解圆锥曲线问题常用方法(一)
解圆锥曲线问题多种常用方法
解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by ax 。
(2))0,0(12222>>=-b a by ax 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by ax(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =共线时,距离和最小。
椭圆与双曲线的对偶性质总结
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =,因而易发现,当A 、F 三点共线时,距离和最小。
圆锥曲线常用方法与结论(收藏)
FAP HBQ 圆锥曲线常用方法与结论(收藏)1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。
圆锥曲线解题技巧归纳
圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。
本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。
1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。
当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。
2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。
通过选取合适的参数,可以将曲线表示为一系列点的集合。
这种方法可以简化问题,使得求解过程更加直观和方便。
3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。
通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。
这种方法在求解对称性等问题时非常有用。
4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。
通过将数据点与曲线进行比较,可以得出曲线的参数和特性。
这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。
5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。
通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。
6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。
通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。
这种方法在求解对称性、求交点等问题时非常有用。
7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。
根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。
8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。
例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。
9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。
圆锥曲线专题:恒过定点问题的4种常见考法(原卷版)
圆锥曲线专题:恒过定点问题的4种常见考法一、常用方法技巧1、参数无关法把直线或者曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时的参数的系数就要全部为零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点。
2、特殊到一般法根据动点或动直线、动曲线的特殊情况探索出定点,再证明该定点与变量无关。
3、关系法对满足一定条件上的两点连结所得直线定点或满足一定条件的曲线过定点问题,可设直线(或曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识求解。
二、手电筒模型解题步骤1、概念:只要任意一个限定AP 与BP 条件(如AP BP k k ⋅=定值,+AP BP k k =定值),直线AB 依然会过定点,因为三条直线形似手电筒,故称为手电筒模型。
2、解题步骤:第一步:由AB 直线y kx m =+,联立曲线方程得根与系数关系,∆求出参数范围;第二步:由AP 与BP 关系,得到一次函数()k f m =或()m f k =;第三步:将()k f m =或()m f k =代入y kx m =+,得到()y y k x x =-+定定.三、交点弦的中点所在直线恒过定点解题步骤第一步:设其中一条直线的斜率为1k ,求出直线方程;第二步:直线与曲线进行联立,出现韦达定理的形式,或者直接求出坐标,表示出这条弦的中点,并且类比出另外一条的中点坐标;第三步:由上述两部,根据点斜式写出两个中点所在直线的方程;第四步:化直线为点斜式,确定定点坐标。
四、圆锥曲线的切点弦方程1、过抛物线()220y px p =>外一点()00,M x y 作抛物线的切线,切点弦方程为()00yy p x x =+;2、过椭圆()222210x y a b a b+=>>外一点()00,M x y 作椭圆的切线,切点弦方程为00221x x y ya b +=;3、过双曲线()222210,0x y a b a b-=>>外一点()00,M x y 作双曲线的切线,切点弦方程为00221x x y ya b-=;五、几个重要的定点模型1、过椭圆()222210x y a b a b +=>>的左焦点(),0F c -作两条相互垂直的弦AB ,CD ,若弦AB ,CD 的中点分别为M ,N ,则直线MN 恒过定点222,0ac a b ⎛⎫- ⎪+⎝⎭.(双曲线与抛物线也有类似结论)2、动点()00,P x y 在直线0Ax By C ++=上,由P 引椭圆22221x y a b +=的两条切线,切点分别是M ,N ,则直线MN 恒过定点22,a A b B C C ⎛⎫-- ⎪⎝⎭.(双曲线与抛物线也有类似结论)3、(1)过椭圆()222210x y a b a b +=>>上的一定点()00,P x y 作两条斜率之和为m 的直线1l ,2l ,分别交椭圆于A ,B 两点,则直线AB 必过定点20000222,y b x x y m ma ⎛⎫--- ⎪⎝⎭;(2)过抛物线()220y px p =>上的一定点()00,P x y 作两条斜率之和为m 的直线1l ,2l ,分别交抛物线于A ,B 两点,则直线AB 必过定点0002,2y y x p m m ⎛⎫-- ⎪⎝⎭4、(1)过椭圆()222210x y a b a b +=>>上的一定点()00,P x y 作两条斜率之积为m 的直线1l ,2l ,分别交椭圆于A ,B 两点,则直线AB 必过定点()()2222002222,b ma x b ma y b ma b ma ⎛⎫++ ⎪- ⎪--⎝⎭(2)过抛物线()220y px p =>上的一定点()00,P x y 作两条斜率之积为m 的直线1l ,2l ,分别交抛物线于A ,B 两点,则直线AB 必过定点002,p x y m ⎛⎫-- ⎪⎝⎭(3、4两个结论对于圆与双曲线也成立,当22b a =时就是圆中的结论,用2b -替代2b 就可得到双曲线中的结论)题型一手电筒模型恒过定点问题【例1】已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设不经过点Q 的直线l 与曲线C 相交于A,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.【变式1-1】已知直线2y =与双曲线C :()222210,0x ya b a b-=>>交于A ,B 两点,F 是C 的左焦点,且AF AB ⊥,2BF AF =.(1)求双曲线C 的方程;(2)若P ,Q 是双曲线C 上的两点,M 是C 的右顶点,且直线MP 与MQ 的斜率之积为23-,证明直线PQ 恒过定点,并求出该定点的坐标.【变式1-2】已知F 为抛物线22y px =(0)p >的焦点,过F 且倾斜角为45︒的直线交抛物线于A,B 两点,||8AB =.(1)求抛物线的方程:(2)已知()0,1P x -为抛物线上一点,M,N 为抛物线上异于P 的两点,且满足2PM PN k k ⋅=-,试探究直线MN 是否过一定点?若是,求出此定点;若不是,说明理由.【变式1-3】已知动点(,)P x y (0)x ≥到定点(1,0)的距离比它到y 轴的距离大1.(1)求动点P 的轨迹E 的方程;(2)设点(,0)Q m (m 为常数),过点Q 作斜率分别为12,k k 的两条直线1l 与2l ,1l 交曲线E 于,A B 两点,2l 交曲线E 于,C D 两点,点,M N 分别是线段,AB CD 的中点,若121k k +=,求证:直线MN 过定点.题型二切点弦恒过定点问题【例2】在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的右焦点与抛物线2y =的焦点重合,且椭圆的四个顶点围成的四边形面积为(1)求椭圆C 的标准方程;(2)已知点P 是直线420y x =-+上的动点,过点P 做椭圆C 的两条切线,切点分别为M ,N ,问直线MN 是否过定点?若是,求出该定点;若不是,请说明理由.【变式2-1】如图,已知椭圆2222:1(0)x y C a b a b +=>>的上顶点为(0,1)A ,离心率为2.(1)求椭圆C 的方程;(2)若过点A 作圆222:(1)(01)M x y r r ++=<<的两条切线分别与椭圆C 相交于点,B D (不同于点A ).当r 变化时,试问直线BD 是否过某个定点若是,求出该定点;若不是,请说明理由.【变式2-2】抛物线2:2(0)C x py p =>的焦点F 是椭圆22134x y +=的一个焦点.(1)求C 的准线方程;(2)若P 是直线240x y --=上的一动点,过P 向C 作两条切线,切点为M ,N ,试探究直线MN 是否过定点?若是,请求出定点,若否,请说明理由.【变式2-3】在平面直角坐标系xOy 中,已知点(0,2)F ,点P 到点F 的距离比点P 到直线3y =-的距离小1,记P 的轨迹为C .(1)求曲线C 的方程;(2)在直线2y =-上任取一点M ,过M 作曲线C 的切线12l l 、,切点分别为A 、B ,求证直线AB 过定点.题型三相交弦中恒过定点问题2:2(0)C x py p =>上.(1)求抛物线C 的方程;(2)过点(0,)T p 作两条互相垂直的直线1l 和2l ,1l 交抛物线C 于A 、B 两点,2l 交抛物线C 于D ,E 两点,若线段AB 的中点为M ,线段DE 的中点为N ,证明:直线MN 过定点.【变式3-1】在平面直角坐标系xOy 中,已知动点P 到点()2,0F 的距离与它到直线32x =的P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 作两条互相垂直的直线1l ,2l .1l 交曲线C 于A ,B 两点,2l 交曲线C 于S ,T 两点,线段AB 的中点为M ,线段ST 的中点为N .证明:直线MN 过定点,并求出该定点坐标.【变式3-2】已知椭圆()2222:10x y E a b a b +=>>A ,右顶点为B ,上顶点为C ,ABC 的内切圆的半径为4-.(1)求椭圆E 的标准方程;(2)点M 为直线:1l x =上任意一点,直线AM ,BM 分别交椭圆E 于不同的两点P ,Q .求证:直线PQ 恒过定点,并求出定点坐标.【变式3-3】已知M ⎝,N ⎫⎪⎪⎝⎭是椭圆2222:1(0)x yE a b a b +=>>上的两点.(1)求椭圆E 的方程;(2)过椭圆E 的上顶点A 和右焦点F 的直线与椭圆E 交于另一个点B ,P 为直线5x =上的动点,直线AP ,BP 分别与椭圆E 交于C (异于点A ),D (异于点B )两点,证明:直线CD 经过点F .题型四动圆恒过定点问题【例4】已知椭圆C :223412x y +=.(1)求椭圆C 的离心率;(2)设,A B 分别为椭圆C 的左右顶点,点P 在椭圆C 上,直线AP ,BP 分别与直线4x =相交于点M ,N .当点P 运动时,以M ,N 为直径的圆是否经过x 轴上的定点?试证明你的结论.【变式4-1】已知椭圆C :22221x y a b +=(0a b >>)的离心率为22,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【变式4-2】设A ,B 为双曲线C :22221x y a b-=()0,0a b >>的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线2ax =于P ,Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.【变式4-3】已知抛物线()2:20C y px p =>与直线:20l x y +=交于M ,N 两点,且线段MN的中点为()8,p P y .(1)求抛物线C 的方程;(2)过点P 作直线m 交抛物线于点A ,B ,是否存在定点M ,使得以弦AB 为直径的圆恒过点M.若存在,请求出点M 坐标;若不存在,请说明理由.。
解圆锥曲线问题常用方法及性质总结
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
圆锥曲线解题技巧和方法综合(全)
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有。
(2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。
过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。
(1)求证离心率;(2)求的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(,)x y 11(,)x y 22)0(12222>>=+b a b y a x 02020=+k b y a x )0,0(12222>>=-b a b y a x 02020=-k b y a x x y 2221-=P 1P 2P 1P 2F 1F 2x a y b 22221+=F c 10(,)-F c 20(,)∠=PF F 12α∠=PF F 21ββαβαsin sin )sin(++=e |||PF PF 1323+抛物线方程,直线与轴的交点在抛物线准线的右边。
解圆锥曲线问题常用的八种方法与七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
圆锥曲线最值问题方法总结
圆锥曲线最值问题方法总结
圆锥曲线最值问题方法总结
圆锥曲线最值问题涉及到求解曲线上最大值或最小值的问题,在数学和物理学中经常应用。
以下是一些常用的解决方法:
1. 初等法
初等法是指通过观察和推理,利用数学基本法则和基本知识来解题的方法。
初等法的优点是简单易懂,适用范围广,但受限于个人数学基础,对复杂问题求解不够实用。
2. 使用微积分
微积分是解决圆锥曲线最值问题最常用的方法之一。
通过求取曲线函数的导数,并令导数为零,可以得到函数可能的最值点。
对于一些复杂的问题,需要用到高阶导数和一些特殊的微积分技巧。
3. 利用几何形状特征
圆锥曲线具有不同的几何形状特征,如椭圆的长轴和短轴,双曲线的渐近线和焦点等等。
利用这些特征,可以通过画图等方式确定曲线的最值点。
4. 使用向量分析
向量分析是一种基于微积分的高级数学方法,通过对曲线方程进行向量运算,可以求解曲线的最大值或最小值。
5. 应用拉格朗日乘数法
拉格朗日乘数法是一种求解约束条件的最值问题的方法,也可以应用于圆锥曲线最值问题中。
通过合理选择拉格朗日乘数,可以得到曲线的最值点。
总之,对于圆锥曲线最值问题的求解,需要综合运用多种数学工具和方法,以最快、最简单、最准确的方式解决问题。
圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
高中数学圆锥曲线详解【免费】 (1)
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y ax 。
(2))0,0(12222>>=-b a by ax 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by ax(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。
解圆锥曲线问题常用的八种方法与七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型一、解圆锥曲线问题常用的八种方法:1.直线的交点法:利用直线与圆锥曲线的交点来解题,求出直线与曲线的交点坐标,从而得到问题的解。
该方法适用于直线与圆锥曲线有交点的情况。
2.过顶点的直线法:通过过顶点的直线与圆锥曲线的交点性质来解题。
一般情况下,过顶点的直线与圆锥曲线有两个交点,利用这两个交点可以得到问题的解。
3.平行线法:对于平行线与圆锥曲线的交点性质进行分析,可以得到问题的解。
一般情况下,平行线与圆锥曲线有两个交点,通过求解这两个交点可以得到问题的解。
4.切线法:利用切线与圆锥曲线的交点性质来解题。
一般情况下,切线与圆锥曲线有一个交点,通过求解这个交点可以得到问题的解。
5.对称法:通过对称性质,将圆锥曲线转化为标准形式或特殊形式,从而简化问题的求解过程。
6.几何平均法:利用几何平均的性质,将圆锥曲线的方程进行变换,从而得到问题的解。
7.参数方程法:通过给定的参数方程,求解参数,从而得到与曲线相关的问题的解。
8.解析几何法:通过解析几何的方法,将问题抽象为代数方程,从而求解问题。
二、解圆锥曲线问题常规题型:1.已知曲线方程,求曲线的性质:如给定椭圆的方程,求椭圆的长短轴、焦点、离心率等。
2.已知曲线性质,求曲线方程:如给定一个椭圆的长短轴、焦点、离心率等,求椭圆的方程。
3.已知曲线方程和一个点,判断该点是否在曲线上:如给定一个椭圆的方程和一个点P,判断点P是否在椭圆上。
4.已知曲线方程和一个直线,判断该直线是否与曲线有交点:如给定一个椭圆的方程和一条直线L,判断直线L是否与椭圆有交点。
5.已知曲线方程和一个点,求该点到曲线的距离:如给定一个椭圆的方程和一个点P,求点P到椭圆的距离。
6.已知曲线方程和一个点,求该点在曲线上的切线方程:如给定一个椭圆的方程和一个点P,求点P在椭圆上的切线方程。
7.已知曲线方程和两个点,求该曲线上两点之间的弧长:如给定一个椭圆的方程和两个点A、B,求椭圆上从点A到点B的弧长。
圆锥曲线解题的七种题型和八种方法
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
圆锥曲线解题技巧之极坐标方程的运用如何通过极坐标方程解决圆锥曲线问题
圆锥曲线解题技巧之极坐标方程的运用如何通过极坐标方程解决圆锥曲线问题圆锥曲线是数学中的一类曲线,包括椭圆、抛物线和双曲线。
在解题过程中,极坐标方程是一种常用的工具,可以帮助我们更便捷地求解圆锥曲线的性质和特点。
本文将介绍极坐标方程的基本概念和使用技巧,以及如何通过极坐标方程解决圆锥曲线问题。
一、极坐标方程的基本概念1. 极坐标系极坐标系是一种描述平面上点位置的坐标系。
它由原点O、极轴和极角组成。
其中,极轴是从原点O出发的射线,极角是这条射线与一个固定射线的夹角,常用符号为θ。
在极坐标系中,一个点的位置可以用(r, θ)表示,其中r是该点到极轴的距离。
2. 极坐标方程圆锥曲线的极坐标方程是指将曲线上的点的坐标表示为极坐标系中的形式。
对于椭圆、抛物线和双曲线,它们的极坐标方程分别为:椭圆:r = a(1 - e*cosθ)抛物线:r = a/(1 + cosθ)双曲线:r = a/(1 - e*cosθ),其中e为离心率,a为焦点到极轴的距离。
二、极坐标方程的解题技巧1. 确定曲线类型在解题过程中,首先需要根据题目给定的条件来确定所研究曲线的类型。
通过观察曲线的特点和性质,判断是椭圆、抛物线还是双曲线,然后找到相应的极坐标方程。
2. 求解曲线参数对于给定的曲线,通常需要求解其参数,如离心率e、焦点距离a 等。
通过给定的条件和已知信息,利用极坐标方程中的相关关系式,可以求解这些参数的具体数值。
3. 分析曲线特性通过极坐标方程,我们可以快速得到曲线在极坐标系中的形状和特性。
比如,通过极径r的变化情况,可以分析出曲线的最大最小半径和离心率等。
4. 解决具体问题利用极坐标方程,可以解决各种与圆锥曲线相关的具体问题。
比如求解曲线上的特定点坐标、求解曲线与轴线的交点坐标、求解曲线的切线方程等。
通过将问题转化为极坐标方程的形式,可以更加简化计算过程,提高求解效率。
三、通过极坐标方程解决圆锥曲线问题的实例为了更好地理解极坐标方程的应用,以下举一个具体的例子:示例:已知一个圆锥曲线的极坐标方程为r = 3/(2 + cosθ),求解该曲线的离心率、焦点位置和渐近线方程。
高中数学圆锥曲线问题常用方法经典例题(含问题详解)
专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 标为 。
【精品】圆锥曲线专题教材(学生版)
4、A设中心为(x,y),则另一焦点为(2x-1,2y),则原点到两焦点距离和为4得 ,∴ ①又c<a,∴ ∴(x-1)2+y2<4②,由①,②得x≠-1,选A
5、 左准线为x=- ,M到左准线距离为 则M到左焦点的距离为
6、 设弦为AB,A(x1,y1),B(x2,y2)AB中点为(x,y),则y1=2x12,y2=2x22,y1-y2=2(x12-x22)∴ ∴2=2·2x, 将 代入y=2x2得 ,轨迹方程是 (y> )
7、y2=x+2(x>2)设A(x1,y1),B(x2,y2),AB中点M(x,y),则
∵ ,∴ ,即y2=x+2又弦中点在已知抛物线内P,即y2<2x,即x+2<2x,∴x>2
8、4 ,令 代入方程得8-y2=4∴y2=4,y=±2,弦长为4
9、 y=kx+1代入x2-y2=1得x2-(kx+1)2-1=0∴(1-k2)x2-2kx-2=0
①-②得 ③设 ,
则 ④-⑤得 ⑥
由③、⑥知M、 均在直线 上,而M、 又在直线l上,
若l过原点,则B、C重合于原点,命题成立若l与x轴垂直,则由对称性知命题成立
若l不过原点且与x轴不垂直,则M与 重合∴
解圆锥曲线问题常用方法(二)
【学习要点】
解圆锥曲线问题常用以下方法:
3、数形结合法
4、参数法
5、代入法
A、双曲线x2-y2=1 B、双曲线x2-y2=1的右支
C、半圆x2+y2=1(x<0) D、一段圆弧x2+y2=1(x> )
5、一个等边三角形有两个顶点在抛物线y2=20x上,第三个顶点在原点,则这个三角形的面积为
2.9圆锥曲线常用方法1:同构法
妙法拓展
y
M
B
A
O
x
ቤተ መጻሕፍቲ ባይዱ
P
抛物线: x2 2 py
切点弦AB:x0 x p( y0 y)
y A
PO M
x
B
抛物线: y2 2 px 切点弦AB:y0 y p(x0 x)
x2 4y Pl : x y 2 0
证明:AB过定点。
切点弦AB过定点
切线交点P在定直线上
再寻真迹
y
A
P
M l
B
O
x
线参
(2011 浙江理 21)已知抛物线 C1 : x2 y ,圆 C2 : x2 y 42 1 的圆心为点 M.
(1)求点 M 到抛物线 C1 的准线的距离; (2)已知点 P 是抛物线 C1 上一点(异于原点),过点 P 作圆 C2 的两条切线,交抛 物线 C1 于 A,B 两点,若过 M,P 两点的直线 l 垂足于 AB,求直线 l 的方程.
y0 2
y
2
4
x0 2
y2 8
的两根,
即 PM 垂直于 x 轴.
若AB过定点(1,0),
化简得 y1, y2 是二次方程 y2 2 y0 y 8x0 y02 0 的两个不等实根, 求点P轨迹?
真题再现
y
A
1.(2018 浙江 21)如图,已知点 P 是 y 轴左侧(不含 y 轴)一点,抛物 线 C : y2 4x 上存在不同的两点 A,B 满足 PA,PB 的中点均在 C 上.
y1
,
B
y22 4
,
解圆锥曲线问题常用的八种方法及七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
22年乙卷数学圆锥曲线巧解
22年乙卷数学圆锥曲线巧解圆锥曲线是数学中的一个重要概念,包括椭圆、双曲线和抛物线等。
圆锥曲线在解决实际问题中有着广泛的应用,如物理学、工程学和天文学等。
圆锥曲线巧解的方法有很多,下面介绍一种常用的方法:参数方程法。
参数方程法是一种通过引入参数来表示圆锥曲线上的点的方法。
通过参数方程,我们可以将复杂的圆锥曲线问题转化为简单的代数问题,从而更容易地找到解决方案。
下面是一个使用参数方程法解决圆锥曲线问题的例子:题目:已知椭圆 C:x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的左右焦点分别为 F1,F2,P 为椭圆 C 上任意一点,从 F1 向 P 引一条直线,交椭圆 C 于 M,N 两点,从 F2 向 P 引一条直线,交椭圆 C 于 Q,R 两点。
求证:F1F2/MN = F1F2/QR。
证明:设 P(x0,y0),M(x1,y1),N(x2,y2),Q(x3,y3),R(x4,y4),则有:x1^2/a^2 + y1^2/b^2 = 1x2^2/a^2 + y2^2/b^2 = 1x3^2/a^2 + y3^2/b^2 = 1x4^2/a^2 + y4^2/b^2 = 1将以上四个方程相减,得到:(x1 - x2)(x1 + x2)/a^2 + (y1 - y2)(y1 + y2)/b^2 = 0同理,将 x0 和 y0 代入椭圆方程,得到:x0^2/a^2 + y0^2/b^2 = 1将以上两个方程相减,得到:(x1 - x0)(x1 + x0)/a^2 + (y1 - y0)(y1 + y0)/b^2 = 0同理,可以得到:(x2 - x0)(x2 + x0)/a^2 + (y2 - y0)(y2 + y0)/b^2 = 0(x3 - x0)(x3 + x0)/a^2 + (y3 - y0)(y3 + y0)/b^2 = 0(x4 - x0)(x4 + x0)/a^2 + (y4 - y0)(y4 + y0)/b^2 = 0由于 F1(-c,0),F2(c,0),所以 F1F2 = 2c。
同构法解决圆锥曲线
同构法是解决圆锥曲线的一种方法。
圆锥曲线包括椭圆、双曲线和抛物线。
同构法基于将圆锥曲线与标准方程进行类似的变换,将其转化为更简单的形式。
对于椭圆和双曲线,同构法通过平移和旋转的变换,将它们转化为标准方程,即使得椭圆的中心位于原点,双曲线的中心位于原点且对称轴与坐标轴重合。
这样,可以更容易地求出曲线的参数和性质。
对于抛物线,同构法根据抛物线的焦点和准线的位置,将其转化为标准方程。
通过平移和旋转,可以将抛物线的焦点放在原点,准线与坐标轴重合,从而简化计算。
同构法是解决圆锥曲线问题的一种常用方法,它可以将复杂的曲线转化为标准形式,从而更容易求解。
但需要注意的是,同构法只适用于某些特定情况,对于一些特殊的曲线可能不适用。
在具体求解过程中,还需要结合具体问题和数学知识进行分析和推导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =共线时,距离和最小。
(2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 解:(1)(2,2)连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时AF 的方程为)1(13024---=x y 即 y=22(x-1),代入y 2=4x 得P(2,22),(注:另一交点为(2,21-),它为直线AF 与抛物线的另一交点,舍去) (2)(1,41) 过Q 作QR ⊥l 交于R ,当B 、Q 、R 三点共线时,QR BQ QF BQ +=+最小,此时Q 点的纵坐标为1,代入y 2=4x 得x=41,∴Q(1,41) 点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。
例2、F 是椭圆13422=+y x 的右焦点,A(1,1)为椭圆内一定点,(1)PF PA +的最小值为 (2)PF PA 2+的最小值为分析:PF 为椭圆的一个焦半径,常需将另一焦半径F P '解:(1)4-5设另一焦点为F ',则F '(-1,0)连A F ',P F '542)(22-='-≥-'-='-+=+F A a PA F P a F P a PA PF PA当P 是F 'A 的延长线与椭圆的交点时, PF PA +取得最小值为4-5。
(2)作出右准线l ,作PH ⊥l 交于H ,因a 2=4,b 2=3,c 2=1, a=2,c=1,e=21, ∴PH PF PH PF ==2,21即 ∴PH PA PF PA +=+2当A 、P 、H 三点共线时,其和最小,最小值为3142=-=-A x ca 例3、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,求圆心M 分析:作图时,要注意相切时的“图形特征”:两个圆心与切点这三点共线M 、C 共线,B 、D 、M 共线)。
列式的主要途径是动圆的“半径等于半径”MD MC =)。
解:如图,MD MC =,∴26-=--=-MB MA DB MB MA AC 即 ∴8=+MB MA (*)∴点M 的轨迹为椭圆,2a=8,a=4,c=1,b 2=15轨迹方程为1151622=+y x 点评:得到方程(*)后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出4)1()1(2222=+-+++y x y x ,再移项,平方,…相当于将椭圆标准方程推导了一遍,较繁琐!例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程。
分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系。
解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=-即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)例5、定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。
分析:(1)可直接利用抛物线设点,如设A(x 1,x 12),B(x 2,X 22),又设AB 中点为M(x 0y 0)用弦长公式及中点公式得出y 0关于x 0的函数表达式,再用函数思想求出最短距离。
(2)M 到x 轴的距离是一种“点线距离”,可先考虑M 到准线的距离,想到用定义法。
解法一:设A(x 1,x 12),B(x 2,x 22),AB 中点M(x 0,y 0)则⎪⎩⎪⎨⎧=+=+=-+-0222102122221221229)()(y x x x x x x x x x ① ② ③由①得(x 1-x 2)2[1+(x 1+x 2)2]=9即[(x 1+x 2)2-4x 1x 2]·[1+(x 1+x 2)2]=9 ④ 由②、③得2x 1x 2=(2x 0)2-2y 0=4x 02-2y 0 代入④得 [(2x 0)2-(8x 02-4y 0)]·[1+(2x 0)2]=9∴220041944x x y +=-, 1149)14(4944202020200-+++=+=x x x x y ≥,5192=- 450≥y 当4x 02+1=3 即 220±=x 时,45)(min 0=y 此时)45,22(±M法二:如图,222+=AA MM ∴232≥MM , 即411≥+MM ∴451≥MM , 当AB ∴M 到x 轴的最短距离为45 点评:A 、B 简捷地求解出结果的,但此解法中有缺点,即没有验证AB 是否能经过焦点F ,而且点M 的坐标也不能直接得出。
例6、已知椭圆)52(1122≤≤=-+m m y m x 过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A 、B 、C 、D 、设f(m)=CD AB -,(1)求f(m),(2)求f(m)的最值。
分析:此题初看很复杂,对f(m)的结构不知如何运算,因A 、B 样C 在椭圆上,D ()(22)(2)()(D A B C D A B x x x x x x x m f ---=---= )()(2D A C B x x x x +-+=)(2C B X x +=此时问题已明朗化,只需用韦达定理即可。
解:(1)椭圆1122=-+m y m x 中,a 2=m ,b 2=m-1,c 2=1,左焦点则BC:y=x+1,代入椭圆方程即(m-1)x 2+my 2-m(m-1)=0 得(m-1)x 2+m(x+1)2-m 2+m=0 ∴(2m-1)x 2+2mx+2m-m 2=0设B(x 1,y 1),C(x 2,y 2),则x 1+x 2=-)52(122≤≤-m m m12222)()(2)()(2)(2121-⋅=+=+-+=---=-=m m x x x x x x x x x x CD AB m f C A C D A B(2))1211(2121122)(-+=-+-=m m m m f∴当m=5时,9210)(min =m f 当m=2时,324)(max =m f点评:此题因最终需求C B x x +,而BC 斜率已知为1,故可也用“点差法”设BC 中点为M(x 0,y 0),通过将B 、C 坐标代入作差,得0100=⋅-+k m y m x ,将y 0=x 0+1,k=1代入得01100=-++m x m x ,∴120--=m m x ,可见122--=+m mx x C B当然,解本题的关键在于对CD AB m f -=)(的认识,通过线段在x 轴的“投影”发现C B x x m f +=)(是解此题的要点。
【同步练习】1、已知:F 1,F 2是双曲线12222=-by a x 的左、右焦点,过F 1作直线交双曲线左支于点A 、B ,若m AB =,△ABF 2的周长为( )A 、4aB 、4a+mC 、4a+2mD 、4a-m2、若点P 到点F(4,0)的距离比它到直线x+5=0的距离小1,则P 点的轨迹方程是 ( )A 、y 2=-16xB 、y 2=-32xC 、y 2=16xD 、y 2=32x3、已知△ABC 的三边AB 、BC 、AC 的长依次成等差数列,且AC AB >,点B 、C 的坐标分别为(-1,0),(1,0),则顶点A 的轨迹方程是( )A 、13422=+y x B 、)0(13422>=+x y x C 、)0(13422<=+x y x D 、)00(13422≠>=+y x y x 且 4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是 ( )A 、)1(49)21(22-≠=+-x y x B 、)1(49)21(22-≠=++x y x C 、)1(49)21(22-≠=-+x y x D 、)1(49)21(22-≠=++x y x5、已知双曲线116922=-y x 上一点M 的横坐标为4,则点M 到左焦点的距离是 6、抛物线y=2x 2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 7、已知抛物线y 2=2x 的弦AB 所在直线过定点p(-2,0),则弦AB 中点的轨迹方程是8、过双曲线x 2-y 2=4的焦点且平行于虚轴的弦长为9、直线y=kx+1与双曲线x 2-y 2=1的交点个数只有一个,则k=10、设点P 是椭圆192522=+y x 上的动点,F 1,F 2是椭圆的两个焦点,求sin ∠F 1PF 2的最大值。