芝罘区数学二次函数在闭区间上的最值-轴定区间定

合集下载

中考数学-二次函数在闭区间上的最值-轴变区间定

中考数学-二次函数在闭区间上的最值-轴变区间定

中考数学二次函数在闭区间上的最值-轴变区间定一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设f x a x b xc a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b aa cb a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:(1)当[]-∈b a m n 2,时,f x ()的最小值是f b a a c b a f x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-∉b am n 2,时 若-<b am 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a<-2,由f x ()在[]m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。

【例题分析归类】----正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

3、轴变区间定二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。

例4. 已知x 21≤,且a -≥20,求函数f x x a x ()=++23的最值。

解:由已知有-≤≤≥112x a ,,于是函数f x ()是定义在区间[]-11,上的二次函数,将f x ()配方得:f x x a a ()=+⎛⎝ ⎫⎭⎪+-23422 二次函数f x ()的对称轴方程是x a =-2顶点坐标为--⎛⎝ ⎫⎭⎪a a 2342,,图象开口向上 由a ≥2可得x a =-≤-21,显然其顶点横坐标在区间[]-11,的左侧或左端点上。

中考数学-二次函数在闭区间上的最值-轴定区间定

中考数学-二次函数在闭区间上的最值-轴定区间定

中考数学二次函数在闭区间上的最值-轴定区间定一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设f x a x b xc a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b aa cb a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:(1)当[]-∈b a m n 2,时,f x ()的最小值是f b a a c b a f x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-∉b am n 2,时 若-<b am 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a<-2,由f x ()在[]m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。

【例题分析归类】----正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。

解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上, 如图1所示。

二次函数在闭区间上的最值

二次函数在闭区间上的最值
y
O x=1
t t+1
x
3--1
(3)若对称轴x=1在区间[t,t+1]右侧时,有 t+1<1,即t<0,如图4--1所示: 当x=t+1时,函数取得最小值, 即 f(x)min=f(t+1)=t2+1。
y
1 t t+1 O x=1 x
4--1
2)最大值 )
(1)若
时,如图5--1所示:
1 t + ( t + 1) t ≥ ≥ 1,即 2 2
3 −2 ∉ − , 2 2
,所以
a = −
1 不合题意; 2
y -2 -1.5 o
X=-2 2
x
9--1
线开口向上,对称轴为x=0,如图 10--1所示: 闭区间的右端点离对称轴较远,
1 所以 a = 2 符合题意;
1 (2)若f(2)=3,则 a = 2 此时抛物
(3)若
x=− 7 4
3 f − = 3,则 2
a=−
此时抛物线开口向下,对称轴ቤተ መጻሕፍቲ ባይዱ为 ,如图10--2所示:
2 3
闭区间的右端点离对称轴远, 所以 a = − 2 符合题意。
3
y y
2
-1.5 o -1.5 o
2
x
x
X=-1.75
10--1 1 a = 综上所述: 2

2 a=− 3
10--2
二次函数在闭区间上的最值
(高中数学) 高中数学) 高中数学
y
m 0 n x
X=a
马街中学---张天琼 马街中学 张天琼
前面我们学习了二次函数是确定的,并且定义域也是 确定的最值(即定函数在定区间上的最值)的情况, 如:已知f(x)=2x2-3x+1,x ∈[-2,1],求它的最值?

(整理)二次函数在闭区间上的最值68684.

(整理)二次函数在闭区间上的最值68684.

二次函数在闭区间上的最值题型总结二次函数自身性质灵活多变,同时经常作为其他函数的载体。

二次函数在某一区间上的最值问题,是对初中二次函数内容的拓展,是高考数学中的热点。

一、 知识回顾:二次函数解析式的几种形式: ①一般式:y ax bx c =++2(a 、b 、c 为常数,a ≠0) ②顶点式:y a x h k =-+()2(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。

③交点式:y a x x x x =--()()12,其中x x 12,是抛物线与x 轴交点的横坐标,即一元二次方程ax bx c 20++=的两个根,且a ≠0,(也叫两根式)。

二、 思维提升:二次函数在区间上的最值,有两大类情况:1.二次函数在闭区间[]m,n 上的最值:一般思维的突破口:对称轴在区间的左边还是中间还是右边. 设,求在上的最大值与最小值。

以为例分析:将配方,得顶点为、对称轴为当时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上的最值:1)当时,的最小值是的最大值是中的较大者。

2)当时若,由在上是增函数则的最小值是,最大值是 若,由在上是减函数则的最大值是,最小值是 。

2.二次函数在开区间上的最值,利用数形结合求解。

三、题型总结:(一)、正向思维型 是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

一. 定二次函数在定区间上的最值—即“轴定,区间定”。

例1.函数y x x =-+-242在区间[0,3]上的最大值是_____,最小值是___。

解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图示。

二次函数在闭区间上的最值

二次函数在闭区间上的最值

如果我们俩个到 对称轴的距离相 等,则我们的函 数值也相等,离 对称轴越远,我 们的函数值越大
2、二次函数的图像和性质
y
(1)二次函数y= ax²+bx+c(a>0)
对称轴 x b
o
x
顶点坐标
2a


b 2a
,
4ac 4a
b2

在(-∞,
b 2a
)上,单调递减;在(

递减,如图:
所以f(x)min=f(-2)=-3 f(x)max=f(-3)=0
y
-3 -2 -1 o1
x
y
(2)如图: f(x)min=f(-1)=-4;
f(x)max=f(1)=0
y
(3)如图: f(x)min=f(0)=-3; f(x)max=f(2)=5来自--32 -1
1o2
m b n f ( b )
2a
2a
b n 2a
f (n)
f (n)
f(m)与f(n)中 的较 大者
f (m)
m
o
n
x
例2:求二次函数f(x)=x2-2ax-3在闭区间[3,4]上的最小值。
解:如图可得:
y
1°当a<3时二次函数在[3,4]上单调递

∴2°f当(x3)m≦ina=≦f(34)时=6二-6次a 函数先减后增
解:这个函数的对称轴为x=1,
y
∴ 当1<a时, f(x)min=f(a)=a2-2a+3 f(x)max=f(3)=6
∴ 当-1<a≦1时,
f(x)min=f(1)=2 f(x)max=f(3)=6
3

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设f x a x b xc a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b a a c b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:(1)当[]-∈b am n 2,时,f x ()的最小值是f b a a c b a f x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-∉ba m n 2,时 若-<bam 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n ba<-2,由f x ()在[]m n ,上是减函数则f x ()的最大值是f m (),最小值是f n ()当a <0时,可类比得结论。

二、例题分析归类: (一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。

解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上, 如图1所示。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题
如图1所示。函数的最大值为 ,最小值为 。
图1
同步练习.已知 ,求函数 的最值。
解:由已知 ,可得 ,即函数 是定义在区间 上的二次函数。将二次函数配方得 ,其对称轴方程 ,顶点坐标 ,且图象开口向上。显然其顶点横坐标不在区间 内,如图2所示。函数 的最小值为 ,最大值为 。
图2
2、轴定区间变
二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
1. 轴定区间定
二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。
例1.函数 在区间[0,3]上的最大值是_________,最小值是_______。
解:函数 是定义在区间[0,3]上的二次函数,其对称轴方程是 ,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,
对二次函数的区间最值结合函数图象总结如下:
当 时
当 时
3、轴变区间定
二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。
例4.已知 ,且 ,求函数 的最值。
解:由已知有 ,于是函数 是定义在区间 上的二次函数,将 配方得:
二次函数 的对称轴方程是 顶点坐标为 ,图象开口向上
三、巩固训练
1.函数 在 上的最小值和最大值分别是() 1 ,3 ,3(C) ,3(D) , 3
2.函数 在区间 上的最小值是( )
2
3.函数 的最值为( )
最大值为8,最小值为0 不存在最小值,最大值为8
(C)最小值为0,不存在最大值 不存在最小值,也不存在最大值
综上讨论,
图8
例3.已知 ,当 时,求 的最大值.

二次函数在闭区间上地最值

二次函数在闭区间上地最值

二次函数在闭区间上的最值一、知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。

分析:将配方,得顶点为、对称轴为当时,它的图象是开口向上的抛物线,数形结合可得在[m,n]上的最值:(1)当时,的最小值是的最大值是中的较大者。

(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是当时,可类比得结论。

二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1.函数在区间[0,3]上的最大值是_________,最小值是_______。

解:函数是定义在区间[0,3]上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。

函数的最大值为,最小值为。

图1练习. 已知,求函数的最值。

解:由已知,可得,即函数是定义在区间上的二次函数。

将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。

显然其顶点横坐标不在区间内,如图2所示。

函数的最小值为,最大值为。

图22、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2. 如果函数定义在区间上,求的最小值。

解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。

如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。

图1如图2所示,若顶点横坐标在区间上时,有,即。

当时,函数取得最小值。

图2如图3所示,若顶点横坐标在区间右侧时,有,即。

高一数学二次函数在闭区间上的最值

高一数学二次函数在闭区间上的最值

高一数学:二次函数在闭区间上的最值
一、知识要点
二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论.一般分为:对称轴在区间的左边,中间,右边三种情况.
二、例题分析归类:
(一)正向型
正向型是指已知二次函数和定义域区间,求其最值.
对称轴与定义域区间的相互位置关系的讨论往往成
为解决这类问题的关键.此类问题包括以下四种情形:
(1)轴定,区间定;
(2)轴定,区间变;
(3)轴变,区间定;
(4)轴变,区间变.
1:轴定区间定
二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”.
2:轴定区间变
二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”.
3:轴变区间定
二次函数随着参数的变化而变化,即其图像是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”.
4:轴变区间变
二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”.
(二)逆向型
逆向型是指已知二次函数在某区间上的最值,求函数或区间中参数的取值.。

二次函数在给定闭区间上的最值(值域)求法

二次函数在给定闭区间上的最值(值域)求法

二次函数在给定闭区间上的最值(值域)求法二次函数在给定闭区间上的最值(值域)的求法可以帮助我们更好地了解二次函数的特性与使用,以下是本文的详细分步骤。

首先,我们需要知道二次函数的一般式:y = ax² + bx + c在上式中,a、b、c 分别为二次函数的系数,其中a ≠ 0,且x 为自变量。

接下来,我们需要了解二次函数的一些性质和定理:1. 当 a > 0 时,二次函数开口向上,当 a < 0 时,二次函数开口向下。

2. 二次函数的对称轴方程为 x = -b/2a,因此二次函数的最值可以通过对称轴的纵坐标求得。

3. 如果 a > 0,则函数的最小值 y_min 等于对称轴的纵坐标;如果 a < 0,则函数的最大值 y_max 等于对称轴的纵坐标。

接下来,我们来分步骤解题:步骤1:确定二次函数的系数 a、b、c。

首先需要对二次函数做系数分解,如y = 2x² - 6x + 4,可以得出 a = 2,b = -6,c = 4。

步骤2:确定二次函数的对称轴的纵坐标。

对称轴的纵坐标等于二次函数的顶点纵坐标,也就是 -b/2a。

其中,b = -6,a = 2,因此对称轴的纵坐标为 3。

步骤3:计算二次函数的最值。

由于 a > 0,因此函数的最小值 y_min 等于对称轴的纵坐标,即 y_min = 3。

反之,如果a < 0,则函数的最大值为 y_max,同样等于对称轴的纵坐标。

因此,如上面的例子所示,二次函数y = 2x² - 6x + 4 的最小值为 3。

随着二次函数的应用越来越广泛,在数学学科、物理学科、经济学科中都有广泛的应用。

对于学生来说,掌握二次函数在闭区间上的最值求法是提高数学分析能力的关键因素之一,能够加深学生对二次函数特性和应用的认识,也有助于提高解题能力。

二次函数求最值(动轴定区间、动区间定轴)

二次函数求最值(动轴定区间、动区间定轴)
5 f(x)max=10f(k+2)=(1k5 +2)2-2(k+2)-3 =k2+2k-3
8
6
4
2 x=1 k
2
k+2 5
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
10
15
f(x) min=f(k)=k2-2k-3
4
6
8
10
8
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
(2)若x∈[ 2,4 ],求函数f(x)的最值; 10
(3)若x∈[ 1 , 5 ],求函数f(x)的最值; 8
2
(4)若x∈[
12, 2
3
6
2 ],求函数f(x)的最值;
4
解:画出函数在定义域内的图像如图
对称轴为直线x=1,由图知,
15
10
5
x= 1 时有最大值 f (1) 13
2
24
x=1时有最小值f(1)=-4
当0≤ k<1时 f(x)max=f(k+2)=k2+21k0 -3
10
10
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
f(x)min=f(1)=8- 4 f(x)min=f(1)=10- 4 f(x) min=f(k)=k2-2k-3
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
k
2
2
2
2
1105
k+2
4
4
4
4
6
6
6
6
8

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

解和重视,更是对体育事业的关怀。因此。在设计和建造上要
力求与校园环境及学校的办学特色和谐。 (3)发展好校园媒体,引导学生现场观赏。高校应该加强高 校体育竞赛的宣传力度,拓展宣传方式,扩大社会和校园影响
2009.N022@
万方数据
二次函数在闭区间上的最值问题
作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 杨家丽 重庆市第十一中学 科学咨询 SCIENTIFIC CONSULT 2009(22)
轴x=3-2a 讨论:(1)当3-2a<a,即a>l时,f(x)…=f(a)=(a一3)2 (2)当3_2a>a,即O<a<1时,f(x)。;。=f(3-2a)=12a-8a2 所以
r1

关系讨论,由数形结合可知函数在区间上的最大值与最小值。
例2:不等式9x2-6ax+a2-2a_6>0在-1/3<x<1/S内恒成 立,求实数a的取值范围。
二次函数在某闭区间上的最值问题是高考考查的重点内容 之一,备受命题者的青睐。但学生在初学时,往往会感到错综复
杂,难以把握。其实,这类问题的关键在于函数对称轴与给定区 间的相对位置关系的讨论。一般分为:对称轴在区间的左边、中
间、右边三种情况。本文将从下面四种类型加以归纳:轴定区间 定;轴动区间定;轴定区间动;轴动区间动。 一、轴定区间定
(2)当一1/3<a/3<1/3,即一1<a<1时,f(x)。=f(a/3)一
2a_6,由-2a_6>0得a<-3,与a∈[_1,1】矛盾,合去。
的情操、价值观等。这些物质会折射人人们的心灵,对人起到 一种潜移默化的陶冶作用。 (2)注重体育场馆的设计理念。体育场馆不仅是学校开展 体育教学和进行体育比赛的重要场所,也是一所高校的标志 性建筑,是校园功能结构和基础设施的重要组成部分,是学校 建筑环境的亮点,体育馆的修建给学校的环境增加不少光环。 体育馆建设体现出来的是一所学校对学校体育教学设施的理

高一数学解题技巧7:二次函数在闭区间上的最值或值域的求解

高一数学解题技巧7:二次函数在闭区间上的最值或值域的求解

高一数学解题技巧7:二次函数在闭区间上的最值或值域的求

二次函数是重要的初等函数之一,很多问题都要化归为二次函数来求解。

二次函数在闭区间的最值(值域)求解也是高考的重难点内容之一。

一、定轴定区间:此类问题结合相应的二次函数的图象即可求解
打开今日头条,查看更多精彩图片
二、定轴动区间:函数确定,但区间不确定,故需以对称轴与区间不同位置分类讨论
求最大值与求最小值分类讨论的情况一样吗?
三、动轴定区间:区间确定,而函数不确定。

故需以对称轴与区间不同位置分类讨论
无论哪种类型,同学们只需要紧紧抓住“区间与对称轴的相对位置”这一核心即可,要注意分类讨论与数形结合
新天鹅堡夏季,全景,alp湖,fuessenthannheimer山脉,allgaeubavaria。

二次函数在闭区间上的最值问题例析

二次函数在闭区间上的最值问题例析

解 : 区间[ ,。 上 ,( =£± 在 1 。) 厂 )
>0恒
成立等价于 + +n> 2 0恒成立 。设 Y: +2 +o ∈[ , )其 图象的对称轴 =一1 1 ) , 1 , ∈[ , 。 又 函数 '= +2 , +口在 ∈[ , ) 1 上单调递增 ,
下 面 就 所 给 区 间 和对 称 轴 的相 互 关 系进 行 讨 论 。 1所给区间确定 , . 对称轴位置也确定 若所给 区间是确定的 , 其对称轴位 置也确定 , 则 只要先考虑其对称轴 横坐标是否 在给定 区间 内, 当



对称轴横坐标在给定 区间 内时 , 其一个 最值在 顶点 取得 , 另一个最值 在与顶点横 坐标距离 较远 的端 点 取得 ; 当对称轴横 坐标不在给定区问时 , 可利用函数 单 调性确定其最值 。 例 I 已知 Y= —2 x+3 当 ∈[ ,] , , 一3 2 时 求函数 的最大值和最小值。 解: 由题 意知 , 函数 的图象开 口向上 , 函数 图 且 象的对称轴为 :1 一32 , ∈[ ,] 当 =一3 , ( 取得 最 大值 , 大值 为 时 f ) 最 厂 一3 :1 , =1 f ) ( ) 8 当 时,( 取得最小值 , 小值为 最 , 1 =2 () 。



r : () 3 a r ,1= + , I i I l
当且仅 当 ) :3 , +n> 0时 , ) 恒成立 。 >0 解之 , 。的取值范 围是 ( , 。 得 一3 *) 2 所给区间变化 , . 对称轴位置确定 若所给 区间是变化的 , 而对称 轴位置是确定 的, 则 对于区间变化时是否包含对称轴 的横坐标必须进 行分类讨论 , 其分类标准为 : 变化 区间中包含对称轴 的横坐标 ; 变化区间 中不包含对称轴 的横坐标 。 例 3 求 函数 厂 : +2 ( ) +1 区间 [, + , 在 tt

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

引入: 求函数()223f x x x =-+ (1)在R 上的最值.(2)在[]0,2和[]0,3上的最值.(3)在[]2,3和[]3,1--上的最值.轴动区间定1: 已知函数()224422f x x ax a a =-+-+在区间上[]0,2的最小值是3, 求a 的取值的集合.答案:{-5+ 2.函数()224422f x x ax a a =-+-+在区间上[]0,2的最小值是g(a), 求g(a),并求g(a)的最小值3.已知函数()()222424f x x tx t t t R =-++∈,[]1,5x ∈-,求函数()f x 的最大值和最小值 答案:()()()22m ax 2165022822t t t f x t t t ⎧-+<⎪=⎡⎤⎨⎣⎦++≥⎪⎩()()()()2m in 22821415216505t t t f x t t t t t ⎧++<-⎪=-≤≤⎡⎤⎨⎣⎦⎪-+>⎩ 4.若函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 取值范围是 A. 3a ≥ B. 3a ≤- C. 5a ≤ D. 3a ≥ 答案:B轴定区间动5.求二次函数()[]22,,5f x x x x a a =-+∈的值域,其中0a ≠ 答案:()()()()()()()()5,,115,1,1311,1,531,5,05f a f a a f a f a f a f a f a f a a ⎧>⎡⎤⎣⎦⎪⎪<≤⎡⎤⎣⎦⎪⎪⎨≤≤⎡⎤⎪⎣⎦⎪⎪<<⎡⎤⎣⎦⎪⎩,()()()()m ax 15,0511,15,1f a a f x f a f a a ⎧<<⎪⎪⎪=≤≤⎡⎤⎨⎣⎦⎪⎪>⎪⎩,()()()m in 1,0315,3f a a f x f a a ⎧<<⎪⎪=⎡⎤⎨⎣⎦⎪>⎪⎩已知函数223y x x =-+在闭区间[]0,m 上有最大值3,最小值2,则m 的取值范围是答案:[]1,2轴动区间动已知函数()[]22,,2f x x ax x a a =-+∈+,求函数()f x 的最大值和最小值 答案:()2m in 26,412,4042,0a a f x a a a +<-⎧⎪⎪=-+-≤≤⎡⎤⎨⎣⎦⎪>⎪⎩,()m ax 2,226,2a f x a a ≤-⎧=⎡⎤⎨⎣⎦+>⎩ 设函数()()2221,0f x tx t x t x R t =++-∈> (1) 求()f x 的最小值()h t(2) 若()2h t t m <-+对()0,2t ∈恒成立,求实数m 的取值范围 答案:()31h t t t =-+-,m>1。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数在闭区间上的最值-轴定区间定
一、 知识要点:
一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.
设f x a x b xc a ()()=++≠2
0,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭
⎪b a a c b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:
(1)当[]
-∈b a m n 2,时,f x ()的最小值是f b a a c b a f x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-∉b a
m n 2,时 若-<b a
m 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a
<-2,由f x ()在[]
m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。

【例题分析归类】----正向型
是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定
二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数y x x =-+-2
42在区间[0,3]上的最大值是_________,最小值是_______。

解:函数y x x x =-+-=--+22
4222()是定义在区间[0,3]上的二次函数,其对称轴方
程是x =2
,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上, 如图1所示。

函数的最大值为f ()22=,最小值为f ()02=-。

图1
练习. 已知232x x ≤,求函数f x x x ()=++2
1的最值。

解:由已知232x x ≤,可得032≤≤x ,即函数f x ()是定义在区间032,⎡⎣
⎢⎤⎦⎥上的二次函数。

将二次函数配方得f x x ()=+⎛⎝ ⎫⎭⎪+1234
2,其对称轴方程x =-12,顶点坐标-⎛⎝ ⎫⎭⎪1234,,且图象开口向上。

显然其顶点横坐标不在区间032,⎡⎣⎢⎤⎦
⎥内,如图2所示。

函数f x ()的最小值为f ()01=,最大值为f 3219
4⎛⎝ ⎫⎭⎪=。

图2。

相关文档
最新文档