中考复习三角形综合题

合集下载

2020年中考数学九年级三轮冲刺:《三角形综合》(四)

2020年中考数学九年级三轮冲刺:《三角形综合》(四)

三轮冲刺:《三角形综合》(四)1.已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CE;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.2.在等边△ABC中,点E,F分别在边AB,BC上.(1)如图1,若AE=BF,以AC为边作等边△ACD,AF交CE于点O,连接OD.求证:①AF=CE;②OD平分∠AOC;(2)如图2,若AE=2CF,作∠BCP=∠AEC,CP交AF的延长线于点P,求证:CE=CP.3.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG =90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为.【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.4.△ABC中,AB=AC,∠BAC=120°,AD,BE分别为△ABC的高与中线.(1)如图1,求证:AE=AD;(2)如图2,点F在AD的延长线上,连接BF,CF,若BE=CF,求证:∠AEB=∠AFB;(3)在(2)的条件下,如图3,过点A作BF的平行线交CF于点G,若FG=6,求BE 的长.5.如图1,在直角三角形ABC中,∠BAC=90°,AD为斜边BC上的高线.(1)求证:AD2=BD⋅CD;(2)如图2,过A分别作∠BAD,∠DAC的角平分线,交BC于E,M两点,过E作AE的垂线,交AM于F.①当tan C=时,求的值;②如图3,过C作AF的垂线CG,过G点作GN∥AD交AC于M点,连接MN.若∠EAD=15°,AB=1,直接写出MN的长度.6.已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.动点P从点A出发,沿AB以每秒5个单位长度的速度向终点B运动.当点P不与点A重合时,过点P作PD⊥AC于点D、PE ∥AC,过点D作DE∥AB,DE与PE交于点E.设点P的运动时间为t秒.(1)线段AD的长为.(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)设△DPE与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)若线段PE的中点为Q,当点Q落在△ABC一边垂直平分线上时,直接写出t的值.8.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上9.已知:△ABC与△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.提出问题:如图1,当∠ADB=∠ACB=90°时,求证:AD=BC;类比探究:如图2,当∠ADB≠∠ACB时,AD=BC是否还成立?并说明理由.综合运用:如图3,当β=18°,BC=1,且AB⊥BC时,求AC的长.10.如图1,△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC于D.(1)点E、F分别在DA、DC的延长线上,且AE=CF,连接BE、AF,猜想线段BE和AF 的数量关系和位置关系,并证明你的结论;(2)如图2,连接EF,将△DEF绕点D顺时针旋转角α(0°<α<90°),连接AE、CE,若四边形ABCE恰为平行四边形,求DA与DE的数量关系;(3)如图3,连接EF,将△DEF绕点D逆时针旋转,当点A落在线段EF上时,设DE与AB交于点G,若AE:AF=3:4,求的值.参考答案1.(1)证明:如图1中,∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴EC=BD.(2)解:如图2中,连接BD.∵AE=AD,∠EAD=60°,∴△AED是等边三角形,∴∠DEA=∠CDE=60°,∵EF⊥AD,∴∠FEA=∠DEA=30°∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴∠BDA=∠AEC=30°,EC=BD,∴∠EDB=90°,∵AE=4,AF=2,AC=,∠EFA=∠AFC=90°,∴EF===2,CF===,∴EC=BD=3,∴BE===.(3)解:如图3中,作CM⊥CA,使得CM=CA,连接AM,BM.∵CA=CM,∠ACM=90°,∴∠CAM=45°,∵∠CAB=45°,∴∠MAB=45°+45°=90°,设AB=AC=m,则AM=m,BM==m,∵∠ACM=∠BCD=90°,∴∠BCM=∠ACD,∵CA=CM,CB=CD,∴△ACD≌△MCB(SAS),∴AD=BM=m,∴==.2.(1)证明:①如图1中,∵△ABC是等边三角形,∴AB=BC,∠B=∠BAC=60°,∵AE=BF,∴△ABF≌△CAE(SAS),∴AF=EC.②如图1中,∵△ABF≌△CAE,∴∠BAF=∠ACE,∵∠AOE=∠OAC+∠ACO=∠OCA+∠BAF=∠BAC=60°,又∵△ACD是等边三角形,∴∠ADC=∠DAC=∠DCA=60°,∴∠AOE=∠ADC,∵∠AOE+∠AOC=180°,∴∠ADC+∠AOC=180°,∴A,D,C,O四点共圆,∴∠AOD=∠ACD=60°,∠COD=∠CAD=60°,∴∠AOD=∠COD,∴OD平分∠AOC.(2)证明:如图2中,取AE的中点M,连接CM.∵AE=2CF,AM=ME,∴AM=CF,∵∠CAM=∠ACF=60°,AC=CA,∴△ACM≌△CAF(SAS),∴∠ACM=∠CAF,∵∠CME=∠CAM+∠ACM=60°+∠ACM,∠CFP=∠ACF+∠CAF=60°+∠CAF,∴∠CME=∠CFP,∵EM=CF,∠PCF=∠CEM,∴△CME≌△PFC(ASA),∴CE=PC.3.解:【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.理由:设BM=a.∵AE=EC,AD=DB,∴DE∥BC,∴∠BDM=∠ABC=30°,∵BM⊥EM,∴∠BMD=90°,∴BD=2BM=2a,DM=BM=a,在Rt△GDB中,∵∠GDB=90°,∠G=30°,∴GD=BD=2a,∴==2.故答案为2.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED夹角锐角的度数为60°.理由:延长GD交BF的延长线于P.在Rt△BDM中,设BM=a,则BD=2a,DM=a,在Rt△BGF中,设BF=b,则BG=2b,FG=,在△BGD与△BFM中,∵BG:BF=2b:b=2a:a=BF:BM,∠DBG=60°﹣∠FBD=∠FBM,∴△BGD∽△BFM,∴DG:FM=BD:BM=2a:a=2:1,即的值为2,∵△BGD∽△BFM,∴∠PFD=∠MFB=∠BGD,则在△PDF与△PBG中,∠PDF=∠PBG=60°.故的值为2,两直线GD、ED夹角锐角的度数为60°.【问题解决】结论:的值为4+或4﹣.如图(3)﹣1中,当点G在线段AF上时,∵△BDG∽△BMF,∴∠BDG=∠BMF=90°,∴GD⊥AB,∵AD=BD,∴GD垂直平分线段AB,∴GA=GB,设BF=x,则BG=2x=AG,FG=,∴BG:AF=2x:=4﹣.如图(3)﹣2中,当点G在线段AF的延长线上时,设BF=x,同法可得:BG=AG=2x,GF=x,∴AF=2x﹣x,∴BG:AF=2x:(2x﹣x)=4+.∴的值为4+或4﹣.4.(1)证明:如图1中,∵AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵BD=CD,∴AD⊥BC,∴AD=AC,∵BE是△ABC的中线,∴AE=EC=AC,∴AD=AE.(2)证明:如图2中,作BP⊥CA交CA的延长线于P.∵∠P=90°,∠BCP=30°,∴BP=BC=CD,∵∠FDC=∠P=90°,BE=CF,BP=CD,∴Rt△BPE≌Rt△CDF(HL),∴∠BEP=∠CFD,∵DF⊥BC,CD=DB,∴FB=FC,∴∠BFD=∠CFD,∴∠AEB=∠AFB.(3)解:如图3中,设AG交BE于H,交BC于M,作CN∥AD交AM的延长线于G.∵AG∥BF,∴∠GAF=∠AFB,∵∠FAB=∠AFC,∴∠GAF=∠AFG,∴GA=GF=6,∵CN∥AF,∴∠N=∠FAG,∠GCN=∠AFG,∴∠N=∠GCN,∴CG=GN,∴CF=AN=BE,∵∠ACB=30°,∠DCN=90°,∴∠BAE=∠ACN=120°,∵∠AEB=∠AFC=∠N,∴△BAE≌△ACN(AAS),∴AE=CN=AD,∵∠ADM=∠MCN=90°,AMD=∠CMN,∴△ADM≌△NCM(AAS),∴AM=MN,∵∠N+∠NMG=90∠NCG+∠MCG=90°,∴∠GMC=∠GCM,∴CG=GM=GN,∴AG=3GN=6,∴CG=GN=2,∴BE=CF=FG+CG=6+2=8.5.(1)证明:如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAC=90°,∴∠B+∠C=90°,∵∠B+∠BAD=90°,∴∠BAD=∠C,∴△BAD∽△ACD,∴=,∴AD2=BD•CD.(2)①解:如图2中,作EH⊥AB于H,MG⊥AC于G.∵AD⊥BC,∴∠tan C==,∴可以假设AD=3k,CD=4k,则AC=5k,BD=k,AB=k,∵MA平分∠CAD,MD⊥AD,MG⊥AC,∴DM=MG,∵∠ADM=∠AGM=90°,AM=AM,∴Rt△MAD≌Rt△MAG(HL)∴AD=AG=3k,设MD=MG=x,则CG=2k,CM=4k﹣x,在Rt△CMG中,∵CM2=MG2+CG2,∴(4k﹣x)2=x2+(2k)2,∴x=k,∴DM=k,同法可得DE=k,∴==.②如图3中,∵AE平分∠BAD,∠EAD=15°,∴∠BAD=30°,∵AD⊥BC,∠BAC=90°,∴∠B=∠DAC=60°,∠C=30°,∵MA平分∠CAD,∴∠MAC=∠MAD=30°,∴∠MAC=∠MCA=30°,∴∠AMB=∠MAC+∠MCA=60°=∠B=∠BAM,∴MA=MC,△ABM是等边三角形,∴AM=BM,∵GN∥AD,∴∠GNC=∠DAC=60°,∵CG⊥AG,∴∠AGC=90°,∴∠ACG=60°=∠CNG,∴△CGN是等边三角形,∴NC=CG,∵AC=2CG,∴AN=CN,∵BM=MC,∴MN=AB=.6.解:(1)结论:AD=2PD.理由:如图1中,∵△ABC是等边三角形,∴∠B=60°,∵∠EDC=120°,∴∠EDB=180°﹣120°=60°,∴∠B=∠EDB=∠BED=60°,∴△BDE是等边三角形,∵BP=PE,∴DP⊥AB,∴∠APD=90°,∵DE=DC,DE=DB,∵AB=AC,∠BAC=60°,∴∠PAD=∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠BPC=∠DPB+∠DPK=60°.故答案为60°.7.解:(1)如图1中,在Rt△ACB中,∵∠C=90°,AC=8,BC=6,∴AB===10,∵PD⊥AC,∴cos A==,∴=,∴AD=4t,故答案为4t.(2)如图2中,当点E落在BC上时,∵DE∥AB,PE∥AD,∴四边形APED是平行四边形,∴DE=AP=5t,AD=PE=4t,∴=,∴=,解得t=1,∴当点E落在BC边上时,t的值为1.(3)①如图1中,当0<t≤1时,重叠部分是△PDE,∵PE∥AD,∴∠DPE=∠ADP=90°,∵DE=5t,PE=4t,∴PD=3t,∴S=•PD•PE=×3t×4t=6t2.②如图3中,当1<t≤2时,S=•(MN+PD)•PN=[3t+3t﹣(10﹣5t)]•(10﹣5t)=﹣18t2+48t﹣24.综上所述,S=.(4)①如图4﹣1中,当点Q落在线段AC的垂直平分线MN上时,由题意:=,可得=,解得t=.②如图4﹣2中,当点Q落在线段AB的垂直平分线MN上时,由题意:=,可得=,解得t=③如图4﹣3中,当点Q落在线段BC的垂直平分线上时,AP=PB,此时t=1,综上所述,满足条件的t的值为或或1.8.(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.9.提出问题:解:在△DBA和△CAB中,∵.∴△DBA≌△CAB(AAS),∴AD=BC;类比探究:结论仍然成立.理由:作∠BEC=∠BCE,BE交AC于E.∵∠ADB+∠ACB=∠AEB+∠BEC=180°,∴∠ADB=∠AEB.∵∠CAB=∠DBA,AB=BA,∴△DBA≌△EAB(AAS),∴BE=AD,∵∠BEC=∠BCE,∴BC=BE,∴AD=BC.综合运用:作∠BEC=∠BCE,BE交AC于E.由(2)得,AD=BC=BE=1.在Rt△ACB中,∠CAB=18°,∴∠C=72°,∠BEC=∠C=72°.由∠CFB=∠CAB+∠DBA=36°,∴∠EBF=∠CEB﹣∠CFB=36°,∴EF=BE=1.在△BCF中,∠FBC=180°﹣∠BFC﹣∠C=72°,∴∠FBC=∠BEC,∠C=∠C,∴△CBE∽△CFB.∴=,令CE=x,∴1=x(x+1).解得,x=,∴CF=.由∠FBC=∠C,∴BF=CF.又AF=BF,∴AC=2CF=+1.10.解:(1)BE=AF,BE⊥AF,理由如下:延长FA交BE于H,∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴∠BAD=∠ACD=45°,AB=AC,∴∠BAE=∠ACF=135°,又∵AB=AC,AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠EBA=∠FAC,∵∠BAF=∠ABE+∠BHA=∠BAC+∠CAF,∴∠BAC=∠BHA=90°,∴BE⊥AF;(2)∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BC,∵四边形ABCE恰为平行四边形,∴AE=BC=2AD,AE∥BC,∴∠EAD=∠ADB=90°,∴DE===AD;(3)如图3,连接BE,过点E作EH⊥AB于H,DN⊥AB于N,由图1可得:∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BD=CD,AD⊥CD,又∵AE=CF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DFE=∠DEF=45°由图3可得:∠EDF=∠BDA=90°,∴∠ADF=∠BDE,又∵AD=BD,DE=DF,∴△ADF ≌△BDE (SAS ), ∴BE =AF ,∠DFE =∠BED =45°, ∴∠AEB =90°, ∵AE :AF =3:4,∴设AE =3a ,AF =BE =4a , ∴AB ===5a ,∵AD =BD ,∠ADB =90°,DN ⊥AB , ∴DN =BN =AN =a ,∵S △ABE =AE ×BE =AB ×EH , ∴EH ==a ,∴AH ==a ,∵∠BED =∠AED =45°, ∴, ∴BG =,AG =,∴GH =a ,GN =a ,∴EG ==a ,DG ==a ,∴==.1、在最软入的时候,你会想起谁。

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。

2023年中考九年级数学高频考点专题训练--三角形综合

2023年中考九年级数学高频考点专题训练--三角形综合

2023年中考九年级数学高频考点专题训练--三角形综合1.如图,在△ABC中,AB=AC,DE垂直平分AC,CE△AB,AF△BC,(1)求证:CF=EF;(2)求△EFB的度数.2.如图,在△ABC中,∠B=60°,AB=8,BC=10,动点P从点A出发以每秒1个单位的速度沿AB匀速运动,同时动点Q从点B出发,以每秒2个单位的速度沿BC匀速运动,点Q到达点C后,立即以每秒4个单位的速度沿CB返回,当点Q返回到点B时,P、Q两点都停止运动,设点Q运动时间为t秒.(1)当t=3时,BQ=,当t=7时,BQ=.(2)如图,当点P运动到AB的中点时,猜想PQ与AB的位置关系,并证明你的结论.(3)在点P、Q运动过程中,若△BPQ是等边三角形时,求t的值.3.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.动点P以2cm/s的速度沿射线BC运动,同时,点Q从点C出发,以acm/s的速度向终点A运动,当Q点停止运动时,P点也随之停止运动,设点P的运动时间为t(s)(t>0).(1)用含t的代数式表示PC的长;(2)若点Q的运动速度为1cm/s,当△CQP是以△C为顶角的等腰三角形时,求t的值;(3)当点Q的运动速度为多少时,能使△BPD与△CQP在某一时刻全等.4.如图,在ΔABC中,∠C=90°,将ΔACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠CAE的度数;(2)当AC=6,AB=10时,求线段DE的长.5.如图,△ABC由两个全等的含45°的直角板拼成,其中,∠ACB=90°,AC=BC,AB= 8,点D是AB边长的中点,点E时AB边上一动点(点E不与点A、B重合),连接CE,过点B作BF⊥CE于F,交射线CD于点G.(1)当点E在点D的左侧运动时,(图).求证:△ACE≌△CBG;(2)当点E在点D的右侧运动时(图)(1)中的结论是否成立?请说明理由:(3)当点E运动到何处时,BG=5,试求出此时AE的长.6.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD= AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想:图1中,线段NM、NP的数量关系是,∠MNP的大小为;(2)探究证明:把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由.7.如图,△ABC 中,AB=AC,△BAC <60°,将线段AB 绕点A逆时针旋转60°得到点D,点 E 与点D 关于直线BC 对称,连接CD,CE,DE.(1)依题意补全图形;(2)判断△CDE 的形状,并证明;(3)请问在直线CE上是否存在点P,使得PA - PB =CD 成立?若存在,请用文字描述出点P 的准确位置,并画图证明;若不存在,请说明理由.8.如图,点M是△ABC的边AB上一点,连接CM,过A作AD⊥CM于点D,过B作BE⊥CM于点E.(1)如图①,若点M为AB的中点时,连接AE,BD,求证:四边形ADBE是平行四边形;(2)如图②,若点M不是AB的中点,点O是AB上不与M重合的一点,连接DO,EO,已知点O在DE的垂直平分线上,求证:AO=BO.9.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围是(2)问题解决:如图②,在△ABC中D是BC边上的中点,DE△DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,△B+△D=180°,CB=CD,△BCD=140°,以C为顶点作一个70角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.10.在平面直角坐标系中,O为坐标原点,直线y=mx+m交x轴于点A,交y轴的正半轴于点B,点C在x轴的正半轴上,连接BC,tan∠BAO=3tan∠BCO.(1)求点A,C的坐标;(2)如图1,点P在第一象限内,横坐标为t.PD⊥y轴于点D,PA⊥BC于点E,AP= BC,求m与t之间的函数关系式(不必写出自变量t的取值范围)(3)如图2,在(2)的条件下,设BC交DP于点F,当BF=PE时,求m的值.11.综合与实践问题情境:在数学课上老师出了这样一道题:如图1,在△ABC中AB=AC=6,∠BAC=30°,求BC的长.(1)探究发现:如图2,勤奋小组经过思考后,发现:把△ABC绕点A顺时针旋转90°得到△ADE,连接BD,BE,利用直角三角形的性质即可求解,请你根据勤奋小组的思路,求BC的长;(2)探究拓展:如图3,缜密小组的同学在勤奋小组的启发下,把△ABC绕点A顺时针旋转120°后得到△ADE,连接BD,CE交于点F,交AB于点G,请你判断四边形ADFC的形状并证明;(3)奇异小组的同学把图3中的△BGF绕点B顺时针旋转,在旋转过程中,连接AF,发现AF的长度在不断变化,直接写出AF的最大值和最小值.12.综合与实践.特例感知.两块三角板△ADB与△EFC全等,△ADB=△EFC=90°,△B=45°,AB=6.(1)将直角边AD和EF重合摆放.点P、Q分别为BE、AF的中点,连接PQ,如图1.则△APQ的形状为.(2)操作探究若将△EFC绕点C顺时针旋转45°,点P恰好落在AD上,BE与AC交于点G,连接PF,如图2.①FG:GA=▲ ;②PF与DC的位置关系为▲ ;③求PQ的长;(3)开放拓展若△EFC绕点C旋转一周,当AC△CF时,△AEC为.13.在Rt△ABC中,△ACB=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB 上,连接BD,过点D作DF△AC于点F.(1)如图1,当点F与点A重合时,求△ABC的度数;(2)若△DAF=△DBA,①如图2,当点F在线段CA上时,求△ABC的度数;②当点F在线段CA的延长线上,且BC=7时,请直接写出△ABD的面积.14.在△ABC中,AB=AC,△BAC=90,BD平分△ABC交AC于点D.(1)如图1,点F为BC上一点,连接AF交BD于点E.若AB=BF,求证:BD垂直平分AF.(2)如图2,CE△BD,垂足E在BD的延长线上.试判断线段CE和BD的数量关系,并说明理由.(3)如图3,点F为BC上一点,△EFC= 12△ABC,CE△EF,垂足为E,EF与AC交于点M.直接写出线段CE与线段FM的数量关系.15.如图,在菱形ABCD中,△ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE△BC,△EAF=△ABC时,①求证:AE=AF;②连结BD,EF,若EFBD=25,求S△AEFS菱形ABCD的值;(2)当△EAF=12△BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.16.已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD 的数量关系是.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,①当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;②若∠COD=60°,请直接写出线段AC、BD、OC之间的数量关系.答案解析部分1.【答案】(1)证明:∵DE垂直平分AC,∴AE=CE,∵CE△AB,∴△ACE是等腰直角三角形,△BEC=90°,∵AB=AC,AF△BC,∴BF=CF,即F是BC的中点,∴Rt△BCE中,EF= 12BC=CF;(2)解:由(1)得:△ACE是等腰直角三角形,∴△BAC=△ACE=45°,又∵AB=AC,∴△ABC=△ACB= 12(180°−45°)=67.5°,∴△BCE=△ACB-△ACE=67.5°-45°=22.5°,∵CF=EF,∴△CEF=△BCE=22.5°,∵△EFB是△CEF的外角,∴△EFB=△CEF+△BCE=22.5°+22.5°=45°. 2.【答案】(1)6;2(2)解:PQ⊥AB,理由如下:在BQ上截取BE=BP,∵点P运动到AB的中点,∴AP=PB=4,∴t=41=4s,∴BQ=4×2=8,∵PB=BE=4,∠B=60°,∴△PEB是等边三角形,∴PE=BE=4,∠EPB=∠PEB=60°,∴QE=PE=4,∴∠EPQ=∠EQP,∵∠EPQ+∠EQP=∠PEB=60°,∴∠QPE=30°,∴∠QPE+∠EPB=90°=∠QPB,∴PQ⊥AB;(3)解:当0≤t≤5,BQ=2t,当5<t≤152,BQ=10−4(t−5)=30−4t,∵△BPQ是等边三角形,∴BP=BQ,∴8−t=2t或8−t=30−4t,∴t=83或t=223.3.【答案】(1)解:∵点P的运动速度为2cm/s,∴BP=2t,∴PC=10−2t;(2)解:△CQP以∠C为顶角的等腰三角形,则PC=CQ,PC=10−2t,CQ=t,即10−2t=t,解得:t=10 3,∴当t=103s时,△CQP是以∠C为顶角的等腰三角形;(3)解:①当BP=CQ时,BD=CP,此时△BPD≅△CQP,根据题意可得:BP=2t,CQ=at,BD=13AB=6,PC=10−2t,∴2t=at,6=10−2t,解得:a =2,t =2, ②当BP ≠CQ 时,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =CP =12BC =5,BD =CQ =6,∴t =52s ,∴a =CQ t =125cm/s , 综上可得:当Q 的速度为2cm/s 或125cm/s 时,△BPD 与△CQP 在某一时刻全等.4.【答案】(1)∵∠C =90° , ∠B =28°∴∠CAB =90−∠B =90°−28°=62°由折叠的性质可知 ∠CAE =∠EAB∴∠CAE =12∠CAB =31° (2)∵∠C =90° , AC =6 , AB =10 ∴BC =√AB 2−AC 2=√102−62=8由折叠的性质可知 AC =AD,CE =DE,∠EDA =∠C =90°∴∠EDB =180°−∠EDA =180°−90°=90°设 DE =x ,则 BE =8−x,DB =10−6=4 在 Rt △EDB 中, ED 2+DB 2=EB 2 ∴x 2+42=(8−x)2 解得 x =3 ∴DE =35.【答案】(1)证明:在 Rt △ABC 中,∵AC =BC ,∴∠A =∠ABC =45° .∵点 D 是 AB 的中点,∴∠BCG =12∠ACB =45° ,∴∠A =∠BCG .∵BF ⊥CE ,∴∠CBG +∠BCF =90° . ∵∠ACE +∠BCF =90° , ∴∠CBG =∠ACE , 在 △ACE 和 △CBG 中,{∠ACE =∠CBGAC =BC ∠A =∠BCG,∴△ACE ≌△CBG (ASA) (2)解:结论仍然成立,即△ACE△△CBG . 理由如下:在Rt△ABC 中, ∵AC=BC ,∴△A=△ABC=45°.∵点D 是AB 的中点,∴△BCG= 12 △ACB=45°,∴△A=△BCG .∵BF△CE ,∴△CBG+△BCF=90°. ∵△ACE+△BCF=90°, ∴△CBG=△ACE , 在 △ACE 和 △CBG 中,{∠ACE =∠CBGAC =BC ∠A =∠BCG,∴△ACE ≌△CBG (ASA) (3)解:在Rt△ABC 中, ∵AC=BC ,点D 是AB 的中点, ∴CD△AB ,CD=AD=BD= 12AB=4,在Rt△BDG 中, DG =√BG 2−BD 2=√52−42=3 , 点E 在运动的过程中,分两种情况讨论: ①当点E 在点D 的左侧运动时,CG=CD-DG=1, ∵△ACE△△CBG , ∴AE=CG=1;②当点E 在点D 的右侧运动时,CG=CD+DG=7, ∵△ACE△△CBG , ∴AE=CG=7. 故答案为:1或7.6.【答案】(1)NM =NP ;60°(2)解:△MNP 是等边三角形.理由如下:由旋转可得,△BAD =△CAE ,又∵AB =AC ,AD =AE ,∴△ABD△△ACE (SAS ),∴BD =CE ,△ABD =△ACE ,∵点M 、N 、P 分别为DE 、BE 、BC 的中点.∴MN =12BD ,PN =12CE ,MN△BD ,PN△CE ,∴MN =PN ,△ENM =△EBD ,△BPN =△BCE,∴△ENP=△NBP+△NPB=△NBP+△ECB,∵△EBD=△ABD+△ABE=△ACE+△ABE,∴△MNP=△MNE+△ENP=△ACE+△ABE+△EBC+△EBC+△ECB=180°−△BAC=60°,∴△MNP是等边三角形.7.【答案】(1)解:如图即为所求,(2)解:△CDE是等边三角形.如图,连接BD、CE,由点D与点E关于直线BC对称可知BF垂直平分DE,∴CD=CE,BD=BE由旋转可知AB=AD,∠BAD=60°,∴△ABD为等边三角形∴AB=BD=AD,∠BAD=∠ABD=60°∴∠CAD=60°−∠BAC∵AB=AC∴∠ABC=180°−∠BAC2=90°−∠BAC2,BE=BD=AB=AC∴∠FBD=∠ABC−∠ABD=90°−∠BAC2−60°=30°−∠BAC2∴∠EBD=2∠FBD=60°−∠BAC∴∠CAD=∠FBD在△ACD和△BED中,{AD=BD ∠CAD=∠EBD AC=BE∴△ACD≅△BED(SAS)∴CD=ED∴CD=ED=CE∴△CDE是等边三角形;(3)解:存在,如图,将△BCD绕点B逆时针旋转60°得到△ABC′,延长AC′交直线CE于点P,连接BP,由(2)得△CDE是等边三角形,∴∠DCE=60°∴∠DCF=∠ECF=30°∴∠BCD=150°由旋转可得CD=C′A,∠C′BC=60°,∠BC′A=∠BCD=150°,∴∠BC′P=30°∵PA−PB=CD,PA−PC′=C′A=CD∴PB=PC′∴∠C′BP=∠BC′P=30°∴∠PBC=30°∵∠BCP=∠ECF=30°∴∠PBC=∠BCP∴BP=CP所以直线CE上存在点P,使得PA - PB =CD 成立,点P在点C左边距离为CE长的位置. 8.【答案】(1)证明:证法一:∵AD⊥CM,BE⊥CM.∴AD∥BE,∴∠ADM=∠BEM=90°(或∠DAM=∠EBM)∵点M为AB的中点,∴AM=BM∵∠AMD=∠BME,∴△ADM≌△BEM∴AD=BE∴四边形ADBE是平行四边形证法二:∵AD⊥CM,BE⊥CM.∴∠ADM=∠BEM=90°∵点M为AB的中点,∴AM=BM∵∠AMD=∠BME,∴△ADM≌△BEM∴DM=EM∴四边形ADBE是平行四边形(2)证明:延长DO交BE于F,∵AD⊥CM,BE⊥CM.∴AD∥BE,∠BEM=90°∴∠DAO=∠EBO,∠ODE+∠OFE=∠DEO+∠FEO=90°∵点O在DE的垂直平分线上,∴DO=EO∴∠ODE=∠DEO∴∠OFE=∠FEO∴FO=EO∴DO=FO∵∠AOD=∠BOF∴△ADO≌△BFO∴AO=BO.9.【答案】(1)2<AD<6(2)解:如图2,延长FD至点M,使DM=DF,连接BM、EM同(1)得:△BMD≅△CFD(SAS)∴BM=CF∵DE⊥DF,DM=DF∴DE是MF的垂直平分线∴EM=EF在△BME中,由三角形的三边关系得:BE+BM>EM∴BE+CF>EF;(3)解:BE+DF=EF;证明如下:如图3,延长AB至点N,使BN=DF,连接CN∵∠ABC+∠D=180°,∠NBC+∠ABC=180°∴∠NBC=∠D在△NBC和△FDC中,{BN=DF ∠NBC=∠D CB=CD∴△NBC≅△FDC(SAS)∴CN=CF,∠NCB=∠FCD ∵∠BCD=140°,∠ECF=70°∴∠BCE+∠FCD=70°∴∠BCE+∠NCB=70°∴∠ECN=70°=∠ECF在△NCE和△FCE中,{CN=CF ∠ECN=∠ECF CE=CE∴△NCE≌△FCE(SAS)∴EN=EF∵BE+BN=EN∴BE+DF=EF.10.【答案】(1)解:∵直线y=mx+m交x轴于点A,交y轴的正半轴于点B,当x=0时,y=m,∴B(0,m)当y=0时,mx+m=0,解得x=-1∴A(-1,0)∴OA=1,OB=m∵tan∠BAO=OBOA=m1=m,tan∠BCO=OBOC=mOC又tan∠BAO=3tan∠BCO∴3mOC=m∴OC=3∴C(3,0)(2)解:过点P作PH△x轴于点H,则△PHA=90°=△BOC∴△PAH+△APH=90°∵AP△BC∴△AEC=90°∴△PAH+△BCO=90°∴△APH =△BCO∵AP=BC∴△APH△△BCO,∴PH=OC=3,AH=BO,∴t-(-1)=m,则m=t+1;(3)解:过点E作EM△x轴于点M,延长ME交BD于N,则△NMO=90°∵△APH△△BCO,PH=3=OC,BD=m-3∴△DBF =△PAH,∵PD△y轴∴△PDO =△PHO=△DOH =△NMO=90°∴△NPE =△PAH=△DBF∵BF=PE∴△BDF△△PNE,∴BD=NP= m-3=MH,∵OH=t∴OM=OH-MH=OH-MH=t-(m-3)=t-m+3又OC=3∴CM=OC-OM=3-(t-m+3)=m-t∵m=t+1∴CM=m-t=1∴AM=AH-MH=(1+t)- (m-3)=1+t-m+3=3∵△CEM =△EAM∴1EM=EM3故EM= √3∴tan△EAM= tan△CBO∴EM AM=√33=3m,∴m=3 √3.11.【答案】(1)解:如图4,延长CB、DE交于点H.∵△ABC绕点A顺时针旋转90°得到△ADE∴△ABC≌△ADE,∠CAE=∠BAD=90°,△H=90°,∴AB=AD=6,AC=AE=6,∠DAE=∠BAC,DE=BC ∵AB=AC=6,∠BAC=30°∴△ABC是等腰三角形,∠BAE=∠CAE−∠BAC=60°∴∠ABC=180°−∠BAC2=75°,∵AE=AB=6∴△AEB是等边三角形∴BE=AB=6,∠ABE=60°∴∠EBH=180°−∠ABE−∠ABC=45°∴△EBH是等腰直角三角形∴HE=HB.∵AD=AB,∠DAB=90°.∴△ABD是等腰直角三角形,∠BDA=45°.在Rt△EBH中,由勾股定理,得HE2+HB2=BE2.∴HE2+HB2=62=36.∴HE2=HB2=18∴HE=HB=√18=3√2.在△BDH中,∠H=90°,∠BDH=∠EDA−∠BDA=∠ABC−∠BDA=30°.在Rt△BDH中,BH=12BD=3√2.∴BD=6√2.在Rt△BDH中,tan∠BDH=BH DH,∴3√2 DH=√3 3,∴DH=3√6.∴DE=DH−EH=3√6−3√2.∵DE=BC,∴BC的长是3√6−3√2.(2)解:四边形ADFC是菱形.理由如下:∵△ABC绕点A顺时针旋转120°得到△ADE,AB=AC,∠BAC=30°,∴△ABC≌△ADE,∠BAD=∠CAE=120°.∴AC=AE,AB=AD,∠BAC=∠DAE=30°.∴AC=AE=AB=AD.∴△ACE是等腰三角形∴∠ACE=∠AEC=180°−∠CAE2=30°.同理可得:∠ABD=∠ADB=30°.∵∠ACB=180°−∠BAC2=75°.∴∠BCG=∠ACB−∠ACE=45°,∠FBC=∠ABC+∠ABF=105°.∴在△BFC中,∠BFG=180°−∠FBC−∠BCG=30°.∴∠BFG=∠ACF,∠BFG=∠ADB.∴DB∥AC,FC∥AD.∴四边形ADFC是平行四边形.∵AD=AC,∴四边形ADFC是菱形.(3)解:如图5,作AH△BD于点H,则∠AHB=90°∵△ABC绕点A顺时针旋转120°得到△ADE,∴△ABC≌△ADE,∠BAD=120°∴AB=AD=6∴△ABD是等腰三角形∴BH=DH=12BD∴∠ABD=∠ADB=180°−∠BAD2=30°.在Rt△ABH中,△AHB=90°,△ABH=30°,AB=6∵BHAB=cos∠ABH=cos30°∴BH=3√3∴BD=2 BH=6√3由(2)知四边形ADFC是菱形∴DF=AD=6∴BF=BD-DF=6√3-6当△BGF绕点B顺时针旋转,在旋转过程中,当旋转到A、B、F第一次三点共线时,如图6,△BGF≌△BG″F″,∴BF=BF″此时AF有最小值,此时AF=AF″=AB-BF″=AB-BF=6-(6√3-6)=12-6√3当旋转到A、B、F第二次三点共线时,如图7,△BGF≌△BG′F′,∴BF=BF′此时AF有最大值,此时AF=AB+BF′=AB+BF=6+6√3-6=6√3故AF的最大值是6√3,AF的最小值是12−6√3 12.【答案】(1)等腰直角三角形(2)①∵AB=6,△B=45°,△ADB=90°,∴√AD2+BD2=AB,∴AD=BD= 3√2,∴EF= 3√2,∵△BFC=△BAC=90°,∴△GFE=△BAG,∵△AGP=△EGF,∴△ABQ=△GBF,∴△EGF△△BGA,∴FGAG=EFAB,∴FGAG=EFAB=3√26=√22=1√2故答案为:1:√2;②如图,过P作PM//BC交CE与点M,∴EMCM=EPBP=11,∴EM=CM∴FM//BC,∴F在PM上,∴PF△CD,故答案为:平行;③∵BP=PE,BD=CD,∴DP为△BCE的中位线,∴PD//CE,∵CE△BC,∴PD△BC,又∵AD△BC,∴P在AD上,△APF=△ADC=90°,∵Q 为AF 的中点, ∴PQ= 12AF ,又∵△B=45°,△ADB=90°,∴EF =√22AB =3√2 ,∴FC=EF= 3√2 , ∴AF=AC-CF=6- 3√2 ,∴PQ= 12AF = 3−3√22;(3)22.5°或67.5°13.【答案】(1)解:由旋转的性质可得△ABC△△ADE∴△BAC=△DAE∵DF△AC ,点F 与点A 重合, ∴△CAD=90° ∴△BAC=△DAE=45° ∵△ACB=90°∴△ABC=90°-△CAB=45°;(2)①∵△ABC△△ADE ,则△BAC=△DAE=12△DAF∵△DAF=△DBA , ∴△DAE=12△DAF=12△DBA∵△ABC△△ADE ∴AB=AD∴△DBA=△BDA ,设△BAC=△BAD-x ,则△DBA=△BDA-2x ∵△BAD+△ABD+△ADB=180° ∴x+2x+2x=180°解得:x=36° ∴△BAC=36°∴△ABC=90°-△BAC=54°; ②493√3 14.【答案】(1)证明:∵BD 平分△ABC ,∵BA=BF,BE=BE,∴△ABE△△FBE(SAS),∴AE=FE,△AEB=△FEB= 12× 180°=90°,∴BD垂直平分AF.(2)解:BD=2CE,理由如下:延长CE,交BA的延长线于G,∵CE△BD,△ABE=△FBE,∴GE=2CE=2GE,∵△CED=90°=△BAD,△ADB=△EDC,∴△ABD=△GCA,又AB=AC,△BAD=△CAG,∴△BAD△△CAG(ASA),∴BD=CG=2CE,(3)解:FM=2 CE,理由如下:作FM的中垂线NH交CF于N,交FM于H,∴FN=MN,MH=FH= 12FM,∴△NMH=△NBH,∵△EFC= 12△ABC=22.5°,∴△MNC=2△NFH=2× 12△ABC=△ABC,∵AB=AC,△BAC=90,∴△ABC=△ACB=△MNC=45°,∵△EMC=△MFC+△MCF=22.5°+45°=67.5°,∴△ECM=90°-△EMC=22.5°,∴△NFH=△MCE,又∵△FHN=△E=90°,∴△FNH△△CME(AAS),∴FH=CE,∴FM=2FH=2CE.15.【答案】(1)解:①∵菱形ABCD,∴AB=AD,△ABC=△ADC,AD△BC,∵AE△BC,∴AE△AD,∴△EAF+△DAF=△BAE+△ABE=90°,∵△EAF=△ABC,∴△DAF=△BAE,在△ABE和△ADF中{∠ABC=∠ADC AB=AD ∠DAF=∠BAE∴△ABE△△ADF(ASA)∴AE=AF.②连接AC,∵菱形ABCD,∴AB=BC=CD,AC△BD,∵△ABE△△ADF,∴BE=CF , ∴CE=CF ∵AE=AF ∴AC△EF ∴BD△FE , ∴△CEF△△CBD , ∴EC BC =EF BD =25设EC=2a ,则AB=BC=5x ,BE=3a , ∴AE =√25a 2−9a 2=4a , ∵AE AB =AF BC ,△EAF=△ABC , ∴△AEF△△BAC ,S △AEF S △ABC =(AEAB)2=(4a 5a)2=1625S △AEFS 菱形ABCD=S △AEF 2S △ABC=12×1625=825.(2)解:∵菱形ABCD , ∴△BAC=12△BAD ,∵△EAF=12△BAD ,∴△BAC=△EAF , ∴△BAE=△CAM , ∵AB△CD , ∴△BAE=△ANC ,同理可知:△AMC=△NAC , ∴△MAC△△ANC , ∴AC CN =AM NA; 当△AMN 时等腰三角形, 当AM=AN 时,在△ANC和△MAC中{∠ANC=∠CAM AM=AN ∠AMC=∠NAC∴△ANC△△MAC(ASA)∴CN=AC=2,∵AB△CN,∴△CEN△△BEA,∴CEBE=CNAB=24=12∵AB=BC=4∴CE4−CE=12解之:CE=43;当NA=MN时△NMA=△NAM,∵AB=BC,∴△BAC=△BCA,∵△BAC=△EAF,∴△NMA=△NAM=△BAC=△BCA,∴△ANM△△ABC,∴AMAN=ACAB=12∴AC CN =AM NA =12 ∴CN=2AC=4=AB 解之:AC=2∵△CEN△△BEA (AAS ) ∴CE=BE=2; 当MA=MN 时,易证△MNA=△MAN=△BAC=△BCA , ∴△AMN△△ABC ∴AM AN =AB AC =42=2 ∴CN=12AC=1∵△CEN△△BEA , ∴CE BE =CN AB =14 ∴CE 4−CE =14 解之:CE =45;∴当CE 为43或2或45时,△AMN 是等腰三角形.16.【答案】(1)OC =OD(2)解:数量关系依然成立.证明(方法一):过点O 作直线 EF//CD ,交BD 于点F ,延长AC 交EF 于点E .∵EF//CD∴∠DCE=∠E=∠CDF=90°∴四边形CEFD为矩形.∴∠OFD=90°,CE=DF由(1)知,OE=OF∴△COE≌△DOF(SAS),∴OC=OD.证明(方法二):延长CO交BD于点E,∵AC⊥CD,BD⊥CD,∴AC//BD,∴∠A=∠B,∵点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(ASA),∴OC=OE,∵∠CDE=90°,∴OD=OC.(3)解:①数量关系依然成立.证明(方法一):过点O作直线EF//CD,交BD于点F,延长CA交EF于点E.∵EF//CD∴∠DCE=∠E=∠CDF=90°∴四边形CEFD为矩形.∴∠OFD=90°,CE=DF由(1)知,OE=OF∴△COE≌△DOF(SAS),∴OC=OD.10分证明(方法二):延长CO交DB的延长线于点E,∵AC⊥CD,BD⊥CD,∴AC//BD,∴∠ACO=∠E,∴点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(AAS),∴OC=OE,∵∠CDE=90°,∴OD=OC.②AC+BD=√3OC。

2023年中考数学----三角形的综合知识回顾与专项练习题(含答案解析)

2023年中考数学----三角形的综合知识回顾与专项练习题(含答案解析)

知识回顾2023年中考数学----三角形的综合知识回顾与专项练习题(含答案解析)1. 角平分线的性质:①平分角。

②角平分线上任意一点到角两边的距离相等。

2. 角平分线的判定:角的内部到角两边相等的点一定在角平分线上。

3. 角平分线的尺规作图:具体步骤:①以角的顶点O 为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M 、N 。

如图①。

②分别以点M 与点N 为圆心,大于MN 长度的一半为半径画圆弧,两圆弧交于点P 。

如图②。

③连接OP ,OP 即为角的平分线。

4. 垂直平分线的性质:①垂直且平分线段。

②垂直平分线上任意一点到这条线段两个端点的距离相等。

5. 垂直平分线的判定:到线段两端点距离相等的点一定在线段的垂直平分线上。

6. 垂直平分线的吃规作图:具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M 、N 。

如图①②连接MN ,过MN 的直线即为线段的垂直平分线。

如图②7.中位线的性质:三角形的中位线平行且等于第三边的一半。

8. 等腰三角形的性质:①等腰三角形的两腰相等。

②等腰三角形的两底角相等。

(简称“等边对等角”)③等腰三角形底边的中线、高线以及顶角平分线相互重合。

(简称底边上三线合一)9. 等腰三角形的判定:①有两条边相等的三角形是等腰三角形。

②有两个底角相等的三角形是等腰三角形。

(等角对等边)③若一个三角形某一边上存在“三线合一”,则三角形是等腰三角形。

10. 等边三角形的性质:①等边三角形的三条边都相等,三个角也相等,且三个角都等于60°。

②等边三角形三条边都存在“三线合一”③等腰三角形是一个轴对称图形,有三条对称轴。

④等腰三角形的面积等于243a (a 为等腰三角形的边长)。

11. 等腰三角形的判定:①三条边都相等的三角形是等边三角形。

②三个角都相等(两个角是60°)的三角形是等腰三角形。

③底和腰相等的等腰三角形是等边三角形。

最新人教版数学中考复习试卷——第四章《三角形》综合测试卷

最新人教版数学中考复习试卷——第四章《三角形》综合测试卷

返回目录
(2)解:∵AD⊥DB,∠A=30°,∴∠DBE=60°. ∵BD平分∠ABC, ∴∠DBC=∠DBE=60°. 在Rt△BCD中,∠DBC=60°,DC= ∴DB=2. ∵DE=BE,且∠DBE=60°,∴△BDE是等边三角形. ∴DE=DB=2. ∵DE∥BC,∴∠EDC=180°-∠BCD=90°. 则在Rt△EDC中,EC=
返回目录
16. 如图S4-12,△ABC是等边三角形,AB=6,AD是BC边上的中 线,点E在边AC上,且∠EDA=30°,则直线ED与AB的位置关系是 __平__行____,ED的长为___3_____.
返回目录
17. 如图S4-13,在△ABC中,BC的垂直平分线EF交∠ABC的平分 线BD于点E,连接CE.如果∠BAC=60°,∠ACE=24°,那么 ∠BCE=___3_2_°___.
活页测试卷
第四章《三角形》综合测试卷
一、选择题(本大题10小题,每小题3分,共30分)
1. 若一个正多边形的一个内角是135°,则这个正多边形的边
数是( C )
A. 10
B. 9
C. 8
D. 6
返回目录
2. 如图S4-1,下列说法不正确的是( B ) A. ∠2与∠C是内错角 B. ∠2与∠B是同位角 C. ∠1与∠B是同位角 D. ∠EAC与∠B是同位角
返回目录
23. 如图S4-19,在四边形ABCD中,∠BCD=90°,AD⊥DB,点E为 AB的中点,DE∥BC. (1)求证:BD平分∠ABC; (2)连接EC,若∠A=30°, DC= 求EC的长.
返回目录
(1)证明:∵AD⊥DB,点E为AB的中点, ∴DE=BE.∴∠DBE=∠BDE. ∵DE∥BC,∴∠BDE=∠DBC. ∴∠DBE=∠DBC. ∴BD平分∠ABC.

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷一、选择题(每小题3分,共36分)1.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°(第1题图)(第2题图)2.如图,平行线AB,CD 被直线EF 所截,过点B 作BG⊥EF 于点G,已知∠1=50°,则∠B=()A.20°B.30°C.40°D.50°3.如图,太阳光线与水平线成70°角,窗子高AB=2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC 的长度至少是()A.米B.2sin70°米C.米D. 2.2cos70°米(第3题图)(第5题图)4.在Rt△ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是()A.B.3C.D.5.如图,每个小方格的边长为1,A,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C 的个数为()A.1B.2C.3D.46.已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A.2B.3C.5D.137.如图,在Rt△ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.(第7题图)(第8题图)8.如图,在Rt△ABC 中,∠BAC=90°,∠ABC 的平分线BD 交AC 于点D,DE 是BC 的垂直平分线,点E 是垂足.已知DC=5,AD=2,则图中长为的线段有()A.4条B.3条C.2条D.1条9.如图,在△ABC 外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC 与△DEF 是位似图形B.△ABC 与△DEF 是相似图形C.△ABC 与△DEF 的周长比为1∶2D.△ABC 与△DEF 的面积比为4∶1(第9题图)(第10题图)10.如图,在数轴上有A,B,C,D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D 两点表示的数分别为-5和6,且AC 的中点为E,BD 的中点为M,BC 之间距点B 的距离为BC 的点为N,则该数轴的原点为()A.点EB.点FC.点MD.点N 11.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为()(第11题图)(第12题图)12.如图,在△ABC 中,∠ABC=∠C,将△ABC 绕点B。

2023年九年级中考数学重难点训练——三角形的综合

2023年九年级中考数学重难点训练——三角形的综合

2023年中考数学重难点训练——三角形的综合一、综合题1.如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF折叠,使点D 落在AC 上的点N 处。

(1)求证:四边形AECF 是平行四边形; (2)若AB=6,AC=10,求四边形AECF 的面积。

2.如图,已知菱形中 ABCD ,且 60BAD ∠=︒ 延长 AB 至点 E ,使 BE AB = ,连接 BD 和CE .(1)求证:DAB CBE ≌ ; (2)求证:四边形 DBEC 是菱形.3.已知:如图,四边形ABCD 是正方形,点E 、F 分别在BC 、CD 上,连接AE 、EF 、AF ,且∠DAE =∠AEF .(1)求证:EF =BE+DF ;(2)线段AF 的垂直平分线交AD 于点G ,连接FG ,求证:∠EFG =90°; (3)在(2)的条件下,若tan∠DFG =34 ,EF = 203,求S ∠AEF . 4.如图所示,已知∠ABC 中,BC=30cm ,AD=10cm .AD 是高,矩形EFGH 内接于∠ABC 中,且长边FG 在BC 边上.设EF=x , FG=y .(1)求y 与x 的函数关系式.并求自变量x 的取值范围. (2)若x :y=1:2,求矩形EFGH 的面积.(3)当EF 为何值时,矩形EFGH 的面积最大?最大面积是多少?5.如图,Rt∠ABC 中,分别以AB 、AC 为斜边,向∠ABC 的内侧作等腰Rt∠ABE 、Rt∠ACD ,点M 是BC 的中点,连接MD 、ME .(1)若AB =8,AC =4,求DE 的长;(2)求证:AB ﹣AC =2DM .6.如图,菱形ABCD 中,∠B =60°,AB =3cm ,过点A 作∠EAF =60°,分别交DC ,BC 的延长线于点E ,F ,连接EF.(1)如图1,当CE =CF 时,判断∠AEF 的形状,并说明理由;(2)若∠AEF 是直角三角形,求CE ,CF 的长度;(3)当CE ,CF 的长度发生变化时,∠CEF 的面积是否会发生变化,请说明理由.7.已知等边∠ABC 和射线AP ,作AC 边关于射线AP 的对称线段AD ,连接BD ,CD .(1)如图1,当射线AP 在∠BAC 内部时, ①请依题意补全图形;②若∠PAC =15°,则∠BDC = ▲ 度; ③若∠PAC =x°,试求∠BDC 的度数;(2)如图2,当射线AP 在∠BAC 外部的AC 右侧时,设BD 交AP 于点E , ①∠BDC = ▲ 度;②线段AE ,BE ,DE 之间有何数量关系?试说明理由.8.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(﹣2,2).点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴正方向运动,过点Q 作直线l 垂直x 轴.当点P 到达点O 时,点Q 也停止运动.连接BP ,作PD∠BP 交直线l 于点D.连结BD 交y 轴于点E ,连接PE.设点P 的运动时间为t (s ).(1)①点D 的坐标为 (用含t 的代数式表示). ②当0<t≤2时,∠PED 的大小范围是 .(2)当0<t <2时,∠POE 的周长C 是否随t 的变化而变化?若变化,求出C 关于t 的关系式;若不变,求出C 的值.(3)当t = 秒时,∠PBE 为等腰三角形(直接给出答案).9.如图,已知正方形OEFG 的顶点O 与正方形ABCD 的中心O 重合,若正方形OEFG 绕O 点旋转.(1)探究:在旋转的过程中线段BE 与线段CG 有什么数量关系及位置关系?证明你的结论; (2)若正方形ABCD 的边长为a ,探究:在旋转过程中四边形OMCN 的面积是否发生变化?若不变化求其面积,若变化指出变化过程.10.(1)问题发现:如图(1),在∠OAB 和∠OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =36°,连接AC ,BD 交于点M .①ACBD的值为 ;②∠AMB 的度数为 ; (2)类比探究 :如图(2),在∠OAB 和∠OCD 中,∠AOB =∠COD =90°,∠OAB =∠OCD =30°,连接AC ,交BD 的延长线于点M .请计算ACBD的值及∠AMB 的度数. (3)拓展延伸:在(2)的条件下,将∠OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M .若OD=1,OB 13C 与点M 重合时AC 的长.11.如图,以BC 为边分别作菱形BCDE 和菱形BCFG (点C ,D ,F 共线),动点A 在以BC 为直径且处于菱形BCFG 内的圆弧上,连接EF 交BC 于点O .设θG ∠=.(1)求证:无论θ为何值,EF 与BC 相互平分;并请直接写出使EF BC ⊥成立的θ值. (2)当θ90=︒时,试给出tan ABC ∠的值,使得EF 垂直平分AC ,请说明理由.12.如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)写出点C,D的坐标并求出四边形ABDC的面积;(2)在y轴上是否存在一点Q,连接QA,QB,使∠AQB的面积等于四边形ABDC的面积的一半?若存在这样的点,求出点Q的坐标;若不存在,请说明理由;(3)如图②,点P是线段BD上一个动点,连接PC,PO,当点P在线段BD上运动时,试探究∠OPC与∠PCD,∠POB的数量关系,并证明你的结论.13.如图1,菱形ABCD中,DE∠AB,垂足为E,DE=3cm,AE=4cm,把四边形BCDE沿DE所在直线折叠,使点B落在AE上的点M处,点C落在点N处,MN交AD于点F.(1)证明:FA=FM;(2)求四边形DEMF面积;(3)如图2,点P从点D出发,沿D→N→F路径以每秒1cm的速度匀速运动,设运动时间为t秒,当t 为何值时,∠DPF的面积与四边形DEMF的面积相等.14.如图,平面直角坐标系中,点A在第一象限,AB∠x轴于B,AC∠y轴于C,A(4m,3m),且四边形ABOC的面积为48.(1)如图①,求A点的坐标;(2)如图②,点D从O出发以每秒1个单位的速度沿y轴正半轴运动,同时点E从A出发,以每秒2个单位的速度沿射线BA运动,DE交线段AC于F,设运动的时间为t,当S∠AEF<S∠CDF时,求t的取值范围.15.如图1,在等腰直角三角形ADC中,904ADC AD∠==,.点E是AD的中点,以DE为边作正方形DEFG,连接AG CE,.将正方形DEFG绕点D顺时针旋转,旋转角为(090)αα<<.(1)如图2,在旋转过程中,①判断AGD∆与CED∆是否全等,并说明理由;②当CE CD=时,AG与EF交于点H,求GH的长.(2)如图3,延长CE交直线AG于点P.①求证:AG CP⊥;②在旋转过程中,线段PC的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.16.如图1,菱形ABCD的对角线AC、BD相交于点O,且AC=6cm,BD=8cm,分别过点B、C作AC与BD的平行线相交于点E.(1)判断四边形BOCE的形状并证明;(2)点G从点A沿射线AC的方向以2cm/s的速度移动了t秒,连接BG,当S∠ABG=2S∠OBG时,求t的值.(3)如图2,长度为3cm的线段GH在射线AC上运动,求BG+BH的最小值.17.如图1,已知点A,B,C,D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.(1)求证:∠ACE∠∠DBF;(2)如果把∠DBF沿AD折翻折使点F落在点G,如图2,连接BE和CG.求证:四边形BGCE是平行四边形.18.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE求证:四边形AFCE为菱形;(2)如图1,求AF的长;(3)如图2,动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t 秒.若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】(1)证明:∵折叠,∴AM=AB ,CN=CD ,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD 为矩形,∴AB=CD ,AD∠BC , ∴AM=CN ,∴AM ﹣MN=CN ﹣MN ,即AN=CM , 在∠ANF 和∠CME 中,∴∠ANF∠∠CME (ASA ),∴AF=CE ,又∵AF∠CE ,∴四边形AECF 是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x ,则EM=8﹣x ,CM=10﹣6=4,在Rt∠CEM 中,(8﹣x )2+42=x 2,解得:x=5,∴四边形AECF 的面积的面积为:EC•AB=5×6=30.2.【答案】(1)解:∵菱形 ABCD∴AD BC , AD BC = ∴CBE DAB ∠=∠ ∵BE AB =∴()DAB CBE SAS ≌ (2)解:∵菱形 ABCD , ∴DC BE , ==DC AD AB BE = , ∴四边形 DBEC 是平行四边形, ∵60DAB ∠=︒ ∴∠ABD 是等边三角形 ∴AB BD BE == . ∴四边形 DBEC 是菱形.3.【答案】(1)证明:过点A 作AH∠EF 于点H ,∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,AD∠BC , ∴∠BEA =∠DAE , ∵∠DAE =∠AEF , ∴∠BEA =∠AEF , 在∠ABE 和∠AHE 中,∵B AHEBEA AEH AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴∠ABE∠∠AHE (AAS ), ∴AB =AH ,BE =HE , ∴AH =AD ,∴Rt∠AHF∠Rt∠ADF (HL ), ∴DF =HF , ∵EF =HE+HF , ∴EF =BE+DF(2)解:如图2,由题意知GA =GF ,∴∠GAF =∠GFA , 由(1)知∠AFE =∠AFD , ∵∠FAD+∠AFD =90°, ∴∠GFA+∠AFE =90°,∴∠EFG =90°(3)解:由tan∠DFG = DG DF = 34可设DG =3x ,DF =4x , 则AG =GF =22DG DF +=()()2234x x +=5x ,EH =DF =4x ,∴BC =CD =AD =8x ,∴CF=CD﹣DF=4x,∵EF=203,∴BE=EH=EF﹣FH=203﹣4x,则EC=BC﹣BE=8x﹣(203﹣4x)=12x﹣203,在Rt∠ECF中,由EF2=EC2+CF2得(203)2=(12x﹣203)2+(4x)2,解得:x1=0(舍),x2=1,即AH=AD=8x=8,∴S∠AEF=12EF•AH=12×203×8=8034.【答案】(1)解:如图,∵EF=x,FG=y,∴DM=EF=x,AM=AD-DM=10-x,∵EH//BC,∴EH AMBC AD=,即1030y x-=,∴y=30-3x;∵y>0,∴30-3x>0,即x<10,∵x>0,∴x取值范围为0<x<10;(2)解:∵x:y=1:2,∴y=2x,∵y=30-3x,∴2x=30-3x,∴x=6,∴y=12,∴矩形EFGH的面积=6×12=72;(3)解:设四边形EFGH的面积为S,则S=x(30-3x)=-3x2+30x=-3(x-5)2+75,∴当x=5时,即EF=5时,S有最大值为75.5.【答案】(1)解:直角∠ABE中,AE=22AB=4 2,在直角∠ACD中,AD=22AC=2 2,则DE=AE﹣AD=4 2﹣2 2=2 2;(2)解:延长CD交AB于点F.在∠ADF和∠ADC中,{∠FAD=∠CADAD=AD∠ADF=∠ADC,∴∠ADF∠∠ADC(ASA),∴AC=AF,CD=DF,又∵M是BC的中点,∴DM是∠CBF的中位线,∴DM=12BF=12(AB﹣AF)=12(AB﹣AC),∴AB﹣AC=2DM.6.【答案】(1)解:∠AEF是等边三角形,理由如下:连接BE、DF,如图1所示:∵四边形ABCD是菱形,∴AB=BC=DC=AD,∠ABC=∠ADC,在∠BCE和∠DCF中,BD DCBCE DCFCE CF=⎧⎪∠=∠⎨⎪=⎩,∴∠BCE∠∠DCF(SAS),∴∠BE=DF,CBE=∠CDF,∴∠ABC+∠CBE=∠ADC+∠CDF,即∠ABE=∠ADF,在∠ABE和∠ADF中,AB ADABE ADFBE DF=⎧⎪∠=∠⎨⎪=⎩,∴∠ABE∠∠ADF(SAS),∴AE=AF,又∵∠EAF=60°,∴∠AEF是等边三角形;(2)解:分两种情况:①∠AFE=90°时,连接AC、MN,如图2所示:∵四边形ABCD是菱形,∴AB=BC=DC=AD=3,∠D=∠B=60°,AD∠BC,AB∠CD,∴∠ABC和∠ADC是等边三角形,∴AC=AD,∠ACM=∠D=∠CAD=60°=∠EAF,∴∠MAC=∠NAD,在∠MAC和∠NAD中,MAC NADAC ADACM D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴∠MAC∠∠NAD(ASA),∴AM=AN,CM=DN,∵∠EAF=60°,∴∠AMN是等边三角形,∴AM=MN=AN,设AM=AN=MN=m,DN=CM=b,BM=CN=a,∵CF∠AD,∴∠CFN∠∠DAN,∴CF FN CN aAD AN DN b===,∴FN=amb,∴AF=m+amb,同理:AE=m+bma,在Rt∠AEF中,∵∠EAF=60°,∴∠AEF=30°,∴AE=2AF,∴m+bma=2(m+amb),整理得:b2﹣ab﹣2a2=0,(b﹣2a)(b+a)=0,∵b+a≠0,∴b﹣2a=0,∴b=2a,∴CFAD=12,∴CF =12 AD = 32, 同理:CE =2AB =6;②∠AEF =90°时,连接AC 、MN ,如图3所示:同①得:CE =12 AD = 32,CF =2AB =6; (3)解:当CE ,CF 的长度发生变化时,∠CEF 的面积不发生变化;理由如下:作FH∠CD 于H ,如图4所示:由(2)得:BM =CN =a ,CM =DN =b , ∵AD∠CF , ∴∠ADN∠∠FCN ,∴AD DN bCF CN a== , ∵CE∠AB ,∴∠FCH =∠B =60°,∠CEM∠∠BAM ,∴CE CM bAB BM a == , ∴AD CECF AB= , ∴CF×CE =AD×AB =3×3=9, ∵CH =CF×sin∠FCH =CF×sin60°=32CF , ∠CEF 的面积= 12 CE×FH = 12 CE× 3CF = 12 ×9× 3 = 93,∴∠CEF 的面积是定值,不发生变化.7.【答案】(1)解:①解:如图,补全图形:;②150°;③由对称可知,∠PAC=∠PAD=x°, ∵AD=AB=AC ,∠BAD=60°-2x°, ∴∠ADC=1802902x x ︒-︒=︒-︒ ,∠ADB= ()180602602x x ︒-︒-︒=︒+︒ , ∴∠BDC=∠ADC+∠ADB= 90x ︒-︒ + 60x ︒+︒ =150°; ∠BDC 的度数为150°;(2)解:①30°;②BD=2DE+AE ,理由如下: 如图,在BD 上截取EG=EC ,由(2)①知:∠BDC=30°,∠ADB=∠ABD=60°-α, 由对称可知,∠EDC=∠ECD=30°,∠AED=90°+30°=120°, ∴∠BEC=∠EDC+∠ECD=60°, ∴∠CGE 是等边三角形, ∴∠BGC=∠AED=120°,∵∠CBG=60°-∠ABD=60°-(60°-α)=α, ∵∠CBG=∠DAE=α, ∴∠CBG∠∠DAE (AAS ),∴AE=BG,∵EG=CE=DE,∴BD=2DE+BG,即BD=2DE+AE.8.【答案】(1)(t,t);90°≤∠PED<135°(2)解:结论:∠POE的周长C=4,是定值.理由:延长OA到K,使得AK=CE,连接BK,∵BC=BA,∠BCE=∠BAK=90°,CE=AK,∴∠KAB∠∠ECB(SAS),∴KB=EB,∠KBA=∠EBC,∵∠EBP=45°,∠ABC=90°,∴∠ABP+∠EBC=45°,∴∠KBP=∠KBA+∠ABP=∠EBC+∠ABP=45°,∴∠KBP=∠EBP,∴∠KBP∠∠EBP(SAS),∴KP=EP,∴EP=KP=KA+AP=CE+AP,∴∠POE的周长C=PE+OP+OE=PA+OP+OE+EC=2OA=4,是定值.(3)2或(22﹣2)9.【答案】(1)解:BE=CG,BE∠CG,理由如下:连接OB、OC,延长GC交BE于T点,交OE于H点,∵O是正方形的中心,∴OB=OC.∵∠BOE+∠MOC=90°,∠COG+∠MOC=90°,∴∠BOE=∠COG.又OE=OG,∴∠OBE∠∠OCG(SAS).∴BE=CG,∠BEO=∠CGO.∵∠OHG+∠CGO=90°,∠OHG=∠EHT,∴∠EHT+∠BEO=90°,即∠HTE=90°,所以GC∠BE(2)解:在旋转过程中四边形OMCN的面积不发生变化,理由如下:在∠OBM和∠OCN中45BOM CONOB OCOBM OCN∠=∠⎧⎪=⎨⎪∠=∠=⎩∴∠OBM∠∠OCN(ASA)∴四边形OMCN的面积=∠OMC面积+∠OCN面积=∠OMC面积+∠OBM面积=∠OBC面积.∵∠OBC面积=14a2.所以在旋转过程中四边形OMCN的面积不发生变化.10.【答案】(1)1;36°(2)解:在∠OAB 和∠OCD 中,∵∠AOB=∠COD=90°,∠OAB=∠OCD=30°, ∴tan30°=3OD OB OC OA ==, ∵∠AOB+∠DOA=∠COD+∠DOA , 即∠DOB=∠COA , ∴∠DOB∠∠COA , ∴3AC OC BD OD== ∠DBO=∠CAO ,∵∠DBO+∠OEB=90°,∠OEB=∠MEA , ∴∠CAO+∠MEA=90°, ∴∠AMB=90°, ∴ACBD3,∠AMB=90°; (3)3311.【答案】(1)证明:如图所示:连接BF 、CE ,∵菱形BCDE 和菱形BCFG (点C ,D ,F 共线), ∴点G 、B 、E 共线,FC BG FC BC BE ∴==, ,FC BE FC BE ∴=, ,∴四边形BFCE 是平行四边形,∴EF 与BC 相互平分,即:无论θ为何值,EF 与BC 相互平分; 又∵EF BC ⊥, ∴四边形BFCE 是菱形,∴BE=BF ,又∵菱形BCDE 和菱形BCFG ,GF BG BF BE ∴=== , GFB ∴ 为等边三角形, θ60G ∴∠==︒;(2)解:如图所示:连接AF ,AO ,设EF 与AC 交于点H ,∵EF 垂直平分AC90AF FC AO CO AHO ∴==∠=︒,, ,由(1)知,O 为BC 的中点,∴动点A 在以O 为圆心,BC 为直径且处于菱形BCFG 内的圆弧上,90BAC AO BO CO ∴∠=︒==, ,OBA OAB ∴∠=∠ ,90OAB OAC AOH OAC ∠+∠=∠+∠=︒ , AOH OAB OBA ∴∠=∠=∠ ,在AOF 和COF 中,AF CF AO CO FO FO =⎧⎪=⎨⎪=⎩, AOF COF ∴≌ , FAO FCO ∴∠=∠ ,∵θ90=︒,菱形BCFG , ∴四边形BCFG 为正方形,90FCO FC BC ∴∠=︒=, , 90FAO FCO ∴∠=∠=︒,设FC BC x ==,则AF CF x == ,1122AO OC BC x === ,在Rt FAO 中,212AF xtan FOA AO x ∠===, AOH OBA ∠=∠, 2tan ABC tan FOA ∴∠=∠=.12.【答案】(1)解:由题意,点C 的坐标为(0,2),D 点坐标为(4,2),∵AC∠BD ,∴四边形ABCD 为平行四边形, ∴四边形ABDC 的面积=2×4=8. (2)解:存在.设Q 点坐标为(0,t ),∵S ∠QAB = 12S 四边形ABCD ,∴12•4•|t|=4,解得t =±2, ∴Q 点坐标为(0,2)或(0,﹣2). (3)解:结论:∠OPC =∠PCD +∠POB . 理由:过点P 作PE∠CD .∵AB∠CD , ∴PE∠AB∠CD ,∴∠EPC =∠PCD ,∠EPO =∠POB , ∴∠OPC =∠EPC +∠EPO =∠PCD +∠POB .13.【答案】(1)证明:∵四边形ABCD 是菱形,∴AD∠BC , ∴∠A+∠B =180°,由折叠可知∠NMB =∠B ,且∠NMA+∠NMB =180°, ∴∠A =∠NMA , ∴FA =FM ;(2)解:过点F 作FG∠AM 于G ,由(1)可知AG =GM =1AM 2, Rt∠ADE 中,AE =4cm ,DE =3cm , ∴AD =5cm ,∵四边形ABCD 是菱形, ∴AB =AD =5cm , ∴EB =AB ﹣AE =1cm , ∴EM =EB =1cm , ∴AM =AE ﹣EM =3cm ,∴13AG AM 22== cm ,又∵3tan 4FG DE A AG AE ∠=== cm , ∴9FG 8=cm , ∴2ADE AFM 1111927S AE DE 346cm ,S AB FG 32222816∆=⋅=⨯⨯==⋅=⨯⨯=cm 2, ∴S 四边形DEMF =S ∠ADE ﹣S ∠AFM =6﹣27691616= cm 2 ; (3)解:分两种情况:①0<t≤5时,如图2,此时P 在边DN 上,过点F 作FH∠ND 于H ,∵DN∠AM , ∴53DN FN AM FM == , ∵MN =BC =5,∴FN =525588⨯= , sin∠N =FH DE 3FN AD 5== , ∴FH = 32515588⨯= , S ∠DPF = 11151522816DP FH t ⋅=⋅⋅= ,令 1569t 1616= 解得: 6915t = ; ②∵DN+FN =5+ 256588= , 当 6558t << 时,P 在FN 上,如图3,过P 作PK∠DN 于K ,∵PN =t ﹣5, ∴PK =3(5)5t - , S ∠DPF =S ∠NFD ﹣S ∠NPD =11513319555(5)2825216t t ⨯⨯-⨯⨯-=-+ , 令﹣ 319569t 21616+= ,解得:t = 214, 所以,综上,当t = 6915 或t = 214时,∠DPF 面积与四边形DEMF 面积相等. 14.【答案】(1)解:∵ AB∠x 轴, AC∠y 轴,∴四边形ABOC 是矩形,∵AC =4m ,AB=3m ,四边形ABOC 的面积为48, ∴4m×3m=48, ∴m=2或-2,∵点A 在第一象限, ∴m=2,∴A (8,6);(2)解:由题意知,OD=t ,AE=2t , ∵S ∠AEF <S ∠CDF ,∴S ∠CDF +S 五边形ABODF >S ∠AEF +S 五边形ABODF ,即S 四边形ABOC >S 梯形DOBE , ∴148(62)82t t >++⨯ , ∴2t < ,∴t 的取值范围是 02t << .15.【答案】(1)①全等,理由如下:在等腰直角三角形 ADC 中,AD=CD , 90ADC ∠= , 在正方形 DEFG 中,GD=ED , 90GDE ∠= , 又∵90ADE EDC ∠+∠=︒ , 90ADE ADG ∠+∠=︒ , ∴ADG CDE ∠=∠ 在AGD 和 CED 中,AD CD ADG CDE GD ED =⎧⎪∠=∠⎨⎪=⎩, ∴AGD CED ≅ (SAS );②如解图2,过A 点作AM∠GD ,垂足为M ,交FE 与N ,∵点 E 是 AD 的中点,∴在正方形 DEFG 中,DE=GD=GF=EF=2, 由①得AGD CED ≅ ,∴AG CE = , 又∵CE CD = , ∴4AG AD CD === , ∵AM∠GD , ∴112GM GD == , 又∵90D F ∠=∠=︒ , ∴四边形GMNF 是矩形, ∴2MN GF == , 在 Rt AGM 中, 22224115AM AG GM =-=-=,∴15cos AM GAM AG ∠==∵//FG AM , ∴GAM AGF ∠=∠ ∴15cos 4FG AGF GH ∠==, ∴815cos 15FG GH AGF ===∠. (2)①由①得 AGD CED ≅ ,∴GAD ECD ∠=∠ ,又∵90ECD ECA DAC ∠+∠+∠=︒ ,∴90GAD ECA DAC ∠+∠+∠=︒ , ∴90APC ∠=︒ ,即: AG CP ⊥ ;②∵90APC ∠=︒ , ∴sin PC AC PAC =⋅∠ , ∴当 PAC ∠ 最大时,PC 最大, ∵∠DAC=45°,是定值,∴GAD ∠ 最大时, PAC ∠ 最大,PC 最大, ∵AD=4,GD=2,∴当GD∠AG , 30GAD ∠=︒ 最大,如解图3,此时 22224223AG AD GD =-=-=,又∵AG CP ⊥ , EF FG ⊥ ,∴F 点与P 点重合, ∴CEFP 四点共线,∴CP=CE+EF=AG+EF= 232 , ∴线段 PC 得最大值为: 232 .16.【答案】(1)结论:四边形BOCE 是矩形.理由:∵BE∠OC ,EC∠OB , ∴四边形OBEC 是平行四边形, ∵四边形ABCD 是菱形, ∴AC∠BD , ∴∠BOC =90°,∴四边形BOCE 是矩形.(2)如图2中,∵四边形ABCD 是菱形,∴OA =OC =3cm ,OB =OD =4cm , ∵S ∠ABG =2S ∠OBG , ∴AG =2OG ,∴2t =2(3﹣2t )或2t =2(2t ﹣3), 解得t =1或t =3,∴满足条件的t 的值为1或3.(3)如图2中,设OG =x ,则BG +BH =224x ++22(3)4x -+ ,欲求BG +BH 的最小值,相当于在x 轴上找一点P(x ,0),使得点P(x ,0)到A(0,4)和B(3,4)的距离最小,如图3中,作点B 关于x 轴的对称点 B ' ,连接 AB ' 交x 轴于P ,连接BP ,此时PA +PB 的值最小, ∵A(0,4), B ' (3,﹣4), ∴当B 点在y 轴右侧时, AP +PB =AP + PB ' = AB ' =2283+=73,当B 点在y 轴左侧时,由于线段整体移动,同理,得 AP +PB =AP + PB ' = AB ' = 73,∴BG +BH 的最小值为73.17.【答案】(1)证明:如图1,∵OB =OC ,∴∠ACE =∠DBF , 在∠ACE 和∠DBF 中,ACE DBFE FAE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴∠ACE∠∠DBF (AAS ) (2)证明:如图2,∵∠ACE =∠DBF ,∠DBG =∠DBF , ∴∠ACE =∠DBG ,∴CE∠BG ,∵CE =BF ,BG =BF , ∴CE =BG ,∴四边形BGCE 是平行四边形.18.【答案】(1)证明:∵四边形ABCD 是矩形, ∴AD∠BC , ∴∠EAO=∠FCO ,∵EF 是AC 的垂直平分线, ∴OA=OC , ∵∠AOE=∠COF , ∴ΔAOE∠ΔCOF (ASA ), ∴OE=OF , ∵OA=OC ,∴四边形AFCE 是平行四边形, ∵EF∠AC ,∴平行四边形AFCE 是菱形; (2)解:∵四边形AFCE 是菱形, ∴AF=FC ,设AF=xcm ,则CF=xcm ,BF=(8-x)cm , ∵四边形ABCD 是矩形,∴∠B=90°,则在RtΔABF 中,由勾股定理得: ()22248x x +-=, 解得:x=5,即AF=5cm ; (3)解:分为三种情况:①P 在AF 上,∵P 的速度是1cm/s ,而Q 的速度是0.8cm/s ,∴Q 只能在CD 上,此时以A 、P 、C 、Q 四点为顶点的四边形不是平行四边形;②当P 在BF 上时,Q 在CD 或DE 上,其中只有当Q 在DE 上时,以A 、P 、C 、Q 四点为顶点的四边形才有可能是平行四边形,如图,∵AQ=8-(0.8t -4),CP=5+(t -5), ∴8-(0.8t -4)=5+(t -5),解得: 203t =; ③当P 在AB 上时,Q 在DE 或CE 上,此时以A 、P 、C 、Q 四点为顶点的四边形不是平行四边形; 综上所述,当203t =时,以A 、P 、C 、Q 四点为顶点的四边形是平行四边形.。

中考数学专题三角形综合测试题含答案

中考数学专题三角形综合测试题含答案

中考数学专题三角形综合测试题一、选择题(每小题3分,共30分)1.一直角三角形的两条直角边分别为3和4,下列说法中不正确的是 ( ) A.斜边长为5 B.三角形周长为12 C.第三边长为25 D.三角形面积为6 2.如图,AB ∥CD ,AE 交CD 于C ,∠A=34°,∠DEC=90°,则∠D 的度数为 ( )A.17°B.34°C.56°D.124°3.计算sin 245°+cos30°•tan60°,其结果是( ) A.2 B.1 C.25 D.45 4.如图,在Rt△ABC 中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A.sin A =B.1tan 2A =C.cos B =D.tan B =5.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC,ED⊥AB 于D .如果∠A=30°,AE=6cm ,那么CE 等于 ( ) A.cm B.2cm C.3cm D.8cm6.如图,点F 在正方形ABCD 内,满足∠AFB=90°,AF=6,BF=8,则图中阴影部分面积为 ( )A.48B.60C.76D.807.等腰三角形底边长为10cm ,周长为36cm ,那么它的底角的余弦是( ) A.135 B.1312 C.1310 D.125 8.如果一个三角形的一个内角是另一个内角的3倍,那么我们称这个三角形是“智慧三角形”,下列各组数据中,能作为一个智慧三角形三边长的是( ) A.1,2,3 B.1,1,2 C.1,2,3 D.1,1,39.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB=2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A.4kmB.(4﹣)kmC.2kmD.(2+)kmBCA10.小明去爬山,在山脚看山顶仰为30°,小明在坡比为5︰12的山坡上走1300米,此时小明看山顶的角度为60°,则山高为( ) A.(600﹣250) 米 B.(600﹣250)米 C.(350+350)米 D.500米二、填空题(每小题4分,共32分) 11.已知α为锐角,且23)10sin(=︒-α,则α=_______. 12.已知在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 中点,则CD=______.13.已知在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对的边分别为a ,b ,c ,其中22=a ,62=b ,小明得到下面4个结论:①24=c ;②33tan =A ;③1cos sin =+B A ;④∠B =30°,正确的结论是_______(填序号).14.如图,在Rt △ABC 中,∠B=90°,∠ACB=60°,斜边AC 的垂直平分线DE 分别交AB ,AC 于D ,E 两点,若BD=2,则AC 的长为______.15.如图,△ABC 中,∠A=30°,23tan =B ,AC=32,则AB 的长为______. 16.某厂家新开发的一种电动车如图,它的大灯A 射出的光线AB,AC 与地面MN 所夹的锐角分别为8︒和10︒,大灯A 离地面的距离为1m 则该车大灯照亮地面的宽度BC 是 米.(不考虑其他因素))(参考数据:sin 8°≈254,tan8°≈71,sin10°≈509tan10°≈285)第16题图17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,∠B=90°,BC =6米,AC=12米. 当正方形DEFH 运动到什么位置,即当AE =______米时,有DC 2=A E 2+BC 2.18.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,20分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A ,B 两点间的距离为_______米.三、解答题(共58分)19.(10分)如图,在Rt△ABC 中,∠C=90°,AD 平分∠CAB,CD=3,BD=32,求AB 及∠B.20.(10分)如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=,AD=1.(1)求BC 的长;(2)求tan∠DAE 的值.21.(12分)如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN =30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为点H .如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米? (2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这一排居DCBA民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米) (参考数据:3≈1.7)22.(12分)如图,已知斜坡AB 长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE 的坡角(即∠BEF)不大于45°,则平台DE 的长最多为_____米; (2)一座建筑物GH 距离坡角A 点27米远(即AG=27米),小明在D 点测得建筑物顶部H 的仰角(即∠HDM)为30°.点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG⊥CG,问建筑物GH 高为多少米?23.(14分)如图,我南海某海域A 处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60 º方向以每小时30海里的速度航行半小时到达C 处,同时捕鱼船低速航行到A 点的正北1.5海里D 处,渔政船航行到点C 处时测得点D 在南偏东53 º方向上.(1)求CD 两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E 处相会合,求∠ECD 的正弦值 (参考数据:5453sin ≈︒,5353cos ≈︒,3453tan ≈︒).第23题图三角形(二)综合测试题参考答案一、1.C 2.C 3.A 4.D 5.C 6.C 7.A 8.C 9.D 10.B9.解析:过点B 作BE ⊥AD 交AC 于点E ,则BE =AB =2,AE根据题意可知,∠CBD=67.5°,所以∠BCE=22.5°,所以CE=BE=2,,在Rt△ACD 中,sin∠CAD=22=AC CD ,所以CD =(2km.E第9题图 第10题图10.解析:如图,根据题意可得,BE=500米,AE=1200米,设EC=x 米,则DF=x 3, 所以CD=500+x 3,AC=1200+x ,在Rt△ACD 中,AC=3CD ,即1200+x=()x 35003+,解得3250600-=x .∴DF=x 3=7503600-, CD= DF+CF=2503600-,故应选B.二、11.70 12.5 13.①② 14.38 15.5 16.57 17.31418.2600 三、19.解:过D 点作DE⊥AB 于E 点,因为AD 平分∠CAB,所以DE=DC=3.在Rt△BED 中,sinB=21,∴∠B=30°,在Rt△ABC 中,23AB BC cosB ==,所以AB=6.第19题图20.解:(1)在△ABC 中,∵AD 是BC 边上的高, ∴∠ADB=∠ADC=90°.在△ADC 中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1. 在△ADB 中,∵∠ADB=90°,sinB=,AD=1,∴AB==3,∴BD==2,∴BC=BD+DC=2+1;(2)∵AE 是BC 边上的中线,∴CE=BC=+, ∴DE=CE ﹣CD=﹣,∴tan∠DAE==﹣.21.解:(1)如图,连接PA .由题意知,AP=39m .在直角△APH 中,PH=22221539-=-AH AP =36(米).(2)由题意知,隔音板的长度是PQ 的长度.在Rt△ADH 中,DH=31530tan =︒AH(米).在Rt△CDQ 中,DQ=7830sin =︒CQ(米). 则PQ=PH+HQ=PH+DQ-DH=36+78-153≈114-15×1.7=88.5≈89(米). 答:高架道路旁安装的隔音板至少需要89米.第21题图22.解:(1)11.0;(2)过点D 作DP⊥AC,垂足为P .在Rt△DPA 中,DP=AD=×30=15,PA=AD•cos30°=×30=15.在矩形DPGM 中,MG=DP=15,DM=PG=15+27,在Rt△DMH 中, HM=DM•tan30°=×(15+27)=15+9.GH=HM+MG=15+15+9≈45.6. 答:建筑物GH 高为45.6米.第22题图23.解:(1)如图,过点C 作CG ⊥AB 于点G ,DF ⊥CG 于点F . 则在R t△CBG 中,由题意知∠CBG =30°,∴CG=12BC=13015222⨯==7.5.∵∠DAG=90°,∴四边形ADFG是矩形.∴GF= AD=1.5 ,∴CF= CG-GF=7.5-1.5=6. 在R t△CDF中,∠CFD=90º,∵∠DCF=53°,∴cos∠DCF=CF CD,∴6103cos535CFCD===︒(海里).答:CD两点距离为10海里.(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,过点E作EH⊥CD于点H,则∠EHD=∠CHE=90º,∴sin∠EDH=EH ED,∴EH=ED sin53°=4123=55t t ⨯,∴在Rt△EHC中,sin∠ECD=12253025tEHCE t==.答:sin∠ECD=225.第23题图。

人教版数学中考复习《三角形相关问题》专项练习含答案

人教版数学中考复习《三角形相关问题》专项练习含答案

三角形相关问题一、综合题1.(•北京)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.2.(•北京)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是________.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.3.(•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是________,位置关系是________;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.4.(•荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.5.(•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC________OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是________;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式________.6.(•玉林)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.7.(•黄石)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P 为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF 的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.8.(•荆门)已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.9.(•海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE= 时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.10.(•大连)如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为________;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD= ,求PC 的长.11.(•呼和浩特)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.12.(•张家界)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.13.(•北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.14.(•百色)已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x 轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.15.(•百色)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)证明:EG=FH.16.(•河池)解答题(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF 的数量关系,并证明你的结论.17.(•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.18.(•青岛)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.19.(•威海)如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C 点后停止,△ADP以直线AP为轴翻折,点D落在点D1的位置,设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过BC的中点E?(3)求出y与x的函数表达式.20.(•达州)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD 的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.21.(•达州)小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y= .(1)请你帮小明写出中点坐标公式的证明过程;(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为________;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:________;(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.22.(•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.23.(•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=________,OC△OA=________;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.24.(•赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.答案解析部分一、综合题1.【答案】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形(2)解:连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=1,∵AD=2BC=2,∴sin∠ADB= ,∴∠ADB=30°,∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=2,∴CD=1,AC= .【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)在Rt△只要证明∠ADC=60°,AD=2即可解决问题;2.【答案】(1)解:①P2,P3②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,∴设P(x,﹣x),当OP=1时,由距离公式得,OP= =1,∴x= ,当OP=3时,OP= =3,解得:x=± ;∴点P的横坐标的取值范围为:﹣≤≤﹣,或≤x≤(2)解:∵直线y=﹣x+1与x轴、y轴交于点A、B,∴A(1,0),B(0,1),如图1,当圆过点A时,此时,CA=3,∴C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,∴CD=1,∵直线AB的解析式为y=﹣x+1,∴直线AB与x轴的夹角=45°,∴AC= ,∴C(1﹣,0),∴圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣;如图3,当圆过点A,则AC=1,∴C(2,0),如图4,当圆过点B,连接BC,此时,BC=3,∴OC= =2 ,∴C(2 ,0).∴圆心C的横坐标的取值范围为:2≤x C≤2 ;综上所述;圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣或2≤x C≤2【解析】【解答】(1)①∵点P1(,0),P2(,),P3(,0),∴OP1= ,OP2=1,OP3= ,∴P1与⊙O的最小距离为,P2与⊙O的最小距离为1,OP3与⊙O的最小距离为,∴⊙O,⊙O的关联点是P2,P3;故答案为:P2,P3;【分析】(1)①根据点P1(,0),P2(,),P3(,0),求得P1= ,P2=1,OP3= ,于是得到结论;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式得到即可得到结论;(2根据已知条件得到A(1,0),B(0,1),如图1,当圆过点A时,得到C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,得到C(1﹣,0),于是得到结论;如图3,当圆过点A,则AC=1,得到C(2,0),如图4,当圆过点B,连接BC,根据勾股定理得到C(2 ,0),于是得到结论.3.【答案】(1)PM=PN;PM⊥PN(2)解:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN= BD,PM= CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形(3)解:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2 ,在Rt△ABC中,AB=AC=10,AN=5 ,∴MN最大=2 +5 =7 ,∴S△PMN最大= PM2= × MN2= ×(7 )2= .【解析】【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN= BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM= CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,【分析】(1)利用三角形的中位线得出PM= CE,PN= BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM= BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.4.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS)(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形【解析】【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.5.【答案】(1)=;AC2+CO2=CD2(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立(3)OC﹣AC= CD【解析】【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(3.)如图3,结论:OC﹣CA= CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC= CD,故答案为:OC﹣AC= CD.【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC ﹣AC)2=2CD2,开方后是:OC﹣AC= CD.6.【答案】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′= BC=2,AB=4 ,点E′为AC的中点,∴2≤DE<2 (点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.【解析】【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF 可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE <2 ,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.7.【答案】(1)证明:如图①中,设AD=BC=a,则AB=CD= a.∵四边形ABCD是矩形,∴∠C=90°,∵PC=AD=BC=a,∴PB= = a,∴BA=BP(2)解:如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD= a,∴CQ=CQ′= a﹣a,∵CQ′//AB,∴= = =(3)证明:如图③中,作TH//AB交NM于H,交BC于K.由(2)可知,AD=BC=1,AB=CD= ,DP=CF= ﹣1,∵S△MNT= •TH•CK+ •TH•BK= HT•(KC+KB)= HT•BC= HT,∵TH//AB//FM,TF=TB,∴HM=HN,∴HT= (FM+BN),∵BN=PM,∴HT= (FM+PM)= PF= •(1+ ﹣1)= ,∴S△MNT= HT= =定值【解析】【分析】(1)如图①中,设AD=BC=a,则AB=CD= a.通过计算得出AB=BP= a,由此即可证明;(2)如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD= a,可得CQ=CQ′= a﹣a,由CQ′//AB,推出= = = ;(3)如图③中,作TH//AB交NM于H,交BC于K.由S△MNT= •TH•CK+ •TH•BK= HT•(KC+KB)= HT•BC= HT,利用梯形的中位线定理求出HT即可解决问题;8.【答案】(1)证明:∵点E是CD的中点,∴DE=CE.∵AB∥CF,∴∠BAF=∠AFC.在△ADE与△FCE中,∵,∴△ADE≌△FCE(AAS)(2)解:由(1)得,CD=2DE,∵DE=2,∴CD=4.∵点D为AB的中点,∠ACB=90°,∴AB=2CD=8,AD=CD= AB.∵AB∥CF,∴∠BDC=180°﹣∠DCF=180°﹣120°=60°,∴∠DAC=∠ACD= ∠BDC= ×60°=30°,∴BC= AB= ×8=4【解析】【分析】(1)先根据点E是CD的中点得出DE=CE,再由AB∥CF可知∠BAF=∠AFC,根据AAS 定理可得出△ADE≌△FCE;(2)根据直角三角形的性质可得出AD=CD= AB,再由AB∥CF可知∠BDC=180°﹣∠DCF=180°﹣120°=60°,由三角形外角的性质可得出∠DAC=∠ACD= ∠BDC=30°,进而可得出结论.9.【答案】(1)证明:如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF(2)解:在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE= ,∵正方形的边长为1,∴AF=AB+BF= ,AE=AD﹣DE= ,∴,∴BG= ,∴CG=BC﹣BG=(3)解:不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【解析】【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.10.【答案】(1)∠BAD+∠ACB=180°(2)解:如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴= = = ,∴= ,∴4y2+2xy﹣x2=0,∴()2+ ﹣1=0,∴= (负根已经舍弃),∴= .(3)解:如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴= = ,∴= ,即=∵CD= ,∴PC=1.【解析】【解答】解:(1.)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出= = = ,可得= ,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得= = ,可得= ,即= ,由此即可解决问题;11.【答案】(1)解:由题意得,AB=AC,∵BD,CE分别是两腰上的中线,∴AD= AC,AE= AB,∴AD=AE,在△ABD和△ACE中,∴△ABD≌△ACE(ASA).∴BD=CE;(2)四边形DEMN是正方形,证明:∵E、D分别是AB、AC的中点,∴AE= AB,AD= AC,ED是△ABC的中位线,∴ED∥BC,ED= BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN= BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离= BC,∴BD⊥CE,∴四边形DEMN是正方形.【解析】【分析】(1)根据已知条件得到AD=AE,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到ED∥BC,ED= BC,MN∥BC,MN= BC,等量代换得到ED∥MN,ED=MN,推出四边形EDNM是平行四边形,(1)知BD=CE,求得DM=EN,得到四边形EDNM是矩形,根据全等三角形的性质得到OB=OC,由三角形的重心的性质得到O到BC的距离= BC,根据直角三角形的判定得到BD⊥CE,于是得到结论.12.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,,∴△AGE≌△BGF(AAS)(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形【解析】【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF 即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.13.【答案】(1)解:∠AMQ=45°+α;理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α(2)解:PQ= MB;理由如下:连接AQ,作ME⊥QB,如图所示:∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC和△QME中,,∴△APC≌△QME(AAS),∴PC=ME,∴△AEB是等腰直角三角形,∴PQ= MB,∴PQ= MB.【解析】【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ,作ME⊥QB,由AAS证明△APC≌△QME,得出PC=ME,△AEB是等腰直角三角形,由等腰直角三角形的性质即可得出结论.14.【答案】(1)解:将B点坐标代入函数解析式,得=2,解得k=6,∴反比例函数的解析式为y= ;(2)解:由B(3,2),点B与点C关于原点O对称,得C(﹣3,﹣2).由BA⊥x轴于点A,CD⊥x轴于点D,得A(3,0),D(﹣3,0).∴S△ACD= AD•CD= × [3﹣(﹣3)]×|﹣2|=6.【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据三角形的面积公式,可得答案.15.【答案】(1)证明:∵四边形ABCD是矩形,∴AD//BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE= AD,CF= BC,∴AE CF,∴四边形AFCE是平行四边形;(2)证明:∵四边形AFCE是平行四边形,∴CE//AF,∴∠DGE=∠AHD=∠BHF,∵AB//CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.【解析】【分析】(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.16.【答案】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB= BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴= ,∴AE= BF.【解析】【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.17.【答案】(1)证明:∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)解:如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF= AB=1,∴BF= ,∴BC=2BF=2 ,∵BD=x,AE=y则DC=2 ﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y= x+2(0<x<2 );(3)解:当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2 ﹣x,x=2 ﹣2,代入y= x+2,解得:y=4﹣2 ,即AE=4﹣2 ,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED= EC,即y= (2﹣y),解得:y= ,即AE= ,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2 或.【解析】【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2 ﹣x;②当AE=ED时,如图3,则ED= EC,即y= (2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.18.【答案】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF= DC,OE= BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【解析】【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF= DC,OE= BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.19.【答案】(1)解:如图1,∵由题意得:△ADP≌△AD1P,∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,∵直线AD1过C,∴PD1⊥AC,在Rt△ABC中,AC= = ,CD1= ﹣2,在Rt△PCD1中,PC2=PD12+CD12,即(3﹣x)2=x2+(﹣2)2,解得:x= ,∴当x= 时,直线AD1过点C(2)解:如图2,连接PE,∵E为BC的中点,∴BE=CE=1,在Rt△ABE中,AE= = ,∵AD1=AD=2,PD=PD1=x,∴D1E= ﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,x2+(﹣2)2=(3﹣x)2+12,解得:x= ,∴当x= 时,直线AD1过BC的中点E;(3)解:如图3,当0<x≤2时,y=x,如图4,当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,∵AB∥CD,∴∠1=∠2,∵∠1=∠3(根据折叠),∴∠2=∠3,∴AF=PF,作PG⊥AB于G,设PF=AF=a,由题意得:AG=DP=x,FG=x﹣a,在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2,解得:a= ,所以y= = ,综合上述,当0<x≤2时,y=x;当2<x≤3时,y=【解析】【分析】(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E= ﹣2,PC=3﹣x,在Rt△PD1E 和Rt△PCE中,根据勾股定理得出方程,求出即可;(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2,求出a即可.20.【答案】(1)解:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF= =10,∴OC=OE= EF=5(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【解析】【分析】(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.21.【答案】(1)证明:∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q= ,∴OQ=OQ1+Q1Q=x1+ = ,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ= = ,即线段P1P2的中点P(x,y)P的坐标公式为x= ,y=(2);(﹣3,3)或(7,1)或(﹣1,﹣3)(3)解:如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,由对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,x),由题意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x= ,∴R(,),∴=n,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则= ,= ,解得x= ,y= ,∴M(,),∴MN= = ,即△PEF的周长的最小值为【解析】【解答】(2)①∵M(2,﹣1),N(﹣3,5),∴MN= = ,故答案为:;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);【分析】(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.22.【答案】(1)证明:在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE(2)证明:①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴= = ,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴= ,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴= ,∵AB=2AG,∴= ,∴2CN•AG=AF•AC,∴AG2=AF•AC.【解析】【分析】(1)根据全等三角形的判定定理即可得到结论;(2)①过G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根据已知条件设DC=1,BD=4,得到BH=DH=2,根据平行线分线段成比例定理得到= = ,求得GM=2MC;②过C作CN⊥AD交AD的延长线于N,则CN∥AG,根据相似三角形的性质得到= ,由①知GM=2MC,得到2NC=AG,根据相似三角形的性质得到= ,等量代换得到= ,于是得到结论.23.【答案】(1)0;7(2)解:①如图2,取BC的中点O,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2 ,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD= AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2 ,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD= = =2 ,∴BA△BC=BD2﹣CD2=24;(3)解:如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DB= AN= × OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3 ,∴S△ABC= BC×AO=6 .【解析】【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC= BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD= AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD= =4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2 ,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.24.【答案】(1)解:如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)解:成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE= OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ= OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)解:如图2,连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°【解析】【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED 即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.。

2023年中考数学专题——反比例函数与三角形的综合

2023年中考数学专题——反比例函数与三角形的综合

2023年中考数学专题——反比例函数与三角形的综合一、综合题1.如图,正比例函数 y x = 的图象与反比例函数 ky x=( 0x > )的图象交于点 ()1A a , ,在 ABC 中, 90ACB ∠=︒ , CA CB = ,点C 坐标为 ()20-,.(1)求 k 的值;(2)求 AB 所在直线的解析式.2.如图所示,直线 1y k x b =+ 与双曲线 2k y x=交于A 、B 两点,已知点B 的纵坐标为 3- ,直线AB 与x 轴交于点C ,与y 轴交于点 ()02D -,, 5OA =, 1tan 2AOC ∠= .(1)求直线AB 的解析式;(2)若点P 是第二象限内反比例函数图象上的一点, OCP 的面积是 ODB 的面积的2倍,求点P的坐标;(3)直接写出不等式 21k k x b x+≤的解集. 3.反比例函数 2m y x-=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求 m 的取值范围;(2)如图,若直线 AB 与该函数图象交于 ()61A , 、 B 两点,求此反比例函数的解析式;(3)在(2)的条件下, AOB 的面积为8,动点 P 在 y 轴上运动,当线段 PA 与 PB 之差最大时,求点 P 坐标.4.如图, Rt ABC 中, 90ACB ∠=︒ , AC BC = ,点 ()20C ,,点 ()04B , ,反比例函数 ()0kyxx=>的图象经过点A .(1)求反比例函数的解析式;(2)将直线 OA 向上平移m 个单位后经过反比例函数,图象上的点 ()1n , ,求m ,n 的值. 5.如图,直线y=2x 与反比例函数y=kx(k≠0,x>0)的图象交于点A(m ,8),AB⊥x 轴,垂足为B 。

(1)求k 的值;(2)点C 在AB 上,若OC=AC ,求AC 的长;(3)点D 为x 轴正半轴上一点,在(2)的条件下,若S ⊥OCD =S ⊥ACD ,求点D 的坐标。

中考数学复习---《三角形综合》压轴题练习(含答案解析)

中考数学复习---《三角形综合》压轴题练习(含答案解析)

中考数学复习---《三角形综合》压轴题练习(含答案解析)一.全等三角形的判定与性质1.(2022•淄博)如图,在△ABC中,AB=AC,点D在AC边上,过△ABD的内心I作IE⊥BD于点E.若BD=10,CD=4,则BE的长为()A.6B.7C.8D.9【答案】B【解答】解:如图,连接AI,BI,CI,DI,过点I作IT⊥AC于点T.∵I是△ABD的内心,∴∠BAI=∠CAI,∵AB=AC,AI=AI,∴△BAI≌△CAI(SAS),∴IB=IC,∵∠ITD=∠IED=90°,∠IDT=∠IDE,DI=DI,∴△IDT≌△IDE(AAS),∴DE=DT,IT=IE,∵∠BEI=∠CTI=90°,∴Rt△BEI≌Rt△CTI(HL),∴BE=CT,设BE=CT=x,∵DE=DT,∴10﹣x=x﹣4,∴x=7,∴BE=7.故选:B.2.(2022•湘西州)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()A.24B.22C.20D.18【答案】B【解答】解:∵CG∥AB,∴∠B=∠MCG,∵M是BC的中点,∴BM=CM,在△BMH和△CMG中,,∴△BMH≌△CMG(ASA),∴HM=GM,BH=CG,∵AB=6,AC=8,∴四边形ACGH的周长=AC+CG+AH+GH=AB+AC+GH=14+GH,∴当GH最小时,即MH⊥AB时四边形ACGH的周长有最小值,∵∠A=90°,MH⊥AB,∴GH∥AC,∴四边形ACGH为矩形,∴GH=8,∴四边形ACGH的周长最小值为14+8=22,故选:B.3.(2022•南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B 顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是.(填写序号)【答案】①②③【解答】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接P A,AC.∵A,A1关于DE对称,∴P A=P A1,∴P A1+PC=P A+PC≥AC=,∴P A1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.4.(2022•朝阳)等边三角形ABC中,D是边BC上的一点,BD=2CD,以AD 为边作等边三角形ADE,连接CE.若CE=2,则等边三角形ABC的边长为.【答案】3或.【解答】解:如图,E点在AD的右边,∵△ADE与△ABC都是等边三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD=2,∵BD=2CD,∴CD=1,∴BC=BD+CD=2+1=3,∴等边三角形ABC3,如图,E点在AD的左边,同上,△BAE≌△CAD(SAS),∴BE=CD,∠ABE=∠ACD=60°,∴∠EBD=120°,过点E作EF⊥BC交CB的延长线于点F,则∠EBF=60°,∴EF=BE=CD,BF=BE=CD,∴CF=BF+BD+CD=CD,在Rt△EFC中,CE=2,∴EF2+CF2=CE2=4,∴+=4,∴CD=或CD=﹣(舍去),∴BC=,∴等边三角形ABC的边长为,故答案为:3或.5.(2022•日照)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P 是x轴上一动点,把线段P A绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是.【答案】2【解答】解:方法一:∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=P A,∴△APF是等边三角形,∴AP=AF,如图,当点F1在x轴上时,△P1AF1为等边三角形,则P1A=P1F1=AF1,∠AP1F1=60°,∵AO⊥P1F1,∴P1O=F1O,∠AOP1=90°,∴∠P1AO=30°,且AO=4,由勾股定理得:P1O=F1O=,∴P1A=P1F1=AF1=,∴点F1的坐标为(,0),如图,当点F2在y轴上时,∵△P2AF2为等边三角形,AO⊥P2O,∴AO=F2O=4,∴点F2的坐标为(0,﹣4),∵tan∠OF1F2===,∴∠OF1F2=60°,∴点F运动所形成的图象是一条直线,∴当OF⊥F1F2时,线段OF最短,设直线F1F2的解析式为y=kx+b,则,解得,∴直线F1F2的解析式为y=x﹣4,∵AO=F2O=4,AO⊥P1F1,∴F1F2=AF1=,在Rt△OF1F2中,设点O到F1F2的距离为h,则×OF1×OF2=×F1F2×h,∴××4=××h,解得h=2,即线段OF的最小值为2;方法二:如图,在第二象限作等边三角形AOB,连接BP、AF,过点B作BP′⊥x轴于点P′,∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=P A,∴△APF是等边三角形,∴AP=AF,∠P AF=60°,∵△AOB是等边三角形,∴AB=AO=OB=4,∠BAO=60°,∴∠BAP=60°+∠OAP=∠OAF,在△BAP和△OAF中,,∴△BAP≌△OAF(SAS),∴BP=OF,∵P是x轴上一动点,∴当BP⊥x轴时,BP最小,即点P与点P′重合时BP=BP′最小,∵∠BOP′=30°,∠BP′O=90°,∴BP′=OB=×4=2,∴OF的最小值为2,故答案为2.二.勾股定理6.(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNXT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.【答案】48【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.7.(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt △DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A 重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.【答案】21【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F 作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•DE•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.8.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.【答案】80【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI 于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.三.等腰直角三角形(共2小题)9.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE =90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得P A+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【答案】B【解答】解:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ADB=∠AEC,故①正确,∵∠ADB+∠ADC=180°,∴∠AEC+∠ADC=180°,∴∠DAE+∠DCE=180°,∴∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,∴A,D,C,E四点共圆,∴∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,∵tan∠CDF===2,∴CJ=m,∵AO⊥DE,CJ⊥DE,∴AO∥CJ,∴===,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴P A+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,P A+PB+PC值最小,此时∠APB=∠APC =∠BPC=120°,PB=PC,AD⊥BC,∴∠BPD=∠CPD=60°,设PD=t,则BD=AD=t,∴2+t=t,∴t=+1,∴CE=BD=t=3+,故④错误.故选:B.10.(2022•绵阳)如图,四边形ABCD中,∠ADC=90°,AC⊥BC,∠ABC=45°,AC与BD交于点E,若AB=2,CD=2,则△ABE的面积为.【答案】【解答】解:过点D作DF⊥AC于点F,∵AC⊥BC,∠ABC=45°,∴AC=BC=AB=2,∵∠ADC=90°,CD=2,∴AD=,∵,∴DF=,∴AF=,∴CF=,∵DF∥BC,∴△DEF∽△BEC,∴,即,∴EF=,∴AE=,∴.故答案为:.11.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△P AB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.【答案】B【解答】解:如图,不妨假设点P在AB的左侧,∵S△P AB +S△ABC=S△PBC+S△P AC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△P AB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.12.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.【答案】C【解答】解:设CF交AB于点P,过C作CN⊥AB于点N,如图:设正方形JKLM边长为m,∴正方形JKLM面积为m2,∵正方形ABGF与正方形JKLM的面积之比为5,∴正方形ABGF的面积为5m2,∴AF=AB=m,由已知可得:∠AFL=90°﹣∠MFG=∠MGF,∠ALF=90°=∠FMG,AF =GF,∴△AFL≌△FGM(AAS),∴AL=FM,设AL=FM=x,则FL=FM+ML=x+m,在Rt△AFL中,AL2+FL2=2,∴x2+(x+m)2=(m)2,解得x=m或x=﹣2m(舍去),∴AL=FM=m,FL=2m,∵tan∠AFL====,∴=,∴AP=,∴FP===m,BP=AB﹣AP=m﹣=,∴AP=BP,即P为AB中点,∵∠ACB=90°,∴CP=AP=BP=,∵∠CPN=∠APF,∠CNP=90°=∠F AP,∴△CPN∽△FP A,∴==,即==,∴CN=m,PN=m,∴AN=AP+PN=m,∴tan∠BAC====,∵△AEC和△BCH是等腰直角三角形,∴△AEC∽△BCH,∴=,∵CE=+,∴=,∴CH=2,故选:C.13.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4B.6C.2D.3【答案】C【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,根据题意得到点P的轨迹为圆弧,当MP为直径时最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP==2,则PM==2.故选:C.14.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为()A.B.C.D.【答案】C【解答】解:过C作CD⊥x轴于点D,CE⊥y轴于点E,如图:∵CD⊥x轴,CE⊥y=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE﹣OA=CD﹣OA=1,∴AC===BC=AB,在Rt△BCD中,BD===,在Rt△AOB中,OB===,∵OB+BD=OD=m,∴+=m,化简变形得:3m4﹣22m2﹣25=0,解得m=或m=﹣(舍去),∴m=,故选:C.三.等腰直角三角形(共1小题)15.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为.【答案】7【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE===3,∴AB=AE+BE=3+4=7,故答案为:7.四.等边三角形的性质(共2小题)16.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△BOC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,∴△AOB与△BOC的面积之和为S△BOC +S△BCD=S△BOD+S△COD=×12+=,故选:C.17.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC 上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为.【答案】【解答】解:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS)∴∠BAD=∠CBE,∴∠APE=∠ABP+∠BAD=∠ABP+∠CBE=∠ABD=60°,∴∠APB=120°,在CB上取一点F使CF=CE=2,则BF=BC﹣CF=4,∴∠C=60°,∴△CEF是等边三角形,∴∠BFE=120°,即∠APB=∠BFE,∴△APB∽△BFE,∴==2,设BP=x,则AP=2x,作BH⊥AD延长线于H,∵∠BPD=∠APE=60°,∴∠PBH=30°,∴PH=,BH=,∴AH=AP+PH=2x+=x,在Rt△ABH中,AH2+BH2=AB2,即(x)2+(x)2=62,解得x=或﹣(舍去),∴AP=,BP=,∴△ABP的周长为AB+AP+BP=6++=6+=,故答案为:.五.含30度角的直角三角形(共1小题)18.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D =180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少m (结果取整数,参考数据:≈1.7).【答案】370【解答】解:解法一:如图,延长DC,AB交于点G,过点N作NH⊥AD于H,∵∠D=60°,∠ABC=120°,∠BCD=150°,∴∠A=360°﹣60°﹣120°﹣150°=30°,∴∠G=90°,∴AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,∴BG=BC=50,CG=50,∴DG=CD+CG=100+50,∴AD=2DG=200+100,AG=DG=150+100,∵DM=100,∴AM=AD﹣DM=200+100﹣100=100+100,∵BG=50,BN=50(﹣1),∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50,Rt△ANH中,∵∠A=30°,∴NH=AN=75+25,AH=NH=75+75,由勾股定理得:MN===50(+1),∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,∵CD=DM,∠D=60°,∴△DCM是等边三角形,∴∠DCM=60°,由解法一可知:CG=50,GN=BG+BN=50+50(﹣1)=50,∴△CGN是等腰直角三角形,∴∠GCN=45°,∴∠BCN=45°﹣30°=15°,∴∠MCN=150°﹣60°﹣15°=75°=∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50,∵AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.六.等腰直角三角形(共2小题)19.(2022•长沙)如图,在△ABC中,按以下步骤作图:①分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若AB=2,则AM的长为()A.4B.2C.D.【答案】B【解答】解:由作图可知,PQ是AB的垂直平分线,∴AM=BM,∵以点D为圆心,AD长为半径画弧交PQ于点M,∴DA=DM=DB,∴∠DAM=∠DMA,∠DBM=∠DMB,∵∠DAM+∠DMA+∠DBM+∠DMB=180°,∴2∠DMA+2∠DMB=180°,∴∠DMA+∠DMB=90°,即∠AMB=90°,∴△AMB是等腰直角三角形,∴AM=AB=×2=2,故选:B.20.(2022•河南)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D 为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P 的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.【答案】或【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.30。

专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题32三角形压轴综合问题一、解答题1.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BD=CE;图1(2)解决问题:如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.图22.(2022·辽宁大连·中考真题)综合与实践问题情境:数学活动课上,王老师出示了一个问题:如图1,在△ABC中,D是AB上一点,∠ADC=∠ACB.求证∠ACD=∠ABC.独立思考:(1)请解答王老师提出的问题.实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长CA 至点E,使CE=BD,BE与CD的延长线相交于点F,点G,H分别在BF,BC上,BG=CD,∠BGH=∠BCF.在图中找出与BH相等的线段,并证明.”问题解决:(3)数学活动小组河学时上述问题进行特殊化研究之后发现,当∠BAC=90°时,若给出△ABC中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若∠BAC=90°,AB=4,AC=2,求BH的长.”3.(2022·山东青岛·中考真题)【图形定义】有一条高线相等的两个三角形称为等高三角形.例如:如图∠.在△ABC和△A′B′C′中,AD,A′D′分别是BC和B′C′边上的高线,且AD=A′D′,则△ABC和△A′B′C′是等高三角形.【性质探究】如图∠,用S△ABC,S△A′B′C′分别表示△ABC和△A′B′C′的面积.则S△ABC=12BC⋅AD,S△A′B′C′=12B′C′⋅A′D′,∠AD=A′D′∠S△ABC:S△A′B′C=BC:B′C′.【性质应用】(1)如图∠,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=__________;(2)如图∠,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=__________,S△CDE=_________;(3)如图∠,在△ABC中,D,E分别是BC和AB边上的点,若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=__________.4.(2022·山东烟台·中考真题)(1)【问题呈现】如图1,∠ABC和∠ADE都是等边三角形,连接BD,CE.求证:BD=CE.(2)【类比探究】如图2,∠ABC和∠ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出BDCE的值.(3)【拓展提升】如图3,∠ABC和∠ADE都是直角三角形,∠ABC=∠ADE=90°,且ABBC =ADDE=34.连接BD,CE.∠求BDCE的值;∠延长CE交BD于点F,交AB于点G.求sin∠BFC的值.5.(2022·广西·中考真题)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图∠,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论:(2)如图∠,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离:(3)如图∠,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.6.(2022·山东潍坊·中考真题)【情境再现】甲、乙两个含45°角的直角三角尺如图∠放置,甲的直角顶点放在乙斜边上的高的垂足O处,将甲绕点O顺时针旋转一个锐角到图∠位置.小莹用作图软件Geogebra按图∠作出示意图,并连接AG,BH,如图∠所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图∠,猜想并证明DG与BH的位置..关系.【拓展延伸】小亮将图∠中的甲、乙换成含30°角的直角三角尺如图∠,按图∠作出示意图,并连接HB,AG,如图∠所示,其他条件不变,请你猜想并证明AG与BH的数量..关系.7.(2022·辽宁锦州·中考真题)在△ABC中,AC=BC,点D在线段AB上,连接CD并延长至点E,使DE=CD,过点E作EF⊥AB,交直线AB于点F.(1)如图1,若∠ACB=120°,请用等式表示AC与EF的数量关系:____________.(2)如图2.若∠ACB=90°,完成以下问题:∠当点D,点F位于点A的异侧时,请用等式表示AC,AD,DF之间的数量关系,并说明理由;∠当点D,点F位于点A的同侧时,若DF=1,AD=3,请直接写出AC的长.8.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.9.(2022·福建·中考真题)已知△ABC≌△DEC,AB=AC,AB>BC.(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;(2)如图2,将(1)中的∠CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;(3)如图3,将(1)中的∠CDE绕点C顺时针旋转(旋转角小于∠ABC),若∠BAD=∠BCD,求∠ADB的度数.10.(2022·山东威海·中考真题)回顾:用数学的思维思考(1)如图1,在∠ABC中,AB=AC.∠BD,CE是∠ABC的角平分线.求证:BD=CE.∠点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.(从∠∠两题中选择一题加以证明)(2)猜想:用数学的眼光观察经过做题反思,小明同学认为:在∠ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD =CE ,并证明. (3)探究:用数学的语言表达如图3,在△ABC 中,AB =AC =2,∠A =36°,E 为边AB 上任意一点(不与点A ,B 重合),F 为边AC 延长线上一点.判断BF 与CE 能否相等.若能,求CF 的取值范围;若不能,说明理由.11.(2022·贵州铜仁·中考真题)如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,记△COD 的面积为S 1,△AOB 的面积为S 2.(1)问题解决:如图∠,若AB //CD ,求证:S 1S 2=OC⋅ODOA⋅OB(2)探索推广:如图∠,若AB 与CD 不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.(3)拓展应用:如图∠,在OA 上取一点E ,使OE =OC ,过点E 作EF ∥CD 交OD 于点F ,点H 为AB 的中点,OH 交EF 于点G ,且OG =2GH ,若OE OA =56,求S 1S 2值.12.(2022·湖北武汉·中考真题)已知CD 是△ABC 的角平分线,点E ,F 分别在边AC ,BC 上,AD =m ,BD =n ,△ADE 与△BDF 的面积之和为S .(1)填空:当∠ACB =90°,DE ⊥AC ,DF ⊥BC 时,∠如图1,若∠B =45°,m =5√2,则n =_____________,S =_____________;∠如图2,若∠B=60°,m=4√3,则n=_____________,S=_____________;(2)如图3,当∠ACB=∠EDF=90°时,探究S与m、n的数量关系,并说明理由:(3)如图4,当∠ACB=60°,∠EDF=120°,m=6,n=4时,请直接写出S的大小.13.(2022·黑龙江·中考真题)△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图∠的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC (或PA+PC=PB)成立;请证明.(2)将△ADE绕点A旋转到图∠的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图∠的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.14.(2022·陕西·中考真题)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为__________.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:∠以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;∠作CD的垂直平分线l,与CD于点E;∠以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.15.(2022·湖南岳阳·中考真题)如图,△ABC和△DBE的顶点B重合,∠ABC=∠DBE=90°,∠BAC=∠BDE= 30°,BC=3,BE=2.=______,直线AD与直线CE的位(1)特例发现:如图1,当点D,E分别在AB,BC上时,可以得出结论:ADCE置关系是______;(2)探究证明:如图2,将图1中的△DBE绕点B顺时针旋转,使点D恰好落在线段AC上,连接EC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)拓展运用:如图3,将图1中的△DBE绕点B顺时针旋转α(19°<α<60°),连接AD、EC,它们的延长线交于点F,当DF=BE时,求tan(60°−α)的值.16.(2022·湖北十堰·中考真题)已知∠ABN=90°,在∠ABN内部作等腰△ABC,AB=AC,∠BAC=α(0°<α≤90°).点D为射线BN上任意一点(与点B不重合),连接AD,将线段AD绕点A逆时针旋转α得到线段AE,连接EC并延长交射线BN于点F.(1)如图1,当α=90°时,线段BF与CF的数量关系是_________;(2)如图2,当0°<α<90°时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若α=60°,AB=4√3,BD=m,过点E作EP⊥BN,垂足为P,请直接写出PD的长(用含有m的式子表示).17.(2022·湖南湘潭·中考真题)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图∠,若直线l∥BC,AB=AC=√2,分别求出线段BD、CE和DE的长;(2)规律探究:∠如图∠,若直线l从图∠状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;∠如图∠,若直线l从图∠状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图∠中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.18.(2022·江苏扬州·中考真题)如图1,在ΔABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D作DE⊥AD,交射线AB于点E.(1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;∠点E在线段AB的延长线上且BE=BD;∠点E在线段AB上且EB=ED.(2)若AB=6.∠当DEAD =√32时,求AE的长;∠直接写出运动过程中线段AE长度的最小值.19.(2022·河北·中考真题)如图,四边形ABCD中,AD∥BC,∠ABC=90°,∠C=30°,AD=3,AB=2√3,DH∠BC于点H.将∠PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,PM=4√3.(1)求证:∠PQM∠∠CHD;(2)∠PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.∠边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;∠如图2,点K在BH上,且BK=9−4√3.若∠PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在∠PQM区域(含边界)内的时长;∠如图3.在∠PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d 的式子表示).20.(2022·山西·中考真题)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC 交于点M,N,猜想证明:(1)如图∠,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图∠,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图∠,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.21.(2022·湖北武汉·中考真题)问题提出:如图(1),△ABC中,AB=AC,D是AC的中点,延长BC至点E,的值.使DE=DB,延长ED交AB于点F,探究AFAB(1)先将问题特殊化.如图(2),当∠BAC=60°时,直接写出AF的值;AB(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在△ABC中,AB=AC,D是AC的中点,G是边BC上一点,CGBC =1n(n<2),延长BC至点E,使DE=DG,延长ED交AB于点F.直接写出AFAB的值(用含n的式子表示).22.(2022·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为__________;当OF与BC垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为__________;(2)类比探究:若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.∠如图2,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;∠如图3,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH 绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示),(参考数据:sin15°=√6−√24,cos15°=√6+√24,tan15°=2−√3)23.(2022·重庆·中考真题)在△ABC中,∠BAC=90°,AB=AC=2√2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=√2AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH 翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.24.(2022·浙江宁波·中考真题)(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.(2)如图2,在(1)的条件下,连接CD,CG.若CG⊥DE,CD=6,AE=3,求DE的值.BC(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习三角形综合题1.已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.2.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.3.如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.4.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则= ;(2)数学思考:①如图2,若点E在线段AC上,则= (用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否任然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.5.如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD (填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是;(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明)6.已知,在△ABC中,∠ACB=90°,CA=CD,CG⊥AD于点H,交AB于点G,E为AB上一点,连接CE交AD 于点F.(1)如图1,若CE⊥AB于点E,HG=1,CH=5,求CF的长;(2)如图2,若AC=AE,∠GEH=∠ECH,求证:CE=HE;(3)如图3,若E为AB的中点,作A关于CE的对称点A′,连接CA′,EA′,DA′,请直接写出∠CEH,∠A′CD,∠EA′D之间的等量关系.7.(1)问题发现如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD.填空:①= ;②∠ACD的度数为.(2)拓展探究如图2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B的数量关系以及PB与CD之间的数量关系,并说明理由.(3)解决问题如图3,在△ABC中,∠B=45°,AB=4,BC=12,P是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若PA=5,请直接写出CD的长.8.Rt△ABC与Rt△DEF的位置如图所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt△DEF沿射线CB以每秒1个单位长度的速度向右运动,射线DE、DF与射线AB分别交于N、M两点,运动时间为t,当点E运动到与点B重合时停止运动.(1)当Rt△DEF在起始时,求∠AMF的度数;(2)设BC的中点的为P,当△PBM为等腰三角形时,求t的值;(3)若两个三角形重叠部分的面积为S,写出S与t的函数关系式和相应的自变量的取值范围.9.如图,已知等腰△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,连接FE、ED,BF的延长线交ED的延长线于点G,连接GC.(1)求证:EF∥CG;(2)若AC=AB,求证:AC=CG;(3)如图2,若CG=EG,则= .10.在Rt△ABC中,∠CAB=90°,AC=AB=6,D,E分别是AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(2)如图2,当α=135°时,设直线BD1与CA的交点为F,求证:BD1=CE1,且BD1⊥CE1;(3)点P到AB所在直线的距离的最大值是.11.如图,在Rt△ABC中,∠ACB=90°,点D为边BC上任意一点,以直线AD为对称轴,作Rt△ABC的轴对称图形Rt△AEF,点M、点N、点P、点Q分别为AB、BC、EF、EA的中点.(1)求证:MN=PQ;(2)如图2,当BD=时,判断点M、点N、点P、点Q围成的四边形的形状,并说明理由;(3)若BC=6,请你直接写出当①BD=3;②BD=6时,点M、点N、点P、点Q围成图形的形状.12.在Rt△ABC中,∠ACB=90°,点D在AB边上,AD=BD,过点D作射线DH,交BC边于点M.(1)如图1,若∠B=30°,求证:△ACD是等边三角形;(2)如图2,若AC=10,AD=13,∠CDH=∠A.①求线段DM的长;②点P是射线DH上一点,连接AP交CD于点N,当△DMN是等腰三角形时,求线段MP的长.13.等腰三角形ABC中,AB=CB,BO⊥AC,点P为射线BC上的动点(不与点B重合),在射线CA上截取CD=CB,作PF⊥BD,分别交射线BO,BD于点E,F.设∠ABC=α.(1)令∠ABC=90°.①如图1,当点P与点C重合时,求证:△BOD≌△POE;②如图2,当点P在点C的左边时,求的值;③猜想:当点P在点C的右边时,的值又是多少?请直接写出.(2)设点P在点C的右边,请在图3(∠ABC>90°)或图4(∠ABC<90°)中继续探究的值(用含α的式子表示),并说明理由.14.如图1,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,点E在AC边上,连接BE.(1)若AF是△ABE的中线,且AF=5,AE=6,连接DF,求DF的长;(2)若AF是△ABE的高,延长AF交BC于点G.①如图2,若点E是AC的中点,连接EG,求证:AG+EG=BE;②如图3,若点E是AC边上的动点,连接DF.当点E在AC边上(不含端点)运动时,∠DFG的大小是否改变,如果不变,请求出∠DFG的度数;如果要变,请说明理由.15.在△ABC中,AD、AE分别是△ABC的内、外角平分线.(1)如图①,CG⊥AD于G,BG的延长线交AE于H,求证:AH=EH;(2)如图①,在(1)的条件下,若AE=2AD,BE=5BC,则tan∠AHB= ;(3)如图②,点M是DE的中点,BE=5BC=10,求MD的长.16.如图,△ABC是等边三角形,AB=2,D是边BC的中点,点P从点A出发,沿AB﹣BD以每秒1个单位长度的速度向终点D运动.同时点Q从点C出发,沿CA﹣AC以每秒1个单位长度的速度运动.当点P停止运动时,点Q也随之停止运动,设点P的运动时间为t(秒),△PQD的面积为S.(1)求线段PB的长(用含t的代数式).(2)当△PQD是等边三角形时,求t的值.(3)当S>0时,求S与t的函数关系式.(4)若点D关于直线PQ的对称点为点D′,且S>0,直接写出点D′落在△ABC的边上时t的值.17.在Rt△AOB中,OA=3,sinB=,P、M、分别是BA、BO边上的两个动点.点M从点B出发,沿BO以1单位/秒的速度向点O运动;点P从点B出发,沿BA以a单位/秒的速度向点A运动;P、M两点同时出发,任意一点先到达终点时,两点停止运动.设运动的时间为t.(1)线段AP的长度为(用含a、t的代数式表示);(2)如图①,连结PO、PM,若a=1,△PMO的面积为S,试求S的最大值;(3)如图②,连结PM、AM,试探究:在点P、M运动的过程中,是否存在某个时刻,使得△PMB为直角三角形且△PMA是等腰三角形?若存在,求出此时a和t的取值,若不存在,请说明理由.18.在直角△ABC中,∠ACB=90°,点E在AC边上,连结BE,作∠ACF=∠CBE交AB于点F,同时点D在BE上,且CD⊥AB.(1)已知:如图,,.①求证:△ACF≌△BCD.②求的值.(2)若,,则的值是多少(直接写出结果)19.已知,AB=5,tan∠ABM=,点C、D、E为动点,其中点C、D在射线BM上(点C在点D的左侧),点E和点D分别在射线BA的两侧,且AC=AD,AB=AE,∠CAD=∠BAE.(1)当点C与点B重合时(如图1),联结ED,求ED的长;(2)当EA∥BM时(如图2),求四边形AEBD的面积;(3)联结CE,当△ACE是等腰三角形时,求点B、C间的距离.20.在△ABC中,D、E、F分别为BC、AB、AC上的点.(1)如图1,若EF∥BC、DF∥AB,连CE、AD分别交DF、EF于N、M,且E为AB的中点,求证:EM=MF;(2)如图2,在(1)中,若E不是AB的中点,请写出与MN平行的直线,并证明;(3)若BD=DC,∠B=90°,且AE:AB:BC=1:3:2,AD与CE相交于点Q,直接写出tan∠CQD的值.21.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC 的中线,AF⊥BE,垂足为P.像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)①如图1,当∠ABE=45°,时,a= ,b= ;②如图2,当∠ABE=30°,c=4时,求a和b的值归纳证明(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.22.如图,一个直角三角形纸片的锐角顶点A在∠MCN的边OM上移动,移动过程中始终有AB⊥ON于点B,AC⊥OM于点A,∠MON的平分线OP分别交AB,AC于点D、E.(1)点A在移动的过程中,线段AD和AE有怎样的数量关系?(不必证明)(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,判断并证明以A、D、F、E为顶点的四边形是什么特殊四边形?(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系?请证明你的猜想.23.如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE 于点F、D.(1)问题发现:直接写出∠NDE= 度;(2)拓展探究:试判断,如图②当∠EAC为钝角时,其他条件不变,∠NDE的大小有无变化?请给出证明.(3)如图③,若∠EAC=15°,BD=,直线CM与AB交于点G,其他条件不变,请直接写出AC的长.24.在△ABC中,∠ABC=2∠ACB,延长AB至点D,使BD=BC,点E是直线BC上一点,点F是直线AC上一点,连接DE.连接EF,且∠DEF=∠DBC.(1)如图1,若∠D=∠EFC=15°,AB=,求AC的长.(2)如图2,当∠BAC=45°,点E为线段BC的延长线上,点F在线段AC的延长线上时,求证:CF=BE.(3)如图3,当∠BAC=90°,点E为线段CB的延长线上,点F在线段CA的延长线上时,猜想线段CF与线段BE的数量关系,并证明猜想的结论.25.中点、平行线、等腰直角三角形、等边三角形都是常见的几何图形!(1)如图1,若点D为等腰直角三角形ABC斜边BC的中点,点E、F分别在AB、AC边上,且∠EDF=90°,连接AD、EF,当BC=5,FC=2时,求EF的长度;(2)如图2,若点D为等边三角形ABC边BC的中点,点E、F分别在AB、AC边上,且∠EDF=90°;M为EF的中点,连接CM,当DF∥AB时,证明:3ED=2MC;(3)如图3,若点D为等边三角形ABC边BC的中点,点E、F分别在AB、AC边上,且∠EDF=90°;当BE=6,CF=0.8时,直接写出EF的长度.26.已知,△ABC为直角三角形,∠ACB=90°,点P是射线CB上一点(点P不与点B、C重合),线段AP 绕点A顺时针旋转90°得到线段AQ,连接QB交射线AC于点M.(1)如图①,当AC=BC,点P在线段CB上时,线段PB、CM的数量关系是;(2)如图②,当AC=BC,点P在线段CB的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.(3)如图③,若,点P在线段CB的延长线上,CM=2,AP=13,求△ABP的面积.27.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,。

相关文档
最新文档