?4、a 千克大米的售价是6元,1千克大米售多少元?5、圆的半径是R 厘米,它的面积是多少?6、用代数式表示:(1)长为a ,宽为b 米的长方形的周长; (2)宽为b 米,长是宽的2倍的长方形的周长; (3)长是a 米,宽是长的31的长方形的周长; (4)宽为b 米,长比宽多2米的长方形的周长八、板书设计§(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题§ 二、教学目标1、使学生能把简单的与数量有关的词语用代数式表示出来;2、初步培养学生观察、分析和抽象思维的能力三、教学重点和难点重点:把实际问题中的数量关系列成代数式难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题 1、用代数式表示乙数:(投影) (1)乙数比x 大5;(x+5) (2)乙数比x 的2倍小3;(2x-3) (3)乙数比x 的倒数小7;(x1-7) (4)乙数比x 大16%((1+16%)x) (应用引导的方法启发学生解答本题)2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题(二)、讲授新课 例1 用代数式表示乙数:(1)乙数比甲数大5; (2)乙数比甲数的2倍小3; (3)乙数比甲数的倒数小7; (4)乙数比甲数大16%分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数解:设甲数为x ,则乙数的代数式为 (1)x+5 (2)2x-3; (3)x1-7; (4)(1+16%)x(本题应由学生口答,教师板书完成)最后,教师需指出:第4小题的答案也可写成x+16%x例2 用代数式表示: (1)甲乙两数和的2倍; (2)甲数的31与乙数的21的差; (3)甲乙两数的平方和;(4)甲乙两数的和与甲乙两数的差的积; (5)乙甲两数之和与乙甲两数的差的积分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式解:设甲数为a ,乙数为b ,则 (1)2(a+b); (2)31a-21b ; (3)a 2+b 2; (4)(a+b)(a-b); (5)(a+b )(b-a)或(b+a)(b-a) (本题应由学生口答,教师板书完成)此时,教师指出:a 与b 的和,以及b 与a 的和都是指(a+b),这是因为加法有交换律但a 与b 的差指的是(a-b),而b 与a 的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序例3 用代数式表示: (1)被3整除得n 的数; (2)被5除商m 余2的数 分析本题时,可提出以下问题:(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n 的数如何表示? (2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m 余2的数呢? 解:(1)3n ; (2)5m+2(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)例4 设字母a 表示一个数,用代数式表示: (1)这个数与5的和的3倍;(2)这个数与1的差的41; (3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的31的和分析:启发学生,做分析练习如第1小题可分解为“a 与5的和”与“和的3倍”,先将“a 与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”解:(1)3(a+5); (2)41(a-1); (3)21(5a+7); (4)a 2+31a(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)例5 设教室里座位的行数是m ,用代数式表示:(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位? (2)教室里座位的行数是每行座位数的32,教室里总共有多少个座位? 分析本题时,可提出如下问题:(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢? (2)教室里有m 行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢? (3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)解:(1)m(m+6)个; (2)(23m)m 个(三)、课堂练习 1设甲数为x ,乙数为y ,用代数式表示:(投影)(1)甲数的2倍,与乙数的31的和; (2)甲数的41与乙数的3倍的差; (3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商2用代数式表示:(1)比a 与b 的和小3的数; (2)比a 与b 的差的一半大1的数; (3)比a 除以b 的商的3倍大8的数; (4)比a 除b 的商的3倍大8的数 3用代数式表示:(1)与a-1的和是25的数; (2)与2b+1的积是9的数; (3)与2x 2的差是x 的数; (4)除以(y+3)的商是y 的数 〔(1)25-(a-1); (2)129b ; (3)2x 2+2; (4)y(y+3)〕(四)、师生共同小结 首先,请学生回答: 1怎样列代数式?2列代数式的关键是什么?其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一); (2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握七、练习设计1、用代数式表示:(1)体校里男生人数占学生总数的60%,女生人数是a ,学生总数是多少?(2)体校里男生人数是x ,女生人数是y ,教练人数与学生人数之比是1∶10,教练人数是多?2、已知一个长方形的周长是24厘米,一边是a厘米,求:(1)这个长方形另一边的长;(2)这个长方形的面积八、板书设计§(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计九、教学后记一、课题§二、教学目标1.使学生掌握代数式的值的概念,会求代数式的值;2.培养学生准确地运算能力,并适当地渗透对应的思想.三、教学重点和难点重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点:正确地求出代数式的值.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有的认识结构提出问题1.用代数式表示:(投影)(1)a与b的和的平方;(2) a,b两数的平方和;(3)a与b的和的50%.八、板书设计§(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计九、教学后记一、课题§去括号(1)二、教学目标1、使学生初步掌握去括号法则;2、使学生会根据法则进行去括号的运算;3、通过本节课的学习,初步培养学生的“类比”、“联想”的数学思想方法三、教学重点和难点重点:去括号法则;法则的运用难点:括号前是负号的去括号运算四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、复习旧知识,引入新知识请同学们看以下两题:(1)13+(7-5); (2)13-(7-5)谁能用两种方法分别解这两题?找两名同学回答,教师板演解:(1)13+(7-5)=13+2=15;或者原式=13+7-5=15.(2)13-(7-5)=13-2=11;或者原式=13-7+5=11.小结这样的运算我们小学就会了,对吗?那么,现在,若将数换成代数式,又会怎么样呢?再看两题:(1)9a+(6a-a); (2)9a-(6a-a)谁能仿照刚才的计算,化简一下这两道题?找同学口答,教师将过程写出解:(1)9a+(6a-a)=9a+5a=14a;或者原式=9a+6a-a=14a.(2)9a-(6a-a)=9a-5a=4a;或者原式=9a-6a+a=4a.提问:1、上述两题的解法中第一种方法和第二种方法区别在哪里?2、我们是怎么得到多项式去括号的方法的?引导学生回答“是从数的去括号方法得到的”,教师指出这种方法叫“类比”3、第(1)小题与第(2)小题的去括号有何不同?引导学生进行观察、比较、分析,初步得出“去括号法则”(二)、新知识的学习去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“-”号,把括号和它前面的“-”号去括,括号里各项都改变符号此法则由学生总结,教师和学生一起进行修改、补充为了便于记忆,教师引导学生共同完成下面的顺口溜:去括号,看符号:是“+”号,不变号;是“-”号,全变号(三)、新知识的应用例1 去括号:(1)a+(-b+c-d);(2)a-(-b+c-d)解:(1)a+(-b+c-d)=a-b+c-d;(2)a-(-b+c-d)=a+b-c+d说明:在做此题过程中,让学生出声哪念去括号法则,再次强调“是+号,不变号;是一号,全变号”例2 去括号:(1)-(p+q)+(m-n); (2)(r+s)-(p-q)分析:此两题中都分别要去两个括号,要注意每个()前的符号另外第(2)小题(r+s)前实际上是省略了“+”号解:(1)-(p+q)+(m-n)=-p-q+m-n;(2)(r+s)-(p-q)=r+s-p+q例3 判断:下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c)=a2-2a-b+c;(2)-(x-y)+(xy-1)=-x-y+xy-1.分析:在去括号的运算中,当()前是“-”号时,容易犯的错误是只将第一项变号,而其他项不变.解:(1)错正确的为:原式=a2-2a+b-c;(2)错.正确的为:原式=-x+y+xy-1例4 根据去括号法则,在___上填上“+”号或“-”号:(1)a___(-b+c)=a-b+c;(2)a___(b-c-d)=a-b+c+d;(3)____(a-b)___(c+d)=c+d-a+b分析:此题是先知去括号的结果,再确定括号前的符号,旨在通过变式训练,训练学生的逆向思维例5 去括号-[a-(b-c)]分析:去多重括号,有两种方法,一是由内向外,一是由外向内-[a-(b-c)]解法1:原式=-(a-b+c)=-a+b-c;解法2:原式=-a+(b-c)=-a+b-c例6 先去括号,再合并同类项:(1)x+[x+(-2x-4y)];(2)21(a+4b)-31(3a-6b)分析:第(1)小题的方法例5已讲,只是再多一步合并同类项,第(2)小题中( )前出现了非±1的系数,方法是将系数及系数前符号看成一个整体,利用分配律一次去掉括号解:(1)x+[x-(-2x-4y)] =x+(x+2x+4y) =x+x+2x+4y =4x+4y ; (2)21(a+4b)-31(3a-6b) =21a+2b-a+2b =-21a+4b(四)、小结1、今天,我们类比着数的去括号法则,得到了多项式的去括号法则2、大家应熟记法则,并能根据法则进行去括号运算现在,大家再一起跟着我说一遍:去括号,看符号:是“+”号,不变号;是“-”号,全变号七、练习设计化简:(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b); (3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5); (5)(8x-3y)-(4x+3y-z)+2z ;(6)-5x 2+(5x-8x 2)-(-12x 2+4x)+51; (7)2-(1+x)+(1+x+x 2-x 2);(8)3a 2+a 2-(2a 2-2a)+(3a-a 2); (9)2a-3b+[4a-(3a-b)];(10)3b-2c-[-4a+(c+3b)]+c.八、板书设计§3.5去括号(1)(一)知识回顾 (三)例题解析 (五)课堂小结 例4、例5(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题§去括号(2)二、教学目标1、使学生初步掌握添括号法则;2、会运用添括号法则进行多项式变项;3、继续学习“类比”的方法;理解“去括号”与“添括号”的辩证关系三、教学重点和难点重点:添括号法则;法则的应用难点:添上“-”号和括号,括到括号里的各项全变号四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、复习旧知识,引出新知识1、提问去括号法则2、练习去括号:(1)a+(b-c); (2)a-(-b+c); (3)(a+b)+(c+d); (4)-(a+b)-(-c-d);(5)(a-b)-(-c+d); (6)-(a-b)+(-c-d)3、上节课,我们学习了去括号,在计算中,有时候是需要去括号,有时候又需添括号,比如下面两题:(1)102+199-99; (2)5040-297-1503怎样算更简便?找学生回答,教师将过程写出来解:(1)102+199-99 (2)5040-297-1503=102+(199-99) =5040-(297+1503)=102+100 =5040-1800=202; =3240仿照数的添括号方法,完成下列问题:a+b-c=a+( );a+b-c=a-( )引导学生通过类比数的加括号方法,填出括号里的各项,进而总结添括号法则(二)、新知识的学习添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号;此法则让学生自己总结,教师进行修改、补充(三)、新知识的应用例1 按要求,将多项式3a-2b+c添上括号:(1)把它放在前面带有“+”号的括号里;(2)把它放在前面带有“-”号的括号里此题是添括号法则的直接应用,为了更加明确起见,在解题时,先写出3a-2b+c=+( )=-( )的形式,再让学生往里填空,特别注意,添“-”号和括号,括到括号里的各项全变号解:3a-2b+c=+(3a-2b+c)=-(-3a+2b-c)紧接着提问学生:如何检查添括号对不对呢?引导学生观察、分析,直至说出可有两种方法:一是直接利用添括号法则检查,一是从结果出发,利用去括号法则检查肯定学生的回答,并进一步指出所谓用去括号法则检查添括号,正如同用加法检验减法,用乘法检验除法一样例2 在下列( )里填上适当的项:(1)a+b+c-d=a+( ); (2)a-b+c-d=a-( ); (3)x+2y-3z=2y-( )(4)(a+b-c)(a-b+c)=[a+( )][a-( )];(5)-(a3-a2)+(a-1)=-a3-( )本题找学生回答解:(1)原式=a+(b+c-d);(2)原式=a-(b-c+d);(3)原式=2y-(3z-x);(4)原式=[a+(b-c)][a-(b-c)];(5)原式=-a3-(-a2-a+1)例3 按下列要求,将多项式x3-5x2-4x+9的后两项用( )括起来:(1)括号前面带有“+”号;(2)括号前面带有“-”号解:(1)x3-5x2-4x+9=x3-5x2+(-4x+9);(2)x3-5x2-4x+9=x3-5x2-(4x-9).说明:1.解此题时,首先要让学生确认x3-5x2-4x+9的后两项是什么——是-4x、+9,要特别注意每一项都包括前面的符号2.再次强调添的是什么——是( )及它前面的“+”或“-”.例4 按要求将2x2+3x-6(1)写成一个单项式与一个二项式的和;(2)写成一个单项式与一个二项式的差此题(1)、(2)小题的答案都不止一种形式,因此要让学先讨论1分钟再举手发言通过此题可渗透一题多解的立意解:(1)2x2+3x-6=2x2+(3x-6)=3x+(2x2-6)=-6+(2x2+3x);(2)2x2+3x-6=2x 2-(-3x+6) =3x-(-2x 2+6) =-6-(-2x 2-3x) (四)、小结1、这两节课我们学习了去括号法则和添括号法则,这两个法则在整式变形中经常用到,而利用它们进行整式变形的前提是原来整式的值不变2、去、添括号时,一定要注意括号前的符号,这里括号里各项变不变号的依据七、练习设计1、用括号把mx+nx-my-ny 分成两组,使其中含m 的项结合,含n 的项结合(两个括号用“+连接)2、在多项式m 4-2m 2n 2-2m 2+2n 2+n 4中添括号:(1)把四次项结合,放在前面带有“+”号的括号里; (2)把二次项结合,放在前面带有“-”号的括号里3、把多项式10x 3-7x 2y+4xy 2+2y 3-5写成两个多项式的和,使其中一个不含字母y4、把三项式31-x 2+x 写成单项式与二项式的差 5、把21b 3-31b 2+41b-61写成两个二项式的和.八、板书设计§3.5去括号(2)(一)知识回顾 (三)例题解析 (五)课堂小结 例4、例5(二)观察发现 (四)课堂练习 练习设计九、教学后记word21 / 21。
(北师大版2024)七年级数学上册同步3.1 第1课时 代数式 教案
第三章 整式及其加减1 代数式第1课时 代数式1.经历探索规律并用字母表示规律的过程.2.体会字母表示数的意义,形成初步的符号感,初步感受从特殊到一般的思维方式,体验用矛盾转化的观点认识问题.重点:会列代数式并理解代数式的意义.难点:会列代数式表示实际问题中的数量关系.一、情境导入1.从A 地到B 地要走3个小时.这里A ,B 表示什么?2.用字母表示加法交换律:a +b =b +a.二、合作探究探究点一:代数式的定义及书写格式下列各式中是代数式的是( )A .S =πr 2B .2a >bC .3x +yD .π≈3.14答案:C下列式子中,符合代数式书写格式的有( )①m ×n ;②313 ab ;③14(x +y ); ④m +2天;⑤abc 3A .2个B .3个C .4个D .5个解析:①正确的书写格式是mn ;②正确的书写格式是103ab ;③的书写格式是正确的,④正确的书写格式是(m +2)天;⑤的书写格式是正确的.故选A .方法总结:书写含字母的式子时应注意:①数与字母、字母与字母相乘省略乘号;②数与字母相乘时数字在前;③式子中出现除法运算时,一般按分数形式来写;④带分数与字母相乘时,把带分数化成假分数;⑤后面带单位的式子相加或相减时,式子整体加括号. 探究点二:列代数式及代数式的意义用含有字母的式子表示下列数量:(1)练习簿的单价为a 元,100本练习簿的总价为 元;(2)练习簿的单价为b 元,a 本练习簿的总价是 元;(3)小明的家离学校s 千米,小明骑车上学.若每小时骑行10千米,则需 时;(4)若每斤苹果312元,则买m 斤苹果需 元; (5)小明个子高,经测量他通常跨一步的距离为1米,若取向前为正,向后为负,则小明向前跨a 步为 米,向后跨a 步为 米.答案:(1)100a (2)ab (3)s 10 (4)72m (5)a -a如图所示,搭一个正方形需要4根火柴棒.(1)按上面的方式,搭2个正方形需要 根火柴,搭3个正方形需要 根火柴;(2)搭7个这样的正方形需要 根火柴;(3)搭100个这样的正方形需要多少根火柴?(4)如果用x 表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴? 解:(1)7 10 (2)22(3)4+3×(100-1)=301.故搭100个这样的正方形需要301根火柴.(4)4+3×(x -1)=3x +1.故搭x 个这样的正方形需要(3x +1)根火柴.对代数式a -b 2的意义表述正确的是( )A .a 与b 差的平方B .a ,b 平方的差C .a 减去b 的平方的差D .a 的平方与b 的平方的差答案:C方法总结:说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.三、板书设计代数式⎩⎪⎨⎪⎧代数式的概念⎩⎪⎨⎪⎧代数式的书写要求识别代数式根据实际问题列代数式解释代数式所表示的实际意义通过本课时的教学要让学生经历在实际问题中列代数式,初步理解代数式的意义,让学生循序渐进的学习本部分内容,可以先用数,然后引入代数式.让学生在现实情境中去理解、感悟、体会字母能够代替数,发展学生的符号感.在数学教学中,让学生逐步学会用代数的思想方法分析和解决问题,体会其优越性,让学生体验成就感.。
北师大版七年级上册数学3.2.1代数式的意义(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“代数式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-在实际问题中提取关键信息,并将其转化为代数式。
-对代数式求值时,注意代入字母的具体值,并正确进行运算。
举例解释:
-难点在于让学生理解字母不仅仅是字母本身,而是代表一个范围内的所有可能数值。可以通过动态图示或具体实例来帮助学生理解。
-对代数式分类时,通过比较、归纳的方法,让学生识别不同类型的代数式,并提供足够的练习来巩固。
-在提取实际问题中的信息时,教师需引导学生识别问题中的已知量和未知量,以及它们之间的关系。
-求代数式的值时,要注意细节,如运算顺序、括号的使用等,教师应提供有针对性的练习和错误分析,帮助学生突破这一难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《代数式的意义》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过用字母表示数量关系的情况?”比如,我们用a表示苹果的价格,b表示购买的数量,那么总价就是a×b。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索代数式的奥秘。
北师大版七年级上册数学3.2.1代数式的意义(教案)
一、教学内容
本节课选自北师大版七年级上册数学第3章第2节第1部分“代数式的意义”。教学内容主要包括以下方面:
1.代数式的定义:用字母表示数的式子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1代数式
一、课题
二、教学目标
1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;
2、初步培养学生观察、分析及抽象思维的能力;
3
三、教学重点和难点
重点:用字母表示数的意义
难点:正确地说出代数式所表示的数量关系
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、引言
数学是一门应用非常广泛的学科,是学习和研究现代科学技术必不可少的基础知识和基本工具
中学的数学课,是从学习代数开始的
学习代数与学习其它学科一样,首先要有明确的学习目的和正确的学习态度
在开始学习代数的时候,大家要注意代数与小学数学的联系和区别,自觉地与算术对比:哪些和小学数学相同或类似,哪些有严格的区别,逐步明确代数的特点
代数的一个重要特点是用字母表示数,下面我们就从用字母表示数开始初中代数的学习
(一)、从学生原有的认知结构提出问题
1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律 a+b=b+a;
(2)乘法交换律 a·b=b·a;
(3)加法结合律 (a+b)+c=a+(b+c);
(4)乘法结合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0
25小时,试问步行、骑车、乘汽车的速度分别是多少?
3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在
公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a ,5,15÷3,4a ,a+b ,t
s 以及a 2等等都叫代数式 那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容
1、代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式 学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2、举例说明
例1 填空:
(1)每包书有12册,n 包书有__________册;
(2)温度由t ℃下降到2℃后是_________℃;
(3)棱长是a 厘米的正方体的体积是_____立方厘米;
(4)产量由m 千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n ; (2)(t-2); (3)a 3; (4)(1+10%)m
例2 、说出下列代数式的意义:
(1) 2a+3 (2)2(a+3); (3)ab c (4)a-d
c (5)a 2+b 2 (6)(a+b) 2 解:(1)2a+3的意义是2a 与3的和;(2)2(a+3)的意义是2与(a+3)的积; (3)ab c 的意义是c 除以ab 的商; (4)a-
d c 的意义是a 减去d
c 的差;
(5)a 2+b 2的意义是a ,b 的平方的和;(6)(a+b)2的意义是a 与b 的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点
第(1)小题也可以说成“a 的2倍加上3”或“a 的2倍与3的和”等等
例3 、用代数式表示:
(1)m 与n 的和除以10的商;
(2)m 与5n 的差的平方;
(3)x 的2倍与y 的和;
(4)ν的立方与t 的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
解:(1)10n m ; (2)(m-5n)2 (3)2x+y ; (4)3t ν3
(四)、课堂练习
1、填空:(投影)
(1)n 箱苹果重p 千克,每箱重_____千克;
(2)甲身高a 厘米,乙比甲矮b 厘米,那么乙的身高为_____厘米;
(3)底为a ,高为h 的三角形面积是______;
(4)全校学生人数是x ,其中女生占48%,则女生人数是____,男生人数是____
2、说出下列代数式的意义:(投影)
(1)2a-3c ; (2)b
a 53; (3)ab+1; (4)a 2-
b 2 3、用代数式表示:(投影)
(1)x 与y 的和; (2)x 的平方与y 的立方的差;
(3)a 的60%与b 的2倍的和; (4)a 除以2的商与b 除3的商的和
(五)、师生共同小结
首先,提出如下问题:
1、本节课学习了哪些内容?2?
3、什么叫代数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样
也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
七、练习设计
1、一个三角形的三条边的长分别的a ,b ,c ,求这个三角形的周长
2、张强比王华大3岁,当张强a 岁时,王华的年龄是多少?
3、飞机的速度是汽车的40倍,自行车的速度是汽车的
31,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4、a 千克大米的售价是6元,1千克大米售多少元?
5、圆的半径是R 厘米,它的面积是多少?
6、用代数式表示:
(1)长为a ,宽为b 米的长方形的周长;
(2)宽为b 米,长是宽的2倍的长方形的周长;
(3)长是a 米,宽是长的3
1的长方形的周长;
(4)宽为b 米,长比宽多2米的长方形的周长
八、板书设计 §3.1字母能表示什么
(一)知识回顾 (三)例题解析 (五)课堂
小结
例1、例2
(二)观察发现 (四)课堂练习 练习设计
九、教学后记
1、本课所遇的问题,多数应由学生首先口答来完成,但在“说出代数式的意义”这一问题上,应向学生强调:一定要严格按照教师示范的要求去做,如“a-
b c ”的意义是“a 减去b c 的差”,而不能说成是“a 与b
c 的差” 2、由于这是中学数学的第一课,故设计了一个引言,目的是对学生进行学习目的、学
况灵活掌握,原则是多鼓。