奥数六年级千份讲义361第3讲——几何——曲线形面积与立体几何
【K12学习】六年级奥数几何综合讲座
六年级奥数几何综合讲座几何综合几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题..今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BcG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9,在△BGc中,有BG=Gc=Bc=1,有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19.则EH=IH-IF-FE=19-9-5=5,在△EDH中,DH=EH=5,所以cD=GH-Gc-DH=19-1-5=13.于是,原图中六边形的周长为1+9+9+5+5+13=42..图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此=3:2,解得x=1,即重叠部分面积为1..如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】如下图所示,在正六边形ABcDEF中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×=24.而通过下图,我们知道,正六边形ABcDEF可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48.6.如图12-6所示,在三角形ABc 中,Dc=3BD,DE=EA.若三角形ABc的面积是1.则阴影部分的面积是多少?【分析与解】△ABc、△ADc同高,所以底的比等于面积比,那么有而E为AD中点,所以连接FD,△DFE、△FAE面积相等,设则.的面积也为x,而解得.所以,阴影部分面积为.如图12-7,P是三角形ABc内一点,DE平行于AB,FG平行于Bc,HI平行于cA,四边形AIPD的面积是12,四边形PGcH的面积是15,四边形BEPF的面积是20.那么三角形ABc的面积是多少?【分析与解】有平行四边形AIPD与平行四边形PGcH的面积比为IP与PH的比,即为12:15=4:5.同理有FP:PG=20:15=4:3,DP:PE=12:20=3:5.如图12-7,连接Pc、HD,有△PHc的面积为△DPH与△PHc同底PH,同高,所以面积相等,即,而△DPH与△EPH 的高相等,所以底的比即为面积的比,有,所以如图12-7所示,连接FH、BP,如图12-7所示,连接FD、AP,有.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的,②号正方形的边长是长方形宽的.那么,图中阴影部分的面积是多少?【分析与解】有①号正方形的边长为长方形长的,则图中未标号的正方形的边长为长方形长的.而②号正方形的边长为宽的,所以未标号的正方形的边长为长方形宽的.所以在长方形中有:长=宽,则长:宽=12:8,不妨设长的为12,宽为8,则①号正方形的边长为5,又是整数,所以为整数,有长方形的面积为96,不大于100.所以只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为:9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,c,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:c:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用表示E部分横向的长度,竖表示E 部分竖向的长度,其他下标意义类似.有:=5:4,:=l:2.而+=+,所以有:::=5:4:1:2.而++=+对应为5+1=6,那么对应为3.而A面积:B面积:c面积=1:2:3,所以==.有+竖对应为6,所以=对应为3.那么长方形的竖边为6+对应为9,长方形横边为+6+对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.0.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是绿色的面积是lo.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.1.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,c,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为,球经过的路线为:→→→→→→→→→→→→→→→→→→→→.因此,该球最后落入E袋..长方形ABcD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击Bc边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击Bc边的点,每次由c向B移动2.因为次撞击Bc边的点距c点1,次撞击AB边的点距A 点为2,1994÷2=997.所以最后落人D洞,在此之前撞击Bc边997次.3.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3..在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?【分析与解】有Ao=oB,所以△AoB为等腰三角形,Ao=oc,所以△Aoc为等腰三角形.∠ABo=∠1=15°,∠AoB=180°-∠1-∠ABo=150°.∠Aco=∠2=15°,∠Aoc=180°-∠2-∠Aco=150°.所以∠Boc=360°-∠AoB-∠Aoc=60°,所以扇形Boc的面积为..图12-15是由正方形和半圆形组成的图形.其中P点为半圆周的中点,Q点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?【分析与解】过P做AD平行线,交AB于o点,P为半圆周的中点,所以0为AB中点.有.阴影部分面积为几何综合内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题.典型问题.如图30-2,已知四边形ABcD和cEFG都是正方形,且正方形ABcD的边长为10厘米,那么图中阴影三角形BFD的面积为多少平方厘米?【分析与解】方法一:因为cEFG的边长题中未给出,显然阴影部分的面积与其有关.设正方形cEFG的边长为x,有:又阴影部分的面积为:方法二:连接Fc,有Fc平行与DB,则四边形BcFD为梯形.有△DFB、△DBc共底DB,等高,所以这两个三角形的面积相等,显然,△DBc的面积.阴影部分△DFB的面积为50平方厘米.如图30-4,∠A+∠B+∠c+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?【分析与解】为了方便所述,如下图所示,标上数字,有∠I=1800-,而∠1=1800-∠3,∠2=1800-∠4,有∠I=∠3+∠4-1800同理,∠H=∠4+∠5-1800,∠G=∠5+∠6-1800,∠F=∠6+∠7-1800,∠E=∠7+∠8-1800,∠D=∠8+∠9-1800,∠c=∠9+∠10-1800,∠B=∠10+∠11-1800,∠A=∠11+∠3-1800则∠A+∠B+∠c+∠D+∠E+∠F+∠G+∠H+∠I=2×-9×1800而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为×1800=12600.所以∠A+∠B+∠c+∠D+∠E+∠F+∠G+∠H+∠I=2×12600-9×1800=9000.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为,这里无需考虑5个基本长方形的拼图方案是否惟一.【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.类情况:以为特征的有7组:第二类情况:以为特征的有6组:第三类情况有如下三组:共有16组解,它们是:..,如图30-8,ABcD是平行四边形,面积为72平方厘米,E,F分别为边AB,Bc的中点.则图形中阴影部分的面积为多少平方厘米?【分析与解】如下图所示,连接Ec,并在某些点处标上字母,因为AE平行于Dc,所以四边形AEcD为梯形,有AE:Dc=1:2,所以,,且有,所以,而这两个三角形高相同,面积比为底的比,即EG:GD=1:2,同理FH:HD=1:2.有,而有EG:GD=,所以同理可得,,又=24-12=12所以原题平行四边形中空白部分的面积为6+6+12=24,所以剩下的阴影部分面积为72-24=48.0.图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【分析与解】如下图所示,为了方便所叙,将某些点标上字母,并连接BG.设△AEG的面积为x,显然△EBG、△BFG、△FcG的面积均为x,则△ABF的面积为3x,即,那么正方形内空白部分的面积为.所以原题中阴影部分面积为..如图30-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.【分析与解】如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把左下图中的每一部分阴影称为A,右下图中的每一部分阴影称为B.大半圆的面积为小圆的面积而小圆的面积为,则,原题图中的阴影部分面积为小半圆面积与阴影A、B的面积和,即为如图30-14,将长方形ABcD绕顶点c顺时针旋转90度,若AB=4,Bc=3,Ac=5,求AD边扫过部分的面积.【分析与解】如下图所示,如下图所示,端点A扫过的轨迹为,端点D扫过轨迹为,而AD之间的点,扫过的轨迹在以A、D轨迹,AD,所形成的封闭图形内,且这个封闭图形的每一点都有线段AD上某点扫过,所以AD边扫过的图形为阴影部分.显然有阴影部分面积为,而直角三角形、AcD面积相等.所以即AD边扫过部分的面积为7.065平方厘米.。
六年级下册奥数知识点梳理:几何图形
二 几何图形
1. 平面图形
⑴多边形的内角和
N 边形的内角和=(N -2)×180°
⑵等积变形(位移、割补)
①
三角形内等底等高的三角形 ②
平行线内等底等高的三角形 ③
公共部分的传递性 ④ 极值原理(变与不变)
⑶三角形面积与底的正比关系
S 1︰S 2 =a ︰b ; S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ⑷相似三角形性质(份数、比例)
①a b c h A B C H === ; S 1︰S 2=a 2︰A 2
②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; S=(a+b )2 ⑸燕尾定理
S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;
S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;
S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;
⑹差不变原理
知5-2=3,则圆点比方点多3。
⑺隐含条件的等价代换
例如弦图中长短边长的关系。
⑻组合图形的思考方法
①化整为零
②先补后去
③正反结合
2.立体图形
⑴规则立体图形的表面积和体积公式
⑵不规则立体图形的表面积
整体观照法
⑶体积的等积变形
①水中浸放物体:V升水=V物
②测啤酒瓶容积:V=V空气+V水
⑷三视图与展开图
最短线路与展开图形状问题
⑸染色问题
几面染色的块数与“芯”、棱长、顶点、面数的关系。
小学六年级初步奥数几何知识
小学六年级初步奥数几何知识1、长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式 c=2(a+b) s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式:c=4a ;s=a3、三角形(1)特征:由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式:s=ah/2(3)分类按角分:锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分:不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形(1)特征:两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的.度数之和为180度。
平行四边形容易变形。
(2)计算公式 s=ah5、梯形(1)特征:只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式 s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3) 圆的周长围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。
用字母∏表示。
(4) 圆的面积圆所占平面的大小叫做圆的面积。
小学六年级数学竞赛奥数曲线型面积考点总结
义务教育基础课程小学教学资料
【本讲任务】
基本曲线型图形;
加减法求曲线图形面积。
【基础铺垫】曲线型
面积考点总结
例1
(★★) (2008年“学而思杯”六年级二试)
如图,BC是半径为6的圆O上的弦,且BC的长度与圆的半径相等,A是圆外的一点,OA的长度为12,且OA与BC平行,那么图中阴影部分的面积是。
(π=3.14 )
例2
(★★)
如图,ABCD是边长为a的正方形,以AB、BC、CD、DA分别为直径画半圆,求
这四个半圆弧所围成的阴影部分的面积。
(π取3)
例3
(★★)
三角形ABC是直角三角形,阴影Ⅰ的面积比阴影Ⅱ的面积小25cm2,AB=8cm,求BC的长度。
(π取3.14)
例4
(★★)
如图,图中的曲线是用半径长度的比为2∶1.5∶0.5的6条半圆曲线连成的。
问:涂有阴影的部分与未涂阴影的部分的面积比是多少?
1.不规则?转化?拆分求和(差);
2.几何中的差值条件一般如何运用?。
小学六年级奥数几何初步认识知识点
小学六年级的数学中,几何初步认识是非常重要的一部分。
在几何学中,学生将学习各种形状、图形的属性和关系。
这方面的知识能够帮助他们理解空间和形状,并发展他们的空间思维能力。
以下是小学六年级奥数几何初步认识的一些重要知识点。
1.点、线和面:学生需要了解点、线和面的概念。
点是没有大小和形状的,线是由无限多个点组成的,面是由无限多个线段组成的,可以看作是没有厚度的平面。
2.二维和三维:学生需要区分二维和三维的概念。
二维是指平面上的图形,只有长度和宽度,而三维是指有高度的图形,具有长度、宽度和高度。
3.直线和曲线:学生需要能够辨别直线和曲线。
直线是由无限多个连续的点组成的,在两个点之间是最短的路径。
曲线则是有弯曲的,没有最短路径的。
4.线段和射线:学生需要理解线段和射线的概念。
线段是由两个端点及其之间的点组成的,有确定的长度。
射线则是由一个起点和其上的任意点组成的,没有终点,但有一个方向。
5.角:学生需要学习角的概念。
角是由两条射线共享一个起点形成的,起点叫做角的顶点,两条射线叫做角的边。
6.直角、锐角和钝角:学生需要学习直角、锐角和钝角的概念。
直角是90度的角,锐角是小于90度的角,钝角是大于90度小于180度的角。
7.平行和垂直:学生需要学会判断两条线段或者两条线是否平行或者垂直。
平行的线段在同一平面上,永远不会相交。
垂直的线段或线相交,并且形成90度的角。
8.三角形:学生需要学习三角形的属性和分类。
三角形是由三条线段组成的图形。
根据边的长度和角的大小,三角形可以分为等边三角形、等腰三角形和普通三角形。
9.正方形、长方形和平行四边形:学生需要学习正方形、长方形和平行四边形的属性和特点。
正方形的四条边都相等,四个角都是直角。
长方形的相对边相等,四个角都是直角。
平行四边形的对边平行,相对边相等。
10.圆和圆心:学生需要学习圆和圆心的概念。
圆是平面上到一个固定点距离相等的所有点的集合。
这个固定点叫做圆心,到圆心的距离叫做半径。
六年级奥数几何模型知识点
六年级奥数几何模型知识点六年级学生在数学学科中接触到了各种几何模型,这些模型不仅仅是用来展示形状和结构,更是一种思维工具,能够帮助学生理解几何概念和解决几何问题。
本文将介绍六年级奥数中的几个重要的几何模型知识点,帮助同学们更好地掌握几何学。
一、平面图形与立体图形的区别在学习几何模型之前,首先需要了解平面图形和立体图形的区别。
平面图形是指只有两个维度,只有长和宽,没有厚度。
常见的平面图形有圆形、矩形、三角形等。
而立体图形则有三个维度,除了长和宽,还有高度,具有厚度的特点。
常见的立体图形有立方体、圆柱体、球体等。
二、几何模型的拼装与构建几何模型是由各种基本图形拼装和构建而成的。
比如,通过将正方形和三角形拼接起来,可以构建出一个五边形。
同样地,通过将立方体、圆柱体和球体等不同的立体图形拼接,可以构建出更复杂的几何模型。
三、相似图形的特性与应用相似图形是指形状和结构相似但大小不同的图形。
在奥数中,相似图形的特性被广泛应用于几何问题的解决中。
具体来说,当两个图形相似时,它们的对应边的比例相等。
利用相似图形的特性,我们可以解决一些复杂的几何问题,比如求解图形的面积、周长等。
四、三角形的性质与运用三角形是几何学中研究最广泛的图形之一。
在六年级奥数中,同学们需要掌握三角形的基本性质,并能灵活运用于解决问题。
常见的三角形性质有等腰三角形、等边三角形和直角三角形。
利用这些性质,我们可以求解三角形的各个边长和角度,并解决与三角形相关的几何问题。
五、平行四边形的特征与应用平行四边形是含有两组平行边的四边形。
在奥数中,平行四边形的性质和应用也是重点之一。
其中,重要的性质包括对角线互相平分、对边相互平行、对边相等等。
通过掌握平行四边形的性质,我们可以求解其面积、周长,并在解决问题时灵活运用。
六、圆的性质与相关应用圆是几何学中的重要概念,它具有独特的性质和特点。
在六年级奥数中,同学们需要了解圆的直径、半径、弧长和面积等概念,并能运用它们解决与圆相关的几何问题。
第三讲几何篇(2)6年级精英班
名校真题 测试卷3 (几何篇二)时间:15分钟 满分5分 姓名_________ 测试成绩_________π=)(实验中学07 1 如图6所示,长方形ABCD,长是8 cm,则阴影部分的面积.( 3.14年期末考试题)2 有一塔形几何体由若干个正方体构成,构成方式如左下图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是_______.(实验中学06年期末考试题)3 (06年三帆中学考试题)有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体(见左下图).这60个小长方体的表面积总和是______平方米.4 下左图是一个对称图形.比较黑色部分与面积与阴影部分面积的大小,得:黑色部分面积______阴影部分面积.(07年西城实验培训班试题)5 如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米.(π取3.14) (2007年101中学试题)【附答案】1. 【解】阴影部分的面积实际上是右图阴影部分面积的一半,长方形的长等于两个圆直径,宽等于1个圆直径,所以右图的阴影部分的面积等于:()28828222 6.88π×÷−÷÷××=所以左图阴影部分的面积等于6.88÷2=3.44平方厘米.2. 【解】所以上面的正方体单个面的面积等于下面正方体单个面面积的1/2,而塔形几何体每向上增加一层,实际增加的表面积相当于增加该层4个正方形面的面积,所以塔形几何体的面积可以表示为:111226224248⎛⎞××+×××++⎜⎝⎠""⎟,当正方体数目为5时,塔形几何体的面积为:11112262242484213924816⎛⎞××+×××+++=++++=⎜⎟⎝⎠,所以表面积要超过39,个数至少为6.3. 【解】原正方体表面积:1×1×6=6(平方米),一共切了2+3+4=9(次),每切一次增加2个面:2平方米.所以表面积: 6+2×9=24(平方米).4. 【解】显然小圆的半径等于大圆半径的一半,所以四个小圆的面积和等于大圆的面积,但四个小圆一起覆盖的面积比大圆还差黑色部分的面积,这是因为阴影部分的面积被相邻两个小圆重复覆盖,如果阴影部分的面积被重复计算两次的话,白色面积+阴影部分面积×2=白色面积+阴影部分面积+黑色部分面积.所以黑色部分的面积=阴影部分的面积.5. 【解】阴影部分的面积等于以AB 为半径的半圆加上扇形ADE 减去三角形ABD ,所以阴影部分的面积==7.125(平方厘米).222.5258552ππ÷+÷−×÷第三讲 小升初专项训练 几何二:圆和立体一、小升初考试热点及命题方向圆和立体几何近两年虽然不是考试热点,但在小升初考试中也会时常露面.因为立体图形考察学生的空间想象能力,可以反映学生的本身潜能;而另一方面,初中很多知识点都是建立在空间问题上,所以可以说学校考察立体也是为初中选拔知识链接性好的学生.二、2008年考点预测2008年的小升初考试如果考察圆与立体几何,不会难度太大,只需掌握我们本讲中所介绍的几类基本题型,就可成功在握.考试热点将会出现在诸如水位问题和三维视图问题等题型.三、主要常用数学方法圆面积相关方法:1.割补法:涉及到圆或扇形与其他图形的组合图形的面积无法用公式直接求出,但通过几个基本图形的割补,即可将不规则的图形面积化作规则图形的面积进行加减计算.2.差不变原理:类似于直线型面积中的类似问题.3.容斥关系法:本质上还是割补法,只是涉及到面积的重复统计,只要将多计的面积去除.立体几何相关数学方法:1.拼接法:与平面几何中的方法类似,将不规则的图形体积化作规则图形的体积进行加减计算.2.三视图法:主要适用于求正方体积木塔建图形的表面积计算.从上、前、左(下、后、右)这几个基本视角,分析图形的表面.3.切片法:适用于求具有穿孔结构或内部结构的立体图形的体积计算,将立体图形沿某个方向切成多片,化立体为平面.4.套模法:割补法的引申,分析立体图形的展开图,以最适合该立体图形的基本几何图形为模型.再在该图形上进行切割.四、典型例题解析1 与圆和扇形有关的题型【例1】(★★)如下图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等.求扇形所在的圆面积.【解】:等腰三角形的角为45度,则扇形所在圆的面积为扇形面积的8倍.而扇1【例2】(★★★)草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图).问:这只羊能够活动的范围有多大?【解】如右上图所示,羊活动的范围可以分为A,B,C 三部分,其中A 是四分之三的圆,B、C 是四分之一的圆.所以羊活动的范围是:223130201044πππ××+××+××214=(米2)3.14×(675+100+25)=2512【例3】(★★)在右图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.【解】我们只要看清楚阴影部分如何构成则不难求解.左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为大扇形减去小扇形,再减去长方形.则为:4π×4×4-4π×2×2-4×2=3×3.14-8=1.42.【例4】(★★★)如图,ABCD 是正方形,且FA=AD=DE=1,求阴影部分的面积.(取π=3)【解】先看总的面积为14的圆,加上一个正方形,加上一个等腰直角三角形,然后扣除一个等腰直角三角形,一个14圆,一个45度的扇形.那么最终效果等于一个正方形扣除一个45度的扇形.为1×1-18×3×1=58.【例5】(★★★)如下图所示,曲线PRSQ 和ROS 是两个半圆.RS 平行于PQ.如果大半圆的半径是1米,那么阴影部分是多少平方米?(π取3.14)【解】如左下图所示,弓形RS 的面积等于扇形ORS 的面积 与三角形ORS 的面积之差,为221141242ππ×÷−÷=−扇形ROS 的面积为:22222222411244RS OR OS ππππ+⎛⎞÷=÷⎜⎟⎝⎠+=÷=原题阴影部分的面积为:()111 1.074242πππ−+=−=【前铺】(★★★)如下图,AB 与CD 是两条垂直的直径,圆O 的半径为15厘米,q AEB 是以C 为圆心,AC 为半径的圆弧,求阴影部分面积. 【解】阴影部分面积215153090301523602ππ×××××⎛⎞=−−⎜⎟⎝⎠22522522522ππ=−+ =225(平方厘米)与立体几何有关的题型小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,归纳如下.见下图.在数学竞赛中,有许多几何趣题,解答这些趣题的关键在于精巧的构思和恰当的设计,把形象思维和抽象思维结合起来.2 求不规则立体图形的表面积与体积【例6】(★★★)现有一个棱长为1cm的正方体,一个长宽为1cm高为2cm的长方体,三个长宽为1cm 高为3cm的长方体.下列图形是把这五个图形合并成某一立体图形时,从上面、前面、侧面所看到的图形.试利用下面三个图形把合并成的立体图形(如例)的样子画出来,并求出其表面积. 例:【解】立体图形的形状如下图所示.(此题十分经典)从上面和下面看到的形状面积都为9cm2,共18cm2;从两个侧面看到的形状面积都为7cm2,共14cm2;从前面和后面看到的形状面积都为6cm2,共12cm2;隐藏着的面积有2cm2.一共有18+16+12+2=48(cm2).【拓展】(★★★)第9届华罗庚金杯少年数学邀请赛总决赛于2面4年5月10日在潮州举行,北京的选手们用N个大小相同的小正方体木块粘贴成了一个从正面看是2004,从左面看是9的模型(如图).问:N最大为多少?N最小为多少?(十届华杯赛学而思整理)【解】可以将2004这个模型分为5行,第一行有11个方块,第二行有7个方块,第三行有10个方块,第四行有6个方块,第五行有10个方块.因为从左边看是9的模型,所以第一行的宽度为3个方块,第二行的宽度为2个方块,第三行的宽度为3个方块,第四行的宽度为1个方块,第五行的宽度为3个方块.11×3+7×2+10×3+6×1+10×3=113,所以N最大为113.11+7+10+6+10=44,所以N最小是44块.但是,仅用44块显然不能满足从左边看是9的模型.由于模型是粘贴出来而不是摆出来的,所以加上第二排的3块并不能减少第一排的方块.而加上第三排的4块后,由于上面三块是连续的,所以可以在第一排去掉2块,仍然不会改变从正面看是2004的效果.44+3+4-2=49,所以N最小为49.【例7】(★★★)在边长为4厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞.洞口是边长为1厘米的正方形,洞深1厘米(如图).求挖洞后木块的表面积和体积.【解】提示:大正方体的边长为4厘米,挖去的小正方体边长为1厘米,说明大正方体木块没被挖通,因此,每挖去一个小正方体木块,大正方体的表面积增加“小洞内”的4个侧面积.6个小洞内新增加面积的总和: 1×1×4×6=24(平方厘米),原正方体表面积:42×6=96(平方厘米),挖洞后木块表面积:96+24=120(平方厘米),体积:43-13×6=58(立方厘米).答:挖洞后的表面积是120平方厘米,体积是58立方厘米.【例8】(★★★)右图是一个5×4×4的长方体,若上面有2×1×4、2×1×5、3×1×4的穿透的洞,则剩下部分的表面积为多少平方单位?(学而思整理)【考点分析】立体几何:不规则形体的体积与表面积、穿透与空间想象,容斥原理【解】内空=8+10+12-(2+3+2)+1=24(块)所以,5×4×4-24=56(块)表面积:从内部向六个方向,整体观照:前后:(3×4+2-2)×2=24(平方单位)左右:(2×4+2-2)×2=16(平方单位)上下:(2×5+2-3)×2=18(平方单位)所以,内部表面积为24+16+18=58(平方单位)外部表面积为5×4×4+4×4×2-2×(2+2+3)=98(平方单位)所以,总表面积为 58+98=156(平方厘米).【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?【解】由正面图形抽出的小正方体有5×5=25个,由侧面图形抽出的小正方体有5×5=25个,由底面图形抽出的小正方体有4×5=20个,正面图形和侧面图形重合抽出的小正方体有1×2+2×1+2×2=8个,正面图形和底面图形重合抽出的小正方体有1×3+2×2=7个,底面图形和侧面图形重合抽出的小正方体有1×2+1×1+2×2=7个,三个面的图形共同重合抽出的小正方体有3个.根据容斥原理,25+25+20-8-7-7+3=51,所以共抽出了51个小正方体.125-51=74,所以右图中剩下的小正方体有74个.[总 结]:立体图形中一定要学会想象,特别是这种面积分开时,我们仍可以看成相连的,这就要求学生必须学会如何看待面积的变化.3 水位问题【例9】(★★)一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米.瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?分析 由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的3倍(6÷2).【解】326.419.831ππ×=+(立方厘米). 19.8π立方厘米62.2毫升≈ =0.0622升.答:酒精的体积是19.8π立方厘米,合0.0622升.【例10】(★★)一个高为30厘米,底面为边长是10厘米的正方形的长方体水桶,其中装有21容积的水,现在向桶中投入边长为2厘米×2厘米×3厘米的长方体石块,问需要投入多少块这种石块才能使水面恰与桶高相齐?【解】所装入石块的体积应等于桶的容积的一半.投入石块:(10×10×15)÷(2×2×3)=125(块).4 计数问题【例11】(★★★★)右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?(学而思整理) 【解】正方体只可能有两种:由1个小正方体构成的正方体,有22个;由8个小正方体构成的2×2×2的正方体,有4个.所以共有正方体 22+4=26(个).由两个小正方体组成的长方体,根据摆放的方向可分为下 图所示的上下位、左右位、前后位三种,其中上下位有13个,左右位有13个,前后位有14个,共有13+13+14=40(个).【例12】有甲、乙、丙3种大小的正方体,棱长比是1:2:3.如果用这三种正方体拼成尽量小的一个正方体,且每种都至少用一个,则最少需要这三种正方体共多少?【解】 设甲的棱长是1,则乙的棱长是2,丙的棱长是3.一个甲种木块的体积是1*1*1=1;一个乙种木块的体积是2×2×2=8;一个丙种木块的体积是3×3×3=27.3+2=5.则这三种木块拼成的最小正方体的棱长是5.体积是5×5×5=125.需要丙种木块1块,乙种木块1+1×2+2×2=7块.丙种木块的体积是27,乙种木块的体积是8×7=56.125-27-56=42.需要甲种木块42÷1=42块.1+7+42=50块.5 其他常考题型【例13】(★★★)有两种不同形状的纸板,一种是正方形的,另一种是长方形的,正方形纸板的总数与长方形纸板的总数之比是1∶2.用这些纸板做成一些竖式和横式的无盖纸盒.正好将纸板用完.问在所做的纸盒中,竖式纸盒的总数与横式纸盒的总数之比是多少?【解】由于纸盒无盖,所以一个竖式纸盒有一个正方形和4个长方形,一个横式纸盒有2个正方形和3个长方形,那么一个竖式纸盒和两个横式纸盒共有5个正方形和10个长方形,这时所用的正方形纸板与长方形纸板的比恰是1∶2,也就是说按照每做一个竖式纸盒,再做两个横式纸盒的比例做纸盒,就可以把两种不同形状的纸板用完.因此,在所做的纸盒中,竖式纸盒的总数与横式纸盒的总数之比是1∶2.【例14】左下图是一个正方体,四边形APQC表示用平面截正方体的截面.请在右下方的展开图中画出四边形APQC的四条边.【解】把空间图形表面的线条画在平面展开图上,只要抓住四边形APQC四个顶点所在的位置这个关键,再进一步确定四边形的四条边所在的平面就可容易地画出.(1)考虑到展开图上有六个顶点没有标出,可想象将展开图折成立体形,并在顶点上标出对应的符号,见左下图.(2)根据四边形所在立体图形上的位置,确定其顶点所在的点和棱,以及四条边所在的平面:顶点:A—A,C—C,P在EF边上,Q在GF边上.边AC在ABCD面上,AP在ABFE面上,QC在BCGF面上,PQ在EFGH面上.(3)将上面确定的位置标在展开图上,并在对应平面上连线.需要注意的是,立体图上的A,C点在展开图上有三个,B,D点在展开图上有二个,所本讲主要接触到以下几种典型题型:1)与圆和扇形有关的题型.参见例1,2,3,4,52)求不规则立体图形的表面积与体积.参见例6,7,83)水位问题.参见例9,104)计数问题.参见例11,126)其他常考题型.参见例13、14【课外知识】剪正方体 此题旨在培养同学们的空间想象力和动手能力 将一个正方体(图1)剪开可以展成一些不同的平面图形(图2).图1正方体(1) (2) (3) (4) 图2 正方体的平面展开图 其中的图2的(1),(2)都是“带状图”,好像是一条完整的削下来的苹果皮.仔细观察(1),(2)两个图可以发现,图中的每个小正方形都有两个边与其它的正方形“共用”,除了两头的两个正方形以外.再观察图(3)和图(4),由于这两个图中每个都有一个正方形(粉色)有两条以上的边(图(3)有3条,图(4)有4条)与周围的正方形“共用”.所以图(3)和图(4)都不是“带状图”. 问题1:运用你的空间想象力或者动手将图2的四个图折成正方体. 问题2:除了图(1)和图(2)以外还有两个正方体的平面展开图也是“带状图”,你能找出来吗?答案:(注:作业题--例题类型对照表,供参考)题1,2,3,4—类型1;题5—类型4;题6,7—类型2;题8—类型61、(★★)在右图所示的正方形ABCD 中,对角线AC 长2厘米. 扇形ADC 是以D 为圆心,以AD 为半径的圆的一部分. 求阴影部分的面积.【解】如右图所示,22,42I AD AD S π=− 2282AC AD S S π+=−ⅡⅢ. 因为AC 2=2AD 2,所以原题图中阴影部分的面积为 22248AD AC AD ππ+−=2288AC AC AC ππ+−22=π-2=1.14(平方厘米).2、(★★★)传说古老的天竺国有一座钟楼,钟楼上有一座大钟,这座大钟的钟面有10平方米.每当太阳西下,钟面就会出现奇妙的阴影(如右下图).那么,阴影部分的面积是多少平方米?【解】将原题图中的等边三角形旋转30°,得到右上图.因为△AOD,△BOD 都是等边三角形,所以四边形△OBD 是菱形,推知△AOB 与△ADB 面积相等.又因为弦AD 所对的弓形与弦BD 所对的弓形面积相等,所以扇形AOBD 中阴影部分面积占一半.同理,在扇形AOC,扇形BOC 中,阴影部分面积也占一半.所以,阴影部分面积占圆面积的一半,是10÷2=5(平方米).3、(★★★)如右图,将直径AB 为3的半圆绕A 逆时针旋转60°,此时AB 到达AC 的位置,求阴影部分的面积(取π=3).B【解】整个阴影部分被线段CD 分为Ⅰ和Ⅱ两部分,以AB 为直径的半圆被弦AD 分成两部分,设其中AD 右侧的部分面积为S,由于弓形AD 是两个半圆的公共部分,去掉AD 弓形后,两个半圆的剩余部分面积相等.即Ⅰ=S,由于:Ⅱ+S=60°圆心角扇形ABC 面积,Ⅰ+Ⅱ=92,所以阴影部分的面积为924、(★★★)如下图,两个半径相等的圆相交,两圆的圆心相距正好等于半径,AB 弦约等于17厘米,半径为10厘米,求阴影部分的面积.【解】阴影部分由两个相等的弓形组成,我们只需要求出一个弓形面积,然后二倍就是要求的阴影面积了.由已知若分别连结AO 1,AO 2,BO 1,BO 2,O 1O 2,如图所示,就可以得到两个等边三角形(各边长等于半径),则∠AO 2O 1=∠BO 2O 1=60°,即∠AO 2B=120°.O2O 1BA这样就可以求出以O 2为圆心的扇形AO 1BO 2的面积,然后再减去三角形AO 2B 的面积,就得到弓形面积,三角形AO 2B 的面积就是二分之一底乘高,底是弦AB,高是O 1O 2的一半.即:阴影面积=212()AO B AO B S S Δ−×扇形 23.14101201710223602⎡⎤×××=−÷⎢⎥⎣⎦112098512433=−=(平方厘米)5、(★★)2100个边长为1米的正方体堆成一个实心的长方体.它的高是10米,长、宽都是大于10(米)的整数,问长方体长宽之和是几米?【解】:长方体体积是2100立方米,高为10米,所以底面积为210平方米.210=1×210=2×105=3×70=5×42=6×35=7×30=10×21=14×15.可见,长为15米,宽为14米,长宽之和是15+14=29米.6、(★★)有一个正方体,边长是5.如果它的左上方截去一个边长分别是5、3、2的长方体(如下图),求它的表面积减少的百分比是多少?【解】:原立方体的表面积=5×5×6=150.减少的表面积是两块3×2长方形的面积,既减少了3×2×2=12,所以减少的百分比是00128150=7、(★★)如下图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,求所得形体的表面积是多少?【解】没打洞之前正方体表面积共 6 × 3 × 3= 54,打洞后,表面积减少 6又增加 6×4(洞的表面积).即所得形体的表面积是54-6+24=72.。
六年级上册数学讲义:奥数拓展-几何:曲线形面积人教版
话说在那个三国混乱纷争的时代,董卓权倾朝野,枭雄祸国,这时袁绍从渤海起兵,沿途召集十八路诸侯,兴兵讨伐董卓。
这时的曹操抱负远大,想到别人都有几万兵马,自己贫瘠,担心不会被别人看在眼里,于是就开始想办法,充实自己的实力,希望在第一场大仗“曲线形面积”时大获全胜⋯⋯在会盟的路上,小战不断,曹军也因此有所损失,实力不断衰减,正在这时,神仙田小花出现了,她拥有战法秘笈,可以帮助曹军首战必胜。
但眼扫一周,只许你在大战前的小战中率兵出战,并胜利时才是真正掌握秘笈的时刻,否则一切记忆清空。
首战成败,取决与你,现在就开战喽!环的面积=大圆-小圆=πR2-πr2=π(R2-r2)【例1】难度系数战利品:1万步兵如图所示,最外面是正方形,边长为4米,图中阴影部分的面积为5平方米米,那么最里面正方形的边长为多少米?【赛前练兵】扇形的半径是6厘米,求阴影部分的面积。
【例2】难度系数战利品:1万骑兵已知小圆的面积均为平方厘米,则图中阴影部分的面积是多少平方厘米?4【例3】难度系数战利品:精良兵器这是一个圆心角为90度、半径为20厘米的扇形,求阴影部分的面积。
【例4】难度系数战利品:5座火炮求图中阴影部分的面积(单位:厘米)【例5】难度系数战利品:2员猛将如下图,阴影部分的面积为多少平方厘米(π=3.14)【例6】难度系数战利品:天子诏三角形ABC为直角三角形,AB是圆的直径,并且AB=20厘米,如果阴影⑴的面积比阴影⑵的面积大17曲线面积要获胜基础面积要记清必杀信念是转化找到规则做减加割补旋转和平移排除容斥差不变四大战法需演练首战定能获成功曹军获得了首战的成功,并且得到了更多的支持,为成就霸业奠定了坚实的基础,当然你的功劳也被记入了史册⋯⋯。
小学六年级奥数 小升初几何高频考点汇总与方法总结(一)
小升初几何高频考点汇总与方法总结(一)【例1】(★★)【加油站】1.简单图形的周长与面积与体积:正方形、长方形、三角形、平行四边形、梯形、圆形、扇形、长方体、圆柱、圆锥2.平面几何:直线型五大模型+曲线型几何3.立体几何:立体图形的体积、表面积4.勾股定理(构造弦图) 右图六角星的6个顶点恰好是一个正六边形的6个顶点。
那么阴影部分的面积是空白部分的()倍。
【例2】(★★)【例3】(★★★)已知图中每个正六边形的面积都是1,则图中虚线围成的五边形ABCDE的面积是。
E 如图,在一个梯形ABCD中,AD平行BC,BC:AD=5:7。
点F在线段AD上,点E在线段CD上,满足AF:FD=4:3,CE:ED=2:3.如果四边形ABEF的面积为123,则ABCD 的面积为____。
AA F DDEB C B C1【例4】(★★★)如图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD=15,四边形EFGO的面积为。
【例5】(★★★★)ABC如图,是等腰直角三角形,DEFG是正方形,线段A B与CD相交于K点。
已知正方形DEFG的面积48,AK:KB=1:3,则BKD的面积是多少?D A GKB CE F【例7】(★★★★★)【例6】(★★★★★)如图,四边形ABCD中,DE:EF:FC=3:2:1,BG:GH:AH=3:2:1,AD:BC=1:2,已知四边形ABCD的面积等于4,则四边形EFHG的面积。
如图,分别以一个面积为169平方厘米的正方形的四条边为底,作5个面积为101.4平方厘米的等腰三角形,图中阴影部分的面积是多少平方厘米?F CEDA H G B2。
小学六年级奥数 立体几何常用技巧
2
【例4】(★★★★) 如图,原来的大正方体是由125个棱长为1的小正 方体所构成的。其中有些小正方体已经被挖除, 图中涂黑色的部分就是贯穿整个大正方体的挖除 部分。请问剩下的部分的表面积是多少?
【加加点睛】 求表面积——三视图法
【例5】(★★★)
图中所示的是我们生活中常用的卷筒纸,从纸的包装纸上得到以 下资料:“两层300格,每格11.4厘米×11厘米(长×宽)”。我们用 尺子量出整卷卫生纸的内外半径分别为2.3厘米和5.8厘米,每层卫 生纸的厚度为多少(π取3)?(精确到0.01毫米)。
【加加点睛】 找不变量——体积
3
【例6】(★★★★) 如图,一个底面长30分米,宽10分米,高12分米的长方体水池 ,存有四分之三水,请问: ⑴将一个高11分米,体积330立方分米的圆柱放入水池,水面 的高度为多少分米?
⑵如果再放入一个同样的圆柱,水面高度又变成了多少分米? ⑶如果再放入一个同样的圆柱,水面高度又变成了多少分米?
【加加点睛】
完全没过时:h水
=
V水
V铁块 S容器
;
部分没过时:h水
=
V水 器 S铁块
;
水溢出时:h水 =h容器
【例7】(★★★★) 如图若以长方形的一条宽AB为轴旋转一周后,甲乙 两部分所成的立体图形的体积比是多少? A
B
【例8】(★★★★★)华杯赛决赛试题
如图,ABCD是矩形,BC=6cm, AB=10cm,对角线 AC、BD相交O。图中的阴影部分以CD为轴旋转一周 ,则阴影部分扫出的立体的体积是多少立方厘米?
【例1】(★★)走美6年级试题
21个棱长为1厘米的小正方体组成一个立体如下图 ,它的表面积是______平方厘米。
奥数 六年级 千份讲义 361 第3讲——几何——曲线形面积与立体几何
第三讲几何——曲线形面积与立体几何知识点拨圆和立体几何近两年虽然不是考试热点,但在小升初考试中也会时常露面,因为立体图形考察学生的空间想象能力,可以反映学生的本身潜能;而另一方面,初中很多知识点都是建立在空间问题上,所以可以说学校考察立体也是为初中选拔知识链接性好的学生.一、与圆的面积相关的方法:⑴割补、平移、旋转法:涉及到圆或扇形与其他图形的组合图形的面积无法用公式直接求出,但通过几个基本图形的割补、平移、旋转,即可将不规则的图形面积化作规则图形的面积进行加减计算.⑵差不变原理:类似于直线形面积中的类似问题,指两个图形同时加上或减去另一个图形,它们面积的差保持不变.⑶容斥关系法:本质上还是割补法,只是涉及到面积的重复统计,需要将多计的面积去除.二、立体几何相关的方法:⑴拼接法:与平面几何中的方法类似,将不规则的图形体积化作规则图形的体积进行加减计算.⑵三视图法:主要适用于求正方体积木塔图形的表面积计算,以及染色问题或计数问题,从上、前、左(下、后、右)这几个基本视角,分析图形的表面.⑶切片法:适用于求具有穿孔结构或内部结构的立体图形的体积计算,将立体图形沿某个方向切成多片,化立体为平面.⑷套模法:割补法的引申,分析立体图形的展开图,以最适合该立体图形的基本几何图形为模型,再在该图形上进行切割.例题精讲模块一、曲线形面积【例 1】如图是一个直径为3cm的半圆,让这个半圆以A点为轴沿逆时针方向旋转60︒,此时B点移动到'B点,求阴影部分的面积.(图中长度单位为cm,圆周率按3计算).B'60︒【例 2】 正三角形ABC 的边长是6厘米,在一条直线上将它翻滚几次,使A 点再次落在这条直线上,那么A 点在翻滚过程中经过的路线总长度是多少厘米?如果三角形面积是15平方厘米,那么三角形在滚动过程中扫过的面积是多少平方厘米?(结果保留π)【巩固】直角三角形ABC 放在一条直线上,斜边AC 长20厘米,直角边BC 长10厘米.如下图所示,三角形由位置Ⅰ绕A 点转动,到达位置Ⅱ,此时B ,C 点分别到达1B ,1C 点;再绕1B 点转动,到达位置Ⅲ,此时A ,1C 点分别到达2A ,2C 点.求C 点经1C 到2C 走过的路径的长.60︒30︒B 1C 1C 2A 2CB AⅢⅡⅠ【例 3】 如图所示,直角三角形ABC 的斜边AB 长为10厘米,60ABC ∠=︒,此时BC 长5厘米.以点B 为中心,将ABC ∆顺时针旋转120︒,点A 、C 分别到达点E 、D 的位置.求AC 边扫过的图形即图中阴影部分的面积.(π取3)E【巩固】(2008年“学而思杯”数学试题)如图,直角三角形ABC 中,B ∠为直角,且2BC =厘米,4AC = 厘米,则在将ABC ∆绕C 点顺时针旋转120︒的过程中,AB 边扫过图形的面积为 .(π 3.14=) CB A【例 4】 如图,ABC ∆是一个等腰直角三角形,直角边的长度是1米.现在以C 点为圆心,把三角形ABC顺时针转90度,那么,AB 边在旋转时所扫过的面积是 平方米.(π 3.14=)ABC【例 5】 (祖冲之杯竞赛试题)如图,ABCD 是一个长为4,宽为3,对角线长为5的正方形,它绕C 点按顺时针方向旋转90︒,分别求出四边扫过图形的面积.CBD A【巩固】如图,一条直线上放着一个长和宽分别为4cm 和3cm 的长方形Ⅰ.它的对角线长恰好是5cm .让这个长方形绕顶点B 顺时针旋转90°后到达长方形Ⅱ的位置,这样连续做三次,点A 到达点E 的位置.求点A 走过的路程的长.ⅣⅢⅡⅠEDCBA【例 6】 (2004年第九届华杯赛初赛)半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?【巩固】如图所示,大圆周长是小圆周长的n (1n >)倍,当小圆在大圆内侧(外侧)作无滑动的滚动一圈后又回到原来的位置,小圆绕自己的圆心转动了几周?【例 7】 如图所示,两条线段相互垂直,全长为30厘米.圆紧贴直线从一端滚动到另一端(没有离开也没有滑动).在圆周上设一个定点P ,点P 从圆开始滚动时是接触直线的,当圆停止滚动时也接触到直线,而在圆滚动的全部过程中点P 是不接触直线的.那么,圆的半径是多少厘米?(设圆周率为3.14,除不尽时,请四舍五入保留小数点后两位.如有多种答案请全部写出)P【例 8】如图,15枚相同的硬币排成一个长方形,一个同样大小的硬币沿着外圈滚动一周,回到起始位置.问:这枚硬币自身转动了多少圈?模块二、立体图形【例 9】有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A的为黑色,图中共有黑色积木多少块?A【例 10】如下图,用若干块单位正方体积木堆成一个立体,小明正确地画出了这个立体的正视图、俯视图和侧视图,问:所堆的立体的体积至少是多少?正视图俯视图侧视图【例 11】(第十二届全国“华罗庚金杯”少年数学邀请赛)用一些棱长是1的小正方体码放成一个立体图形,从上向下看这个立体图形,如下图a,从正面看这个立体图形,如下图b,则这个立体图形的表面积最多是________.a b【例 12】(2009年“希望杯”二试六年级)用棱长为1的小立方体粘合而成的立体,从正面、侧面、上面看到的视图均如下图所示,那么粘成这个立体最多需要块小立方体.【例 13】(日本第七届算术奥林匹克)有很多白色或黑色的棱长是1cm的小正方体.取其中的27个,拼成一个棱长是3cm的大正方体,每一面都各用2个黑色的小正方体拼成了相同的图案。
小学六年级奥数--立体几何综合
学科培优 数学立体几何综合学生姓名 授课日期 教师姓名授课时长知识定位本讲复习已经学过的立体图形的相关知识和解题技巧,主要有:长方体、立方体、圆柱、圆锥的体积及表面积求解,立体几何计数及多面体顶点与棱以及表面的关系。
重难点在于:1.不规则立体图形的表面积或体积求解2.多面体的顶点与棱数计数 3.体积的等量代换主要的考点:1.规则立体图形的表面积(侧面积)与体积计算2.不规则立体图形的表面积与体积计算 3.染色问题4.立体图形的三视图与展开图知识梳理主要知识点 立体几何⑴规则立体图形的表面积和体积公式长方体:体积:长宽高 表面积:(长宽+宽高+长高) 立方体:体积:棱长的立方 表面积:棱长的平方6 圆柱: 体积:2r h π 侧面积:2rh π 圆锥: 体积:213r h π⑵不规则立体图形的表面积整体观照法⑶体积的等积变形①水中浸放物体:V 升水=V 物 ②测啤酒瓶容积:V=V 空气+V 水⑷三视图与展开图最短线路与展开图形状问题⑸染色问题几面染色的块数与“芯”、棱长、顶点、面数的关系。
例题精讲【试题来源】【题目】一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.【试题来源】 【题目】右图是一个棱长为2厘米的正方体,在正方体上面的正中向下挖一个棱长为1厘米的正方形小洞;接着在小洞的底面正中再挖一个棱长为21厘米的小洞;第三个小洞的挖法与前两个相同,棱长为41厘米.那么最后得到的立体图形的表面积是 平方厘米【试题来源】【题目】把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是_____平方厘米。
【试题来源】【题目】右图是3层没有缝隙的小立方块组成的.如果它的外表面(包括底面)全都被涂成红色,那么把它们再分开成一个个小立方块时,有多少个小立方块恰有三面是红色的?【试题来源】【题目】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是( ).【试题来源】【题目】把一根长2.4米的长方体木料锯成5段(如图),表面积比原来增加了96平方厘米.这根木料原来的体积是_____立方厘米.【试题来源】【题目】用棱长是1厘米的立方体拼成右图所示的立体图形.求这个立体图形的表面积.【试题来源】【题目】把1个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可分割成个小正方体.【试题来源】【题目】用10块长7厘米,宽5厘米,高3厘米的长方体积木堆成一个长方体,这个长方体的表面积最小是多少?【试题来源】【题目】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【试题来源】【题目】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【试题来源】【题目】将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.求这个物体的表面积.【试题来源】【题目】这里有一个圆柱和一个圆锥(下图),它们的高和底面直径都标在图上,单位是厘米.请回答:圆锥体积与圆柱体积的比是多少?【试题来源】【题目】一个长、宽、高分别为21厘米、15厘米、12厘米的长方体.现从它的上面尽可能大的切下一个正方体.然后从剩余的部分再尽可能大的切下一个正方体.最后再从第二次剩余的部分尽可能大的切下一个正方体.剩下的体积是平方厘米.【试题来源】【题目】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【试题来源】【题目】图1是下面的表面展开图①甲正方体;②乙正方体;③丙正方体;④甲正方体或丙正方体.【试题来源】【题目】如图,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘).这个多面体的面数、顶点数和棱数的总和是多少?【试题来源】【题目】下面是一辆汽车模型纸工平面展开图,中轴线上面的一半标出了尺寸.将该图剪下折叠粘合(相同字母标记处粘合在一起)做成汽车模型的体积为V .请回答:①403<v<445②473<V<500,哪一个正确,为什么?【试题来源】【题目】现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?【试题来源】【题目】如图,在一个立方体的两对侧面的中心各打通一个长方体的洞在上下侧面的中心打通一个圆柱形的洞,已知立方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求该立方体的表面积和体积(取 =3.14).【试题来源】【题目】用大小相等的无色透明玻璃小正方体和红色玻璃小正方体拼成一个大正方体ABCD —1A 1B 1C 1D (如图),大正方体内的对角线A 1C ,B 1D ,C 1A ,D 1B 所穿的小正方体都是红色玻璃小正方体,其它部分都是无色透明玻璃小正方体,小红正方体共用了401个,问:无色透明小正方体用了多少个?习题演练【试题来源】【题目】一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是______ 立方厘米【试题来源】【题目】右图是一个表面被涂上红色的棱长为lO厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是_____平方厘米【试题来源】【题目】张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用了长3米、宽2米的长方形苇席围成容积最大的圆柱形粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍?【试题来源】【题目】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面涂上红色的小长方体恰好是12块.那么至少要把这个大长方体分割成个小长方体.【试题来源】【题目】六个立方体A、B、C、D、E、F的可见部分如下图,下边是其中一个立体的侧面展开图,那么它是立方体____的侧面展开图.2。
奥数六年级千份讲义480第三讲.竞赛班.教师版
91.36 75.36 16 (平方厘米). 【例 2】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),
求这个油桶的容积.(取 3.14)
16.56m
【分析】外侧表面积为: 6 10 10 4 4 4 22 2 536 8.
内侧表面积为:164 3 2 44 22 2 22 3 192 32 824224 16.
总表面积224 16536 8760 8785.12 (平方厘米). 计算体积时将挖空部分的立体图形取出,如图,只要求出这个几何体的体积即可. 挖出的几何体体积为: 4 4 4 3 4 4 4 2 22 3 192 64 24256 24.
体积 V正方体 a3 V长方体 abc
V圆柱 r2h
S圆锥
侧面积
底面积=
n 360
l
2
r 2
V圆锥体
1 r 2h 3
注: l 是母线,即从顶点到底面圆上的线段长.
S球体 4r2
V球体
4 r 3 3
学而思教育 六年级 数学
竞赛班 教师版
第 3 讲 Page 1of 9
【例 1】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10 平方厘米,(如下图所示),请你根据图中 标明的数据,计算瓶子的容积是 ______.
【分析】圆的直径为:16.56 13.144 (米),而油桶的高为 2 个直径长,即为: 42 8 (m),故体
积为100.48 立方米. 【例 3】(人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲
几何——曲线形面积与立体几何
---- w,™顷■■ - _斤
知识点拨
圆和立体几何近两年虽然不是考试热点,但在小升初考试中也会时常露面,因为立体图形考察学生的空间想象能力,可以反映学生的本身潜能;而另一方面,初中很多知识点都是建立在空间问题上,所以可以说学校考察立体也是为初中选拔知
识链接性好的学生.
、与圆的面积相关的方法:
⑴割补、平移、旋转法:涉及到圆或扇形与其他图形的组合图形的面积无法用公式直接求出,但通过几个
减计算.
⑶容斥关系法:本质上还是割补法,只是涉及到面积的重复统计,需要将多计的面积去除.
二、立体几何相关的方法:
⑴拼接法:与平面几何中的方法类似,将不规则的图形体积化作规则图形的体积进行加减计算.
⑵三视图法:主要适用于求正方体积木塔图形的表面积计算,以及染色问题或计数问题,从上、前、左(下、后、右)这几个基本视角,分析图形的表面.
⑶切片法:适用于求具有穿孔结构或内部结构的立体图形的体积计算,将立体图形沿某个方向切成多片,
化立体为平面.
⑷套模法:割补法的引申,分析立体图形的展开图,以最适合该立体图形的基本几何图形为模型,再在该图形上进行切割.
如例题精讲
模块一、曲线形面积
【例1】如图是一个直径为3cm的半圆,让这个半圆以A点为轴沿逆时针方向旋转60,此时B点移动到B'点,求阴影部分的面积.(图中长度单位为cm,圆周率按3计算).
60
【例2】正三角形ABC的边长是6厘米,在一条直线上将它翻滚几次,使A点再次落在这条直线上,那么A点在翻滚过程中经过的路线总长度是多少厘米?如果三角形面积是15平方厘米,那么三角
形在滚动过程中扫过的面积是多少平方厘米?(结果保留n)
【巩固】直角三角形ABC放在一条直线上,斜边AC长20厘米,直角边BC长10厘米.如下图所示,三角形由位置I 绕A点转动,到达位置H,此时B , C点分别到达B1, C1点;再绕B1点转动,到达位置川,此时A , G点分别到达A2, C2点•求C点经C1到C2走过的路径的长.
【例3】如图所示,直角三角形ABC的斜边AB长为10厘米,ABC 60,此时BC长5厘米.以点B为中心,将ABC 顺时针旋转120,点A、C分别到达点E、D的位置.求AC边扫过的图形即图中阴影部分的面积.(n取3)
【巩固】(2008年学而思杯”数学试题)如图,直角三角形ABC中,B为直角,且BC 2厘米,AC 4厘米,则在将ABC绕C点顺时针旋转120的过程中,AB边扫过图形的面积为____________________________ .(n 3.14)A
【例4】如图,ABC是一个等腰直角三角形,直角边的长度是1米•现在以C点为圆心,把三角形ABC 顺时针转90度,那么,AB边在旋转时所扫过的面积是______________ 平方米.(n 3.14)
【例5】(祖冲之杯竞赛试题)如图,ABCD是一个长为4,宽为3,对角线长为5的正方形,它绕C点按顺时针方向旋转90,分别求出四边扫过图形的面积.
【巩固】如图,一条直线上放着一个长和宽分别为4cm和3cm的长方形I .它的对角线长恰好是5cm .让这个长方形绕顶点B顺时针旋转90°后到达长方形n的位置,这样连续做三次,点A到达点E的
位置•求点A走过的路程的长.
A B C D E
【例6】(2004年第九届华杯赛初赛)半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?
【巩固】如图所示,大圆周长是小圆周长的n(n 1)倍,当小圆在大圆内侧(外侧)作无滑动的滚动一圈后又回到原来的位置,小圆绕自己的圆心转动了几周?
【例7】如图所示,两条线段相互垂直,全长为30厘米•圆紧贴直线从一端滚动到另一端(没有离开也没有滑动).在圆周上设一个定点P,点P从圆开始滚动时是接触直线的,当圆停止滚动时也接触到直线,而在圆滚动的全部过程中点P是不接触直线的•那么,圆的半径是多少厘米?(设圆周率为3. 14,除不尽时,请四舍五入保留小数点后两位•如有多种答案请全部写出)
P
【例8】如图,15枚相同的硬币排成一个长方形,一个同样大小的硬币沿着外圈滚动一周,回到起始位 置•问:这枚硬币
自身转动了多少圈?
模块二、立体图形
【例9】 有黑白两种颜色的正方体积木,
把它摆成右图所示的形状, 已知相邻(有公共面)的积木颜色不同,
标A 的为黑色,图中共有黑色积木多少块?
【例10】如下图,用若干块单位正方体积木堆成一个立体,小明正确地画出了这个立体的正视图、俯视 图和侧视图,
问:所堆的立体的体积至少是多少?
【例11】(第十二届全国 华罗庚金杯”少年数学邀请赛)用一些棱长是1的小正方体码放成一个立体图形,
从上向下看这个立体图形,如下图 a ,从正面看这个立体图形,如下图 b ,则这个立体图形的表
面积最多是 ___________
•
a b
【例12】(2009年希望杯”二试六年级)用棱长为 1的小立方体粘合而成的立体,从正面、侧面、上面 看到的视图均如下
图所示,那么粘成这个立体最多需要 _________________________________ 块小立方体.
【例13】(日本第七届算术奥林匹克 )有很多白色或黑色的棱长是 1cm 的小正方体.取其中的
27个,拼成
一个棱长是3cm 的大正方体,每一面都各用 2个黑色的小正方体拼成了相同的图案。
见例图•例 图中正方体的每
一面的图案都相同,因此,用
8个或9个黑色小正方体就可拼成这样的大正方
体•除例图的图案之外,还可以拼成每面的图案都相同的大正方体. 问⑴:在下图的①〜⑦中找出可以拼成每面都相同的图案.
问⑵:在问⑴中,可以按要求拼成的大正方体各用几个黑色小正方体?最多的用几个?最少的用 几个?
【例14】(2008年三帆中学考题)一个长、宽、高分别为
12、9、7厘米的长方体,在它的每组两两相对的
面的正中央都打一个底面为
4平方厘米的正方形的贯穿洞.
那么这个长方体剩下部分的体积是 ______________立方厘米.
【例15】(05年武汉明心杯数学挑战赛)如图所示,一个5 5 5的立方体,在一个方向上开有1 1 5的孔, 在另一个方向
上开有 2 1 5的孔,在第三个方向上开有 3 1 5的孔,剩余部分的体积是多少?
表面积为多少?
【例16】 一个由125个同样的小正方体组成的大正方体, 从这个大正方体中抽出若干个小正方体, 把
大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?
练习1 如右图,以OA 为斜边的直角三角形的面积是
24平方厘米,斜边长10厘米,将它以0点为中心 旋转90,问:三角形扫过的面积是多少?
( n 取3)
练习2 如果半径为25厘米的小铁环沿着半径为 50厘米的大铁环的外侧作无滑动的滚动, 当小铁环沿大
铁环滚动一周回到原位时,问小铁环自身转了几圈?
练习4 有许多相同的立方体,每个立方体的六个面上都写着同一个数字 (不同的立方体可以写相同的数
字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着
3的立方体写着2的立方体
相邻(见左下图)•依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少
?
A
练习3 12个相同的硬币可以排成下面的 4种正多边形(圆心的连线).
用一个同样大小的硬币,分别沿着四个正多边形的外圈无滑动地滚动一周•问:在哪个图中这枚 硬币自身转动的圈数最多,最多转动了多少圈?
练习5 (2008年香港保良局第12届小学数学世界邀请赛)如图,原来的大正方体是由
125个小正方体所
构成的•其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分 •请
问剩下的部分共有多少个小正方体?
第8
题
/ / /^7
1 1 /
/
Z
7 / / /。