函数及其表示基础训练及答案
高考数学专题复习-2.1函数及其表示-高考真题练习(附答案)
专题二函数的概念与基本初等函数2.1函数及其表示考点一函数的概念及表示1.(2015湖北文,7,5分)设x∈R,定义符号函数sgnx=1,>0,0,=0,-1,<0.则()A.|x|=x|sgnx|B.|x|=xsgn|x|C.|x|=|x|sgnxD.|x|=xsgnx答案D 由已知可知xsgnx=s >0,0,=0,-s <0,而|x|=s >0,0,=0,-s <0,所以|x|=xsgnx,故选D.2.(2014江西理,3,5分)已知函数f(x)=5|x|,g(x)=ax 2-x(a∈R).若f[g(1)]=1,则a=()A.1B.2C.3D.-1答案A 由已知条件可知:f[g(1)]=f(a-1)=5|a-1|=1,∴|a-1|=0,得a=1.故选A.评析本题主要考查函数的解析式,正确理解函数的定义是解题关键.3.(2015重庆文,3,5分)函数f(x)=log 2(x 2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)答案D 由x 2+2x-3>0,解得x<-3或x>1,故选D.4.(2015湖北文,6,5分)函数f(x)=4−|U +lg 2-5x+6t3的定义域为()A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]答案C 要使函数f(x)有意义,0,0,>0,解之得2<x<3或3<x≤4,故选C.5.(2014山东理,3,5分)函数()A. B.(2,+∞)C. D.答案C 要使函数f(x)有意义,需使(log 2x)2-1>0,即(log 2x)2>1,∴log 2x>1或log 2x<-1.解之得x>2或0<x<12.故f(x)的定义域为0,6.(2016课标Ⅱ文,10,5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=xB.y=lgxC.y=2x答案D函数y=10lgx的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lgx的值域为R,排除B,故选D.易错警示利用对数恒等式将函数y=10lgx变为y=x,将其值域认为是R是失分的主要原因.评析本题考查函数的定义域和值域,熟练掌握基本初等函数的图象和性质是解题的关键.7.(2022北京,4,4分)已知函数f(x)=11+2,则对任意实数x,有()A.f(-x)+f(x)=0B.f(-x)-f(x)=0C.f(-x)+f(x)=1D.f(-x)-f(x)=13答案C∵f(x)=11+2,∴f(-x)=11+2−=22+1,∴f(x)+f(-x)=11+2+22+1=1.故选C.一题多解:若对任意实数x,使得选项中式子成立,则可任取x值,代入验证,进行排除.当x=0时,f(0)+f(0)=12+12=1,f(0)-f(0)=0,故A,D选项错误.当x=1时,f(-1)-f(1)=11+2−1−11+21≠0,故B选项错误.根据排除法可知选C.8.(2022北京,11,5分)函数f(x)=1+1−的定义域是.答案(-∞,0)∪(0,1]解析由题意得≠0,1−≥0,解得x≤1且x≠0,所以函数f(x)的定义域为(-∞,0)∪(0,1].9.(2016江苏,5,5分)函数y=3−2t2的定义域是.答案[-3,1]解析若函数有意义,则3-2x-x2≥0,即x2+2x-3≤0,解得-3≤x≤1.考点二分段函数1.(2019天津理,8,5分)已知a∈R.设函数f(x)=2-2ax+2a,x≤1,tEns>1.若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1]B.[0,2]C.[0,e]D.[1,e]答案C本题主要考查分段函数及不等式恒成立问题,考查学生推理论证能力及运算求解能力,将恒成立问题转化为求最值问题,考查了学生化归与转化思想及分类讨论思想.(1)当x≤1时,f(x)=x 2-2ax+2a=(x-a)2+2a-a 2,①若a>1,则f(x)在(-∞,1]上是减函数,所以f(x)≥f(1)=1>0恒成立;②若a≤1,则f(x)≥f(a)=2a-a 2,要使f(x)≥0在(-∞,1]上恒成立,只需2a-a 2≥0,得0≤a≤2,∴0≤a≤1,综合①②可知,a≥0时,f(x)≥0在(-∞,1]上恒成立.(2)当x>1时,lnx>0,f(x)=x-alnx≥0恒成立,即a≤ln 恒成立.令g(x)=ln ,g'(x)=lnt1(lnp 2,令g'(x)=0,得x=e,当x∈(1,e)时,g'(x)<0,g(x)为减函数,当x∈(e,+∞)时,g'(x)>0,g(x)为增函数,∴g(x)min =g(e)=e,∴a≤e.综合(1)(2)可知,a 的取值范围是0≤a≤e,故选C.解后反思求不等式恒成立时的参数取值范围的方法:一是分离参数法,不等式f(x)≥a 在R 上恒成立⇔f(x)min ≥a,f(x)≤a 在R 上恒成立⇔f(x)max ≤a;二是讨论分析法,根据参数取值情况进行分类讨论,从而确定参数的取值范围.2.(2019天津文,8,5分)已知函数≤x ≤1,x >1.若关于x 的方程f(x)=-14x+a(a∈R)恰有两个互异的实数解,则a 的取值范围为()答案D 本题以分段函数和方程的解的个数为背景,考查函数图象的画法及应用.画出函数y=f(x)的图象,如图.方程f(x)=-14x+a 的解的个数,即为函数y=f(x)的图象与直线l:y=-14x+a 的公共点的个数.当直线l 经过点A 时,有2=-14×1+a,a=94;当直线l 经过点B 时,有1=-14×1+a,a=54.由图可知,函数y=f(x)的图象与l 恰有两个交点.另外,当直线l 与曲线y=1,x>1相切时,恰有两个公共点,此时a>0.联立=1,=−14x +a,得1=-14x+a,即14x 2-ax+1=0,由Δ=a 2-4×14×1=0,得a=1(舍去负根).综上故选D.一题多解令g(x)=f(x)+14x=4(0≤x ≤1),>1),当0≤x≤1时,g(x)=2+4为增函数,其值域为0,当x>1时,g(x)=1+4,对g(x)求导得g'(x)=-12+14,令g'(x)=0,得x=2,当x∈(1,2)时,g'(x)<0,g(x)单调递减,当x∈(2,+∞)时,g'(x)>0,g(x)单调递增,∴当x=2时,g(x)min =g(2)=1,函数g(x)的简图如图所示:方程f(x)=-14x+a 恰有两个互异的实数解,即函数y=g(x)的图象与直线y=a 有两个不同的交点,由图可知54≤a≤94或a=1满足条件,故选D.易错警示本题入手时,容易分段研究方程2=-14x+a(0≤x≤1)与1=-14x+a(x>1)的解,陷入相对复杂的运算过程.利用数形结合时,容易在区间的端点处出现误判.3.(2015课标Ⅰ文,10,5分)已知函数f(x)=2t1-2,x ≤1,-log 2(x +1),x >1,且f(a)=-3,则f(6-a)=()A.-74 B.-54 C.-34 D.-14答案A 当a≤1时,f(a)=2a-1-2=-3,即2a-1=-1,不成立,舍去;当a>1时,f(a)=-log 2(a+1)=-3,即log 2(a+1)=3,得a+1=23=8,∴a=7,此时f(6-a)=f(-1)=2-2-2=-74.故选A.评析本题主要考查分段函数,指数与对数的运算,考查分类讨论的思想,属中等难度题.4.(2015陕西文,4,5分)设f(x)=1−sx ≥0,2,x <0,则f(f(-2))=()A.-1B.14C.12D.32答案C ∵f(-2)=2-2=14,∴f(f(-2))=f =12,选C.5.(2015山东文,10,5分)设函数f(x)=3ts x <1,2,x ≥1.若f 则b=()A.1B.78C.34D.12答案D=3×56-b=52-b,当52-b≥1,即b≤32时-b=252-b,即252-b=4=22,得到52-b=2,即b=12;当52-b<1,即b>32时-b=152-3b-b=152-4b,即152-4b=4,得到b=78<32,舍去.综上,b=12,故选D.6.(2014江西文,4,5分)已知函数f(x)=·2,x≥0,2-,x<0(a∈R),若f[f(-1)]=1,则a=() A.14 B.12 C.1 D.2答案A由f[f(-1)]=f(2)=4a=1,得a=14,故选A.7.(2014课标Ⅰ文,15,5分)设函数f(x)=e t1,x<1,13,x≥1,则使得f(x)≤2成立的x的取值范围是.答案(-∞,8]解析f(x)≤2⇒<1,e t1≤2或≥1,13≤2⇒<1,≤ln2+1或≥1,≤8⇒x<1或1≤x≤8⇒x≤8,故填(-∞,8].8.(2022浙江,14,6分)已知函数f(x)=−2+2,≤1,+1−1,>1,则f=;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是.答案3728;3+3解析∵+2=74,∴f==74+47−1=3728.f(x)的大致图象如图.∵当x∈[a,b]时,1≤f(x)≤3,∴由图可得b>1且b+1-1=3,∴b=2+3,∵f(a)=1,∴-a2+2=1,解得a=1或a=-1,∴(b-a)max=2+3-(-1)=3+3.一题多解:第二空:∵当x≤1时,y=-x2+2≤2,∴f(x)=3⇒x+1-1=3(x>1),故x=2+3,令-x2+2=1(x≤1),解得x=1或x=-1,令x+1-1=1(x>1),无解,∴a min=-1,b=2+3,∴(b-a)max=2+3-(-1)=3+3.。
高一数学必修一第一章(中)函数及其表示练习题及答案
高一数学必修一第一章(中)函数及其表示练习题及答案高一数学(必修1)第一章:函数及其表示基础训练选择题1.判断下列各组中的两个函数是同一函数的为()A。
⑴、⑵B。
⑵、⑶C。
⑷D。
⑶、⑸2.函数y=f(x)的图象与直线x=1的公共点数目是()A。
1B。
0或1C。
2D。
1或23.已知集合A={1.2.3.k},B={4.7.a。
4.a^2+3a},且a∈N,x∈A,y∈B*,使B中元素y=3x+1和A中的元素x对应,则a,k的值分别为()A。
2,3B。
3,4C。
3,5D。
2,54.已知f(x)={x+2(x≤-1),x^2(-1<x<2),2x(x≥2)},若f(x)=3,则x的值是()A。
1B。
1或-3C。
1,或±3D。
35.为了得到函数y=f(-2x)的图象,可以把函数y=f(1-2x)的图象适当平移,这个平移是()A。
沿x轴向右平移1个单位B。
沿x轴向右平移1/2个单位C。
沿x轴向左平移1个单位D。
沿x轴向左平移1/2个单位6.设f(x)={x-2(x≥10),f[f(x+6)](x<10)},则f(5)的值为()A。
10B。
11C。
12D。
13填空题1.设函数f(x)={1/(x-1)(x≥1),2/x(xa,则实数a的取值范围是(0.1)。
2.函数y=(x-2)/(x^2-4)的定义域是R-{-2.2}。
3.求函数f(x)=3x/(x+1)的定义域为R-{-1}。
4.函数y=(x-1)/(x-x^2)的定义域是(-∞。
0)∪(1.+∞)。
5.函数f(x)=x+(1/x)的最小值是2.解答题1.求函数f(x)=3x/(x+1)的定义域为R-{-1}。
解:当x+1≠0时,即x≠-1时,f(x)有意义,所以f(x)的定义域为R-{-1}。
2.求函数y=(x^2+x+1)/(x+1)的值域。
解:y=(x^2+x+1)/(x+1)=x+1+1/(x+1),当x→±∞时,y→±∞,所以y的值域为R-{-1}。
函数基础知识练习题与答案全
高一函数基础知识1、在映射B A f →:中,下列说法是否正确:①A 中每一个元素在B 中都有象( );②A 中可以存在第一元素在B 中没有象( ); ③A 中允许某一个元素有两个象( );④B 中每一个元素在A 中都有原象( ); ⑤B 中允许某些元素没有原象( );⑥B 中某一元素在A 中可能有多个原象( )。
2、函数的表示方法有。
3、用区间表示下列函数的定义域: (1)121+=x y:______________________;(2)121-=x y :______________________;(3)()2x y =:______________________;(4)()()x x y-+=31:______________________;(5)xylg 1=:__________________;(6)()()()213112384-+-+=-x x x y:_____________________;(7)11153+-+=x x y :____________________;(8)()223lg 9log x x y +-=:____________________。
4、若()x f 的定义域为(–1,1],则()13+x f 的定义域为______________;()x f lg 的定义域为______________。
5、若()12-+=x x x f ,则()=-2f _________;()x f -=_________;⎪⎭⎫ ⎝⎛x f 1=_________。
6、若()121+=-x x f ,则()=x f ________,()][x f f =________。
7、()()()⎪⎩⎪⎨⎧∞-∈-=∞+∈=0,,10,,0,2x x x x x x f π,则()2-f =________,()πf =________,()()]}1{[-f f f 。
函数基础知识经典测试题附答案解析
函数基础知识经典测试题附答案解析一、选择题1.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.2.如图1,在矩形ABCD中,动点P从点A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积为()A.24 B.40 C.56 D.60【答案】A【解析】【分析】由点P的运动路径可得△PAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.【详解】∵点P在AB边运动时,△PAB的面积为0,在BC边运动时,△PAB的面积逐渐增大,∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD的面积为AB·BC=24,故选:A.【点睛】本题考查分段函数的图象,根据△PAB面积的变化,正确从图象中得出所需信息是解题关键.3.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h 随时间t变化的图象大致是()A.B.C.D.【答案】B【解析】【分析】从A:到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A:随着时间的增多,高度将不再变化,由此即可求出答案.【详解】解:因为蚂蚁以均匀的速度沿台阶A1→A2→A3→A4→A5爬行,从A1→A2的过程中,高度随时间匀速上升,从A2→A3的过程,高度不变,从A3一A4的过程,高度随时间匀速上升,从A4.→A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.4.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t 之间的关系的大致图象是( )A .B .C .D .【答案】D 【解析】 【分析】根据s 随t 的增大而减小,即可判断选项A 、B 错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s 随t 的增大减小得比开始的快,即可判断选项C 、D 的正误. 【详解】解:∵s 随t 的增大而减小, ∴选项A 、B 错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s 随t 的增大减小得比开始的快, ∴s 随t 的增大减小得比开始的快, ∴选项C 错误;选项D 正确; 故选:D . 【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键5.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( ) A .1个 B .2个C .3个D .4个【答案】B 【解析】 【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可. 【详解】解:①函数6y x =-x 的取值范围是6x ≥;故错误; ②对角线相等且互相平分的四边形是矩形;故错误; ③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算|9-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦122723333-=-=-是无理数;故正确.故选:B.【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④B.①②③C.①②④D.①②③④【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.函数y=1x -中,自变量x 的取值范围是( ) A .x≠1 B .x >0C .x≥1D .x >1【答案】D 【解析】 【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解. 【详解】由题意得,x-1≥0且x-1≠0, 解得x >1. 故选D . 【点睛】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.8.如图1,在扇形OAB 中,60O ∠=︒,点P 从点O 出发,沿O A B →→以1/cm s 的速度匀速运动到点B ,图2是点P 运动过程中,OBP V 的面积()2y cm 随时间()x s 变化的图象,则a ,b 的值分别为( )图1图2A .4,43πB .4,443π+C .222π3D .222223π【答案】B 【解析】 【分析】结合函数图像中的(a ,3OB=OA=a ,S △AOB =3a 的值,再利用弧长公式进而求得b 的值即可. 【详解】解:由图像可知,当点P到达点A时,OB=OA=a,S△AOB=43,过点A作AD⊥OB交OB于点D,则∠AOD=90°,∴在Rt△AOD中,sin∠AOD=AD AO,∵∠AOB=60°,∴sin60°=3 AD ADAO a==,∴AD=3 a,∵S△AOB=43,∴13432a a⨯⨯=,∴a=4(舍负),∴弧AB的长为:60441803ππ⨯⨯=,∴443bπ=+.故选:B.【点睛】本题是动点函数图象问题,考查了扇形弧长、解直角三角形等相关知识,解答时注意数形结合思想的应用.9.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.10.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克0 1 2 3 4 5 …弹簧长度y/厘米 10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;B、弹簧不挂重物时的长度为10cm,错误,符合题意;C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B.点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.11.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元,则y与x之间的函数关系式为()A.y=-12x B.y=12x C.y=-2x D.y=2x【答案】D【解析】依题意有:y=2x,故选D.12.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN 的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t,当0≤t≤2时,AM=MN=t,则S=212t,为二次函数;当2≤t≤4时,S=t,为一次函数,故选C.点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.13.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A.甲的速度为20km/hB.甲和乙同时出发C.甲出发1.4h时与乙相遇D.乙出发3.5h时到达A地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h时到达A地.【详解】解:A.甲的速度为:60÷2=30,故A错误;B.根据图象即可得出甲比乙早出发0.5小时,故B错误;C.设1l对应的函数解析式为111y k x b=+,所以:1116020bk b=⎧⎨+=⎩,解得113060kb=-⎧⎨=⎩即1l对应的函数解析式为13060y x=-+;设2l对应的函数解析式为222y k x b=+,所以:22220.503.560k bk b+=⎧⎨+=⎩,解得222010kb=⎧⎨=-⎩即2l对应的函数解析式为22010y x=-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.14.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表: 砝码的质量x/g 0 50 100 150 200 250 300 400 500 指针位置y/cm2 345677.57.57.5则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案. 【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x +b ,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x +2.显然当y=7.5时,x =275,故选B. 【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.15.当实数x 2x -41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x的取值范围,代入所给函数可得y的取值范围.【详解】解:由题意得20x-≥,解得2x≥,419x∴+≥,即9y≥.故选:B.【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x的取值是解决本题的关键.16.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()A.B.C.D.【答案】C【解析】【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【详解】设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=12hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=12h(AB+BC-vt)=-12hvt+12h(AB+BC),是关于t的一次函数关系式;故选C.【点睛】此题考查了动点问题的函数图象,根据题意求出两个阶段S 与t 的关系式,难度一般.17.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.18.甲、乙两人在一条长为600m 的笔直道路上均匀地跑步,速度分别为4/m s 和6/m s ,起跑前乙在起点,甲在乙前面50m 处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是( )A .B .C .D .【答案】C【解析】【分析】甲在乙前面50m处,若两人同时起跑,在经过25秒,乙追上甲,则相距是0千米,相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是100秒,则相遇以后两人之间的最大距离是150米,据此即可作出判断.【详解】甲在乙前面50m处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A、 B错误;相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D错误;相遇以后两人之间的最大距离是:2×(100−25)=150米.故选C.【点睛】本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.19.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C )与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().A.骆驼在t时刻的体温与0时体温的绝对差(即差的绝对值)B .骆驼从0时到t 时刻之间的最高体温与当日最低体温的差C .骆驼在t 时刻的体温与当日平均体温的绝对差D .骆驼从0时到t 时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y 有可能表示的是骆驼从0时到t 时刻之间的最高体温与当日最低体温的差. 故选:B .【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.20.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC 交AC 边于点F .点D 为BC 上一点,连接DE DF 、.设点E 到BC 的距离为x ,则DEF ∆的面积S 关于x 的函数图象大致为( )A .B .C.D.【答案】D【解析】【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【详解】解:∵EF∥BC,∴△AEF∽△ABC,∴55EF x BC-=,∴EF=55x-•10=10-2x,∴S=12(10-2x)•x=-x2+5x=-(x-52)2+254,∴S与x的关系式为S=-(x-52)2+254(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点睛】此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.。
函数的表示法习题含答案
解得 或 (舍去),
或 .
(2)由题意:
【点睛】
本题考查分段函数求值以及由函数值求自变量,考查分类讨论思想以及基本求解能力.
20.(1) .(2)
【解析】
【分析】
(1) 对任意的 恒成立,等价于 对任意的 ,由此能求出实数 的最小值.
(2)推导出 ,由此能求出数 的值域.
3.配凑法:由已知条件 ,可将 改写成关于 的表达式,然后以 代替 ,便得 的解析式;
4.消去法:已知 与 之间的关系式,可根据已知条件再构造出另外一个组成方程组,通过解方程组求出
16.(1) ;(2)
【解析】
【分析】
(1)过A、D分别作 于G, 于H,由平面图形的知识可得线段长度,由面积公式分段可得函数解析式;(2)化简A、B集合,由 可得 ,得到关于a的不等式,从而求出 的取值范围。
19.已知
(1)若 ,且 ,求实数 的值;
(2)求 的值.
20.已知函数 .
(1)若 对任意的 恒成立,求实数 的最小值;
(2)若函数 ,求函数 的值域.
参考答案
1.C
【解析】
【分析】
推导出 ,由此能求出结果.
【详解】
函数 的定义域为 当 时, ;
当 时, ;当 时, ,
.
故选:C.
【点睛】
本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.
【详解】
(1)过A、D分别作 于G, 于H,
因为ABCD是等腰梯形,底角为 ,AB= cm ,
所以BG=AG=DH=HC=2cm ,
又BC=7cm,所以AD=GH=3cm,
(1)当点F在BG上,即 时, ;
函数及其表示知识点+练习题+答案
函数及其表示知识点+练习题+答案函数及其表示考纲知识梳理一、函数与映射的概念注:函数与映射的区别:函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集。
二、函数的其他有关概念(1)函数的定义域、值域在函数()y f x =,x A ∈中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值{()|}f x x A ∈的集合叫做函数的值域(2)一个函数的构成要素 定义域、值域和对应法则 (3)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数。
注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。
如果函数y=x 和y=x+1,其定义域与值域完全相同,但不是相等函数;再如y=sinx与y=cosx,其定义域为R,值域都为[-1,1],显然不是相等函数。
因此凑数两个函数是否相等,关键是看定义域和对应关系)(4)函数的表示方法表示函数的常用方法有:解析法、图象法和列表法。
(5)分段函数若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数。
分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是个函数。
函数及其表示测试题1、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( A )A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞ 解析 由已知,函数先增后减再增 当0≥x ,2)(≥x f 3)1(=f 令,3)(=x f 解得3,1==x x 。
当0<x ,3,36-==+x x故3)1()(=>f x f ,解得313><<-x x 或2、试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=xx ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N*);(4)f (x )=x 1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1。
函数的表示基础训练题(有详解)
函数的表示基础训练题(有详解)一、单选题1.下列各组函数中,表示同一函数的是( )A .()1f x t =+与2()x xg x x+=B .2()f x =与()g x x = C .()||f x x =与()g x =D .()f x x =与32()1t tg t t +=+2.函数()26,[1,2]7,[-1,1)x x f x x x ∈∈⎧+=⎨+⎩,则()f x 的最大值和最小值分别为( )A .10,6B .10,8C .8,6D .10,73.下列四组函数中,表示相同函数的一组是( ) A .1y x =-与y =B .y =y =C .4lg y x =与22lg y x =D .3y =与y x =4.已知函数f (x )满足f (x +1)=x 2+2x +3,则f (2)=( ) A .2B .3C .6D .85.已知()()()1032(3)x x f x f x x ⎧-≥⎪=⎨+<⎪⎩,则()2f 的值为( ) A .6-B .8-C .6D .86.下列四组中的,表示同一个函数的是A .,B .,C .,D .,7.下列图象是函数图象的是( )A .B .C .D .8.已知函数,且,则的值是( )A .2B .C .2或D .2或 9.下列函数中,不满足的是( )A .B .C .D .10.已知f ()=,则f (x )的解析式为( )A .B .C .D .11.f (x ),则f [f (-1)]=( ) A .2 B .6 C . D .12.设,则( )A .10B .11C .12D .13 13.已知函数,且,则A .B .C .2D .114.已知,则等于 ( )A .0B .C .D .915.已知函数,部分x 与y 的对应关系如表:则A .B .C .D .316.函数的图象是A .B .C .D .17.已知,,一次函数是,二次函数是,则下列图象中可以成立的是A .B .C .D .二、填空题18.已知()2212f x x x +=-,则()3f =______.19.已知函数()()3,10,5,10,x x f x f f x x -≥⎧⎪=⎨⎡⎤+<⎪⎣⎦⎩其中x ∈N ,则()8f =____________20.已知函数若,则__________. 21.已知函数,若,则_________.22.已知函数满足,则函数的解析式为__________.23.设函数 ,求_____.24.已知,则______________;25.已知,则_________.三、解答题 26.已知函数.(Ⅰ)画出的图象;(Ⅱ)根据图象写出的单调减区间和最值;27.已知求,的值;求和的解析式;求的值域.28.设.(1)在图的直角坐标系中画出f (x )的图象;(2)若f (t )=2,求t 值;(3)求函数f (x )的最小值.参考答案1.D 【解析】 【分析】通过求定义域,可以判断选项A ,B 的两函数都不是同一函数,通过看解析式可以判断选项C 的两函数不是同一函数,从而只能选D . 【详解】A .f (x )=x+1的定义域为R , ()2x xg x x+=的定义域为{x|x≠0},定义域不同,不是同一函数; B.()()22x f x =的定义域为(0,+∞),g (x )=x 的定义域为R ,定义域不同,不是同一函数;C .f (x )=|x|,()g x == ,,n x n x ⎧⎪⎨⎪⎩为奇数为偶数 ,解析式不同,不是同一函数;D .f (x )=x 的定义域为R ,()321t tg t t t +==+的定义域为R ,定义域和解析式都相同,是同一函数. 故选:D . 【点睛】考查函数的定义,判断两函数是否为同一函数的方法:看定义域和解析式是否都相同. 2.A 【解析】 【分析】分别求出函数()f x 在定义域的每个区间上的取值范围,比较后可得函数的最大值和最小值. 【详解】由题意得,当12x ≤≤时,()710f x ≤≤;当11x -≤<时,()68f x ≤<. 所以函数()f x 的最大值为10,最小值为6.【点睛】本题考查分段函数最值的求法,解题时注意分段函数是一个函数,所以最值只有一个,解题时可分别求出函数在每个区间上的取值范围,比较各范围的端点值后可得最值;也可画出函数的图象,根据图象得到最值. 3.D 【解析】 【分析】通过化简解析式可发现选项A 、C 的两函数的解析式不同,两函数不相同,而选项B 的两函数定义域不同,两函数也不相同,只能选D . 【详解】解:A .1y x =-与1y x ==-的解析式不同,两函数不相同;B.y =[1+∞,),y =1+∞(,),定义域不同,两函数不相同;C .4lg y x =与22lg 4lg y x x ==的解析式不同,两函数不相同;D.3y x ==的定义域为R ,y x =的定义域为R ,定义域和解析式都相同,两函数相同. 故选:D . 【点睛】考查函数的定义,判断两函数是否相同的方法:看解析式和定义域是否都相同. 4.C 【解析】 【分析】函数f (x )满足f (x+1)=x 2+2x+3,则f (2)=f (1+1),可求得结果. 【详解】解:∵函数f (x )满足f (x+1)=x 2+2x+3, ∴f (2)=f (1+1)=12+2×1+3=6. 故选:C .本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题. 5.A 【解析】 【分析】根据分段函数各自的定义域范围,代值计算即可. 【详解】()()()1032(3)x x f x f x x ⎧-≥⎪=⎨+<⎪⎩, ()()()22244106f f f ∴=+==-=-,故选:A . 【点睛】本题考查了分段函数值的求法,属于基础题 6.D 【解析】 【分析】根据两个函数的定义域相同,对应关系也相同,即可判断是同一函数. 【详解】 对于A ,,定义域为R ,,定义域是,定义域不同,不是同一函数; 对于B ,,定义域是R ,,定义域为,定义域不同,不是同一函数; 对于C ,,定义域为R ,,定义域为R ,对应关系不同,不是同一函数; 对于D ,,定义域是R ,,定义域是R ,定义域相同,对应关系也相同,是同一函数. 故选:D . 【点睛】本题考查了判断两个函数是否为同一函数的应用问题,是基础题.7.D【解析】【分析】由题意结合函数的定义确定所给图象是否是函数图象即可.【详解】由函数的定义可知,函数的每一个自变量对应唯一的函数值,选项A,B中,当时,一个自变量对应两个函数值,不合题意,选项C中,当时,一个自变量对应两个函数值,不合题意,只有选项D符合题意.本题选择D选项.【点睛】本题主要考查函数的定义及其应用,属于基础题.8.D【解析】【分析】由题意分类讨论求解实数x的值即可.【详解】结合函数的解析式分类讨论:当时,,满足题意,当时,,满足题意,综上可得,的值是2或.本题选择D选项.【点睛】当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.9.B【解析】【分析】由条件中,分别代入四个选项进行验证【详解】项中,满足条件,但不符合题意项中,,,,不满足条件,符合题意项中,,满足条件,但不符合题意项中,满足条件,但不符合题意综上,故选【点睛】本题主要考查了满足条件的函数解析式,只需代入条件进行验证即可得到结果,较为简单10.D【解析】【分析】函数对定义域内任何变量恒成立,故可以用x代即可求出f(x)解析式.【详解】由可知,函数的定义域为{x|x≠0,x≠﹣1},将x换为,代入上式得:f(x),故选:D.【点睛】本题属于求解函数的表达式问题,使用的是构造法.即在定义域范围内以x代从而解决问题,属于基础题.11.B【解析】【分析】由函数性质先求出f(﹣1)=2,从而f[f(﹣1)]=f(2),由此能求出结果.【详解】∵f(x),∴f(﹣1)=-(﹣1)+1=2,f[f(﹣1)]=f(2)==6.故选:B.【点睛】本题考查分段函数中函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.12.B【解析】【分析】根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值.【详解】∵f(x),∴f(5)=f[f(11)]=f(9)=f[f(15)]=f(13)=11.故选:B.【点睛】本题主要考查了分段函数中求函数的值,属于基础题.13.B【解析】【分析】根据题意,先由换元法求出函数的解析式,结合函数的解析式可得若f(a)=5,即4a+3=5,解可得a的值,即可得答案.【详解】根据题意,函数f(x﹣1)=2x﹣1,令t x﹣1,则x=2(t+1),则f(t)=4(t+1)﹣1=4t+3,若f(a)=5,即4a+3=5,解可得a;故选:B.【点睛】本题考查函数的解析式的求法及函数值的运算,属于基础题.14.B【解析】【分析】根据分段函数的解析式可知,f(﹣3)=0,f[f(﹣3)]=f(0)=π.【详解】f(x),f(﹣3)=0,∴f[f(﹣3)]=f(0)=π,故选:B.【点睛】本题考查分段函数的解析式,考查分段函数的求值,考查计算能力,属于基础题.15.D【解析】【分析】先求,再求【详解】通过表格可以得到,故选:【点睛】本题考查了复合函数值的求法,属基础题.16.A【解析】【分析】函数是由函数和的和函数得到的,结合反比例函数的性质及函数的图象与性质,易得到结论.【详解】函数是由函数和的和函数,故函数函数在区间和上都单调递增;分析四个答案中的图象易得只有A 中的图象符合要求;故选:A .【点睛】本题考查的知识点是函数的图象,其中根据原函数解析式函数是由函数和的和函数,从而将一个非基本函数转化为研究一个基本初等函数的图象和性质是解答本题的关键.17.B【解析】【分析】通过b >0结合一次函数图象,排除A ,C ,再通a 的符号得一次函数的单调性与二次函数的开口方向,可得选B .【详解】 因为,所以一次函数与y 轴正半轴相交,故排除A ,C . 当时,一次函数是递增函数,二次函数开口向上,B 符合, 当时,一次函数是递减函数,二次函数开口向下,D 不符合.故选:B .【点睛】本题考查了二次函数的性质与图象,属基础题.18.1-【解析】【分析】本题首先可以根据题意令213x +=,求出1x =,再将1x =带入()2212f x x x +=-中进行计算,即可得出()3f 的值.【详解】因为()2212f x x x +=-,令213x +=,解得1x =,所以()231211f =-?-,故答案为1-.【点睛】本题考查了函数的解析式的相关性质,考查了如何利用函数的解析式求函数值,考查了计算能力,体现了基础性,提高了学生对函数的理解,是基础题目.19.7【解析】【分析】由已知条件,利用分段函数的性质得f (8)=f [f (13)]=f (10)=7.【详解】∵()()3,10,{5,10,x x f x f f x x -≥=⎡⎤+<⎣⎦其中x ∈N ,∴f (8)=f [f (13)]=f (10)=7.故答案为:7.【点睛】本题考查分段函数函数值的计算,解决策略:(1)在求分段函数的值f (x 0)时,一定要判断x 0属于定义域的哪个子集,然后再代入相应的关系式;(2) 求f (f (f (a )))的值时,一般要遵循由里向外逐层计算的原则.20.-3【解析】【分析】当x ≤0时,f (x )=x 2+1=10;当x >0时,f (x )=﹣2x =10,由此能求出结果.【详解】∵函数f (x ),f (x )=10, ∴当x ≤0时,f (x )=x 2+1=10,解得x =﹣3或x =3(舍);当x >0时,f (x )=﹣2x =10,解得x =﹣5,不合题意.综上,x =﹣3.故答案为:﹣3.【点睛】本题考查了分段函数及函数值的求法,考查运算求解能力,考查函数与方程思想,是基础题. 21.【分析】设2x﹣1=t,推导出f(t)=2t+5,由此利用f(t)=11,能求出t的值.【详解】设2x﹣1=t,则x,∴f(t)=2(t+1)+3=2t+5∵f(t)=11,∴2t+5=11,解得t=3.故答案为:3.【点睛】本题考查函数解析式的求法,考查换元方法,考查运算求解能力,是基础题.22.【解析】【分析】将已知函数方程中的x换成得到另一个函数方程,然后两个方程联立消去f()可得f(x). 【详解】①中将x换成,得f()+2f(x)②,由①②联立消去f()得f(x),故答案为:f(x).【点睛】本题考查了函数解析式的求解,主要有:待定系数法、换元法、配凑法、方程组法等等.属基础题.23.14【解析】【分析】先求出,从而,由此能求出结果.∵,∴,∴故答案为:14【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数性质的合理运用.24.【解析】【分析】由可以得到,再求出的表达式即可。
函数基础练习(题型大全)含答案
函数基础练习(题型大全)含答案一、选择题(本大题共17小题,共85.0分) 1. 函数f(x)=1lg(x+1)+√2−x 的定义域为( )A. (−1,0)∪(0,2]B. [−2,0)∪(0,2]C. [−2,2]D. (−1,2]2. 若函数f(x)={−x 13,x ≤−1x +2x −7,x >−1,则f[f(−8)]=( ) A. −2 B. 2 C. −4 D. 4 3. 函数f(x)=ln(x 2−2x −8)的单调递增区间是( )A. (−∞,−2)B. (−∞,−1)C. (1,+∞)D. (4,+∞)4. 设,,c =30.7,则a ,b ,c 的大小关系是( )A. a <b <cB. c <b <aC. b <c <aD. b <a <c 5. 在下列区间中,函数f(x)=e x +4x −3的零点所在的区间为( )A. (−2,−1)B. (−1,0)C. (0,12)D. (12,1)6. 已知函数f(x)=cosx e x,则函数f(x)的图象在点(0,f(0))处的切线方程为( )A. x +y +1=0B. x +y −1=0C. x −y +1=0D. x −y −1=07. 已知函数y ={x 2+1(x ⩽0)2x(x >0),若f(a)=10,则a 的值是( )A. 3或−3B. −3或5C. −3D. 3或−3或58. 若函数,且满足对任意的实数x 1≠x 2都有成立,则实数a 的取值范围是( ) A. (1,+∞) B. (1,8) C. (4,8) D. [4,8)9. 定义在R 上的奇函数f(x)满足f(x +2)=−1f(x),且在(0,1)上f(x)=3x ,则f(log 354)=( )A. 32B. 23C. −32D. −2310. 函数y =2x 2−e |x|在[−2,2]的图象大致为( )A.B.C.D.11. 设函数f(x)=ln(1+|x|)−11+x 2,则使得f(x)>f(2x −1)成立的x 的取值范围是( )A.B. (13,1) C. (−13,13)D.12. 若函数f(x)=lnx +ax +1x 在[1,+∞)上是单调函数,则a 的取值范围是( )A. (−∞,0]∪[14,+∞)B. (−∞,−14]∪[0,+∞)C. [−14,0]D. (−∞,1]13. 已知函数f(x)=ln(√1+x 2−x)+2,则f(lg5)+f(lg 15)=( )A. 4B. 0C. 1D. 214. 已知函数f(x)={14x +1,x ≤1lnx,x >1,则方程f(x)=ax 恰有两个不同的实数根时,实数a 的取值范围是( )A. (0,1e )B. [14,1e )C. (0,14]D. (14,e)15. 已知函数f(x)(x ∈R)满足f(−x)=2−f(x),若函数y =x+1x与y =f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 ∑(x i +y i )=( )m i=1 A. 0B. mC. 2mD. 4m 16. 设函数f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e2的最大值为M ,最小值为N ,则(M +N -1)2019的值为( ) A.1 B.2 C.22019 D.3201917. 已知函数f (x )的导函数为f ′(x ),若2f (x )+f ′(x )>2,f (0)=5,则不等式f (x )-4e-2x>1的解集为( )A.(1,+∞)B.(-∞,0)C.(-∞,0)∪(1,+∞) D .(0,+∞)二、填空题(本大题共5小题,共25.0分)18. 函数y =log a (2x −3)+8的图象恒过定点P ,P 在幂函数f(x)的图象上,则f(4)= ______. 19. 求曲线f (x )=x 3−3x 2+2x 过原点的切线方程__________. 20. ∫(√1−x 2+x)dx =10________.21. 设函数f(x)={x +1,x ≤02x ,x >0,则满足f(x)+f(x −12)>1的x 的取值范围是______.22. 函数f(x)=lgx 2+1|x|(x ≠0,x ∈R),有下列命题:①f(x)的图象关于y 轴对称;②f(x)的最小值是2;③f(x)在(−∞,0)上是减函数,在(0,+∞)上是增函数; ④f(x)没有最大值.其中正确命题的序号是______ .(请填上所有正确命题的序号) 三、解答题(本大题共5小题,共60.0分)23. 已知函数f(x)=13x 3+ax 2+6x −1.当x =2时,函数f(x)取得极值. (I)求实数a 的值;(II)若1≤x ≤3时,方程f(x)+m =0有两个根,求实数m 的取值范围. 24. 设函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由; (Ⅱ)若∀x >0,f(x)≥0成立,求a 的取值范围.25.已知函数f(x)=x2−x,g(x)=e x−ax−1(e为自然对数的底数).(1)讨论函数g(x)的单调性;(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.26.已知函数.(1)讨论函数f(x)的单调性;(2)若a=1,若f(x)有两个零点,求证:.27.已知函数f(x)=(x+1)lnx−ax+2.(1)当a=1时,求在x=1处的切线方程;(2)当a=2时求证:,n∈N∗.答案和解析1.【答案】A【解析】【分析】本题考查了函数的定义域,考查学生的计算能力,属于基础题. 由题意列出不等式组:{x +1>0x +1≠12−x ≥0,解出即可求解.【解答】解:由题意得:{x +1>0x +1≠12−x ≥0,解得−1<x ≤2且x ≠0, ∴函数的定义域为(−1,0)∪(0,2].故选A . 2.【答案】C【解析】【分析】本题主要考查了分段函数,考查了函数的定义域与值域.属于基础题, 利用分段函数函数值的计算得结论. 【解答】解:∵函数f(x)={−x 13,x ≤−1x +2x−7,x >−1, 又∵−8<−1,∴f(−8)=−(−8)13=2, ∵2>−1,∴f[f(−8)]=f(2)=2+22−7=−4.故选C . 3.【答案】D【解析】【分析】本题主要考查复合函数的单调性及对数函数的图象和性质,属于基础题.由x 2−2x −8>0得:x <−2或x >4,令t =x 2−2x −8,结合复合函数单调性“同增异减”的原则,可得答案. 【解答】解:由x 2−2x −8>0得:x <−2或x >4, 即f(x)的定义域为{x|x <−2或x >4}, 令t =x 2−2x −8,y =lnt 在t ∈(0,+∞)内单调递增,而x ∈(−∞,−2)时,t =x 2−2x −8为减函数,x ∈(4,+∞)时,t =x 2−2x −8为增函数, 故函数f(x)=ln(x 2−2x −8)的单调递增区间是(4,+∞). 故选D . 4.【答案】D【解析】【分析】本题考查指数函数、对数函数的单调性的应用,属于基础题.利用指数函数及对数函数的性质,借助中间量0或1即可求解. 【解答】解:0=log 71<a =log 73<log 77=1, b =log 137<log 131=0,c =30.7>30=1, ∴b <a <c . 故选D . 5.【答案】C【解析】【分析】本题考查函数零点存在性定理,属于基础题.若函数f(x)在[a,b]上是连续的,如果函数f(x)满足f(a)·f(b)<0,则f(x)在(a,b)上至少存在一个零点. 【解答】解:∵函数f(x)=e x +4x −3在上连续, 且f(0)=e 0−3=−2<0,f(12)=√e +2−3=√e −1=e 12−e 0>0,∴f(0)·f(12)<0,∴函数f(x)=e x +4x −3的零点所在的区间为(0,12).故选C . 6.【答案】B【解析】【分析】本题考查了基本函数导数公式,导数的四则运算,导数的几何意义,求已知切点的切线方程的方法,属基础题. 先求函数的导函数f′(x),再求所求切线的斜率即f′(0),由于切点为(0,1),故由点斜式即可得所求切线的方程. 【解答】 解:∵f(x)=cosx e x, ∴f′(x)=−sinx−cosxe ,∴f′(0)=−1,f(0)=1,即函数f(x)图象在点(0,1)处的切线斜率为−1, ∴图象在点(0,f(0))处的切线方程为y =−x +1, 即x +y −1=0. 故选B . 7.【答案】B【解析】【分析】本题考查了由分段函数的函数值求参数,解题的关键是确定f(a)的表达式,考查了运算求解能力和分类讨论思想,属于基础题.结合题意,需要对a 进行分类讨论,若a ≤0,则f(a)=1+a 2;若a >0,则f(a)=2a ,从而可求a . 【解答】解:由题意,函数y ={x 2+1(x ⩽0)2x(x >0), f(a)=10,若a ≤0,则f(a)=a 2+1=10,解得a =−3或a =3(舍去); 若a >0,则f(a)=2a =10, ∴a =5,综上可得,a =5或a =−3. 故选B .8.【答案】D【解析】【分析】本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键,属于中档题. 根据函数单调性的定义,由f(x 1)−f(x 2)x 1−x 2>0恒成立,得到f(x)单调递增,则分段f(x)在各段上都是递增,且衔接处非减,得到不等式求解即可. 【解答】解:∵对任意的实数x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2>0成立,∴函数f(x)={a x ,x ≥1(4−a 2)x +2,x <1在R 上单调递增, ∴{a >14−a 2>0a 1≥(4−a 2)×1+2 , 解得a ∈[4,8), 故选D . 9.【答案】C【解析】【分析】本题考查函数值的求法,指数函数、对数函数的运算与性质,函数的周期性及奇函数性质的综合应用,利用条件求出函数的周期以及利用函数的性质逐步转化自变量是解题的关键.由已知条件和函数周期性的定义求出函数的周期,利用函数的周期性、奇函数的性质和函数的解析式,逐步转化由运算性质求出f(log 354)的值. 【解答】解:由f(x +2)=−1f(x)得,f(x +4)=−1f(x+2)=f(x), 所以函数f(x)的周期是4,因为f(x)是定义在R 上的奇函数,且3<log 354<4, 则0<4−log 354<1, 且在(0,1)上,f(x)=3x ,所以f(log 354)=f(log 354−4)=−f(4−log 354).故选C .10.【答案】D【解析】【分析】本题考查的知识点是函数的图象,属于中档题.根据已知函数的解析式,分析函数的奇偶性,特殊点处的函数值以及单调性,利用排除法,可得答案. 【解答】解:∵f (x )=y =2x 2−e |x |,∴f(−x)=2(−x)2−e|−x|=2x2−e|x|,故函数为偶函数,当x=±2时,y=8−e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2−e x,f′(x)=4x−e x,设g(x)=4x−e x,g′(x)=4−e x,当x∈(0,ln4)时,g′(x)<0,g(x)单调递减,即f′(x)=4x−e x单调递减,当x∈(ln4,2)时,g′(x)>0,g(x)单调递增,即f′(x)=4x−e x单调递增,因为f′(0)=−1<0且f′(ln4)=4ln4−4>0,则f′(x)=4x−e x=0在[0,ln4]有解,设为x0,当x∈(0,x0)时,f′(x)<0,f(x)单调递减,当x∈(x0,ln4)时,f′(x)>0,f(x)单调递增,故函数y=2x2−e|x|在[0,ln4]不是单调的,又ln4<2,故函数y=2x2−e|x|在[0,2]不是单调的,排除C,故选D.11.【答案】B【解析】【分析】本题主要考查函数奇偶性和单调性的应用,考查函数性质的综合应用,运用偶函数的性质是解题的关键,属于中档题.根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:f(x)的定义域为R,,∴函数f(x)=ln(1+|x|)−11+x2为偶函数,且在x≥0时,f(x)=ln(1+x)−11+x2,而为[0,+∞)上的单调递增函数,且y=−11+x2为[0,+∞)上的单调递增函数,∴函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x−1)等价为f(|x|)>f(|2x−1|),即|x|>|2x−1|,平方得3x2−4x+1<0,解得:13<x<1,所求x的取值范围是(13,1).故选B.12.【答案】B【解析】【分析】本题主要考查求导公式和法则,导数与函数单调性的关系,以及恒成立问题的转化,考查分离常数法,整体思想、分类讨论思想,属于较难题.由求导公式和法则求出f′(x),由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围.【解答】解:由题意得,f′(x)=1x +a−1x2,因为f(x)=lnx+ax+1x在[1,+∞)上是单调函数,所以f′(x)≥0或f′(x)≤0在[1,+∞)上恒成立,①当f′(x)≥0时,则1x +a−1x2≥0在[1,+∞)上恒成立,即a≥1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x=1时,g(x)取到最大值是:0,所以a≥0,②当f′(x)≤0时,则1x +a−1x2≤0在[1,+∞)上恒成立,即a≤1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x =12时,g(x)取到最小值是:−14,所以a≤−14,综上可得,a≤−14或a≥0,所以数a的取值范围是(−∞,−14]∪[0,+∞),故选B.13.【答案】A【解析】【分析】本题考查了对数的运算以及函数的性质,属于基础题.先得出f(x)+f(−x)=4,即可得出结果.【解答】解:∵f(x)=ln(√1+x2−x)+2,∴f(x)+f(−x)=ln(√1+x2−x)+2+ln(√1+x2+x)+2=ln1+4=4,则f(lg5)+f(lg15)=f(lg5)+f(−lg5)=4.故选A.14.【答案】B【解析】【分析】本题考查了函数的图象与性质、导数的应用问题,考查函数与方程的关系,属于中档题.题意转化为y=f(x)与y=ax有2个交点,画出函数的图象,观察满足题意的直线y=ax的条件,利用导数求出切线的斜率,结合图形得出a的取值范围.【解答】解:∵方程f(x)=ax恰有两个不同实数根,∴y=f(x)与y=ax有2个交点,画出y =f(x)的图象和y =ax 的图象,如图所示:其中l 1是直线y =ax 与对数部分图象相切时的情况,l 2是与x ≤1时函数的直线部分平行的直线, 由图可以看出,直线y =ax 的斜率a 应当在l 1与l 2的斜率之间,可以与l 2重合. 当x >1时,f(x)=lnx ,∴y ′=f ′(x)=1x , 设切点为P(x 0,y 0),则k =1x 0,∴切线方程为y −y 0=1x 0(x −x 0),而切线过原点,O(0,0)代入,得y 0=1,∴x 0=e ,k =1e , ∴直线l 1的斜率为1e ,又∵直线l 2与y =14x +1平行,∴直线l 2的斜率为14, ∴实数a 的取值范围是[14,1e ), 故选B . 15.【答案】B【解析】【分析】由条件可得f(x)+f(−x)=2,即有f(x)关于点(0,1)对称,又函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题. 【解答】解:函数f(x)(x ∈R)满足f(−x)=2−f(x), 即为f(x)+f(−x)=2, 可得f(x)关于点(0,1)对称, 函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点, (x 2,y 2)为交点,即有(−x 2,2−y 2)也为交点,…则有∑i =1m(x i +y i )=(x 1+y 1)+(x 2+y 2)+⋯+(x m +y m )=12[(x 1+y 1)+(−x 1+2−y 1)+(x 2+y 2)+(−x 2+2−y 2)+⋯+(x m +y m )+(−x m +2−y m )] =m .故选B .16.答案 A解析 由已知x ∈R ,f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e 2=sinπx +x 2+e 2+2e x x 2+e 2=sinπx +2e x x 2+e 2+1,令g (x )=sinπx +2e xx 2+e2,易知g (x )为奇函数,由于奇函数在对称区间上的最大值与最小值的和为0,M +N =f (x )max +f (x )min =g (x )max +1+g (x )min +1=2,(M +N -1)2019=1. 17.答案 D解析 设F (x )=e 2x f (x )-e 2x -4, 则F ′(x )=2e 2x f (x )+e 2x f ′(x )-2e 2x =e 2x [2f (x )+f ′(x )-2]>0,所以函数F (x )=e 2x f (x )-e 2x -4在R 上为增函数. 又f (0)=5,所以F (0)=f (0)-1-4=0. 又不等式f (x )-4e-2x>1等价于e 2x f (x )-e 2x -4>0,即F (x )>0,解得x >0, 所以不等式的解集为(0,+∞).18.【答案】64【解析】【分析】本题考查对数函数的性质和幂函数,属于基础题.先找到定点P 的坐标,通过P 点坐标求解幂函数f (x )=x b 的解析式,从而求得f(4). 【解答】解:由题意,令2x −3=1,则x =2, 故点P(2,8),设幂函数f(x)=x b , 则2b =8,解得b =3, 所以f(x)=x 3, 故f(4)=64, 故答案为64.19.【答案】y =2x 和y =−14x【解析】【分析】本题考查导数的几何意义:切点处的导数值是切线的斜率;注意“在点处的切线”与“过点的切线”的区别,属于基础题.求出函数的导数,利用导数的几何意义:切点处的导数值是切线的斜率,分原点是切点和原点不是切点两类求. 【解答】解:f ′(x)=3x 2−6x +2.设切线的斜率为k .(1)当切点是原点时,k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 03−3x 02+2x 0,k =f ′(x 0)=3x 02−6x 0+2,①又k =y 0x 0=x 02−3x 0+2,②由①②得x 0=32,k =y 0x 0=−14. ∴所求曲线的切线方程为y =−14x.故答案为:y =2x 和y =−14x. 20.【答案】π+24【解析】【分析】本题考查了定积分的计算,巧用几何意义,由面积求积分,为中档题.【解答】解:∫01(√1−x 2+x)dx =∫01√1−x 2dx +∫01x dx=π4+12x 2|01=π4+12=π+24. 故答案为π+24.21.【答案】(−14,+∞)【解析】【分析】本题考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键,属于中档题.根据分段函数的表达式,分别讨论x 的取值范围,进行求解即可.【解答】解:若x ≤0,则x −12≤−12,则f(x)+f(x −12)>1等价为x +1+x −12+1>1,即2x >−12,则x >−14,此时−14<x ≤0,当x >0时,f(x)=2x >1,x −12>−12,当x −12>0即x >12时,满足f(x)+f(x −12)>1恒成立,当0≥x −12>−12,即12≥x >0时,f(x −12)=x −12+1=x +12>12,此时f(x)+f(x−12)>1恒成立,综上x>−14,故答案为:(−14,+∞).22.【答案】①④【解析】【分析】本题考查复合函数的性质,属于中档题.从偶函数的角度可知是否关于y轴对称,先求x 2+1|x|的范围再求f(x)的范围,由复合函数的“同增异减”判断单调性.【解答】解:①f(−x)=lg x 2+1|x|=f(x),∴函数f(x)是偶函数,f(x)的图象关于y轴对称,故①正确;②x2+1|x|=|x|+1|x|≥2,∴f(x)=lg x2+1|x|≥lg2,∴f(x)的最小值是lg2,故②不正确;③函数g(x)=x2+1|x|=|x|+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故函数f(x)=lg x 2+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故③不正确;④由③知,f(x)没有最大值,故④正确;故答案为①④.23.【答案】解:(I)由f(x)=13x3+ax2+6x−1,则f′(x)=x2+2ax+6,因在x=2时,f(x)取到极值,所以f′(2)=0⇒4+4a+6=0,解得,a=−52;(II)由(I)得f(x)=13x3−52x2+6x−1,且1≤x≤3,则f′(x)=x2−5x+6=(x−2)(x−3),由f′(x)=0,解得x=2或x=3,f′(x)>0,解得x>3或x<2;f′(x)<0,解得2<x<3;∴f(x)的递增区间为:(−∞,2)和(3,+∞);f(x)递减区间为:(2,3),又f(1)=176,f(2)=113,f(3)=72,要f(x)+m=0有两个根,则f(x)=−m有两解,分别画出函数y=f(x)与y=−m的图象,如图所示.由图知,实数m 的取值范围:−113<m ≤−72. 24.【答案】解:(Ⅰ)函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,x ∈(−1,+∞). f ′(x)=1x+1+2ax −a =2ax 2+ax−a+1x+1.令g(x)=2ax 2+ax −a +1,x ∈(−1,+∞).(1)当a =0时,g(x)=1,此时f′(x)>0,函数f(x)在(−1,+∞)上单调递增,无极值点.(2)当a >0时,Δ=a 2−8a(1−a)=a(9a −8).①当0<a ≤89时,Δ≤0,g(x)≥0,f′(x)≥0,函数f(x)在(−1,+∞)上单调递增,无极值点.②当a >89时,Δ>0,设方程2ax 2+ax −a +1=0的两个实数根分别为x 1,x 2,x 1<x 2. ∵x 1+x 2=−12, ∴x 1<−14,x 2>−14. 由g(−1)=1>0,可得−1<x 1<−14.∴当x ∈(−1,x 1)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 1,x 2)时,g(x)<0,f′(x)<0,函数f(x)单调递减; 当x ∈(x 2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增. 因此当a >89时,函数f(x)有两个极值点.(3)当a <0时,Δ>0.由g(−1)=1>0,可得x 1<−1<x 2. ∴当x ∈(−1,x 2)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减. 因此当a <0时,函数f(x)有一个极值点.综上所述:当a <0时,函数f(x)有一个极值点;当0≤a ≤89时,函数f(x)无极值点;当a >89时,函数f(x)有两个极值点.(Ⅱ)由(Ⅰ)可知:(1)当0≤a ≤89时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(2)当89<a ≤1时,由g(0)=1−a ≥0,可得x 1,x 2≤0,函数f(x)在(0,+∞)上单调递增. 又f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a 时,由g(0)=1−a <0,可得x 2>0,∴x ∈(0,x 2)时,函数f(x)单调递减.又f(0)=0,∴x ∈(0,x 2)时,f(x)<0,不符合题意,舍去;(4)当a <0时,设ℎ(x)=x −ln(x +1),x ∈(0,+∞),ℎ′(x)=x x+1>0. ∴ℎ(x)在(0,+∞)上单调递增.因此x ∈(0,+∞)时,ℎ(x)>ℎ(0)=0,即ln(x +1)<x , 可得:f(x)<x +a(x 2−x)=ax 2+(1−a)x ,当x >1−1a 时,ax 2+(1−a)x <0,此时f(x)<0,不合题意,舍去. 综上所述,a 的取值范围为[0,1]. 25.【答案】解:(1)∵g(x)=e x −ax −1,∴g ′(x )=e x −a ,①若a ≤0,g ′(x )>0,g(x)在(−∞,+∞)上单调递增; ②若a >0,当x ∈(−∞,lna]时,g′(x )≤0,g(x)单调递减; 当x ∈(lna,+∞)时,g′(x )>0,g(x)单调递增,综合上述,若a ≤0,则g(x)在上单调递增;若a >0,则g(x)在(lna,+∞)上单调递增,在(−∞,lna]上单调减.(2)当x >0时,x 2−x ≤e x −ax −1,即a ≤e x x −x −1x +1, 令ℎ(x)=e x x −x −1x +1(x >0),则ℎ′(x)=e x (x−1)−x 2+1x 2,令φ(x)=e x (x −1)−x 2+1(x >0),则φ′(x)=x(e x −2),当x ∈(0,ln2)时,φ′(x)<0,φ(x)单调递减;当x ∈(ln2,+∞)时,φ′(x)>0,φ(x)单调递增,又φ(0)=0,φ(1)=0,∴当x ∈(0,1)时,φ(x)<0,即ℎ′(x)<0,∴ℎ(x)单调递减,当x ∈(1,+∞)时,φ(x)>φ(1)=0,即ℎ′(x)>0,∴ℎ(x)单调递增,∴ℎ(x)min =ℎ(1)=e −1,∴实数a 的取值范围是(−∞,e −1]. 26.【答案】解:(1)函数的定义域为(0,+∞), f′(x )=b x 2−1x =b−xx 2,当b ≤0,f′(x )<0在(0,+∞)上恒成立,当b >0时,f′(x )<0得x ∈(b,+∞);f′(x )>0得x ∈(0,b), 所以,当b ≤0时,f (x )在(0,+∞)上单调递减,当b >0时,f (x )在(0,b)上单调递增,在(b,+∞)单调递减;(2)证明:由题意知,f(x 1)=f(x 2)=0,即1x 1+lnx 1=1x 2+lnx 2, 于是x 2−x 1x 1x 2=ln x2x 1, 记x 2x 1=t ,t >1,则lnt =t−1tx 1,解得x 1=t−1tlnt ,于是,x 1+x 2=x 1+tx 1=(1+t)x 1=t 2−1tlnt , ∴x 1+x 2−2=t 2−1tlnt −2=2(t 2−12t −lnt)lnt , 记函数g(t)=t 2−12t −lnt ,∴g′(x )=(t−1)22t 2,当t >1时g′(t )>0,故g(t)在(1,+∞)上单调增.于是,t >1时,g(t)>g(1)=0.又lnt >0,所以即x 1+x 2>2成立.27.【答案】解:(1)当a =1时,f(x)=(x +1)lnx −x +2(x >0), f ′(x)=lnx +1x ,因为f ′(1)=1,f(1)=1,所以曲线f(x)在x =1处的切线方程为y =x .(3)当a =2时,f(x)在(1,+∞)上单调递增,所以当x ∈(1,+∞)时,f(x)>f(1)=0,即(x +1)lnx −2x +2>0,所以lnx >2(x−1)x+1在(1,+∞)上恒成立, 令x =n+1n ,得ln n+1n >2(n+1n −1)n+1n +1,化简得ln(n +1)−lnn >22n+1,所以ln2−ln1>22+1,ln3−ln2>24+1,…,ln(n +1)−lnn >22n+1,累加得ln(n +1)−ln1>23+25+⋯+22n+1,即13+15+17+⋯+12n+1<12ln(n +1),n ∈N ∗.。
(完整版)函数及其表示练习题及答案
i函数及其表示练习题一.选择题1函数满足则常数等于()23(,32)(-≠+=xxcxxf,)]([xxff=cA B33-C D33-或35-或2. 已知,那么等于())0(1)]([,21)(22≠-=-=xxxxgfxxg21(fA B151C D3303.函数的值域是()2y=A B[2,2]-[1,2]C D[0,2][4已知,则的解析式为()2211(11x xfx x--=++()f xA B21xx+212xx+-C D212xx+21xx+-5.设是R上的任意函数,则下列叙述正确的是 ( )()f x(A)是奇函数 (B)是奇函数()()f x f x-()()f x f x-(C) 是偶函数 (D) 是偶函数()()f x f x--()()f x f x+-6. 下列图中,画在同一坐标系中,函数与函数bxaxy+=2)0,0(≠≠+=babaxy的图象只可能是()7.已知二次函数,若,则的值为()0()(2>++=aaxxxf0)(<mf)1(+mfAl l )A .正数B .负数C .0D .符号与a 有关8. 已知的定义域为,则的定义域为()(x f )2,1[-|)(|x f )A .B .C .D .)2,1[-]1,1[-)2,2(-)2,2[-9. 已知在克的盐水中,加入克的盐水,浓度变为,将y 表示成x 的函x %a y %b %c 数关系式( )A .B .C .D .x b c ac y --=x cb ac y --=x a c b c y --=x ac cb y --=10.已知f 满足f (ab )=f (a )+ f (b),且f (2)=,那么等于(p q f =)3()72(f )A .B .C .D .qp +qp 23+qp 32+23qp +11. 某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为(A )y =[10x ](B )y =[310x +](C )y =[410x +](D )y =[510x +]12.已知函数则()()2113,f x x x =+≤≤A . B .()()12202f x x x -=+≤≤()()12124f x x x -=-+≤≤C . D .()()12202f x x x -=-≤≤()()12104f x x x -=-≤≤13.函数的定义域为y =A .B .()4,1--()4,1-C . D .()1,1-(1,1]-14.设函数则的值为()221, 1,2, 1,x x f x x x x ⎧-≤⎪=⎨+->⎪⎩()12f f ⎛⎫ ⎪ ⎪⎝⎭A .B .C . D.15162716-891815. 定义在上的函数满足R ()f x ()()()()()2,,12f x y f x f y xy x y R f +=++∈=则等于( )()3f - A. 2 B. 3 C. 6 D .916.下列函数中与函数有相同定义域的是 ( )y =A .B 。
高一数学函数及其表示试题答案及解析
高一数学函数及其表示试题答案及解析1.下列各组函数是同一函数的是①与;②与;③与;④与。
A.①②B.①③C.③④D.①④【答案】C【解析】①中两函数定义域相同,值域不同,分别为;②中两函数定义域不同,分别为;③、④中两函数定义域、值域都相同。
【考点】函数的概念,即函数的三要素:定义域、对应法则、值域。
2.设计下列函数求值算法程序时需要运用条件语句的函数为().A.B.C.D.【答案】C.【解析】因为分段函数在求值时,不同范围内的自变量对应不同的函数,所以在编写函数求值的算法程序需运用条件语句,故本题选C.【考点】基本算法语句中的条件语句的理解.3.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围【答案】(1)f(x)=x2-x+1,(2)【解析】(1)求二次函数解析式,一般方法为待定系数法.二次函数解析式有三种设法,本题设一般式f(x)=ax2+bx+1,再利用等式恒成立,求出项的系数.由a(x+1)2+b(x+1)-ax2-bx=2x得2ax+a+b=2x,所以.(2)恒成立问题一般转化为最值问题.先构造不等式,再变量分离,这样就转化为求函数的最小值问题.试题解析:(1)设f(x)=ax2+bx+1a(x+1)2+b(x+1)-ax2-bx=2x2ax+a+b=2xf(x)=x2-x+1(2)考点:二次函数解析式,二次函数最值,不等式恒成立4.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.5.下列函数中,与函数有相同图象的一个是A.B.C.D.【答案】B【解析】选项A中函数的定义域为,定义域不相同,故选项A错;选项B中函数可化为,故B正确;选项C中函数的定义域为,故选项C错;选项D中函数的定义域为,故选项D 错.所以正确答案为B.【考点】函数相等.6.设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为()A.(4,2)B.(1,3)C.(6,2)D.(3,1)【答案】D【解析】集合A=B=,从A到B的映射在映射下,B中的元素为,所以,解得,所以集合中的元素为故选D.【考点】本题主要考查了映射的定义.7.下列四组函数,表示同一函数的是( )A.,B.C.D.【答案】D【解析】 A选项两个函数的定义域相同,但至于分别是[0,+∞)和R,所以排除A.B选项的定义域分别为x≠0和x>0,所以排除B.C选项中的定义域分别为R和x≠0,所以排除C.D选项的两函数化简后都是y=x,所以选D.【考点】 1.常见函数的定义域,值域问题.2.同一函数的判定方法.8.下列4对函数中表示同一函数的是( )A.,=B.,=C.=,D.,=【答案】B【解析】A.与=定义域不同;B.与=定义域、值域、对应法则完全相同,所以是同一函数;C.=与的定义域不同;D.与=的值域不同。
专题练习:函数及其表示(含参考答案)
14.(2018·山东济南模拟)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( ) A .-32B .-34C .-32或-34D .32或-34解析:选B.当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.15.已知函数f (x )=⎩⎨⎧-⎝ ⎛⎭⎪⎫12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .[-3,-1]D .{-3}解析:选 B.当0≤x ≤4时,f (x )=-x 2+2x =-(x -1)2+1,∴f (x )∈[-8,1];当a ≤x <0时,f (x )=-⎝ ⎛⎭⎪⎫12x为增函数,f (x )∈⎣⎢⎡⎭⎪⎫-⎝ ⎛⎭⎪⎫12a ,-1,所以⎣⎢⎡⎭⎪⎫-12a ,-1⊆[-8,1],-8≤-12a <-1,∴18≤2a <1. 即-3≤a <0.16.(2018·陕西西安模拟)设函数y =f (x )在R 上有定义,对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( )A .2B .1 C. 2D .- 2解析:选B.由题意,令f (x )=2-x 2=1,得x =±1,因此当x ≤-1或x ≥1时,x 2≥1,-x 2≤-1,∴2-x 2≤1,f M (x )=2-x 2;当-1<x <1时,x 2<1,∴-x 2>-1,∴2-x 2>1,f M (x )=1,所以f M (0)=1,选B.17.(2018·福州调研)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)解析:选C.当a =2时,f (2)=4,f (f (2))=f (4)=24, 显然f (f (2))=2f (2),故排除A ,B.当a =23时,f ⎝ ⎛⎭⎪⎫23=3×23-1=1,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫23=f (1)=21=2.显然f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫23=2f ⎝ ⎛⎭⎪⎫23.故排除D.选C. 18.(2018·石家庄质检)已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎨⎧x ′=4-x ,y ′=y .又y ′=2x ′+1,∴y =2(4-x )+1=9-2x ,即g (x )=9-2x .答案:g (x )=9-2x19.(2018·柳州模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.解析:由题意得⎩⎨⎧f (a )<0,f 2(a )+f (a )≤2或⎩⎨⎧f (a )≥0,-f 2(a )≤2,解得f (a )≥-2.由⎩⎨⎧a <0,a 2+a ≥-2或⎩⎨⎧a ≥0,-a 2≥-2,解得a ≤ 2. 答案:(-∞,2]。
高一数学上册第一章函数及其表示知识点及练习题(含答案)
精心整理函数及其表示(一)知识梳理1.映射的概念设BA、是两个非空集合,如果按照某种对应法则f,对A中的任(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:映射的概念例1.下述两个个对应是A 到B 的映射吗?(2)x xx f =)(,⎩⎨⎧<-≥=;01,01)(x x x g(3)x x f =)(1+x ,x x x g +=2)(;(4)12)(2--=x x x f ,12)(2--=t t t g(5)1212)(++=n n x x f ,1212)()(--=n n x x g (n ∈N *);考点3:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;例2.已知)()11,f x f x =-=则_____________。
例3.已知)11(x x f -+=2211xx +-,则)(x f 的解析式可取为 题型3:求抽象函数解析式例1.已知函数)(x f 满足x xf x f 3)1(2)(=+,求)(x f例2、已知:1)(3)(2+=-+x x f x f ,求()f x 表达式.例3.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数,()g x 是奇函数,且1()()1f x g x x +=-,求()f x 和()g x 的解析式.考点4:求函数的定义域题型1:求有解析式的函数的定义域(1)方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范(2-∞-,)()3+∞,][)()22,33+∞, ]2-, 、函数x x x x f -+=0)1()(的定义域是()B.{}C.{(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,例1、322+--=x x y例2、2285y x x =-+-(1)]1,1[-∈x (2)]4,1[∈x (3)]8,4[∈x(2)判别式法:通过对二次方程的实根的判别求值域。
函数及其表示单元(必修1第一章)基础训练题
函数及其表示单元(必修1第一章)基础训练题满分100分,时间45分钟一、选择题(本大题共6小题,每小题5分,共30分。
)1 判断下列各组中的两个函数是同一函数的为( )⑴)3(351+⋅+-=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x fA ⑴、⑵B ⑵、⑶C ⑷D ⑶、⑸2 函数()y f x =的图象与直线1x =的公共点数目是( ) A 1 B 0 C 0或1 D 1或23 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A 2,3 B 3,4 C 3,5 D 2,5 4 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( ) A 1 B 1或32 C 1,32或D5 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( ) A 沿x 轴向右平移1个单位 B 沿x 轴向右平移12个单位 C 沿x 轴向左平移1个单位 D 沿x 轴向左平移12个单位 6 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A 10 B 11 C 12 D 13二、填空题(本大题共5小题,每小题6分,共30分。
) 7 设函数.)().0(1),0(121)(a a f x x x x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 8 函数422--=x x y 的定义域 9 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9, 则这个二次函数的表达式是10 函数0y =_____________________11 函数1)(2-+=x x x f 的最小值是_________________ 三、解答题(本大题共4题,共40分。
高三数学专题复习-函数概念及其表示专题练习带答案
04 函数概念及其表示1.函数f (x )=log 2(1-2x )+1x +1的定义域为( ) A.⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 【答案】D.要使函数有意义,需满足⎩⎪⎨⎪⎧1-2x >0,x +1≠0,解得x <12且x ≠-1,故函数的定义域为(-∞,-1)∪(-1,12).2.已知集合A={x|x 2-2x ≤0},B={y|y=log 2(x+2),x ∈A },则A ∩B 为( ) A.(0,1) B.[0,1] C.(1,2) D.[1,2]【答案】D由题意,集合A={x|x 2-2x ≤0}=[0,2], 因为x ∈A ,则x+2∈[2,4],所以B={y|y=log 2(x+2),x ∈A }=[1,2], 所以A ∩B=[1,2].故选D .3.已知函数f (x )=⎩⎪⎨⎪⎧f (-x ),x >2,ax +1,-2≤x ≤2,f (x +5),x <-2,若f (2 019)=0,则a =( )A .0B .-1C .1D .-2【答案】B.由于f (2 019)=f (-2 019)=f (-404×5+1)=f (1)=a +1=0,故a =-1.4.下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( ) A.y=x B.y=lg x C.y=2x D.y=【答案】Dy=10lg x =x ,定义域与值域均为(0,+∞).A 项中,y=x 的定义域和值域均为R;B 项中,y=lg x 的定义域为(0,+∞),值域为R;C 项中,y=2x 的定义域为R,值域为(0,+∞);D 项中,y=的定义域与值域均为(0,+∞).故选D . 5.若函数f (x )满足f (1-ln x )=1x,则f (2)等于( )A.12 B .e C.1e D .-1【答案】B.解法一:令1-ln x =t ,则x =e 1-t ,于是f (t )=1e1-t ,即f (x )=1e1-x ,故f (2)=e.解法二:由1-ln x =2,得x =1e ,这时1x =11e =e ,即f (2)=e.6.若函数y=f (x )的值域是[1,3],则函数F (x )=1-f (x+3)的值域是( ) A.[-8,-3] B.[-5,-1]C.[-2,0]D.[1,3]【答案】C∵1≤f (x )≤3,∴1≤f (x+3)≤3,-3≤-f (x+3)≤-1,∴-2≤1-f (x+3)≤0.故F (x )的值域为[-2,0].7.设函数f (x )=⎩⎪⎨⎪⎧3x -b , x <1,2x , x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B .78C.34 D .12【答案】D.f ⎝⎛⎭⎫56=3×56-b =52-b , 当52-b ≥1,即b ≤32时,f ⎝⎛⎭⎫52-b =252-b , 即252-b =4=22,得到52-b =2,即b =12;当52-b <1,即b >32时,f ⎝⎛⎭⎫52-b =152-3b -b =152-4b , 即152-4b =4,得到b =78<32,舍去. 综上,b =12,故选D.8. 若任意都有,则函数的图象的对称轴方程为A .,B .,C .,D .,【答案】A令,代入则联立方程得解方程得=所以对称轴方程为解得所以选A 。
高中函数入门练习题及讲解
高中函数入门练习题及讲解1. 函数的概念和表示法练习题:定义一个函数f(x),使得f(x) = 2x + 3。
求f(5)的值。
答案:将x=5代入函数f(x) = 2x + 3,得到f(5) = 2*5 + 3 = 13。
2. 函数的自变量和因变量练习题:如果一个函数y = f(x),当x增加1时,y的值将如何变化?答案:在函数y = f(x)中,y是因变量,x是自变量。
如果x增加1,y的值将根据函数的具体形式发生变化。
例如,如果y = x^2,那么当x增加1时,y将增加(1+x)^2 - x^2 = 2x + 1。
3. 函数的图像练习题:画出函数y = x^2的图像,并标出顶点坐标。
答案:函数y = x^2是一个开口向上的抛物线。
顶点坐标是原点(0,0)。
4. 函数的单调性练习题:判断函数f(x) = x^3在实数范围内的单调性。
答案:函数f(x) = x^3在实数范围内是单调递增的,因为对于任意x1 < x2,都有f(x1) < f(x2)。
5. 函数的奇偶性练习题:确定函数f(x) = |x|的奇偶性。
答案:函数f(x) = |x|是偶函数,因为对于所有实数x,都有f(-x) = |-x| = |x| = f(x)。
6. 复合函数练习题:如果有两个函数g(x) = 2x + 1和h(x) = x^2,求复合函数g(h(x))。
答案:将h(x)的表达式代入g(x)中,得到g(h(x)) = g(x^2) =2(x^2) + 1 = 2x^2 + 1。
7. 反函数练习题:如果有一个函数f(x) = 3x - 1,求其反函数。
答案:设y = 3x - 1,解出x得到x = (y + 1) / 3。
因此,反函数为f^-1(x) = (x + 1) / 3。
8. 函数的值域练习题:确定函数f(x) = 1/x的值域。
答案:函数f(x) = 1/x的值域是所有正实数和所有负实数,即(-∞, 0)并(0, +∞),因为分母不能为零。
专题05 函数的概念及其表示、分段函数(课时训练)原卷版附答案.pdf
专题05 函数的概念及其表示、分段函数【基础稳固】1.(2012·全国高一课时练习)设集合,,那么下面的4个图形中,能表{|02}M x x =≤≤{|02}N y y =≤≤示集合M 到集合N 的函数关系的有( )A .B .C .D .①②③④①②③②③②2.(2020·安徽省高三其他(文))已知函数的定义域为A ,则( )y =A R ðA .B .{0}{1}xx x x ≤⋃≥∣∣{0}{1}xx x x <⋃>∣∣C .D .{01}xx ≤≤∣{01}xx <<∣3.若函数的定义域是[0,4],则函数的定义域是( )()y f x =(2)()1f x g x x =-A .B .C .D .[]0,8[]0,1)(1,8⋃[]0,1)(1,2⋃[]0,24.函数的定义域是()()()1ln 2f x x =-+A .B .[)(]3113--- ,,[)(]2113--- ,,C .D .()(]2113--- ,,(]23-,5.(2020春•历下区校级期中)(多选题)数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数”,下列说法正确的是( )A .对于任意一个圆,其“优美函数”有无数个B .f (x )=x 3可以是某个圆的“优美函数”C .正弦函数y =sin x 可以同时是无数个圆的“优美函数”D .函数y =f (x )是“优美函数”的充要条件为函数y =f (x )的图象是中心对称图形6.函数的定义域为,那么其值域为( )22y x x =-{}0,1,2,3A.B.C. D.{}1,0,3-{}1,0,2,3-[]1,3-[]2,3-7.(2020·全国高一)已知函数,若,则实数之值为( )(21)43(R)f x x x -=+∈()15f a =a A .2B .3C .4D .58.(2020·山东潍坊一中高二月考)(多选题)对于定义域为D 的函数f (x ),若存在区间[m ,n ]D ,同时满⊆足下列条件:①f (x )在[m ,n ]上是单调的;②当定义域是[m ,n ]时,f (x )的值域也是[m ,n ],则称[m ,n ]为该函数的“和谐区间”.下列函数存在“和谐区间”的有()A .B .C .D .()321f x x =+()2f x x=()-2x f x e =()ln 1f x x =+9.(2020·全国高三专题练习(理))已知函数,则______;若()221,1,1x x f x x x +<⎧=⎨≥⎩12f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则______.()1f a =a =10.(2017·全国高一课时练习)已知函数f(x)=,61x -(1)求函数f(x)的定义域;(2)求f(-1), f(12)的值.【能力提升】11.(2020·全国高一)函数的定义域为( )y =A .B .C .D .(],1-∞-[]1,1-[)()1,22,⋃+∞111,,122⎡⎫⎛⎤---⎪ ⎢⎥⎣⎭⎝⎦ 12.(2020·全国高一)函数的值域是()y x =+A .(-∞,1B .(-∞,-1C .RD .[1,+∞]]13.(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是( )A .出租车行驶4 km,乘客需付费9.6元B .出租车行驶10 km,乘客需付费25.45元C .某人乘出租车行驶5 km 两次的费用超过他乘出租车行驶10 km 一次的费用D .某人乘坐一次出租车付费22.6元,则此次出租车行驶了9 km 14.设函数()221f x x ax a =+--,[]0,2x ∈,a 为常数。
函数入门基础测试题及答案
函数入门基础测试题及答案一、选择题1. 函数(function)是数学中的一种关系,其中每个元素都有一个相对应的元素。
请问以下哪项不是函数的特性?A. 唯一性B. 有序性C. 多元性D. 唯一确定性答案:B2. 如果一个函数的定义域是实数集,那么这个函数被称为:A. 奇函数B. 偶函数C. 定义域函数D. 无限函数答案:C3. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0B. 1C. 4D. 6答案:C二、填空题4. 函数y = f(x)中,自变量是_________,因变量是_________。
答案:x;y5. 如果一个函数满足f(x) = f(-x),那么这个函数被称为_________函数。
答案:偶函数三、解答题6. 已知函数f(x) = 2x - 3,请找出f(5)的值。
答案:将x=5代入函数f(x) = 2x - 3,得到f(5) = 2*5 - 3 =10 - 3 = 7。
7. 判断函数f(x) = x^2是否为奇函数或偶函数,并说明理由。
答案:函数f(x) = x^2是偶函数。
理由是对于所有x属于其定义域,都有f(x) = f(-x),即x^2 = (-x)^2。
四、计算题8. 计算函数f(x) = x^3 - 6x^2 + 11x - 6在x=2, x=3, x=4时的值。
答案:- 当x=2时,f(2) = 2^3 - 6*2^2 + 11*2 - 6 = 8 - 24 + 22 -6 = 0。
- 当x=3时,f(3) = 3^3 - 6*3^2 + 11*3 - 6 = 27 - 54 + 33 - 6 = 0。
- 当x=4时,f(4) = 4^3 - 6*4^2 + 11*4 - 6 = 64 - 96 + 44 - 6 = 6。
五、证明题9. 证明函数f(x) = x^2 + 2x + 1是一个奇函数。
答案:要证明f(x)是奇函数,我们需要证明对于所有x属于其定义域,都有f(-x) = -f(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(数学1必修)函数及其表示
一、选择题 1 判断下列各组中的两个函数是同一函数的为( ) ⑴3
)5)(3(1+-+=
x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =;
⑷()f x =
()F x = ⑸21)52()(-=x x f ,52)(2-=x x f A ⑴、⑵ B ⑵、⑶ C ⑷ D ⑶、⑸ 2 函数()y f x =的图象与直线1x =的公共点数目是( ) A 1 B 0 C 0或1 D 1或2 3 已知集合{}{}
421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A 2,3 B 3,4 C 3,5 D 2,5 4 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x 的值是( ) A 1 B 1或32 C 1,32
或 D
5 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( ) A 沿x 轴向右平移1个单位 B 沿x 轴向右平移
12
个单位 C 沿x 轴向左平移1个单位 D 沿x 轴向左平移12个单位 6 设⎩
⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A 10 B 11 C 12 D 13
二、填空题
1 设函数.)().0(1),0(121)(a a f x x x x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是
2 函数4
22--=x x y 的定义域 3 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9, 则这个二次函数的表达式是
4 函数0
y =定义域是_____________________
5 函数1)(2-+=x x x f 的最小值是_________________ 三、解答题
1 求函数()f x =的定义域
2 求函数12++=x x y 的值域
3 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,
求()y f m =的解析式及此函数的定义域
4 已知函数2
()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值
参考答案
一、选择题 1 C (1)定义域不同;(2)定义域不同;(3)对应法则不同;
(4)定义域相同,且对应法则相同;(5)定义域不同; 2 C 有可能是没有交点的,如果有交点,那么对于1x =仅有一个函数值; 3 D 按照对应法则31y x =+,{}{}
424,7,10,314,7,,3B k a a a =+=+ 而*4,10a N a ∈≠,∴24310,2,3116,5a a a k a k +==+=== 4 D 该分段函数的三段各自的值域为(][)[),1,0,4,4,-∞+∞,而[)30,4∈
∴2()3,12,f x x x x ===-<<而∴ x =
1. D 平移前的“1122()2x x -=--”,平移后的“2x -”,
用“x ”代替了“12
x -”,即1122x x -+→,左移 6 B [][](5)(11)(9)(15)(13)11f f f f f f f =====
二、填空题
1. (),1-∞- 当10,()1,22
a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a
<=><-时; 2 {}|2,2x x x ≠-≠且 240x -≠ 3 (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =,
当1x =时,max 99,1y a a =-==- 4 (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩
5 54- 22155()1()244
f x x x x =+-=+-≥ 三、解答题
1 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-
2 解: ∵221
331(),244
x x x ++=++≥
∴y ≥,∴值域为)+∞
3 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,
222121212()2y x x x x x x =+=+-
224(1)2(1)
4102m m m m =--+
=-+ ∴2()4102,(03)f m m m m m =-+≤≥或 4 解:对称轴1x =,[]1,3是()f x 的递增区间,
max ()(3)5,335f x f a b ==-+=即
min ()(1)2,32,f x f a b ==--+=即 ∴3231,.144a b a b a b -=⎧==⎨
--=-⎩得。