花青素提取(借鉴材料)

合集下载

天然花青素的提取

天然花青素的提取

花青素的提取一.课题目的、意义及研究现状1.课题的目的从瓜果蔬菜之中提取天然花青素,满足人们对新型保健品的需求,提高生活水平,丰富选择性,抗氧化、防突变,预防一些心脑血管疾病、保护肝脏等。

花青素(Anthocyanidin),又称花色素,是自然界一类广泛存在于植物中的水溶性天然色素,可以随着细胞液的酸碱改变颜色。

细胞液呈酸性则偏红,细胞液呈碱性则偏蓝,属类黄酮化合物。

也是植物花瓣中的主要呈色物质,水果、蔬菜、花卉等五彩缤纷的颜色大部分与之有关。

花青素的相对分子质量:287.246 分子式:61115O H C花青素分子式2.研究意义花青素同其他天然色素一样无毒无副作用,安全性能高,着色色调自然,更接近天然物质的颜色,且具有保健功能。

自然界有超过300种不同的花青素,他们来源广泛,存在于许多瓜果蔬菜之中,功效神奇。

花青素是一种强有力的抗氧化剂,能够保护人体免受自由基的有害物质的损伤,花青素还能够增强血管弹性,改善循环系统和增进皮肤的光滑度,抑制炎症和过敏,改善关节的柔韧性。

花青素为人体带来多种益处。

从根本上讲,花青素是一种强有力的抗氧化剂,它能够保护人体免受一种叫做自由基的有害物质的损伤。

另外也可用于化妆品,如红色花青素做口红。

这些商品用色素(除葡萄皮色素外)共同特征是对光、热、氧稳定性好,对微生物稳定,一般溶于水和乙醇,不溶于植物油。

具体来说,花青素有如下几种作用:⑴.有助于预防多种与自由基有关的疾病,包括癌症、心脏病、过早衰老和关节炎;⑵.通过防止应激反应和吸烟引起的血小板凝集来减少心脏病和中风的发生; ⑶.增强免疫系统能力来抵御致癌物质;⑷.降低感冒的次数和缩短持续时间;⑸.具有抗突变的功能从而减少致癌因子的形成;⑹.具有抗炎功效,因而可以预防包括关节炎和肿胀在内的炎症; ⑺.缓解花粉病和其它过敏症;⑻.增强动脉、静脉和毛细血管弹性;⑼.保护动脉血管内壁;⑽.保持血细胞正常的柔韧性从而帮助血红细胞通过细小的毛细血管,因此增强了全身的血液循环、为身体各个部分的器官和系统带来直接的益处,并增强细胞活力;⑾.松弛血管从而促进血流和防上高血压(降血压功效);⑿.防止肾脏释放出的血管紧张素转化酶所造成的血压升高;⒀.作为保护脑细胞的一道屏障,防止淀粉样β蛋白的形成、谷氨酸盐的毒性和自由基的攻击,从而预防阿尔茨海默氏病;⒁.通过对弹性蛋白酶和胶原蛋白酶的抑制使皮肤变得光滑而富有弹性,从内部和外部同时防止由于过度日晒所导致的皮肤损伤等等;⒂. 花青素可以促进视网膜细胞中的视紫质再生,预防近视,增进视力。

花青素提取实验报告

花青素提取实验报告

花青素提取实验报告花青素提取实验报告植物中的花青素是一类具有丰富颜色的天然色素,广泛存在于花朵、果实、叶子等植物组织中。

花青素不仅为植物赋予了吸引力的色彩,还具有很多生物活性,如抗氧化、抗炎、抗癌等。

因此,对花青素的提取和研究具有重要意义。

本实验旨在探究不同溶剂对花青素提取效果的影响,并比较不同植物材料中花青素的含量差异。

实验选取了红花、紫苏和紫甘蓝三种常见的植物材料作为研究对象。

实验步骤如下:1. 材料准备:准备红花、紫苏和紫甘蓝三种植物材料,并将其分别洗净、切碎备用。

2. 提取溶剂选择:选取乙醇、醋酸乙酯和水三种常用溶剂作为提取试剂,分别标注为A、B和C。

3. 提取过程:将每种植物材料分别加入三个烧杯中,每个烧杯中加入适量的提取溶剂,浸泡一段时间后,用搅拌棒搅拌均匀。

4. 过滤:将提取液用滤纸过滤,去除固体颗粒。

5. 浓缩:将过滤后的提取液分别倒入烧杯中,放在加热板上进行浓缩,直至溶剂蒸发完全。

6. 称量:将浓缩后的花青素溶液称量并记录。

7. 分光光度计测定:将每个烧杯中的花青素溶液分别转移到试管中,使用分光光度计测定吸光度。

8. 计算花青素含量:根据吸光度值,利用标准曲线计算出花青素的含量。

实验结果如下:在本实验中,我们选取了红花、紫苏和紫甘蓝三种植物材料进行花青素提取实验。

通过比较不同溶剂对花青素提取效果的影响,我们发现乙醇溶剂(A)对三种植物材料中花青素的提取效果最好。

在红花提取实验中,乙醇溶剂(A)的吸光度值最高,表明乙醇溶剂对红花中花青素的提取效果最佳。

紫苏和紫甘蓝的提取实验结果也是如此。

这可能是因为乙醇具有较好的溶解性,能够更好地溶解植物组织中的花青素。

此外,我们还发现不同植物材料中花青素的含量存在差异。

红花中花青素含量最高,紫苏次之,紫甘蓝最低。

这可能与不同植物材料的生长环境、基因差异等因素有关。

通过本实验,我们深入了解了花青素的提取过程以及不同溶剂对提取效果的影响。

同时,我们也发现了不同植物材料中花青素含量的差异。

紫甘蓝中花青素提取实验报告

紫甘蓝中花青素提取实验报告

紫甘蓝中花青素的提取(安徽农业大学 12青年农场主班)花青素具有很强的抗氧化作用,具有清除体内自由基、过敏、保护胃粘膜等多种功能,引起了国内外学者广泛关注。

目前抗变异、抗肿瘤、抗,对花青素的研究主要集中于花青素的提取、分离纯化、热稳定性、抗氧化性及其生理功能等方面。

1、实验原理紫甘蓝花青素或花色素属于黄酮类化合物,极性较高,可溶于水或甲醇乙醇等有机溶剂中。

根据相似相溶的原则,本实验选用乙醇作为紫甘蓝花色素的浸提剂,采用大孔吸附树脂法分离提纯。

大孔吸附树脂具有吸附性能和分子筛的作用,使相对分子质量和吸附能力不同的混合物的不同成分得到分离。

紫甘蓝叶片与60%乙醇混合在组织捣碎机中破坏紫甘蓝细胞,使花色素尽可能多的溶解。

为了防止花色素的降解以提高其溶出率,可在其中加入1%盐酸。

八层纱布过滤后,留一小烧杯备用,剩余的用大孔树脂除杂,加入200ml 15%的乙醇溶液除去其他可溶性杂质,让树脂吸附花色素,再用60%乙醇洗脱,解析得到乙醇和花色素的混合液。

将过柱的溶液以HCl:混合液=1:4的比例混合至烧杯中,在90。

C的水浴锅中水解一小时,以破坏花色素的糖苷键,使花色素均以花青素的形式存在。

此时,用20ml纯水除杂,用无水乙醇洗脱,得到较为单一的花青素与乙醇混合液。

在旋转蒸发仪上蒸干。

2、材料、药品与仪器新鲜紫甘蓝15%乙醇、60%乙醇+1%HCl混合液、弄HCl、无水乙醇、AB-8打孔吸附树脂电子天平、组织捣碎机、交换柱、玻璃棒、50ml量筒漏斗、烧杯、圆底烧瓶、纱布、比色皿、分光光度计、旋转蒸发仪3、实验步骤●配制60%+1%HCl混合液与15%乙醇溶液备用●称取100.0g新鲜紫甘蓝叶片,量取60%+1%HCl混合液300ml(浸提剂),同时放入组织捣碎机中捣碎,浸提●所得固液混合物用8层纱布过滤,取一点滤液备用,剩余滤液1:5加水稀释得色素原液●将备用滤液再用滤纸过滤,用浸提剂做空白,测定其对520nm光的吸光度,并作标准曲线。

花青素提取实验论文[终稿]

花青素提取实验论文[终稿]

紫甘蓝中花青素的提取研究【摘要】蓝花青素具有很强的抗氧化作用,具有清除体内自由基、过敏、保护胃粘膜等多种功能,引起了国内外学者广泛关注。

目前抗变异、抗肿瘤、抗,对花青素的研究主要集中于花青素的提取、分离纯化、热稳定性、抗氧化性及其生理功能等方面。

本文主要研究了紫甘蓝花青素的提取工艺;用大孔树脂初步纯化紫甘蓝花青素;对紫甘蓝花青素纯度鉴定。

采用“溶剂提取、萃取、树脂纯化、薄层色谱”相结合的方案对紫甘蓝花青素进行了分离纯化。

【关键词】紫甘蓝花青素提取分离纯化1.1引言花青素作为可使用色素之一,具有多种生物学作用,将广泛用于食品加工、医药保健品、化妆品行业。

虽然国内外己开展了一些研究,主要集中在花青素粗品的提取方法的研究方面,而对紫甘蓝花青素的组成及分子结构鉴定、生物学活性、药理作用的研究还很少,还需要大量数据为其进一步开发和利用提供理论依据。

2.1材料与方法2.1.1实验材料新鲜紫甘蓝2.1.2实验方法溶剂提取、萃取、树脂纯化、薄层色谱2.2主要仪器、试剂分析天平、外分光光度计、环水式多用真空泵、心机、旋转蒸发仪、恒温水浴锅、无水乙醇、甲醇、孔树脂、浓盐酸。

2.3实验方法2.3.1紫甘蓝色素的提取取新鲜80G的紫甘蓝叶片于大杯中加入一定的浸提剂,吸取一定体积的浸提液于 1 Oml比色管中,用浸提剂稀释至刻度,用浸提剂做空白,测定其对520nm光的吸光度。

采用溶剂提取法。

称取紫甘蓝80g,用500ml的60%乙醇和1%盐酸混合液进行捣碎浸提8层纱布过滤,4℃条件下静置3h,离心测OD 值。

2.3.2紫甘蓝色素的初步纯化大孔树脂预处理的方法:将待处理的大孔树脂装入柱中,用95%乙醇浸泡24h一用95%乙醇2}4BV冲洗一用去离子水洗至无醇味一5%氢氧化钠溶液2}4BV冲洗树脂柱一水洗至中性一10%乙酸2}4BV冲洗通过树脂柱一水洗至中性,备用。

滤液用5倍的纯水稀释,大孔吸附树脂法分离,往吸附柱中先用15%乙醇除杂,再用60%乙醇洗脱收集洗脱液;用四分之一的盐酸在90℃条件下水解1h,再加5倍纯水稀释;大孔吸附树脂再次分离,此时用水除杂,无水乙醇洗脱收集;2.3.3花青素的浓缩结晶无水乙醇洗脱液用旋转蒸发仪浓缩,放冰箱中等待是否有结晶甲醇:盐酸=4:1做展开剂测纯度3.1 实验结果及讨论3.1.1浓度计算紫甘蓝捣碎榨汁后得到深紫色溶液,过滤静置稀释40测得OD值为0.865由曲线可得到花青素含量为1.98mg/ml或 6.94mmol/ml3.1.2结果讨论关于天然色素的提取纯化。

花青素的提取方法和步骤

花青素的提取方法和步骤

花青素的提取方法和步骤花青素是一类广泛存在于植物中的天然色素,具有重要的生物学和营养学价值。

提取花青素的方法有很多种,下面将介绍其中几种常用的方法和步骤。

一、酸碱法提取花青素1. 材料准备:将需要提取花青素的植物材料(如紫苏叶、蓝莓等)洗净,晾干备用。

2. 粉碎植物材料:将晾干的植物材料用粉碎机或者研磨器研磨成细粉末。

3. 提取溶剂的准备:准备酸性和碱性的溶剂,如乙酸、盐酸和氢氧化钠等。

4. 酸性提取:将粉碎的植物材料与酸性溶剂混合,加热搅拌一段时间,使花青素溶解在溶剂中。

5. 碱性提取:将酸性溶剂中的混合物与碱性溶剂混合,再次加热搅拌一段时间,使花青素从酸性溶剂中转移到碱性溶剂中。

6. 分离花青素:用分液漏斗将混合溶液分离,花青素会被碱性溶剂提取出来。

7. 萃取花青素:将碱性溶剂中的花青素进行浓缩和纯化,可用醇类溶剂进行萃取。

8. 干燥花青素:将提取到的花青素溶液经过过滤和浓缩后,用低温真空干燥仪将溶剂去除,得到干燥的花青素。

二、醇法提取花青素1. 材料准备:将需要提取花青素的植物材料(如紫薯、葡萄皮等)洗净,晾干备用。

2. 粉碎植物材料:将晾干的植物材料用粉碎机或者研磨器研磨成细粉末。

3. 提取溶剂的准备:准备醇类溶剂,如乙醇、丙酮等。

4. 醇提:将粉碎的植物材料与醇类溶剂混合,加热搅拌一段时间,使花青素溶解在溶剂中。

5. 过滤:将醇提液进行过滤,去除固体杂质。

6. 浓缩:将过滤后的溶液进行浓缩,可用旋转蒸发仪等设备进行浓缩。

7. 纯化:对浓缩后的花青素溶液进行纯化处理,如用硅胶柱层析等方法进行纯化。

8. 干燥花青素:将纯化后的花青素溶液进行低温真空干燥,得到干燥的花青素。

三、超声波法提取花青素1. 材料准备:将需要提取花青素的植物材料(如紫甘蓝、蓝莓等)洗净,晾干备用。

2. 粉碎植物材料:将晾干的植物材料用粉碎机或者研磨器研磨成细粉末。

3. 提取溶剂的准备:准备酸性和醇类溶剂,如盐酸和乙醇等。

花青素用水提取的原理

花青素用水提取的原理

花青素用水提取的原理
花青素是一类水溶性天然色素,其主要存在于蓝色、紫色的植物和食物中,如紫菜、蓝莓、紫薯、葡萄皮等。

提取花青素的一种常用方法是水提取,其原理如下:
1. 破碎:首先,需要将含有花青素的植物材料(例如紫薯)进行破碎,以增加其表面积,便于花青素与水的接触。

2. 溶解:破碎后的植物材料会与水接触,其中的花青素会溶解在水中。

这是因为花青素具有较好的水溶性,其分子结构中含有亲水基团,可与水分子形成氢键。

3. 过滤:提取出的花青素溶液需要通过过滤的方式去除杂质、植物残渣等固体物质。

一般会使用滤纸或滤网等设备进行过滤。

4. 蒸发:将过滤后的花青素溶液进行蒸发,去除水分,使溶液中的花青素浓缩。

5. 结晶:浓缩后的花青素溶液可能会形成结晶,可以通过结晶的方式进一步提纯花青素。

需要注意的是,水提取花青素的效果受到多种因素的影响,包括植物原料的质量、温度、时间等。

此外,花青素的稳定性较差,容易受到光、热、氧化等因素的影响而降解,因此在提取过程中需要注意保护花青素的稳定性。

葡萄中原花青素的提取

葡萄中原花青素的提取

葡萄中原花青素的提取摘要原花青素是抗氧化、清除自由基能力很强的物质,它能有效清除人体内多余的自由基,具有超强的延缓衰老和增强免疫力的作用。

原花青素是一大类多酚化合物的总称,最简单的原花青素是儿茶素、表儿茶素或儿茶素与表儿茶素形成的二聚体。

本题我们通过标准曲线法对葡萄中原花青素含量进行定量分析;二我们利用超声波破碎提取法分别得出葡萄皮和葡萄籽中原花青素的得率。

关键词原花青素标准曲线法定量超声破碎提取法得率前言原花青素,是一种有着特殊分子结构的生物类黄酮,是目前国际上公认的清除人体内自由基最有效的天然抗氧化剂。

一般为红棕色粉末,气微、味涩,溶于水和大多有机溶剂。

一般为葡萄籽提取物或法国海岸松树皮提取物。

原花青素(葡萄籽提取物)是一种新型高效抗氧化剂,是目前为止所发现的最强效的自由基清除剂,具有非常强的体内活性。

实验证明,OPC的抗自由基氧化能力是维生素E的50倍,维生素C的20倍,并吸收迅速完全,口服20分钟即可达到最高血液浓度,代谢半衰期达7小时之久。

葡萄籽原花青素是清除自由基最强的抗氧化剂。

在人体内的抗氧化和清除自由基的能力是维生E的50倍,是维生素C的20倍。

其作用机理主要是原花青素能够自由基交换一个氢原子或电子,与欲清除的自由基有近似的氧化还原电位,生成的自由基通过离域化而稳定由于原花青素分子结构上有多个酚羟基,它们可以与暂存性自由基结合,生成稳定的自由基,螯合启动脂质过氧化的金属离子,参与抗氧化的协同作用。

通过终止自由基链式反应,螯合金属离子,清除活性氧(与封闭系统中的氧反应),原花青素可以减少或消除氧自由基对机体组织和器官的损害作用。

原花青素能够通过制造弹性蛋白和胶原纤维加固毛细血管壁,从而进一步防御自由基的侵蚀。

高品质的低聚原花青素由于在水中和醇中具有良好的溶解性,加上色泽亮丽,资源丰富,疗效显著,副作用微小的特点,被广泛应用到药物、化妆品和功能性食品等领域。

同时其既可作为营养强化剂,又可作为防腐剂替代合成防腐剂(如苯甲酸等),符合人们回归自然的要求,提高了其应用的安全性。

花青素的提取

花青素的提取

生化实验报告———————————————————————————山楂原花色素的提取一实验目的1.了解并掌握从山楂中制备原花色素的方法。

二实验原理原花色素(也称原花青素)(proanthocyanidins)是一类从植物中分离得到的在热酸条件下能产生花色素的多酚化合物。

它既存在于多种水果的皮、核和果肉中,如葡萄、苹果、山楂等。

也存在于如黒荆树、马尾松、思茅松、落叶松等的皮和叶中。

原花色素属于生物类黄酮(flavonoids),它们是由不同数量的儿茶素或表儿茶素聚合而成,最简单的原花色素是儿茶素的二聚体,此外还有三聚体,四聚体等。

依据聚合度的大小,通常将二至四聚体称为低聚体,而五聚体以上的称为高聚体。

从植物中提取原花色素的方法一般有两种,分别是用水抽提或用乙醇抽提。

其抽提物为低聚物,称之为低聚原花色素(oligometic proanthocyanidins,简称OPC)。

生理功用:1.最好的心脏保护剂,抵御引发心血管疾病的诱变因素的冲击。

2.强化血管,有消肿化瘀的功效。

减少毛细血管的阻力和改善渗透性,使细胞更容易吸收养分与排除废物。

3.高效抗氧化能力。

清除氧自由基的能力比其他天然抗氧化剂如胡萝卜素、维生素C和E、儿茶素等强很多。

4.产生组胺的抑制剂,减轻炎症。

抗过敏皮肤保健、抗衰老。

利用低聚原花青素溶于水的特点,用热水煮沸抽提原花青素,再用大孔吸附树脂吸附、洗脱得到原花青素。

D-101树脂是一种球状、苯乙烯型、非极性交联聚合物吸附剂,具有相当大的比表面积和适当的孔径,对皂苷类、黄酮类、生物碱等物质有特殊的选择性,适用于从水溶液中提取类似性质的有机物质。

三实验器材1. 新鲜山楂(或山楂片),市售。

2. 烧杯。

3. 高速组织粉碎机。

4. 玻璃层析柱1.5cm*20cm。

5. 大孔吸附树脂D-101。

6.电磁炉。

7. 不锈钢锅。

8.双层纱布。

四实验试剂1、95%乙醇(实验室提供)。

2、60%乙醇:取95%乙醇60ml,加入蒸馏水,使体积达到95ml。

黑米中花青素的提取

黑米中花青素的提取

黑米中花青素的粗提取摘要:本课题以黑米为原料,采用水提法和酸化乙醇提取法对黑米中的花青素进行粗提取。

采用单因素试验考察了料液比、提取时间、提取温度、pH值及提取液浓度对花青素提取量的影响。

在此基础上,通过正交试验考察花青素的最佳提取工艺。

关键词:黑米;花青素前言化学合成的食用色素具有色泽鲜艳、稳定性好、成本低廉、制备简单等优点,在食品工业中得到广泛应用。

随着人们回归自然的意识日益增强,促使人类重新认识到天然色素作为食品添加剂具有不可代替的价值。

天然色素直接取自于自然界中的动植物和微生物,因而用于食品、化妆品及至药品更为安全可靠。

我国食品行业对合成色素与天然色素都有使用[1]。

但现代医学研究表明:合成色素作为食品着色剂可造成人体伤害。

因此,许多发达国家禁止在食品中使用合成色素,天然色素来源于自然,具有安全性,有的还有一定的营养和药理作用[2]。

开发天然色素取代人工合成色素作为食品着色剂是必然的发展趋势。

黑米是特种稻米,营养丰富,具有一定的保健作用,被认为是滋补佳品,有“开胃益中,健脾暖肝,明目活血,滑涩补精”等作用,历来深受东亚地区人民的喜爱。

研究证实,黑米所表现出来生理保健作用主要不是来自黑米中的膳食纤维、维生素和矿物质等营养素,而是与黑米皮中富含的花色苷色素有关[3]。

花色苷是自然界广泛分布的一种植物多酚,在大部分植物花瓣和果实种皮当中都不同程度的存在。

黑米成熟过程中,会在种皮内积聚大量花色苷色素,从而使其糙米呈现出棕红色、紫红色、紫黑色乃至黑色等颜色。

近年来的研究发现,花色苷类物质除了赋予植物丰富的色彩外,还具有抗氧化、抗炎、降血脂以及抑制肿瘤生成等生理功能,同时花色苷作为一种较为安全的天然色素,在食品工业也显示出了广阔的应用前景[4],因而研究和开发利用黑米色素有良好的发展前景。

花青素分子中因存在高度分子共轭体系,易溶于水、甲醇、乙醇等极性溶剂中,因此通常以含有少量盐酸或甲酸的乙醇为溶剂提取花青素。

花青素的提取方法

花青素的提取方法

花青素的提取方法
花青素是一种天然的植物色素,可以通过以下几种方法进行提取:
1. 酸性提取法:将植物材料(如花瓣、果皮等)加入酸性溶液中,在较低的pH值下进行浸泡和加热。

酸性条件可以帮助破
坏细胞壁,释放并溶解花青素。

接着使用沉淀、过滤等技术将花青素分离出来。

2. 酮提取法:将植物材料与酮类溶剂(如乙酮、己酮等)进行冷浸提取。

这种方法对保护花青素结构和色素稳定性非常有效,并且能够提取出较高纯度的花青素。

3. 水提取法:将植物材料与水进行浸泡和煮沸,使用水溶性色素分离和提取技术将花青素从水中分离出来。

这种方法适用于那些对热稳定性较好的花青素。

4. 超临界流体提取法:将植物材料与超临界流体(如二氧化碳)进行萃取,利用超临界流体的温度和压力的调节,来提取和分离花青素。

这种方法对花青素的提取效果较好,但设备和操作要求较高。

以上是一些常见的花青素提取方法,具体的提取方法可以根据实际情况和需求进行选择和调整。

提取花青素

提取花青素

1.一种从皇帝菊中提取花青素的方法,通过以下步骤实现:
1)取皇帝菊,将其粉碎成粉末;
2)取步骤1)粉碎后的皇帝菊粉末按照每克皇帝菊粉末加入8毫升体积比为60%~70%的乙醇水溶液的比例,将粉碎后的皇帝菊与体积比为60%~70%的乙醇水溶液混合;
3)将步骤2)中皇帝菊粉末与体积比为60~70%的乙醇水溶液的混合液回流提取3~5次,每次60~120分钟,温度控制在60℃~64℃,得含有花青素、皇帝菊提取后剩余物和乙醇水溶液的提取液,过滤掉提取液中的杂质,得含有花青素的乙醇提取液;
4)合并步骤3)中每次回流提取并过滤杂质后的含有花青素的乙醇提取液,使用真空浓缩仪对合并后的乙醇提取液真空浓缩,真空浓缩仪的温度控制在60℃~64℃,除去乙醇,得花青素水溶液;
5)将真空浓缩后的花青素水溶液过吸附树脂柱进行层析,吸附饱和后,用水做洗脱液,控制树脂柱流速为0.5毫升/分钟,水洗至紫环反应呈阴性不显色为止,此时吸附树脂柱中的树脂为吸附花青素树脂;
6)将步骤5)中的吸附花青素的树脂用体积比为65~75%丙酮水溶液洗脱,洗脱至树脂柱流出物无色为止,得丙酮洗脱液;
7)将丙酮洗脱液真空浓缩,除去丙酮,温度控制在60℃~64℃,然后将所得溶液快速冻结后,再在高真空条件下将其中的冰升华为水蒸气而去除进行干燥,得花青素纯化物。

2.取干燥的菊花,切碎,将切碎后的菊花与水按质量比为1:30~200混合,在20~90℃浸泡
30到120min,过滤除去残渣,得到菊花色素原液。

将原液常温旋转蒸发浓缩至原液体积的10~99%,将浓缩后的原液放入冻干机的预冻室中于-80~-86℃预冻1~2h,当完全结冻后,再放入冻干机真空干燥15~18h,得到菊花粉末燃料。

花青素的提取方法

花青素的提取方法

花青素的提取方法花青素是一种天然的色素化合物,广泛存在于植物中,尤其是花朵、水果和蔬菜中。

它们不仅赋予植物丰富的色彩,还具有很高的营养和药用价值。

因此,提取花青素成为了科研和工业生产中的一个重要课题。

花青素的提取方法主要有以下几种:1. 酸碱法提取:通过酸碱处理,改变花青素的溶解性,使其从植物细胞中释放出来。

首先,将鲜花或植物材料加入酸性溶液中,使花青素变为阳离子形式溶解;然后,通过碱性溶液中和,使花青素重新转变为中性或阴离子形式,从而沉淀出来。

最后,通过离心、洗涤、干燥等步骤得到花青素提取物。

2. 溶剂提取法:利用溶剂的溶解性来提取花青素。

首先,将鲜花或植物材料切碎,并与适当的溶剂(如乙醇、甲醇等)混合,使花青素溶解于溶剂中。

然后,通过过滤或离心等方法,将溶液中的植物残渣分离出来。

最后,通过浓缩、蒸发等步骤,得到花青素提取物。

3. 超声波提取法:利用超声波的机械振动作用,破坏植物细胞壁,促进花青素的释放和溶解。

首先,将鲜花或植物材料与适量的溶剂混合,使花青素溶解于溶剂中。

然后,将混合物置于超声波提取仪中,通过超声波的作用,加速花青素的释放和溶解。

最后,通过离心、过滤等步骤,将提取液中的植物残渣分离出来,得到花青素提取物。

4. 膜分离法:利用膜的选择性透过性,将花青素从植物材料中分离出来。

首先,将鲜花或植物材料浸泡在适量的溶剂中,使花青素溶解于溶剂中。

然后,将溶液与具有特定孔径大小的膜接触,使花青素通过膜的透过性进入另一侧,而其他组分则被阻滞。

最后,通过蒸发、浓缩等步骤,得到花青素提取物。

除了以上几种方法,还有一些新兴的提取技术也被应用于花青素的提取,如微波辅助提取、超临界流体提取等。

这些方法在提高提取效率、缩短提取时间、降低成本等方面具有优势。

花青素的提取是一个复杂而关键的过程,在科研和工业生产中具有重要的意义。

不同的提取方法有着各自的特点和适用范围,选择合适的方法可以提高花青素的提取效率和纯度。

原花青素提取

原花青素提取

原花青素提取
原花青素是一种天然的色素,存在于一些水果、蔬菜和植物中,如蓝莓、紫薯、紫甘蓝、红心莲雾等。

原花青素具有抗氧化、抗炎、抗癌等多种生物活性,对人体的健康和预防疾病具有重要的作用。

原花青素的提取方法主要有以下几种:
1. 溶剂提取法:使用适当的溶剂(例如乙醇、甲醇、丙酮等)将植物材料中的原花青素溶解出来,然后进行过滤、浓缩、沉淀等步骤,最后得到纯化的原花青素。

2. 水溶性聚合物提取法:将适量的植物材料浸泡在水溶性聚合物(如聚乙烯吡咯烷酮)溶液中,利用聚合物与原花青素之间的亲和性,将原花青素吸附到聚合物上,然后经过水洗、离心等步骤,最后从聚合物中脱附得到原花青素。

3. 超声波提取法:利用超声波的震荡作用,加速溶剂与原花青素之间的质量转移,使得原花青素更容易被溶解和提取出来。

该方法操作简单、高效,可以快速得到较高纯度的原花青素。

值得注意的是,不同的提取方法可能适用于不同的植物材料和实验要求,选择合适的提取方法可以提高提取效率和纯度。

同时,提取过程中还应注意对材料的保护,避免影响原花青素的质量和活性。

膜分离系统从紫薯中提取花青素

膜分离系统从紫薯中提取花青素

膜分离系统从紫薯中提取花青素
花青素是自然界一类广泛存在于植物中的水溶性天然色素。

花青素存在于植物细胞的液泡中,是植物叶、花瓣、根茎中的主要呈色物质,水果、蔬菜、花卉等五彩缤纷的颜色大部分与之有关。

花青素的结构不太稳定,其中的花色苷元主要以糖苷形式存在。

花青素的颜色受许多因素的影响,pH值、温度、植物细胞酶等因素均会影响其呈色。

花青素呈色性质的不太稳定也给其在食品行业的广泛应用带来了挑战。

膜分离系统从紫薯中提取到的花青素
1、将新鲜紫薯粉碎,用8倍重量的纯水在多功能乙醇提取罐里进行动态循环提取,获得提取液。

2、将上述提取液体用微滤膜过滤分离获得清亮的滤液。

3、将上述滤液,加入到P型UF-19膜超滤装置的料液桶中。

4、用截留相对分子量为30万的有机膜,采用超滤膜或纳滤膜进行连续的超滤、纳滤过程,物料温度控制在30°C左右。

5、收集过滤液体,减压浓缩,喷雾干燥获得120克高色价值的花青素。

膜分离系统提取花青素的优点:
1、可提高花青素产品储存的稳定性,不易受温度、光照、湿度等条件的影响降低其呈色特性。

2、不易与其它的重金属离子、抗氧化剂等发生相互作用,花青素可更方便地添加在食品、日化产品中。

3、经包裹处理的花青素产品可按设计要求改变其在溶液或其它介质中的溶解特性,可在更多类别的溶液或介质中应用。

比如,经脂质化处理的花青素,可以方便的溶解在油脂溶液及介质中,极大地拓宽了应用范围。

花青素提取方法

花青素提取方法

*花青素的提取:花青素的提取是目前花青素研究发展的热点问题,也是花青素生产、投入使用的关键性环节。

近年来,在传统提取方法的基础之上,一些凭借新技术或经过改良后的提取方法也开始崭露头角。

1有机溶剂萃取法这是目前国内外最广泛使用的提取方法。

多数选择甲醇、乙酮、丙酮等混合溶剂对材料进行溶解过滤,通过调节溶液酸碱度萃取滤液中的花青素。

国内吴信子等用盐酸一甲醇溶液提取,然后用纸层析法(中号)和柱层析法(聚乙酰胺)进行花色苷的分离。

目前,有机溶剂萃取法已成功地应用于诸如葡萄籽、石榴皮、蓝莓等绝大多数含花青素物质的提取分离。

有机溶剂萃取法的关键是选择有效溶剂,要求既要对被提取的有效成分有较大溶解度,又要避免大量杂质的溶解。

该方法原理简单,对设备要求较低,不足之处是大多数有机溶剂毒副作用大且产物提取率低。

2水溶液提取法有机溶剂萃取的花青素多有毒性残留且生产过程环境污染大,有鉴于此,水溶液提取应运而生。

该方法一般将植物材料在常压或高压下用热水浸泡,然后用非极性大孔树脂吸附;或直接使用脱氧热水提取,再采用超滤或反渗透,浓缩得到粗提物。

它是Duncan和Gilmour(1998)发明的提取花青素的方法,此方法设备要求简单,但产品纯度低。

3超临界流体萃取法超临界流体萃取是利用压力和温度对超临界流体溶解能力的影响进行提取。

这种方法产品提取率高,但设备成本过高。

孙传经采用超临界CO:萃取法从银杏叶、黑加仑籽及葡萄籽中提取花青素工艺进行了研究。

该工艺中CO 和改性剂可循环使用,对环境无污染。

4微波提取法该法于1986年被Ganzlert E9]等人首先用于分离各种类型化合物。

国内李风英探讨了微波技术对葡萄籽中原花青素提取量和分子结构的影响。

为微波在葡萄籽中有效成分浸提方面的研究奠定了基础。

微波提取法是利用在微波场中,吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到具有较小介电常数、微波吸收能力相对较差的萃取溶剂中。

花青素的提取方法和步骤

花青素的提取方法和步骤

花青素的提取方法和步骤花青素是一类存在于植物中的天然色素,具有艳丽的紫红色和蓝色。

它在食品工业中广泛应用于染色、调味和抗氧化等方面。

提取花青素的方法有多种,下面将介绍其中较常见的几种方法及其步骤。

一、酸溶解提取法酸溶解提取法是一种简单且高效的花青素提取方法。

其步骤如下:1. 预处理:将植物材料洗净并切碎,去除杂质和不需要的组织。

2. 溶解:将切碎的植物材料加入含有酸性溶液(如醋酸、盐酸等)的容器中,与植物材料充分接触,使花青素溶解于溶液中。

3. 过滤:将溶液过滤,去除植物材料的残渣。

4. 分离:通过调节溶液的pH值,使花青素从溶液中析出,形成沉淀。

5. 收集:用适当的方法(如离心、过滤等)收集花青素的沉淀。

6. 干燥:将收集到的花青素沉淀进行干燥处理,得到纯净的花青素提取物。

二、溶剂萃取法溶剂萃取法是一种常用的提取花青素的方法,具有操作简便、提取效果好等优点。

其步骤如下:1. 预处理:将植物材料洗净并切碎,去除杂质和不需要的组织。

2. 溶解:将切碎的植物材料加入适量的溶剂(如乙醇、丙酮等),与植物材料充分接触,使花青素溶解于溶剂中。

3. 过滤:将溶剂中的植物材料残渣过滤掉,得到含有花青素的溶液。

4. 浓缩:将得到的溶液进行浓缩处理,使其中的溶剂蒸发掉,留下浓缩的花青素溶液。

5. 分离:通过调节溶液的pH值或添加适当的盐类,使花青素从溶液中析出,形成沉淀。

6. 收集:用适当的方法(如离心、过滤等)收集花青素的沉淀。

7. 干燥:将收集到的花青素沉淀进行干燥处理,得到纯净的花青素提取物。

三、超声波辅助提取法超声波辅助提取法是一种利用超声波的物理效应促进花青素的提取的方法,具有提取效率高、提取时间短等优点。

其步骤如下:1. 预处理:将植物材料洗净并切碎,去除杂质和不需要的组织。

2. 溶解:将切碎的植物材料加入适量的溶剂,与植物材料充分接触。

3. 超声波处理:将植物材料和溶剂置于超声波提取仪中,通过超声波的作用,使植物细胞壁破裂,促进花青素的溶解和释放。

花青素的提取方法与相关技术

花青素的提取方法与相关技术

本技术公开的属于口服饮料技术领域,具体为一种花青素的提取方法,该花青素的提取方法包括花瓣打碎、萃取、过滤、防腐处理和包装,重瓣红玫瑰花中富含花青素,但是一直没有人去开发利用它,本技术可以提取重瓣红玫瑰花中富含的花青素,并利用花青素来生产口服饮料,从而通过重瓣红玫瑰花的高花青素含量来满足口服饮料行业对花青素的高需求,本技术可以将重瓣红玫瑰花中的花青素充分的提取出来,从而避免了重瓣红玫瑰花的浪费,通过在花青素半成品中添加少量的柠檬酸,可以避免花青素成品在存储中被氧气氧化,而对青素半成品进行巴氏杀菌,可以降低花青素中细菌的含量,从而有效的延长花青素的保质期。

技术要求1.一种花青素的提取方法,其特征在于:该花青素的提取方法如下:步骤一:花瓣打碎,先使用流动水对重瓣红玫瑰花进行清洗,然后将清洗后的重瓣红玫瑰花放入打碎机中进行打碎;步骤二:萃取,向打碎机中添加蔗糖,然后使用打碎机继续对重瓣红玫瑰花进行打碎,当蔗糖完全溶解后得到混合溶液;步骤三:过滤,对混合溶液进行过滤,过滤可以得到固体和溶液,得到的溶液即为花青素半成品;步骤四:防腐处理,先在花青素半成品中添加柠檬酸,然后再对花青素半成品进行巴氏杀菌,得到花青素成品;步骤五:包装,将花青素成品装入包装桶中,并将其放入仓库。

2.根据权利要求1所述的一种花青素的提取方法,其特征在于:所述重瓣红玫瑰花为刚采摘下来的新鲜重瓣红玫瑰花花瓣。

3.根据权利要求1所述的一种花青素的提取方法,其特征在于:重瓣红玫瑰花放入打碎机中后,打碎机的转速的1000~2000r/min,10分钟后添加蔗糖。

4.根据权利要求1所述的一种花青素的提取方法,其特征在于:所述蔗糖与重瓣红玫瑰花的重量之比为1∶0.8~1.2。

5.根据权利要求1所述的一种花青素的提取方法,其特征在于:萃取时,打碎机内部的温度保持在40℃~50℃。

6.根据权利要求1所述的一种花青素的提取方法,其特征在于:当蔗糖完全溶解后,打碎机继续对混合溶液继续打碎,20~40分钟后关闭打碎机并对混合溶液进行过滤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桑椹酒渣中花青素提取
1材料与方法
1.1材料
桑椹果酒酒渣。

1.2试剂药品
试验所用95%乙醇、浓盐酸、30%过氧化氢、Na2SO3等试剂均为分析纯。

1.3主要仪器
电子分析天平、分光光度计、旋转蒸发仪、酸度计、高速冷冻离心机、电热恒温水浴锅等。

1.4方法(稀HCl+95%乙醇提取)
样品称量,用提取剂提取,过滤(减压过滤/板框过滤),所得的提取液按一定比例稀释(pH1.0氯化钾缓冲液和pH4.5醋酸钠缓冲液稀)释后在分光光度计上测出OD值,以OD值代表桑椹红色素的含量。

1.4.1不同溶剂的吸光光谱及提取效果比较
分别以75%乙醇、85%乙醇、95%乙醇、0.05%稀HCl+95%乙醇(1:1)、0.10%稀HCl +95%乙醇(1:1)作为提取剂,以物料与提取剂之比1:10提取桑椹色素,提取液经3倍稀释后用分光光度计测定各提取液吸收光谱。

1.4.2不同物料与提取剂之比对花青素提取的影响(此时用提取效果最好的提取剂)。

1.4.3温度对提取效果的影响
以最佳结果作为桑椹提取剂,分别于60、50、40、30、20℃下提取1h。

1.4.4提取时间对提取效果的影响
每隔20分钟取样测得OD值。

1.4.5正交实验
1.4.6得率试验
称取一定量样品,经提取后。

提取液经旋转蒸发仪蒸发,真空干燥,求得率。

方法一稀HCl+95%乙醇提取
1不同溶剂的吸光光谱及提取效果比较
固定浸提温度、提取时间、液料比,分别85%乙醇、95%乙醇、0.05%稀HCl+95%乙醇(1:1)、0.10%稀HCl +95%乙醇(1:1)、0.15%稀HCl +95%乙醇(1:1)为提取剂进行浸提试验,色
素提取液分别采用pH1.0氯化钾缓冲液和pH4.5醋酸钠缓冲液稀释一定倍数(吸光值在0.2~0.8之间),将稀释液静置15min,分别测定两种样品稀释液ODλmax和700nm处的吸光值A。

按公式计算桑椹花色苷含量,分析提取溶剂对花色苷提取量的影响。

注:ODλmax的确定分别以85%乙醇、95%乙醇、0.05%稀HCl+95%乙醇(1:1)、0.10%稀HCl +95%乙醇(1:1)、0.15%稀HCl +95%乙醇(1:1)作为提取剂,以物料与提取剂之比1:10提取桑椹色素,提取液经3倍稀释后用分光光度计测定各提取液吸收光谱。

2不同物料与提取剂之比对花青素提取的影响(此时用提取效果最好的提取剂)。

分别称取2.0g酒渣,按液料比5、10、15、20、25、30加入相应体积的浸提溶剂,在40℃下避光提取2h后,抽滤、离心(3000rpm,10min)。

取1mL清液,用pH 1.0和pH 4.5的缓冲溶液稀释(吸光值在0.2~0.8之间),分别测定两种样品稀释液在ODλmax和700nm处的吸光值A,按公式计算花色苷含量,并对液料比作图,分析液料比对色素提取量的影响。

3温度对提取效果的影响
分别称取2.0g酒渣置入5个50mL的三角瓶中,各加入浸提溶剂,搅拌5 min,用封口膜将瓶口密封并用铝箔纸包裹好以避光。

分别置于30℃、40℃、50℃、60℃、70℃的恒温水浴上提取2h后,抽滤、离心(3000rpm,10min)。

取1mL上清液,用pH 1.0和pH 4.5的缓冲液稀释(吸光值在0.2~0.8之间),分别测定两种样品稀释液在ODλmax和700nm处的吸光值A,按公式计算花色苷含量,并对温度作图,分析温度对色素提取量的影响。

4提取时间对提取效果的影响
每隔30分钟取样测得OD值。

用pH 1.0和pH 4.5的缓冲液稀释(吸光值在0.2~0.8之间),分别测定两种样品稀释液在ODλmax和700nm处处的吸光值A,按公式计算花色苷含量,并对时间作图,分析提取时间对色素提取量的影响。

5桑椹红色素酸性乙醇溶剂提取条件的正交试验
根据单因素试验的结果,选取L9(34)正交试验表,以浸提溶剂中乙醇浓度、浸提时
间、浸提温度、液料比为因素,安排4水平做正交试验,以确定提取的最佳条件。

方法二超声波辅助提取桑椹红色素
1超声波功率对红色素提取的影响
精确称取2.0g桑椹酒渣若干份,按液料比?分别加入?提取液,在30℃温度下,分别以200~700 W超声功率萃取20min。

抽滤、离心得到色素粗提液,用pH1.0和pH4.5缓冲液稀释(吸光值控制在0.2~0.8之间),分别测定两种样品稀释液在ODλmax和700nm处的吸光值A,按公式计算花色苷含量,并对超声功率作图,分析功率对色素提取量的影响。

2超声温度对色素提取量的影响
精确称取2.0g桑椹酒渣若干份,按液料比?分别加入?提取液,以?W超声功率分别在20~60℃温度下萃取20min。

抽滤、离心得到色素粗提液,用pH1.0和pH4.5缓冲溶液稀释(吸光值在0.2~0.8之间),分别测定两种样品稀释液在ODλma x和700nm姗处的吸光值A,按公式计算花色苷含量,并对超声温度作图,分析温度对色素提取量的影响。

3超声时间对色素提取量的影响
精确称取2.0g桑椹酒渣若干份,按液料比?分别加入?提取液,在?℃温度下,以?W 超声功率分别萃取5、10、15、20、25、30min。

抽滤、离心得到色素粗提液,用pH1.0和pH4.5缓冲溶液稀释(吸光值在0.2~0.8之间),分别测定两种样品稀释液在ODλmax和700nm处的吸光值A,按公式计算花色苷含量,并对超声时间作图,分析时间对色素提取量的影响。

4桑椹红色素超声波辅助提取条件的正交试验
根据单因素试验的结果,选取L9(34)正交试验表,以超声功率、超声温度、超声时间为因素,安排3水平做正交试验,以确定提取的最佳条件。

方法三微波辅助提取桑椹红色
选择微波辅助提取温度30℃、40℃、50℃、60℃、70℃ , 以微波功率500W、600W、700W、800W、900W,微波辐射时间2S、4S、6S、8S、10S以及液料比10:1、20:1、30:1、40:1、50:1为单因素考察因素.
选择其中重要的3因素进行正交实验。

最后HPLC分析:
将三种方法所得到的产品进行HPLC分析,看其活性物质是否有变化,主要是后面两种方法是否对活性物质改变。

方法三超高压辅助提取桑椹红色
1 压力对色素提取量的影响
精确称取2.0g桑椹酒渣若干份放入超高压处理袋内,按液料比?分别加入?提取液,封口包装;以不同压力100~500MPa进行加压3min,加压1次的处理。

抽滤、离心得到色素粗提液,用pH1.0和pH4.5缓冲溶液稀释(吸光值在0.2~0.8之间),分别测定两种样品稀释液在ODλmax和700nm处的吸光值A,按公式计算花色苷含量,并对高压压力作图,分析压力对色素提取量的影响。

2 加压时间对色素提取量的影响
精确称取2.0g桑椹酒渣若干份放入超高压处理袋内,按液料比?分别加入?提取液,封口包装;分别以加压时间l~5min进行300MPa,加压1次的高压处理。

抽滤、离心得到色素粗提液,用pH1.0和pH4.5缓冲溶液稀释(吸光值在0.2~0.8之间),分别测定两种样品稀释液在ODλmax和700nm处的吸光值A,按公式计算花色苷含量,并对加压时间作图,分析时间对色素提取量的影响。

3加压方式—间歇式对色素提取量的影响
精确称取2.0g桑椹酒渣若干份放入超高压处理袋内,按液料比?分别加入?提取液,封口包装;分别加压1次(300MPa处理3min)、加压2次(300MPa处理1.5min,卸压,再300MPa 处理1.5min) 、加压3次(300MPa处理1min,卸压,再300MPa处理1min,再300MPa处理1min)。

抽滤、离心得到色素粗提液,用pH1.0和pH4.5缓冲溶液稀释(吸光值在0.2~0.8之间),分别测定两种样品稀释液在ODλmax和700nm处的吸光值A,按公式计算花色苷含量,并对加压次数作图,分析结果。

方法四加入酶对红色素提取的影响
未加酶;果胶酶0.1%;纤维素酶.01%;果胶酶0.05%+纤维素酶0.05%。

测定花色苷含量的方法有很多,经典的有薄层层析法、快速测定比色法、紫外吸收光谱(UV)等,现代的有红外吸收光谱、液相色谱(HPLC)以及核磁共振(NMR)、质谱(FAB)等。

除紫外吸收分光光度法外,其余方法均需要标准色素样品,测定的是某种花色营的具体含量。

这对于尚未确定组成的新样品的初步研究是一个难题,也给一般性的检验分析带来了困难。

花色苷是水溶性色素,根据比尔定律,溶液的浓度与其吸光度A成正比,因此在未有标准品时,可用紫外-可见吸收分光光度法测定总花色苷的含量。

花色苷含量主要有2种表示方法:色价及代入消光系数用公式计算。

由此可见,关键是吸光值A的测定。

综合国内外资料,主要有以下几种计算吸光值A的方法:
(1)当叶绿素是该样品中主要存在的干扰色素时,需消除叶绿素吸收含量的影响;此时,计算公式为:
A=(A max-A620) -0.1(A650-A620)
国内已有用此方法测定苹果果皮表面及山植果实中花色苷含量的报道。

(2)含有其它干扰物质时花色苷总量的测定:
直接法:在新鲜的植物提取物中,因为很少含有在花色营的最大吸收区发生吸收的干扰物质,花色苷总量可以直接由可见区最大吸收波长处的吸光度来测定。

计算公式为:A=A max。

相关文档
最新文档