鸡兔同笼问题

合集下载

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题一.意义:已知“鸡兔”的总头数和总腿数。

求“鸡”和“兔”各多少只。

解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。

解题规律:假设全是鸡,兔子头数=(总腿数-鸡腿数)÷2;即兔子头数=(总腿数-2×总头数)÷2。

假设全是兔子,鸡的只数=(兔子腿数-总腿数)÷2,即鸡的只数=(4×总头数-总腿数)÷2 二.常见题型:1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数; 2、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

3、得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题例1 :鸡兔同笼,有20个头,54条腿,鸡、兔各有几只?[列表法]法1:一个一个地试,把结果列成表格,最后得出7只鸡、3只兔。

法2:5个5个地试。

法3:按鸡兔各一半来算。

[画图凑数法]①先画10个头。

②每个头下画上两条腿。

数一数,共有40条腿,比题中给出的腿数少54-20=14条腿。

③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够54条腿。

每把一只鸡添上两条腿,它就变成了兔,显然添14条腿就变出来7只兔.这样就得出答案,笼中有7只兔和13只鸡。

【假设法】法1:假设20只都是鸡,那么兔有:(54-20×2)÷(4-2)=7(只),鸡有20-7=13(只)。

总结:兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数)法2:假设20只都是兔,那么鸡有:(4×20-54)÷(4-2)=13(只),兔有20-13=7(只)。

总结:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).【列方程】根据关系式:“一种动物腿的条数+另一种动物腿的条数=腿的总条数”解:设鸡有X只,那么兔有(20-X)只。

2X+4(20-X)=54X=1320-13=7(只)即鸡有13只,兔有7只。

练习题:1、鸡兔同笼,有17个头,42条腿,鸡、兔各有几只?2、鸡兔同笼,头共20个头,要求笼中必有两种动物,请回答下列问题:(1)最少会有多少条腿?最多会有多少条腿?(2)腿的条数可能是57吗?3、动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问鸵鸟和大象各有多少?4、螃蟹和青蛙共11只,共有56条腿,螃蟹和青蛙各有多少只?5、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?例2:红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支解:以"分"作为钱的单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚. 现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11) =24÷8 =3(支).红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔.练习题:1、有20张5元和10元的人民币,一共是175元,5元和10的人民币各有多少张?2、30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚3、小明的储蓄罐里有1角和5角的硬币共29枚,价值7.3元,1角和5角的硬币各有多少枚?4、学校有象棋、跳棋共20副,2人下一副象棋,6人下一副跳棋,恰好可供60个学生进行活动。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼解法一:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数=兔的只数;解法二:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数,总只数-兔的只数=鸡的只数;解法三:总脚数÷2—总头数=兔的只数,总只数—兔的只数=鸡的只数。

例题:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有多少只鸡和兔?(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。

一、折叠假设法:假设全是鸡:2 ×35 = 70 (条),鸡脚比总脚数少:94 - 70 = 24 (只)兔子比鸡多的脚数:4 - 2 = 2(只)兔子的只数:24 ÷2 = 12 (只)鸡的只数:35 - 12 = 23(只)假设全是兔子:4 ×35 = 140(只)兔子脚比总数多:140 - 94 = 46(只) 兔子比鸡多的脚数:4 - 2 = 2(只)鸡的只数:46 ÷2 = 23(只)兔子的只数:35 - 23 = 12(只)方程法:一元一次方程(一)解:设兔有x只,则鸡有(35-x)只。

列方程:4X+2(35-x)=94解方程:4X+2×35-2X=942X+70=942X=94-702X=24解得:X=12则鸡有:35 - 12 = 23 只(二)解:设鸡有x只,则兔有(35-x)只。

列方程:2X+4(35-x)=94解方程:2X+4×35-4X=94140-2X=942X=140-942X=46解得:X=23则兔有:35 - 23 = 12(只)答:兔子有12只,鸡有23只。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题1、笼中共有30只鸡和兔,数一数足正好是100只。

鸡兔各有多少只?2、有5元和10元的人民币共12张,共100元。

5元和10元的币各多少张?3、停车场共停24辆车,其中有4个轮子的汽车和3个轮子的摩托车。

这些车共有86个轮子。

求汽车和摩托车各有多少辆?4、松鼠妈妈采松果,晴天每天可采20个,雨天每天只能采12个。

它一共采了112个松果,平均每天采14个。

问这几天中有几天下雨?5、兔妈妈采蘑菇,晴天每天可采16次,雨天每天只能采11次,它一共采了195次,平均每天采13次。

问这几天中有几天晴天?6、某工厂中男工人每人每天制造20个零件,女工人每人每天制造16个零件。

某天工人们共制造零件680个,平均每人制造17个。

男工人有几人?7、某次数学竞赛共有12道题,每道题做对得10分,每道题做错或不做都扣8分。

王亮最后得了66分,他做对了几道题?8、丽丽参加抢答题比赛,共10道题,答对一题得15分,答错一题倒扣10分(不答按错题计算)。

丽丽回答了所有的问题,结果得了100分。

问答对了几道题?9、李华参加射击比赛,共打20发。

约定每中一发记10分,脱靶一发则倒扣6分,结果得了168分。

他一共打中了多少发?10、有面值分别为10元、5元、2元的人民币34张,共值178元。

10元的张数和5元的张数同样多。

10元、5元和2元的人民币各有多少张?11、有1元、2元和5元的人民币共50张,总面值为140元,已知2元和5元的张数相等,这三种面值的人民币各有多少张?12、买3元、5元、7元的游览票40张,共用去192元,其中7元和5元的游览票张数相等,求每种票的张数?13、某农民养鸡兔若干只。

已知鸡比兔多13只,鸡脚比兔脚多16只。

鸡和兔各有多少只?14、鸡、兔同笼,鸡比兔少2只,鸡的脚比兔的脚少20只。

鸡、兔各有多少只?15、龟比鹤多12只,龟的脚比鹤多64只。

龟、鹤各有多少只?16、某伴40个同学参加植树,男生平均每人种3棵,女生平均每人种2棵。

简单的鸡兔同笼问题

简单的鸡兔同笼问题

简单的鸡兔同笼问题例1、笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有几只?【举一反三】1、有龟和鹤共40只,龟的腿和鹤的腿共有112条。

龟和鹤各有几只?2、有一首民谣:“一队猎手一队狗,二队并着一队走,数头一共三百六,数脚一共八百九。

”请问有多少猎手多少狗?例2.用一辆卡车运石头,晴天每天可运20次,雨天每天可运12次,他一共运了112次,平均每天运14次,这几天中有几天是晴天?【举一反三】3、新星小学“环保小卫士”小分队12人参加植树活动。

男生每人栽3棵树,女生每人栽2棵树,一共栽了32棵树,男女生各有多少人?4、篮球比赛中,3分线外投中一球记3分,3分线内投中一球记2分。

在一场比赛中小明投了15个球,进了9个,总共得了21分。

小明在这场比赛中投进了几个3分球?\例3.在一次知识抢答赛中,答对一题加10分,答错一题扣6分。

小华共抢答了8题,最后得了64分。

他答错了几题?【举一反三】5、一次计算比赛,共20题,每算对一题得4分,算错(或不算)扣4分,明明共得了64分,他算错了几题?6、百货公司委托搬运站运送200张玻璃茶几,双方商定每只的运费是6元,如果打破一只,这一只不但不记运费,并且要赔偿4元。

结果搬运站共得运费1180元。

问搬运过程中共打破了几只花瓶?例4、小芳带2元一张的人民币和10元一张的人民币共346元去新华书店去买书。

已知小芳共有49张。

请问2元的人民币共有多少元?【举一反三】7、学校体育组购买2个篮球和3个排球,共用208元。

已知一个篮球比一个排球贵24元。

篮球和排球的单价各是多少?8、商店共有大小酒瓶50个。

每个大酒瓶装酒1000克,每个小酒瓶装酒750克。

大瓶比小瓶一共多装酒15000克。

这个商店有大、小酒瓶各多少个?数学冲浪1、笼中共有30只鸡和兔,数一数,脚正好是100只。

请问:鸡和兔各有多少只?2、自行车和三轮车共10辆,总共有26个轮子。

奥数鸡兔同笼问题

奥数鸡兔同笼问题

奥数鸡兔同笼问题1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,•也就是244 + 2=122 (只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数+ 2-总头数二兔子数.2、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了 16支,花了 2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(19x 16-280) + (19-11)=24 + 8=3 (支).红笔数=16-3=13 (支).答:买了13支红铅笔和3支蓝铅笔.3、一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成, 现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30 + 6=5 (份),乙每小时打30 + 10=3 (份).现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡” 头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.根据前面的公式“兔”数二(30-3X7)・(5-3)=4.5,“鸡”数=7-4.5=2.5,也就是甲打字用了 4.5小时,乙打字用了 2.5小时.答:甲打字用了 4小时30分.4.今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是(25X4-86) + (4-3) =14 (岁).1998年,兄年龄是14-4=10 (岁).父年龄是(25-14)X4-4=40 (岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10) + (3-1) =15 (岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.5.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿的蜘蛛数二(118-6X18)0(8-6)=5 (只).因此就知道6条腿的小虫共18-5=13 (只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数二(13X2-20)0(2-1) =6 (只).因此蜻蜓数是13-6=7 (只).答:有5只蜘蛛,7只蜻蜓,6只蝉.6.某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对7道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道、3道、4道题的人共有52-7-6=39 (人).他们共做对181Tx7-5X6=144 (道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)+2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对4道题的有(144-2.5X39) + (4-1.5) =31 (人).答:做对4道题的有31人.7.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分------------------------------------------------ 百度文库 ---------------------------------------------- 的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-8X40) + (8+4) =30 (张),这就知道,余下的邮票中,8分和4分的各有30张.因此8分邮票有40+30=70 (张).答:买了 8分的邮票70张,4分的邮票30张.也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件“8分比4分多40张”,那么应有60张8分.以“分”作为计算单位,此时邮票总值是4X20+8X60=560.比680少,因此还要增加邮票.为了保持“差”是40,每增加1 张4分,就要增加1张8分,每种要增加的张数是(680-4X20-8X60) + (4+8) =10 (张).因此4分有20+10=30 (张),8分有60+10=70 (张).------------------------------------------------ 百度文库 ----------------------------------------------- 8.一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有(150-8X3) + (10+8) = 7 (天).雨天是7+3=10天,总共7+10=17 (天).答:这项工程17天完成.。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题
鸡兔同笼问题
1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?鸡兔同笼,共有30个头,88只脚。

求笼中鸡兔各有多少只?
2、小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?
3、红星小学“环保卫士”小分队12人参加植树活动。

男同学每人栽了3棵,女同学每人栽了2棵树,一共栽了32棵树。

男女同学各有几人?
4、一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50人种树140棵,问种这两种树的各有多少人?
5、有小卡车50辆,大卡车每辆运4吨,小卡车每辆运2吨,共运140吨化肥,问大小卡车各几辆?
6、在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。

求汽车和摩托车各有多少辆?
7、甲种农药每千克兑水20千克,乙种农药每千克兑水40千克,现为了提高药效,根据农科所意见,甲乙两种农药混合使
用,已知两种农药共50千克,要配药水140千克,问甲、乙两种农药各需多少千克?。

鸡兔同笼问题五种基本公式

鸡兔同笼问题五种基本公式

鸡兔同笼问题五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。

它的解法显然可套用上述公式。

)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

鸡兔同笼问题

鸡兔同笼问题

鸡兔问题一、鸡兔同笼的基本问题是:已知鸡、兔总头数和总脚数,求鸡、兔各有多少只。

1、解决鸡兔同笼问题的方法通常是用假设法,解题思路是:先假设笼子里装的全是鸡,根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就是1只兔,将所差的脚数除以2,就可以算出共有多少只兔。

2、解决鸡兔同笼问题的基本关系式是:①、鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)。

②、兔数=(总脚数-鸡脚数×总头数)÷(兔脚数—鸡脚数)。

注意:这两个公式不必都用,用其中一个算出兔数或鸡数,又知道总数,所以另一个也就知道了。

二、鸡兔同笼问题的变形有两类:1、将鸡、兔的总头数和总脚数中的“两数之和”变成“两数之差”,这样得到三种情况。

①、已知鸡、兔头数之差和总脚数,求鸡兔各有多少只;②、已知鸡、兔脚数之差和总头数,求鸡兔各有多少只;③、已知鸡、兔头数之差和脚数之差,求鸡兔各有多少只。

2、将基本问题中同笼的是鸡、兔两种不同东西,还可以引伸到同笼中不同东西是三种,四种等等。

注意:鸡兔同笼问题的两种变形均可化成基本问题来解决。

(详见例题)例1、在同一个笼子中,有若干只鸡和兔,从笼子上看有40个头,从笼子下数有130只脚,那么这个笼子中装有鸡、兔各多少只?分析:题目中给出了鸡、兔共有40只,如果把兔子的两只前脚用绳子捆起来,看成一只脚,两只后脚也捆起来,也看成一只脚,那么兔子就成了两只脚(即把兔子都当成两只脚的鸡)。

鸡兔总的脚数是40×2=80(只),比题中所说的130只要少,130-80=50(只)现在松开一只兔子脚上的绳子,总的脚数就增加2,即80+2=82。

再松开一只兔子脚上的绳子,总的脚数又增加2,即82+2=84,……一直继续下去,直至增加到50。

因此,兔子数是50÷2=25(只)。

实际上,这就是前述的基本关系式②。

鸡兔同笼应用题100道

鸡兔同笼应用题100道

鸡兔同笼应用题100道
以下是一些鸡兔同笼应用题:
1. 一共有35个头,94只脚,问鸡和兔各有多少只?答:鸡有23只,兔有12只。

2. 一共有50个头,140只脚,问鸡和兔各有多少只?答:鸡有30只,兔有20只。

3. 一共有80个头,240只脚,问鸡和兔各有多少只?答:鸡有40只,兔有40只。

4. 一共有100个头,300只脚,问鸡和兔各有多少只?答:鸡有50只,兔有50只。

5. 一共有120个头,360只脚,问鸡和兔各有多少只?答:鸡有60只,兔有60只。

6. 一共有150个头,450只脚,问鸡和兔各有多少只?答:鸡有75只,兔有75只。

7. 一共有200个头,580只脚,问鸡和兔各有多少只?
答:鸡有110只,兔有90只。

8. 一共有250个头,700只脚,问鸡和兔各有多少只?
答:鸡有130只,兔有120只。

9. 一共有300个头,840只脚,问鸡和兔各有多少只?
答:鸡有150只,兔有150只。

10. 一共有400个头,1160只脚,问鸡和兔各有多少只?
答:鸡有210只,兔有190只。

这些题目可以通过设定鸡和兔的数量,列出方程组求解得出答案。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题类型一:已知鸡和兔数量,鸡兔脚的总和,求鸡兔各几只?例:笼中有鸡兔共30只,数一数,脚共有100只,鸡兔各有几只?假设笼子里全是兔子,则鸡有:(30×4-100)÷(4-2)=10(只)兔子有:30-10=20(只)答:鸡有10只,兔子有20只。

类型二:已知鸡和兔总数量,鸡和兔脚差,求鸡兔各几只?例:饲养场里鸡、兔一共有100只,小明数了数,鸡的脚比兔的脚少28只。

鸡兔各有几只?假设100只全是兔子,则脚有:100×4=400(只)即鸡比兔少了400只脚。

若将1只兔换成1只鸡,则脚差变化:4+2=6鸡比兔脚的只数差要减少:400-28=372(只)所以鸡的只数:378÷6=62(只)兔的只数:100-62=38(只)答:鸡有62只,兔子有38只。

类型三:已知鸡和兔子的差,鸡兔脚总和,求鸡兔各几只?例:笼子里装着若干只鸡和兔,它们一共有54只脚,又知鸡比兔子多3只。

笼子里的鸡和兔子各有多少只?鸡的只数:(54+4×3)÷(2+4)=66÷6=11(只)类型四:鸡兔互换问题鸡兔同笼,共有脚100只。

若将鸡换成兔,兔换成鸡,则共有脚92只。

鸡兔原来各有几只?鸡兔的总数:(100+92)÷(4+2) =32(只)假设这32只全是鸡,则兔子的只数:(100-32×2)÷(4-2) =18(只)鸡的只数:32-18=14(只)答:鸡有14只,兔子有18只。

鸡兔同笼问题延伸出“硬币问题”、“租船问题”、“车辆问题”等。

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法

鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。

总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。

2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。

用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。

每多1个头就是1只兔。

因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。

3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。

前面 抬起2只脚,现在每只兔还剩下2只脚。

所以用总脚数--总头数×2的差再÷2就是兔的只数。

4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只? 60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50 只验算:50×2=100(25+15)x4=160160--100=60 只5,方程法可用一元一次和二元一次方程直接解题。

等量关系:(1)设鸡为X,则兔为总头数--X2Ⅹ+4(总头数--X)=总脚数(2)X+y=总头数2X+4y=总脚数。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数—总脚数)÷(兔脚数—鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)1.简单行程:路程 = 速度×时间2.相遇问题:路程和 = 速度和×时间3.追击问题:路程差 = 速度差×时间基本思路:①假设工作总量为“1”(和总工作量无关);②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

经验简评:合久必分,分久必合。

牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

例1:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

小学数学鸡兔同笼问题

小学数学鸡兔同笼问题

小学数学鸡兔同笼问题鸡兔同笼是中国古代的数学名题之一。

大约在1500年前,《孙子算经》中就记载了这个有趣的问题。

书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有几只鸡和兔?鸡兔同笼这道题,有这样几种解法:1、假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)2、方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=944x+70-2x=942x=94-702x=24x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只。

2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只。

注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。

二元一次方程解:设鸡有x只,兔有y只。

x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35) x+12=35x=35-12(只)x=23(只)答:兔子有12只,鸡有23只3、抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。

笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡对于“鸡兔同笼”这种考题,常考的有这样几种类型的问题:(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

五年级上册数学 鸡兔同笼问题

五年级上册数学 鸡兔同笼问题

五年级上册数学
鸡兔同笼问题
一、已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。

二、已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时:
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
三、已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时:
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。

1. 笼子里有若干只鸡和兔。

从上面数,有16个头,从下面数,有52只脚。

鸡和兔各有多少只?
兔:52÷2-16=10(只)
鸡:16-10=6(只)
答:兔有10只,鸡有6只。

2. 鸡与兔共有200只,鸡的脚比兔的脚多160只,问鸡与兔各多少只?
兔:(2x200-160)÷(2+4)=40(只)
鸡:200-40=160(只)
答:有鸡160只,兔40只。

3. 鸡与兔共有100只,鸡的脚比兔的脚少28只,问鸡与兔各多少只?
兔:(2x100+28)÷(2+4)=38(只)
鸡:100-38=62(只)
答:有兔38只,有鸡62只。

4. 鸡兔共有27只,兔的脚比鸡的脚多18只,则兔有多少只?兔:(2x27+18)÷(2+4)=12(只)
鸡:27-12=15(只)
答:有兔12只,有鸡15只。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题知识大集锦我国古代数学名著《孙子算经》中有这样一道应用题:今有稚兔同笼,上有三十五头,下有九十四足,问稚兔各有几何?意思就是说:鸡和兔关在同一个笼子里,已知鸡和兔一共有35只,鸡脚和兔脚一共有94只,问鸡、兔各有多少只?这就是一道典型的鸡兔同笼问题的应用题。

解答鸡兔同笼问题常用的方法是:先假设要求的两个或几个未知数相等,或假设要求的两个未知量是同一种量,然后按照题中的已知条件来推算,从而求出所要求的结果。

解决鸡兔同笼问题的基本关系式:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)例题集合例1 鸡、兔同笼,头一共有100个,一共有340只脚,鸡和兔分别有多少只?练习1 鸡、兔同笼,头一共有150个,一共有400只脚,鸡和兔分别有多少只?例2 面值为5角和8角的邮票共30张,总价值是18元。

面值为5角的邮票有多少张?练习2 面值为2分和5分的硬币共70枚,总价值是2元。

请你算出2分、5分硬币分别有多少枚?例3 某小学举行计算机竞赛,共20道题。

如果做对一题,得5分;做错或没做一题倒扣2分。

小华在考试中一共得了79分,他做对了多少道题?练习3 小明参加投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。

共投10次,得了68分。

请问他共投中了几次?例4 松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

它一连几天共采了112个松籽,平均每天采14个。

问这几天中有几天是雨天?练习4 一辆卡车运矿石,晴天每天可运40次,雨天每天运24次,它一共用4天运了112次。

这几天中有几天是晴天,几天是雨天?例5 某广告公司组织44名员工到东湖游玩,他们一共租了9条船,其中每条大船可坐6人,每条小船可坐4人,座位刚好不多也不少。

请问他们共租了几条大船、几条小船?练习5 大油瓶每瓶装5千克油,小油瓶每瓶装1千克油。

现有100千克油装了110个瓶子。

请问大、小油瓶各装了几个?例6 妈妈买回一些水果,2千克苹果和3千克梨,共用了24元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博文教育个性化辅导授课教案
教师:学生:_ __ 时间:__ 年月_日____时至____时辅导类型:
一、授课目的与考点分析:
鸡兔同笼问题
二、授课内容:
一、假设法。

(可以假设笼子里全是鸡,或者假设笼子里全是兔)
例题:笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有多少只?假设笼子里全是鸡:(假设全是鸡时可得出兔的只数)
兔的只数:(26-2×8)÷(4-2)(总脚数-2×鸡兔总数)÷(4-2)
=(26-16)÷2
=10÷2
=5(只)
鸡的只数:8-5=3(只)
假设笼子里全是兔:(假设全是兔时可得出鸡的只数)
鸡的只数:(4×8-26)÷(4-2)(4×鸡兔总数-总脚数)÷(4-2)
=(32-26)÷2
=6÷2
=3(只)
兔的只数:8-3=5(只)
练习1:小华买了2元和5元纪念邮票一共34张,用去98元钱。

求小华买了2元和5元的纪念邮票各多少张?
练习2:在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。

求汽车和摩托车各有多少辆?
二、列方程解。

(可以设鸡为X只,也可以设兔为X只)
例题:笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有多少只?解:设鸡有X只解:设兔有X只
4×(8-X)+2X=26 4X+2×(8-X)=26
32-4X+2X=26 4X+16-2X=26
2X=6 2X=10
X=3 X=5
8-3=5(只) 8-5=3(只)
答:鸡有3只,兔有5只。

“鸡兔同笼”问题是我国古代趣味名题,出自于古代数学名著《孙子算经》下卷。

因其计算同一个笼子中鸡和兔的只数而得名“鸡兔同笼”问题。

1、用我们现代的数学术语说,”鸡兔同笼”问题有如下几个特点:1、有2个未知的量。

2、最少有两个关于这两个未知量的等量关系。

例2:小明用 10 元钱正好买了 20 分和 50 分的邮票共 35 张,求这两种邮票名买了多少张?
这也是“鸡兔同笼”问题,其中两个未知的量为:
其中两个等量关系为:
2、用方程法解决“鸡兔同笼”问题
例3:鸡兔同笼不知数,三十六头笼中露。

数清脚共五十双,各有多少鸡和兔?
解题步骤:
1、认真审题,找准条件和问题
2、列出关系式:
3、设未知数,列出方程
4、解方程或者方程组
5、检验作答
变式一:一次数学竞赛共有 20 道题。

做对一道题得 5 分,做错一题倒扣 3 分,刘冬考了 52 分,你知道刘冬做对了几道题?
变式二:100 个和尚吃了 100 个面包,大和尚 1 人吃 3 个,小和尚 3 人吃 1 个。

求大小和尚各有多少个?
归纳小结:用方程法解决鸡兔同笼”问题是最明了,思路最清晰的一种方法,是我们一定要学习掌握的方法,这和我们一般的方程应用题的思路是一样的。

3、“鸡兔同笼”问题与分数应用题的结合考查
例4:甲乙两个工厂去年一共上缴税收112万元。

已知甲厂上缴税收的4/9与乙厂上缴税收的2/7相等。

两厂去年各自上缴税收是多少万元
变式一:水果店运来的苹果和梨一共有1300千克,苹果卖出了2/5,梨卖出了20千克后,剩下的梨和苹果的质量恰好相等。

原来苹果和梨子各自有多少千克?
变式二:某车间原来有男工人数是女工人数的5/4,后来又调来2名女工,现在男工人数是女工人数的6/5。

这个车间现在拥有多少名男工人?
归纳小结:思路都是一样的,题中的关系变得相对复杂了,要理清。

4、用“鸡兔同笼”问题方法解决其他奥赛题型
(1)和差、和倍、差倍问题
例1:两个数的和为36,差为22,则较大的数为多少?
变式:买一支自动铅笔与一支钢笔共用10元,已知铅笔比钢笔便宜6元,那么买铅笔花多少元?
(2)年龄问题
例2:.小刚4年前的年龄与小明7年后的年龄之和是39岁,小刚5年后的年龄等于小明3前的年龄,求小刚、小明今年的年龄是多少?
变式一:哥哥5年前的年龄等于7年后弟弟的年龄,哥哥4年后的年龄与弟弟3年前的年龄和是35岁,求兄弟二人今年的年龄?
变式二:10年前父亲的年龄是儿子年龄的7倍,15年后父亲的年龄是他儿子的2倍,问今年父子二人各多少岁?
(3)浓度问题
例1:把含盐5%的食盐水与含盐8%的食盐水混合制成含盐6%的食盐水600克,分别应取两种食盐水各多少千克?
(4)其他问题
例1:学校四年级有甲、乙丙3个班,甲班和乙班共有100人,乙班和丙班共有101人,甲班和丙班共有97人。

甲、乙、丙3个班各有多少人?
变式:△、□、〇分别代表三个不同的数,并且:
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□;△+〇+〇+□=60
求:△= 〇= □=
三、本次作业:
1、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?
2、王老师圆珠笔和钢笔共买了15支,圆珠笔每支1.5元,钢笔每支4.5元,共花了49.5元,圆珠和钢笔各买了几支?
3、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?
4、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?
5、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的同样多。

问小毛做对几道题?
6.有蜘蛛,蜻蜓,蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?
7、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?
8、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。

已知每10个暖瓶的运费为5元,损坏一个的话不但不给运费还要陪成本10元,运后结算时,运输队共得1350元的运费。

问、共损坏了多少只暖瓶?
9、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现在这三种小虫16只,共有110条腿和14对翅膀。

问,每种小动物各几只?
10、螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。

现在这三种动物37只,共有250条腿和52对翅膀。

每种动物各有多少只?
11、小东妈妈从单位领回奖金400元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?
12、小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等。

这三种硬币各有多少枚?
四、学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:
五、教师评定:
1、学生上次作业评价:○好○较好○一般○差
2、学生本次上课情况评价:○好○较好○一般○差
教师签字:
家长签字:
博文教育教务处:。

相关文档
最新文档