1.2.2函数的表示法(用)

合集下载

1.2.2函数的表示法课件人教新课标

1.2.2函数的表示法课件人教新课标
( x {1, 2,3, 4,5})个笔记本需要y元,试用函数
的三种表示法表示函数 y f (x)

例2.(书P20)下表是某校高一(1)班三名 同学在高一年度六次数学测试的成绩及班级 平均分表。
第一次 第二次 第三次 第四次 第五次 第六次
王伟 张城 赵磊
班级 平均分
98 90 68 88.2
⑵列表法:就是列出表格来表示两个变量 的函数关系
优点:不需要计算就可以直接看出与自变 量的值相对应的函数值.
⑶图象法:就是用函数图象表示两个变量之 间的关系.
优点:能直观形象地表示出自变量的变化,相 应的函数值变化的趋势,这样使得我们可以通 过图象来研究函数的某些性质.
二.例题讲授:
例1(书P19).某种笔记本的单价是5元,买 x
四、作业
P24 A组7、8、9 B组3、4 补充:作出分段函数
y 2x 1 x 2 (3 x 3)
的图像并求值域。
(2) 5公里以上,每增加5公里,票价增加 1元(不足5公里按5公里计算). 如果某条线路的总里程为20公里,请根据题 意,写出票价与里程之间的函数解析式,并 画出函数的图象.
练习:
x 2(x 1)
1.在函数
f
(x)
x
2
(1
x
2)
中,若 f (x) 3
2x(x 2)
则x的值为 。
3x2 2 (x 0)
1.2.2 函数的表示法(一)
一、讲授新课:
函数的表示方法 ⑴解析法:就是把两个变量的函数关系,用 一个等式表示,这个等式叫做函数的解析表 达式,简称解析式.
优点:一是简明、全面地概括了变量间的关 系;二是可以通过解析式求出任意一个自变 量的值所对应的函数值.中学阶段研究的函数 主要是用解析法表示的函数.

1.2.2-函数的表示法(要用)

1.2.2-函数的表示法(要用)

0 x ≤5 5 x ≤10 10 x ≤15 15 x ≤20
票价 y(元)
2
3
4
5
此分段函数的定义域为 (0,20]
此分段函数的值域为 {2,3,4,5}
①自变量的范围是怎样得到的? ②自变量的范围为什么分成了四个区间?区间端点
是怎样确定的? ③每段上的函数解析式是怎样求出的?
作函数图象:
王伟 张城 赵磊 班级平均分
第一次 98 90 68 88.2
第二次 87 76 65
78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
请你表对格这能三否直位观同地学分在析高出一三学位年同度学成的绩数高学低学? 如习何情才况能做更一好的个比分较析三。个人的成绩高低?
分段函数
2. 化简函数 y | x 5 | x2 2x 1
解:由题意知 y = | x + 5 | + | x -1 |
y
当 x ≤-5 时,
y = -( x + 5 ) -( x -1 )=-2x-4
当 -5 < x ≤ 1 时,
6
y = ( x + 5 ) -( x -1 ) = 6
一函次数函解数析:式y=一kx定+b是(方k≠程0);
可看成关于x、y的方程。
二方次程函不数一:定y=是ax函2+数bx+解c 析(式a≠。0) 例如:x2+y2=1
复习回顾
(1)炮弹发射
(解析法)
h=130t-5t2 (0≤t≤26)
(2)南极臭氧层空洞 (图象法)

人教A版必修一数学课件:1.2.2函数的表示法(第2课时分段函数及映射)

人教A版必修一数学课件:1.2.2函数的表示法(第2课时分段函数及映射)

研修班
3
x+2,x≤-1 2 已知函数 f(x)=x ,-1<x<2 ,求 f(f(f(-3))) 2x,x≥2 【思路点拨】 由题目可获取以下主要信息: ①函数 f(x)是分段函数; ②本例是求值问题. 解答本题需确定 f(f(-3))的范围,为此又需 确定 f(-3)的范围,然后根据所在定义域代入相 应解析式逐步求解.
2018/12/1 研修班 8
对含有绝对值的函数,要作出其图象,首先应根据绝对值
的意义去掉绝对值符号,将函数转化为分段函数,然后分段作 出函数图象.由于分段函数在定义域的不同区间内解析式不一
样,因此画图时要特别注意区间端点处对应点的实虚之分.
2.写出下列函数的解析式并作出函数图象: (1)设函数y=f(x),当x<0时,f(x)=0;当x≥0时,f(x)=2; (2)设函数y=f(x),当x≤-1时,f(x)=x+1;当-1<x<1时,f(x)
2018/12/1
研修班
2
1.分段函数是一个函数还是几个函数?其定义域、值域各
是什么? 【提示】 分段函数是一个函数而非几个函数,其定义域是
各段定义域的并集,值域是各段值域的并集.
2.函数是映射吗? 【提示】 对比函数定义与映射定义可知,函数是特殊的映
射,是从非空数集到非空数集的映射.
2018/12/1
2018/12/1
研修班
4
【解析】 ∵-3≤-1,∴f(-3)=-3+2=-1 ∴f(f(-3))=f(-1)=1,
∵-1<1<2,
∴f(f(f(-3)))=f(1)=1.
(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相
应的解析式求得. (2)像本题中含有多层“f”的问题,要按照“由里到外”的顺序,层层

必修1课件:1.2.2函数的表示法

必修1课件:1.2.2函数的表示法
2010年12月26日星期日5 48分16秒 2010年12月26日星期日5时48分16秒 日星期日
云在漫步
§1.2.2 函数的表示方法
学习目标
第一课时
1、掌握函数的三种表示法:列表法、图象法、解析法, 、掌握函数的三种表示法:列表法、图象法、解析法, 体会三种表示方法的特点。 体会三种表示方法的特点。 2、能根据实际问题情境选择恰当的方法表示一个函数。 、能根据实际问题情境选择恰当的方法表示一个函数。 3、体会数形结合思想在理解函数概念中的重要作用, 、体会数形结合思想在理解函数概念中的重要作用, 在图形的变化中感受数学的直观美。 在图形的变化中感受数学的直观美。
2010年12月26日星期日5 48分16秒 2010年12月26日星期日5时48分16秒 日星期日 云在漫步
图象法
列表法
二、由实际问题引入分段函数的概念 某市空调公交车的票价按下列规则制定: 例6 某市空调公交车的票价按下列规则制定: 公里以内(含 公里),票价 公里),票价2元 (1)5公里以内 含5公里),票价 元; ) 公里以内 公里以上, 公里, (2)5公里以上,每增加 公里,票价增加 元(不足 ) 公里以上 每增加5公里 票价增加1元 5公里的按 公里计算)。 公里的按5公里计算 公里的按 公里计算)。 如果某条线路的总里程为20公里 请根据题意, 公里, 如果某条线路的总里程为 公里,请根据题意,写出 票价与里程之间的函数解析式,并画出函数的图象。 票价与里程之间的函数解析式,并画出函数的图象。
1、正比例函数、反比例函数的一般式是怎样的? 正比例函数、反比例函数的一般式是怎样的?
y = kx( k ≠ 0)
k y = (k ≠ 0) x
S = 100t
C = 2πr

人教A版必修一1.2.2.2函数的表示法

人教A版必修一1.2.2.2函数的表示法

x 2, x 0, 因此y= 5 x 2,0 x 1, x 2, x 1.
依上述解析式作出图象,如图.
由图象可以看出:所求值域为
规律方法:对含有绝对值的函数,要作出其图象,首先应根据绝对值 的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数 图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时 要特别注意区间端点处对应点的实虚之分. 变式训练2-1:已知函数f(x)=1+ (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 解:(1)当0≤x≤2时,f(x)=1+ 当-2<x<0时,f(x)=1+
类型一:分段函数及其应用
思路点拨:由题目可获取以下主要信息: ①函数f(x)是分段函数; ②本例是求值问题. 解答本题需确定f(f(-3))的范围,为此又需确定 f(-3)的范围,然后根据所在定义域代入相应解析式逐步求解.
解:∵-3<0,∴f(-3)=0, ∴f(f(-3))=f(0)=π , 又π >0,∴f(f(f(-3)))=f(π )=π +1, 即f(f(f(-3)))=π +1.
(4)是映射,因为A中每一个元素在 符合映射定义.
作用下对应的元素构成的集合
规律方法:(1)给定两集合A,B及对应关系f,判断是否是从集合A到集合B的映 射,主要利用映射的定义.用通俗的语言讲:A→B的对应有“多对一”、“一对 一”、“一对多”,前两种对应是A到B的映射,而最后一种不是A到B的映射. (2)理解映射这个概念,应注意以下几点: ①集合A到B的映射,A、B必须是非空集合(可以是数集,也可以是其他集合); ②对应关系有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一 般是不同的; ③与A中元素对应的元素构成的集合是集合B的子集. 变式训练3-1:如图中各图表示的对应构成映射的个数是( )

【创新设计】高中数学(人教版必修一)配套练习:1.2.2函数的表示法第1课时(含答案解析)

【创新设计】高中数学(人教版必修一)配套练习:1.2.2函数的表示法第1课时(含答案解析)

1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.会根据不同的需要选择恰当方法表示函数.函数的三种表示法函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系;表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系;表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.来表示两个变量之间的对应关系.一、选择题一、选择题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A .y =50x(x>0)B .y =100x(x>0)C .y =50x (x>0)D .y =100x(x>0) 2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( )A .0B .1C .2D .33.如果f(1x )=x1-x ,则当x≠0时,f(x)等于( ) A.1x B.1x -1 C.11-xD.1x -1 4.已知f(x)=2x +3,g(x +2)=f(x),则g(x)等于( ) A .2x +1 B .2x -1 C .2x -3D .2x +7 5.若g(x)=1-2x ,f[g(x)]=1-x 2x 2,则f(12)的值为( ) A .1 B .15 C .4D .306.在函数y =|x|(x ∈[-1,1])的图象上有一点P(t ,|t|),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )题 号 1 2 3 4 5 6 答 案二、填空题二、填空题7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y(cm)与所挂物体质量x(kg)之间的函数关系式为_________________________________________________________ _______________.8.已知函数y =f(x)满足f(x)=2f(1x )+x ,则f(x)的解析式为____________.9.已知f(x)是一次函数,若f(f(x))=4x +8,则f(x)的解析式为__________________. 三、解答题三、解答题10.已知二次函数f(x)满足f(0)=f(4),且f(x)=0的两根平方和为10,图象过(0,3)点,求f(x)的解析式.的解析式.11.画出函数f(x)=-x 2+2x +3的图象,并根据图象回答下列问题:的图象,并根据图象回答下列问题: (1)比较f(0)、f(1)、f(3)的大小;的大小; (2)若x 1<x 2<1,比较f(x 1)与f(x 2)的大小;的大小; (3)求函数f(x)的值域.的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为( ) A .y =[x10] B .y =[x +310]C.y=[x+410]10] D.y=[x+513.设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式.的解析式.1.如何作函数的图象.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等.2.如何求函数的解析式.如何求函数的解析式求函数的解析式的关键是理解对应关系f的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理知识梳理(1)数学表达式数学表达式 (2)图象图象 (3)表格表格 作业设计作业设计1.C [由x +3x 2·y =100,得2xy =100.∴y =50x(x>0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.] 3.B [令1x =t ,则x =1t ,代入f(1x )=x1-x, 则有f(t)=1t1-1t=1t -1,故选B.]4.B [由已知得:g(x +2)=2x +3,令t =x +2,则x =t -2,代入g(x +2)=2x +3,则有g(t)=2(t -2)+3=2t -1,故选B.] 5.B [令1-2x =12,则x =14,∴f(12)=1-(14)2(14)2=15.]6.B [当t<0时,S =12-t 22,所以图象是开口向下的抛物线,所以图象是开口向下的抛物线,顶点坐标是顶点坐标是(0,12);当t>0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12.8.f(x)=-x 2+23x (x≠0) 解析解析 ∵f(x)=2f(1x )+x ,①,① ∴将x 换成1x ,得f(1x )=2f(x)+1x .②由①②消去f(1x ),得f(x)=-23x -x3,即f(x)=-x 2+23x (x≠0).9.f(x)=2x +83或f(x)=-2x -8解析解析 设f(x)=ax +b(a≠0), 则f(f(x))=f(ax +b)=a 2x +ab +b.∴îïíïìa 2=4ab +b =8,解得îïíïìa =2b =83或îïíïìa =-2b =-8. 10.解.解 设f(x)=ax 2+bx +c(a≠0).由f(0)=f(4)知îïíïìf(0)=c ,f(4)=16a +4b +c ,f(0)=f(4),得4a +b =0.① 又图象过(0,3)点,点, 所以c =3.②设f(x)=0的两实根为x 1,x 2, 则x 1+x 2=-b a ,x 1·x 2=ca .所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f(x)=x 2-4x +3.11.解.解 因为函数f(x)=-x 2+2x +3的定义域为R ,列表:,列表:x … -2 -1 0 1 2 3 4 … y… -5343-5…连线,描点,得函数图象如图:连线,描点,得函数图象如图:(1)根据图象,容易发现f(0)=3,f(1)=4,f(3)=0, 所以f(3)<f(0)<f(1).(2)根据图象,容易发现当x 1<x 2<1时,有f(x 1)<f(x 2).(3)根据图象,根据图象,可以看出函数的图象是以可以看出函数的图象是以(1,4)为顶点,为顶点,开口向下的抛物线,开口向下的抛物线,开口向下的抛物线,因此,因此,因此,函数的函数的值域为(-∞,4].12.B [方法一方法一 特殊取值法,特殊取值法,若若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二方法二 设x =10m +α(0≤α≤9),0≤α≤6时,时, [x +310]=[m +α+310]=m =[x 10], 当6<α≤9时,[x +310]=[m +α+310]=m +1=[x 10]+1,所以选B.]13.解.解 因为对任意实数x ,y ,有,有 f(x -y)=f(x)-y(2x -y +1), 所以令y =x ,有f(0)=f(x)-x(2x -x +1), 即f(0)=f(x)-x(x +1).又f(0)=1, ∴f(x)=x(x +1)+1=x 2+x +1.。

人教版高中数学必修一1.2.2_函数的表示法_第二课时ppt课件

人教版高中数学必修一1.2.2_函数的表示法_第二课时ppt课件

考点一
课堂互动讲练
考点突破 分段函数图象的画法
根据分段区间及各段解析式.常用描点法画图,注意区间 端点的虚实.
例1 已知函数 f(x)=1+|x|- 2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【思路点拨】 讨论x的取值范围
→ 化简fx的解析式
例2 从甲同学家到乙同学家的途中有一个公园 甲、乙两家到该公园的距离都是 2 km,甲 10 点钟 发前往乙家,如图表示甲从自家出发到乙家为止 过的路程 y(km)与时间 x(分钟)的关系.依图象回 下列问题:
(1)甲在公园休息了吗?若休息了,休息了多 长时间? (2)甲到达乙家是几点钟? (3)写出函数 y=f(x)的解析式. (4)计算当 x=50 分钟时,甲所走的路程.
x →y=12x.
【思路点拨】 解答本题可由映射定义出发,观察A中任何一 个元素在B中是否都有唯一元素与之对应. 【解】 (1)由于A中元素3在对应关系f作用下其与3的差的绝对 值为0,而0∉B,故不是映射. (2)因为一个圆有无数个内接矩形,即集合A中任何一个元素在 集合B中有无数个元素与之对应,故不是映射.
问题探究
x x≥0 1.y=|x|=-x x<0 可以说 y=|x|是两 个函数吗? 提示:y=|x|,x∈R,仍是一个函数,只是 x ∈[0,+∞)与 x∈(-∞,0)的对应关系不同, 对于具体 x 值,所用的对应关系是唯一的.
2.从定义上看,函数与映射有什么关系? 提示:对比函数定义与映射定义可知,函数是特殊的映射, 是从非空数集到非空数集的映射.并非所有映射都为函数.
将(60,4),(40,2)分别代入,得 k2=110,b=- 2.

【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)

【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)

第一章 集合与函数概念1.2.2 函数的表示法一、选择题1.若()()20(0)x x f x x x ⎧≥=⎨-<⎩,,,则f [f (–2)]=A .2B .3C .4D .5【答案】C【解析】∵–2<0,∴f (–2)=–(–2)=2.又∵2>0,∴f [f (–2)]=f (2)=22=4,故选C .2.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点.用S 1和S 2分别表示乌龟和兔子经过时间t 所行的路程,则下列图象中与故事情节相吻合的是A .B .C .D .【答案】D3.已知函数f (x +1)=3x +2,则f (x )的解析式是A.f(x)=3x+2 B.f(x)=3x+1C.f(x)=3x–1 D.f(x)=3x+4【答案】C【解析】设t=x+1,∵函数f(x+1)=3x+2=3(x+1)–1,∴函数f(t)=3t–1,即函数f(x)=3x–1,故选C.4.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个B.1,2 C.2 D.无法确定【答案】A【解析】映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,可得b的象为1或2,故选A.5.若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为A.1 B.–1 C.–32D.32【答案】B【解析】∵f(x)满足关系式f(x)+2f(1x)=3x,分别令x=2,和x=12,得()()12262132222f ff f⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩①②,①–②×2得–3f(2)=3,∴f(2)=–1,故选B.6.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点【答案】D7.已知f(x–2)=x2–4x,那么f(x)=A .x 2–8x –4B .x 2–x –4C .x 2+8xD .x 2–4【答案】D【解析】由于f (x –2)=x 2–4x =(x 2–4x +4)–4=(x –2)2–4,从而f (x )=x 2–4.故选D . 8.国内某快递公司规定:重量在1000 g 以内的包裹快递邮资标准如下表:运送距离x (km ) 0<x ≤500 500<x ≤10001000<x ≤15001500<x ≤2000… 邮资y (元)5.006.007.008.00如果某人从北京快递900 g 的包裹到距北京1300 km 的某地,他应付的邮资是 A .5.00元B .6.00元C .7.00元D .8.00元【答案】C【解析】邮资y 与运送距离x 的函数关系式为 5.00(0500)6.00(5001000)7.00(10001500)8.00(15002000)x x y x x <≤⎧⎪<≤⎪=⎨<≤⎪⎪<≤⎩,∵1300∈(1000,1500],∴y =7.00,故选C .9.已知函数()()()32121x x f x x x x ⎧>⎪=⎨-+≤⎪⎩.若()54f a =-,则a 的值为A .12-或52B .12或52C .12-D .12【答案】C【解析】当a >1时,f (a )=3514a >≠-,此时a 不存在,当a ≤1,f (a )=–a 2+2a =–54,即4a 2–8a –5=0,解可得a =–12或a =52(舍),综上可得a =12-,故选C .10.已知函数f (x )=()20(0)x x x x ⎧≥⎨<⎩,,,则f (f (–2))的值是A .2B .–2C .4D .–4【答案】C【解析】∵已知函数()()20(0)x x f x x x ⎧≥=⎨<⎩,,,∴f (–2)=(–2)2,∴f (f (–2))=f (4)=4,故选C .二、填空题11.已知f+1)=x,则f (x )=__________.【答案】x 2–1,(x ≥1)【解析】∵()12fx x x +=+=x +2x +1–1=(x +1)2–1,∴则f (x )=x 2–1,(x ≥1).故答案为:x 2–1,(x ≥1).12.已知f (x +1)=2x 2+1,则f (x –1)=__________.【答案】2x 2–8x +9【解析】设x +1=t ,则x =t –1,f (t )=2(t –1)2+1=2t 2–4t +3,f (x –1)=2(x –1)2–4(x –1)+3=2x 2–4x +2–4x +4+3=2x 2–8x +9.故答案为:2x 2–8x +9. 13.已知f (x +1)=x 2,则f (x )=__________.【答案】(x –1)2【解析】由f (x +1)=x 2,得到f (x +1)=(x +1–1)2,故f (x )=(x –1)2.故答案为:(x –1)2. 14.已知函数f (x )=ax –b (a >0),f (f (x ))=4x –3,则f (2)=__________.【答案】3三、解答题15.()()()11032f x kx b f f =+==-,,,求f (4)的值. 【解析】∵()()()11032f x kx b f f =+==-,,,∴0132k b k b +=⎧⎪⎨+=-⎪⎩,解得k =–14,b =14, ∴f (x )=–14x +14,∴f (4)=–14×4+14=–34.16.二次函数f (x )满足f (x +1)–f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[–1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【解析】(1)由题意,设f (x )=ax 2+bx +c , 则f (x +1)=a (x +1)2+b (x +1)+c .从而f (x +1)–f (x )=[a (x +1)2+b (x +1)+c ]–(ax 2+bx +c )=2ax +a +b , 又f (x +1)–f (x )=2x ,∴220a a b =⎧⎨+=⎩即11a b =⎧⎨=-⎩,又f (0)=c =1, ∴f (x )=x 2–x +1.17.已知函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩(1)在坐标系中作出函数的图象; (2)若f (a )=12,求a 的取值集合. 【解析】(1)函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩的图象如下图所示:(2)当a ≤–1时,f (a )=a +2=12,可得:a =32-;当–1<a <2时,f (a )=a 2=12,可得:a =22±;当a ≥2时,f(a )=2a =12,可得:a =14(舍去); 综上所述,a 的取值构成集合为{32-,22-,22}.18.(1)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭,求f (x ). (2)已知21f lgx x ⎛⎫+=⎪⎝⎭,求f (x ). (3)已知f (x )是一次函数,且满足3f (x +1)–2f (x –1)=2x +17,求f (x ). (4)已知f (x )满足()123f x f x x ⎛⎫+=⎪⎝⎭,求f (x ). 【解析】(1)∵3331111()3f x x x x x x x x ⎛⎫⎛⎫+=+=+-+ ⎪ ⎪⎝⎭⎝⎭, ∴f (x )=x 3–3x (x ≥2或x ≤–2).(2)令21t x +=(t >1), 则21x t =-,∴()21f t lg t =-,∴()()211f x lg x x =->.19.已知函数f (x )=1+2x x -(–2<x ≤2),用分段函数的形式表示该函数.【解析】f (x )=1+1021202x x x x x ≤≤-⎧=⎨--<<⎩,,.。

1.2.2函数的表示法

1.2.2函数的表示法

引例
国内投寄信函(外埠),每封信函不超过20g付邮资80 分,超过20g而不超过40g付邮资160分,依次类推,每 封x g(0<x ≤ 100)的信函应付邮资为(单位:分),试 写出以x为自变量的函数y的解析式,并画出这个函数的 图像. 解:这个函数的定义域集合是{x|0<x≤100} ,函数的 解析式为
80, x (0,20], 160, x (20,40], y 240, x (40,60], 320, x (60,80], 400, x (80,100].
y
400 320 240 160
80
80
20
40
60
100
x
例题 画出函数y=|x|的图象.
函数的三种表示法的缺点:
1、解析法的缺点:有些问题有时很难用表达式来表 示。 2、图象法的缺点:图像及相对应的点的坐标往往不 准确。
3、列表法的缺点:有时应用有一定的局限性。
将三者合理的结合在一起,是我们学习的
主要内容。
例2 下表是某校高一(1)班三名同学在高一 学年度六次数学测试的成绩及班级平均分表。
由此可知,映射是函数的推广,函 数是一种特殊的映射。
A B
求正弦
30
0 0 0
1 2 2 2 3 2 1
45 60 90
0
“求正弦”是A到B的映射
A B
求平方
3 -3 2 -2 1 -1
9 4 1
“求平方”是A到B的映射
A B
开平方
9 4 1
3 -3 2 -2 1 -1
第一次 王 伟 张 城 赵 磊 班平均分 98 90 68 88.2 第二次 87 76 65 78.3 第三次 91 88 73 85.4 第四次 92 75 72 80.3 第五次 88 86 75 75.7 第六次 95 80 82 82.6

1.2.2函数的表示法(二)映射

1.2.2函数的表示法(二)映射

林老师网络编辑整理
15
例3. 以下给出的对应是不是从集合A到B的
映射?
(3)集合A={x|x是三角形},
集合B={x|x是圆},
对应关系f:每一个三角形都对应它的内
切圆; f:A--->B
(4)集合A={x|x是新华中学的班级},
集合B={x|x是新华中学的学生},
对应关系f:每一个班级都对应班里的
f : x y x1; (4) A R, B R, f : x y x2 2x 3; (5)A { x | 1 x 3}, B { y | 4 y 10},
f : x y 3x 1.
(2)(4)(5)
林老师网络编辑整理
19
例5. 已知A=B=R,x∈A, y∈B,
f : x y x1;
(4) A R, B R, f : x y x2 2x 3;
(5)A { x | 1 x 3}, B { y | 4 y 10},
f : x y 3x 1.
其哪中些构是成映映射射的 ?是
.
林老师网络编辑整理
18
3
90
2
1
林老师网络编辑整理
10
以下是不是映射?
①开平方
3
9
-3
4
2 -2
1
1
-1
1 ②求平方
-1
2
1
-2
4
3 -3
9
③求正弦 1
④乘以2 1
2
30
2
45
2
1
2 3
2
4
60
3
3
5

(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)

(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)

的一种“程序”或“方法”.因此要把“2x + 1”及“ x + 1”看成一个整体来求解.
1 1 (2)设f( +1)= 2-1,则f(x)=________. x x (3)若对任意x∈R,都有f(x)-2f(-x)=9x+2,则f(x)= ________.
[答案]
(1)D (2)x2-2x(x≠1)
6.(2012· 全国高考数学文科试题江西卷)设函数f(x)= x2+1 x≤1 2 ,则f(f(3))=( x>1 x 1 A.5 2 C. 3 B.3 13 D. 9 )
[答案] D
7.已知函数f(x)=
2 x -4,0≤x≤2, 2x,x>2,
,则f(2)=
2.作图时忘记去掉不在函数定义域内的点 [例5] 数的值域. [错解]
x,-1≤x≤1, 由题意,得y= -x,x<-1或x>1.
x|1-x2| 画出函数y= 2 的图象,并根据图象指出函 1-x
[例 5]
(1)已知 f(x)=x2,求 f(2x+1);
(2)已知 f( x+1)=x+2 x,求 f(x). 1 (3)设函数 f(x)满足 f(x)+2f(x )=x (x≠0),求 f(x). [分析] 我们前面指出,对应法则“f”实际上是对“x”计算
5.(山东冠县武的高2012~2013月考试题)已知函数f(x)
x+1x≥0 = fx+2x<0
则f(-3)的值为( B.-1 D.2
)
A.5 C.-7
[答案] D
如图,在边长为4的正方形ABCD的边上有一点P,沿折 线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为 x,△APB的面积为y. (1)求y关于x的函数关系式y=f(x); (2)画出y=f(x)的图象; (3)若△APB的面积不小于2,求x的取值范围.

1.2.2函数的表示法(二)——映射的概念

1.2.2函数的表示法(二)——映射的概念

§1.2.2函数的表示法(二)——映射的概念一、内容与解析(一)内容:映射(二)解析:⑴映射是两个集合A与B中,元素之间存在的某种对应关系.说其是一种特殊的对应,就是因为它只允许存在“一对一”与“多对一”这两种对应,而不允许存在“一对多”的对应.⑵映射中只允许“一对一”与“多对一”这两种对应的特点,从A到B的映射f:A→B实际是要求集合A中的任一元素都必须对应于集合B中唯一的元素.但对集合B中的元素并无任何要求,即允许集合B中的元素在集合A中可能有一个元素与之对应,可能有两个或多个元素与之对应,也可能没有元素与之对应.⑶映射中对应法则f是有方向的,一般来说从集合A到集合B的映射与从集合B到集合A的映射是不同的.(4)我们可以把对应关系看成一面镜子,集合A中的元素在这面镜子中存在一个像,一个相对应的元素,原像则是集合A中的元素.这样像和原像的概念就比较容易理解.并且映射中集合A的每一个元素在集合B中都有它的像,通过对应关系——即通过镜子总存在像,而且像是唯一的,不会“照”出许多的像来,这是映射区别于一般对应的本质特征.二、目标及其解析:(一)教学目标(1)了解映射的概念及表示方法;结合简单的对应图示,了解一一映射的概念.(2)解析:重点把握映射与函数的区别。

三、问题诊断分析函数与映射的区别与联系(1)函数包括三要素:定义域、值域、两者之间的对应关系;映射包括三要素: 集合A, 集合B, 以及A,B之间的对应关系(2)函数定义中的两个集合为非空数集; 映射中两个集合中的元素为任意元素,如人、物、命题等都可以.(3)在函数中,对定义域中的每一个x,在值域中都有唯一确定的函数值和它对应;在映射中,对集合A中的任意元素a,在集合B中都有唯一确定的像b和它对应.(4)在函数中,对值域中的每一个确定的函数值,在定义域中都有确定的自变量的值和它对应;在映射中,对于集合B中的任一元素b,在集合A中不(5)函数实际上就是非空数集A到非空数集B的一个映射:f A B →(6)通过右图我们可以清晰的看到这三者的关系. 四、教学支持条件分析在本节课一次递推的教学中,准备使用PowerPoint 2003。

1.2.2函数的表示法

1.2.2函数的表示法
就是用数学表达式表示两个变量之 间的对应关系。
就是用图象表示两个变量之 间的对应关系。
就是列出表格来表示两个变量之间 的对应关系。
例3、某种笔记本的单价是5元,买 x(x {1, 2,3, 4,5}
个笔记本需要 y 元。试用函数的三种表示法表示函
数 y f (x) 。
解:这个函数的定义域是数集 {1,2,3,4, 5} 。
25 20 15
10 5
....
012345
x
思考一:如何判定一个图形是不是函数图象?下列 各图中,哪些不可能是函数 y f (x) 的图象?
y
y
O
x
(1)
y
O
x
(3)
O
x
(2)
y
O
x
(4)
思考二:比较三种表示法,它们各自的特点是什么? 所有的函数都能用解析法表示吗?
三种表示方法的优点
解析法
①函数关系清楚、精确 ②容易从自变量的 值求出其对应的函数值 ③便于研究函数的 性质。解析法是中学研究函数的主要表达方法。
(1)写出y=f(x)的解析式,指出函数的定义域;
(2)画出函数的图象并求函数的值域.
一般地,我们有:
设A、B是非空集合,如果按照某种确定的
对应关系f,使对于集合A中的任意一个元素x,
在集合B中都有唯一确定的元素y和它对应,那么
称f:A→B为从集合A到集合B的一个映射。
(mapping)。
函数概念与映射概念之间有怎样的关系?有什 么异同?
例5、画出函数 y | x | 的图象。
解:由绝对值的概念,我们有
x, x 0 y x, x 0 所以,函数 y | x | 的图象如下图所示

高一数学必修1公开课课件1.2.2 函数的表示法 第1课时 函数的表示法

高一数学必修1公开课课件1.2.2 函数的表示法 第1课时  函数的表示法
值域为[-1,2].
1.函数的三种表示方法的优缺点比较
优点 一是简明、全面地概括 解 了变量间的关系;二是通过 析 解析式可以求出任意一个自 法 变量所对应的函数值 列 不需要计算就可以直接 表 看出与自变量的值相对应的 法 函数值
缺点 不够形象、直观、具 体,而且并不是所有 的函数都能用解析式 表示出来 它只能表示自变量取 较少的有限值的对应 关系
【变式练习】
1. 画出下列函数的图象:
(1) f (x) 2x,x R,且 x 2; (2) f (x) x 2,(x N,且 x 3);
解:(1) y
4

2
(2)
2 1 O 1 2
x
2
• 4
2.某路公共汽车,行进的站数与票价关系如下表:
行进的 站数x
1
2
3
4
5
6
7
8
9
票价y 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5
例4 已知 f (x 1) x2 2x 2 ,求 f (x).
解:令t = x +1,则x = t-1
∴ft = t-12 +2t-1 +2 = t2 +1
换元法
f x = x2 +1
适合:已知f(g(x))的解析式,求f(x).
例5 已知 3 f (x) 2 f (1) x(x 0),求 f (x).
-5=4a+k 0=9a+k
,解得ak= =1-9

所以解析式为 y=(x-2)2-9.
[点评]
求二次函数解析式时, (1)若已知对称轴或顶点坐标;常设配方式 f(x)=a(x-m)2 +n(a≠0); (2) 若 已 知 f(x) 过 三 点 , 常 设 一 般 式 f(x) = ax2 + bx + c(a≠0); (3)若已知 f(x)与 x 轴两交点横坐标为 x1、x2,常设分解式, f(x)=a(x-x1)(x-x2)(a≠0).

1.2.2函数的表示法

1.2.2函数的表示法

例题剖析
例3 某种笔记本的单价是5元,买x(x{1,2,3,4,5}) 个笔记本需要y元。试用函数的三种表示法表示函数 y=(x)。 解:这个函数的定义域是数集{1,2,3,4,5}用解 析法可将函数y=f(x)表示为y=5x,x{1,2,3,4,5}. 用列表法可将函数表示为 笔记本数x 钱数y 1 5 2 10 3 15 4 20 5 25
y 100
90 80
70
.
班♦ 平 均 分


ቤተ መጻሕፍቲ ባይዱ. . . .

.
■ ▲
王伟


♦ ▲



♦ 张城
▲ ■


赵磊
60 0
1
2
3
4
5
6
x
例5 画出函数y=|x|的图象. 解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.y
5
4 3 2
1 -3 -2 -1 0 1
2 3 x
有些函数在它的定义域中,对于自变量X的不同取值 范围,对应关系不同,这样函数通常称为分段函数。
第一次 第二次 王伟 张城 赵磊 班级平均分 98 90 68 88.2 87 76 65 78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
y 100
90 80
70
.
班♦ 平 均 分


. . . .

应关系f,在集合B中都有唯一的元素和它对应,那么这个

1.2.2函数的表示法(第1课时)

1.2.2函数的表示法(第1课时)

1.2.2函数的表示法(一)
1、某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场销售与上市时间的关系用图一的一条折线表示;西
红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题
.
(注:市场售价和种植成本的单位:元/102kg,时间单位:天)
(1)写出图一表示的市场售价间接函数关系P = f (t). 写出图二表示的种植成本与时间的函数关系式Q = g (t).
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
2、下图中可作为函数y = f (x)的图象是()
3、函数||x
y x
x
=+的图象为下图中的()
4、作出下列函数的图象:(1)y = |x– 1| + 2 |x– 2|;(2)y = |x2– 4x + 3|.
1。

(新)人教版高中数学必修一1.2.2《函数的表示法》优秀课件(共27张PPT)

(新)人教版高中数学必修一1.2.2《函数的表示法》优秀课件(共27张PPT)

单位:亿元
1990 1991 1992 1993 26651.9 34560.5 生产总 18598. 21662.5 再如,某天一昼夜温度变化情况如下表 4 值 时刻 0:00 4:00 8:00 12:00 16:00 20:00 24:00 -5 4 9 8.5 3.5 -1 温度/(OC) -2 数学用表中的三角函数表,银行里的利息表,列车时刻表 等等都是用列表法来表示函数关系的.公共汽车上的票价表
请 思 考 并 分 析 右 边 给 出 的 对 应 关 系
练习 国内跨省市之间邮寄信函,每封信 函的质量和对应的邮资如表.
信函质 0<m≤ 20<m≤4 40<m≤6 60<m≤8 80<m≤1 20 0 0 0 00 量(m)/g
邮资 (M)/分
80
160
240
320
400
画出图像,并写出函数的解析式.
日常生活中存在着丰富的对应关系.
(1)对于高一八班的每一位同学,都有一个学 号与之对应.
(2)我国各省会,都有一个区号与之对应. (3)我国各大中小城市,都有一个邮政编码 与之对应.
初中数学中也学过一些对应. (1)对于任何一个实数a,数轴上都有唯一的 点P和它对应.
(2)对于坐标平面内任何一个点A,都有唯一 的有序实数对(x,y)和它对应; (3)对于任意一个三角形,都有唯一确定的面 积和它对应;
4 3 2 1 -1 0 1 2
y=x+2
3 x
函数的三种表示方法
1.解析法:就是把两个变量的函数关,用一 个等式表示,这个等式叫做函数的解析表达式, 简称解析式.
解析法的优点: • (1)函数关系清楚; • (2)容易从自变量的值求出其对应的 函数值; • (3)便于研究函数的性质。

第一章 1..2.2 第1课时

第一章  1..2.2 第1课时

过点(0,0),则此二次函数的解析式可以是( A.f(x)=x2-1 B.f(x)=-(x-1)2+1 C.f(x)=(x-1)2+1 D.f(x)=(x-1)2-1
)
练一练·当堂检测、目标达成落实处
本 课 栏 目 开 关
答案
解析
D
由二次函数的图象开口向上且关于直线 x=1 对称,可
排除 A、B;又图象过点(0,0),可排除 C.D 项符合题意.
练一练·当堂检测、目标达成落实处
2. 已知函数 f(x), g(x)分别由下表给出: 则满足 f(g(x))=g(f(x))
本 课 栏 目 开 关
的 x 值为________.
x f(x) x 1 1 1 2 3 2 3 1 3 4 3 4
g(x)
3
2
3
2
练一练·当堂检测、目标达成落实处
本 课 栏 目 开 关
2a=2 由恒等式性质,得 3a+2b=9

∴a=1,b=3.
∴所求函数解析式为 f(x)=x+3.
研一研·问题探究、课堂更高效
本 课 栏 目 开 关
小结
本题已知函数类型,故可用待定系数法求解.即设出
函数关系式,代入已知条件,建立关于 x 的恒等式求解.
研一研·问题探究、课堂更高效
答 赵磊同学的数学成绩低于班级平均水平,但他的成 绩呈上升趋势,表明他的数学成绩在稳步提升.
研一研·问题探究、课堂更高效
问题探究三
本 课 栏 目 开 关
如何求函数的解析式
问题 1
若已知函数的类型,求函数的解析式通常用什么方
法?这种方法的一般步骤是怎样的?
答 若已知函数的类型,可用待定系数法求解.即由函数 类型设出函数解析式,再根据条件列出方程(或方程组),通 过解方程(组)求出待定的系数,进而求出函数解析式.

1.2.2 函数的表示法第1课时 函数的表示法

1.2.2 函数的表示法第1课时 函数的表示法

1.2.2函数的表示法第1课时函数的表示法明目标、知重点了解函数的三种表示法的各自优点,掌握用三种不同形式表示函数.自主学习1.函数的三种表示法(1)解析法——用表示两个变量之间的;(2)图象法——用表示两个变量之间的;f x为纵坐标就得到一个点,当自变量取完定义(以自变量x为横坐标,以对应的函数值()域内所有值时,即可得到函数图像。

一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表描出图象,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等.)(3)列表法——列出来表示两个变量之间的.2.(了解)函数三种表示法的优缺点例题解析探究点一函数的表示方法例1某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).探究点二如何求函数的解析式例2已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9,求f(x).反思与感悟本题已知函数类型,故可用待定系数法求解.即设出函数关系式,代入已知条件,建立关于x的恒等式求解.跟踪训练2(1)已知f(x)是一次函数,满足3f(x+1)=6x+4,则f(x)的解析式(2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,求函数f(x)的解析式.例3已知f(x+1)=x2+4x+1,求f(x)的解析式.反思与感悟利用换元法、配凑法求函数解析式时要注意新元的取值范围,即所求函数的定义域.跟踪训练3.已知f (1x )=1x +1,则f (x )的解析式为( ) A .f (x )=11+x B .f (x )=1+x x C .f (x )=x 1+xD .f (x )=1+x 例4 已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为。

跟踪训练4:已知函数y =f (x )满足f (x )=2f (-x )+x ,则f (x )的解析式为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课导入 回想函数的表示方法有哪几种? 解析法,图象法,列表法. 列出表格来表示两个变量之间的对应关系
用数学表达式表示两个变量之间的对应关系
2
函数的表示法
图象法
用图象表示两个变量之间的对应关系
h = 130t - 5t .
解析法
列表法
那么这三种表示方法各自有什么优点呢?面对实际问 题时怎么样选用恰当方法来表示函数呢?
式虽然不止一个,但它不是几个函数,而是一个函数.
思考 函数是两个数集之间的一种确定关系,那么现在将数集 扩展到任意集合,那又会得到什么呢? 常见的对应关系: 1.对于坐标平面内任何一个点A,都有唯一的有序实数对 (x, y)和它对应;
2.某影院的某场电影的每一张电影票有唯一确定的座位与 它对应;
3. 长途汽车上的每位乘客都有唯一确定的座位相对应; 我们把它们称作什么呢? 称对应f: A→B为从集合A到集合B的一个映射.
函数的表示法
例: 在礼品盒的专卖店里,某种包装盒的单价是3元,买x 个包装盒需要y元,试用函数的三种表示法表示函数.
(x {1 , 2 , 3 , 4 , 5 })
解:这个函数的定义域是数集{1,2,3,4,5}; 用解析法可将函数y=f(x)表示为
y = 3x, x {1, 2, 3, 4, 5}
解:设票价为y元,里程为x公里,则根据题意, 如果某空调汽车运行路线中设21个汽车站(包括起点站和终点 站),那么汽车行驶的里程约为20公里,所以自变量x的取值 范围是( 0, 20 ]. 由空调汽车票价制定的规定,可得到以下函数解析式:
2, Y=
0<x≤5,
3, 5<x≤10, 4, 10<x≤15, 5, 15<x≤20,
y
王伟 张城 赵磊 班级平均分
100 90 80 70 60 0 图1 1 2 3 4 5 6 x
y
王伟 张城 赵磊 班级平均分
100 90 80 70 60 0 1 2 3 4 5 6 x
在图2中看到,王伟同学的数学成绩始终高于班级平均水 平,学习情况比较稳定而且比较优秀.张诚同学的数学成绩不 为了更容易的看出学生 稳定,总是在班级平均水平上下波动,而且幅度较大.赵磊同 的学习情况,将离散的 点用虚线连接。 学的数学成绩低于平均水平,但是他的成绩呈曲线上升的趋势, 从而表明他的数学成绩在稳步提高.
它的图象是4条线段(不包 括左端点),都平行于x轴, 如图所示。
y 5 4 3 2 数
x
1.函数图象不一定是光滑的曲线(直线),还可以是一些 孤立的点,一些线段,一段曲线等. 2.有些函数在它的定义域中,对于自变量x的不同取值范围, 对应关系不同,这种函数通常称为分段函数.分段函数的表达
用解析法表示函数是否一定要写出自变量的取值范围? 函数的定义域是函数存在的前提,在写函数解析式的 时候,一定要写出函数的定义域.
Y=3x.x∈{1,2,3,4,5} 用列表法可将函数表示为: 笔记本数x 钱数y 用图象 法可将 函数表 示为下 图: 1 3 2 6 3 9 4 12 5 15
y y 15
设A,B是两个非空的集合,如果按某一个确定的对应关系f, 使对于集合A中的任意一个元素x,在集合B中都有惟一确定的 元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一 个映射. 函数概念与映射概念之间有怎样的关系?有什么异同? 函数是从非空数集A到非空数集B的映射.映射是从集合A 到集合B的一种对应关系,这里的集合A、B可以是数集,也 可以是其他集合.函数是一种特殊的映射.
所以说在函数概念中,对应关系,定义域,值域是 一个整体.
三种表示方法的特点 解析法 ①函数关系清楚、精确; ②容易从自变量的值求出其对应的函数值; ③便于研究函数的性质.
解析法是中学研究函数的主要表达方法. 图象法 能形象直观的表示出函数的变化趋势,是今 后利用数形结合思想解题的基础. 不必通过计算就知道当自变量取某些值时函数 的对应值,当自变量的值的个数较少时使用. 列表法在实际生产和生活中有广泛的应用.
列表法
所有的函数都能用解析法表示吗?
例:下表是某校高一(1)班三名同学在高一学年度六次 数学测试的成绩及班级平均分表.
成绩
姓名 测试序号
第一次 第二次
第三次 第四次
第五次 第六次
王伟 张城 赵磊 班级平均分
98 90 68 88.2
87 76 65 78.3
91 88 73 85.4
92 75 72 80.3
数的图象来表示.
变式1:作函数y=|x-1|的图像.
y y
5 4 3 2 1 -3 -2 -1 01 2 3
y=|x| y=|x-1|
4
3 2 1
y=|x-1| y=|x-1|+1
x
-3 -2 -1 0
1
2
3
x
变式2:作函数y=|x-1|+1的图像.
变式3:作函数y=-|x+1|+4的图像.
y
y
(1)理解函数的三种表示方法; (2)在具体的实际问题中能够选用恰当的表 示法来表示函数;
(3)注意分段函数的表示方法及其图象的画法;
(4)映射的概念.
图2
例 画出函数y=|x|的图象.
y
5 4 3 2 1 -3 -2 -1 0 1 23
解:y=
图象如右:
x, x≥0 -x, x<0
x
比较画图方法与前面例题有何不同?
前面的例题采用的是描点法,而现在借助于已知函
数画图象,描点法一般适用于那些复杂的函数,而对于 一些结构比较简单的函数,则通常借助于一些基本函
(3) 集合A={ x|x是三角形 },集合B={ x|x是圆 }, 对应关系f:每一个三角形都对应它的内切圆; (4) 集合A={ x|x是凤凰中学的班级 },集合B={x|x是凤凰中 学的学生 },对应关系f:每一个班级都对应班里的学生; 解(3)由于每一个三角形只有一个内切圆与之对应,所以 这个对应f:A→B是从集合A到B的一个映射. (4)凤凰中学的每一班级里的学生都不止一个,即与一个 班级对应的学生不止一个,所以这个对应f:A→B不是从集 合A到B的一个映射. 对应关系f改为:每个学生都对应它的班级,那么f:B→A 是集合从B到A的映射吗?
88 86 75 75.7
95 80 82 82.6
对这三位同学在高一学年度的数学学习情况做一个分析.
解:从表中可以知道每位同学在每次测试中的成绩, 但是不容易看出每位同学的成绩的变化情况.可以将“成绩” 与“测试序号”之间的关系用函数图像表示出来,如图1, 那么就能比较直观地看到成绩变化的情况.
1、映射有三个要素:两个集合、一个对应法则, 三者缺一不可;
2、A中每个元素在B中必有惟一的元素和它对应;
3、A中元素与B中元素的对应关系,可以是:一 对一,多对一,但不能一对多.
例.以下给出的对应是不是从集合A到B的映射? (1) 集合A={ P|P是数轴上的点 },集合B=R,对 应关系f:数轴上的点与它所代表的实数对应。 (2) 集合A={ P|P是平面直角坐标系中的点 },集合 B={ (x,y)|x∈R, y∈R },对应关系f:平面直角坐标 系中的点与它的坐标对应; 解:(1)按照建立数轴的方法可知,数轴上的任意一个 点,都与唯一的实数与之对应,所以这个对应f:A→B是 从集合A到B的一个映射. (2)按照建立平面直角坐标系的方法可知,平面直角坐标 系中的任意一个点,都有唯一的一个实数对与之对应,所 以这个对应f:A→B是从集合A到B的一个映射.
12
9 6 3 0
. .
1 2
. .
3 4

5
x
用描点法画函数图象的一般步骤是什么?本题中的 图象为什么不是一条直线?
思 考
列表、描点、连线(视其定义域决定是否连线). 函数的图象既可以是连续的曲线,也可以是直线、折 线、离散的点等.
y = 3x(x R ) 是连续的直线,但
注 意
y = 3x(x {1, 2, 3, 4, 5}) 却是5个离散的点.
y=|x| y=|x+1|
5 4 3 2 1 -3 -2 -1 1 2 3 5 4 3 2 1
y=-|x+1|+4
x
-3 -2 -1
01 2 3
x
0
y=-|x+1|
y=-|x+1|的图象与y=|x+1| 的图像关于x轴对称.
例某市郊空调公共汽车的票价按下列规则制定: (1) 乘坐汽车5公里以内,票价2元; (2) 5公里以上,每增加5公里,票价增加1元(不 足5公里按5公里计算). 已知两个相邻的公共汽车站间相距约为1公里, 如果沿途(包括起点站和终点站)设21个汽车站, 请根据题意,写出票价与里程之间的函数解析式, 并画出函数的图象.
判断下面对应关系是不是映射?
A B
1
求正弦
A B
求平方
30 45 60 90
0
2 2 2
0
0
3 2 1
0

3 -3 2 -2 1 -1
9 4
1

A B
开平方
A
1
乘以 2
B
1 2 3 4 5 6
9
4 1
3 -3 2 -2 1 -1
2 3
×

映射f:A→B,可理解为以下几点:
相关文档
最新文档