数学建模与大学生数学建模竞赛

合集下载

数学建模与全国大学生数学建模竞赛

数学建模与全国大学生数学建模竞赛
可谓一次参赛终生受益,受到了大学生的积极相 应。
2011 年,来自全国33个省/市/自治区(包括香港和澳门
特区)及新加坡、美国、伊朗的1251所院校、19490个队 (其中本16008队、专3482队)、58000多名大学生报 名参加本项竞赛。
以学校为单位报名参赛,不能以个人或其他机构 的名义报名。可多次参加。

/undergraduate/contest s/mcm/ 美国官方网站
A题 城市表层土壤重金属污染分析
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质 量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得 的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的 演变模式,日益成为人们关注的焦点。 按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公 园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类 活动影响的程度不同。

最终正式报名参赛。
三、参赛的作用和意义
现实工作的需要 我们的教育从小学到大学,一直是以应试教育为 主,禁锢了学生创新能力的发挥,忽视了学生创 新能力的培养。 数学建模竞赛不同于传统的竞赛,它所提倡的是 创新思维。在其解题的过程中,学生能够充分发 挥自己的创新能力,你的答案不一定是最优的, 但建模方法要有特色、有创新,就能够得到肯定 和奖励。答案、方法都不一定唯一。
数学结构可以是数学公式,算法、表格、图示等。
数学建模就是建立数学模型,建立数学模型的全 过程就是数学建模的过程。
数学建模是一种数学的思考方法,是运用数学的 语言和方法,通过抽象、简化建立能近似刻划并" 解决"实际问题的一种强有力的数学手段。

数学建模竞赛相关知识介绍

数学建模竞赛相关知识介绍
品。比如飞机模型, 就是模仿飞机造出来的。既然是仿造,就不是真的,只 能是"假冒",但不能是"伪劣",必须真实地反映所模仿 的对象的某一方面的属性。如果只是模仿飞机的模样, 这样的飞机模型只要看起像飞机就行了,可以摆在展览 馆供人参观,照相,但不能飞。如果要模仿飞机的飞行 原理,就得造一个能飞起来的飞机模型,比如航空模型 比赛的作品,它在空气中的飞行原理与飞机有相同之处。 但当然不像飞机那样靠烧燃料来飞行,外观上也不必那 么像飞机,可见,模型所模仿的都只是真实事物的某一 方面的属性。而数学模型,就是用数学语言(可能包括数 学公式)去描述和模仿实际问题中的数量关系,空间形式 等。
因此,在得出数学解答之后还要让所得的结 论接受实际的考察,看它是否合理,是否可 行。如果不符合实际,还应设法找出原因, 修改原来的模型,重新求解和检验,直到比 较合理可行,才算是得到一个解答,可以先 付诸实施,但是,十全十美的答案是没有的, 已得到的答案一定还有改进的余地,还可以 根据实际情况,或者继续研究和改进;或者 暂停告一段落,待将来有新的情况和要求后 再作该进。
当然,选手的解答方法可以与标准答案不同,但其解答 方法的正确与否也是绝对的,特别是计算题的得数一定 要与标准答案相同。考试结果,对每个选手的答案给出 分数,按分数高低来判定优劣。尽管也要对参赛的团体 (代表一个国家,地区或学校)计算团体总分,但这个团 体总分也是将每个团体的选手得分加起来得到的,在比 赛过程中同一团体的选手们绝对不能互相帮助。因此, 这样的竞赛从本质上说是个人赛而不是团体赛。团体要 获胜主要靠每名选手个自的水平高低而不存在互相配合 的问题(当然在训练过程中可以互相帮助)。这样的竞赛, 对于吸引青年人热爱数学从而走上数学研究的道路,对 于培养数学家和数学专门人才,起了很大的作用。

数学建模与数学建模竞赛简介

数学建模与数学建模竞赛简介

全国大学生数学建模竞赛简介数学建模就是根据客观的实际问题抽象出它的数学形式,用以分析、研究和解决实际问题的一种科学方法。

它强调的是以解决实际问题为背景的数学方法和计算手段。

随着计算机技术的普及和发展,使得数学得以进入了科研工作的各个领域。

人们逐渐认识到,在诸如化学、生物、医药、地质、管理、社会科学等传统领域中,不是没有数学的用武之地,而是由于计算手段的不足而影响到数学在这些领域中的应用。

计算机技术的不断发展,为数学进入这些领域提供了强有力的计算手段。

这不仅为数学的应用提供了广阔的发展空间,也为数学本身提出了众多新的课题。

“高技术本质上是一种数学技术”很早就在美国的科技界得到了共识。

传统的数学教育已经不能适应对未来科技人才需求。

基于这种前瞻性考虑,1985年美国数学教育界出现了一个名为Mathematical Competition in Modeling(数学建模竞赛)的一种通讯竞赛活动。

其目的就是以赛促教。

随着网络技术的发展,这项活动很快发展为一项国际性的竞赛。

我国的部分高校于1989年参加了国际大学生数模竞赛活动,1992年举行了首届全国联赛。

1994年教育部高教司正式发文,要求在全国普通高校陆续开展数学建模、机械设计、电子设计等三大竞赛。

自此,在一些社会单位的资助下大学生数学建模活动在全国迅猛发展起来。

大多数的本科高等院校相继开设了这门课程。

据统计,全国大学生数学建模竞赛的参赛队由1993年的420个发展到2008年的12836个,遍及全国31个省/市/自治区(包括香港)1022所院校。

数学建模竞赛的题目都来自各个领域的实际问题,如:“钻井布局”、“节水洗衣机”;有些还是来自当今前沿领域中的问题,如:“投资的收益和风险”、“DNA序列分类”。

与一般的竞赛活动不同,竞赛题目本身有些没有固定的答案。

评价建模工作看重的是建模的合理性、创造性、和使用的数学方法、算法等。

全国大学生数学建模竞赛面向全国大专院校的学生,不分专业(分甲、乙两组,甲组竞赛所有大学生均可参加,乙组竞赛只有大专生可以参加)。

数学建模竞赛简介

数学建模竞赛简介

数学建模竞赛简介全国大学生数学建模竞赛是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。

目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

随着社会的发展,数学的应用在各个领域发挥越来越重要的作用,社会对数学的需求除了一些数学家和研究人员以外,越来越倾向于在日常生活中可以用数学思维和方法来解决实际问题,从而创造经济效益和社会效益的人才。

数学建模就是从复杂的实际问题进行分析,发现其中可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,建立数学模型的过程。

数学模型也可以称之为数学问题和实际问题之间的一座桥梁,通过模型就可以利用数学方法对实际问题进行分析和求解,并结合实际问题的信息来验证所求的解答数学建模竞赛的起源•一些西方国家的大学在二十世纪六、七十年代开始开设《数学模型》或《数学建模》课程,我国在八十年代初将《数学建模》引入课堂。

美国大学生数学建模竞赛(MCM)•1985年开始举办,此后每年一次(2月),“国际竞赛”•1999年起又同时推出交叉学科竞赛(Interdisciplinary Contest in Modeling – ICM) •1989年清华、北大、北理工首次参加,英文答卷。

此后每年都有其它院校参加。

•每年赛题和优秀答卷刊登于同年UMAP杂志。

中国大学生数学建模竞赛(CUMCM)•1990年上海举办首次省、市级大学生数模竞赛。

•1992年中国工业与应用数学学会(CSIAM)组织首届全国大学生数模竞赛。

•1994年起教育部高教司和CSIAM共同举办(每年9月)•赛题和优秀答卷于次年“数学的实践与认识”(2001年起刊登于当年“工程数学学报”数学建模竞赛的内容与形式内容:赛题:工程、管理中经过简化的实际问题答卷:一篇包含问题分析、模型假设、建立、求解(通常用计算机)、结果分析和检验等的论文形式: A. 全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行;B. 竞赛每年举办一次,一般在某个周末前后的三天内举行;C. 大学生以队为单位参赛,每队3人,专业不限。

全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介“全国大学生数学建模竞赛”从1992年开始每年举办一次,它是由教育部高等教育司与中国工业与应用数学学会共同举办的,是目前面向全国高等院校的一项规模最大的学生课外科技竞赛活动, 也是教育部高教司正式主办的仅有的两项学科竞赛之一。

其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

“全国大学生数学建模竞赛”的题目一般是由工程技术、管理科学中的实际问题简化加工而成,没有现成的答案,没有固定的求解方法,没有指定的参考书,没有规定的数学工具与手段,也没有已经成型的数学问题,从建立数学模型开始就要求同学们自己进行思考和研究。

这就可能让同学们亲身去体验一下数学应用于相关学科之中时的创造或发现过程,培养他们的创造精神、意识和能力,取得在课堂里和书本上所无法代替的宝贵经验。

此外,“全国大学生数学建模竞赛”的题目一般没有事先设定的标准答案,竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰性为主要标准,充分体现参赛者的聪明才智和创造精神。

每组的赛题有两道,参赛者任选其一。

从几年来的赛题来看,这些题目涉及到许多领域的非常实际的问题,如98年的两道赛题分别是“投资的收益和风险”和“灾情巡视路线”,前者给出若干种股票、债券的收益率、交易费和预测的风险损失,要求制定一种投资方案,使总收益尽量大而整体风险尽量小,后者给出某县的乡村公路示意图,要求在路程最短、各巡视组均衡等不同条件下设计最优巡视路线。

再如 2003年的“SARS的传播”、“露天矿生产的车辆安排”、“抢渡长江”;2004年的“奥运会临时超市网点设计”、“电力市场的输电阻塞管理”、“饮酒驾车”、“公务员招聘”;2005年的“长江水质的评价和预测”、“DVD在线租赁”、“雨量预报方法的评价”——每一道题都紧扣当前社会热点,很有时代意义。

全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介
– (1)综合性:一题多解,方法融合,结果多样, 学科交叉。 – (2)开放性:题意的开放性,思路的开放性,方法的开放性
,结果的开放性。 – (3)实用性:问题和数据来自于实际,解决方法切合于实际
,模型和结果可以应用于实际。 – (4)即时性:国内外的大事,社会的热点,生活的焦点,近
期发生和即将发生被关注的问题。
竞赛题型
▪ 每年出两道题(甲组:A,B题; 乙组:C,D题), 任选一题.
▪ A,C 为连续型题目; B,D为开放型题目
评奖标准
▪ 假设的合理性、建模的创造性、结果的正 确性和文字表述的清晰程度。
竞赛意义
大学阶段难得的一次近似于“真刀真 枪”的训练,模拟了毕业后工作时的情况, 既丰富、活跃了广大同学的课外生活,也 为优秀学生脱颖而出创造了条件.
▪ 初等数学方法建模(代数、几何、初等概率方 法);
▪ 量纲分析法建模; ▪ 微分法建模(静态优化模型); ▪ 微分方程模型(动态模型,常微部分); ▪ 差分方程模型; ▪ 层次分析法建模; ▪ 随机模型(概率分布方法建模)。
数学建模课程的内容安排 (待选部分)
▪ 微分方程模型(偏微部分); ▪ 稳态模型(稳定性方法建模); ▪ 图的方法建模(简单的图论方法的应用); ▪ 逻辑方法建模(合作对策模型等); ▪ 马氏链模型; ▪ 随机服务模型; ▪ 数学规划模型; ▪ 回归模型. ▪ 视学生、教师情况和课程设置而定
或改进; ▪ 根据建模的要求,可以增加、删除甚至修改题
目的条件; ▪ 把握好用现成的模型和方法,与自己创新的模
型和方法之间的关系; ▪ 论文主体由一人完成,并早些开始写作。
写好论文(答卷)的注意事项
▪ 完整——摘要;问题提出(用自己的语言);问 题分析;模型假设;模型建立;模型求解(算法 设计和计算机实现);结果(数据、图形);结 果分析和检验(如误差分析、统计检验、灵敏性 检验);优缺点,改进方向等,附录(程序、更 多的计算结果、复杂的推导、证明等);

大学生数学建模竞赛简介

大学生数学建模竞赛简介

大学生数学建模竞赛简介1、美国大学生数学建模竞赛1985年,在美国科学基金会的资助下,创办了一个名为“数学建模竞赛”(Mathematical Competition in Modeling 后改名Mathematical Contest in Modeling,简称MCM)一年一度的大学水平的竞赛,MCM 的宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种结构鼓励师生积极参与并强调实现完整的模型构造的过程。

它是一种彻底公开的竞赛,每年只有若干个来自不受限制的任何领域的实际问题,学生以三人组成一队的形式参赛,在三天(72小时)(近年改为四天,即96小时)内任选一题,完成该实际问题的数学建模的全过程,并就问题的重述、简化和假设及其合理性的论述、数学模型的建立和求解(及软件)、检验和改进、模型的优缺点及其可能的应用范围的自我评述等内容写出论文。

由专家组成的评阅组进行评阅,评出优秀论文,并给予某种奖励,它只有唯一的禁律,就是在竞赛期间不得与队外任何人(包括指导教师)讨论赛题,但可以利用任何图书资料、互联网上的资料、任何类型的计算机和软件等,为充分发挥参赛学生的创造性提供了广阔的空间。

目前已发展成为国际型竞赛,影响极其广泛。

2003年美国大学生数模竞赛参赛总队数638队,参赛国家8个,其中我国参赛队数300个队,占参赛总数的47%,获得特等奖4项(A题2项,B题2项、C题0项)、一等奖24项(A题4项,B题12项、C题8项)、二等奖92项(A题17项,B题37项、C题38项)、成功参赛奖179项(A题59项,B题83项、C题37项),获二等以上奖总数占参赛总数的42%。

2、全国大学生数学建模竞赛我国大学生于1989年起就组队参加美国MCM,近年来我们的参赛队已占到全部MCM参赛队数的三分之一,并取得优异的成绩。

从1992年起,我国开始创办自己的大学生数学建模竞赛,1992年11月由中国工业与应用数学学会组织举办了国内首届数学建模竞赛——“1992年全国大学生数学模型联赛”,以后竞赛每年一次,时间定为每年的9月下旬,历经十多个年头,目前已发展成为大学生中最具影响力的竞赛,现在已有26个省、市(自治区)建立了赛区,近年来每年都有500多所大学的万名以上学生参加竞赛,可以说数学建模及数学建模竞赛已深入大学生的学习生活,成为大学校园内的一个亮点。

大学生数学建模竞赛简介

大学生数学建模竞赛简介
Company Logo
Logo
数学建模竞赛的意义 培养选手勇于创新、 培养选手勇于创新、理论联系实际的学风 培养选手进行科学研究, 培养选手进行科学研究,以及通过研究学习新 知识的能力 培养选手相互协调、 培养选手相互协调、团结合作的精神 高强度脑力劳动中挑战极限的体验 极富挑战性的问题, 极富挑战性的问题,崭新的知识领域 直接推动了数学的教学内容、 直接推动了数学的教学内容、课程体系的改革
Company Logo
结 束
Company Logo
Logo
参赛队员的话
“当然,每个人都会有自己的见解,讨论中也难免 当然,每个人都会有自己的见解, 会有思想的碰撞, 会有思想的碰撞,这时如果每个队员都能够虚心地 接纳他人的意见,从全局的角度出发, 接纳他人的意见,从全局的角度出发,而不是固执 己见,那么思想的碰撞必能产生智慧的火花; 己见,那么思想的碰撞必能产生智慧的火花; ” 数学建模锻炼了我们的写作能力、语言表达能力, “数学建模锻炼了我们的写作能力、语言表达能力, 更提高了我们理论联系实际以及思考问题的能力。 更提高了我们理论联系实际以及思考问题的能力。 不管怎样,数学建模确实能够锻炼人, 不管怎样,数学建模确实能够锻炼人,让人学到很 多东西,这不仅仅是指智商上的,还有许多情商上 多东西,这不仅仅是指智商上的, 的东西。” 的东西。
Company Logo
Logo
历年来的全国大学生数学建模竞赛题
1997年A题:零件的参数设计 年 题 B题:截断切割 题 1998年A题:投资的收益和风险 年 题 B题:灾情巡视路线 题 1999年A题:自动化车床管理 年 题 B题:钻井布局 题 2000年A题:DNA序列分类 年 题 序列分类 B题:钢管订购和运输 题 2001年A题:血管的三维重建 年 题 B题:公交车调度 题

数学建模教学与数学建模竞赛的历史背景与意义

数学建模教学与数学建模竞赛的历史背景与意义

文章编号:1001-7445(2003)增-0006-05数学建模教学与数学建模竞赛的历史背景与意义戴牧民,吕跃进(广西大学数学与信息科学学院,广西南宁530004)摘要:阐述了在高校设立数学建模课程与开展大学生数学建模竞赛的历史必然性及其对深化高校数学教育改革,提高学生综合素质方面的意义;介绍了我国和广西高校数学建模教学与参加数学建模竞赛的情况;对今后的工作提出了展望和一些建议.关键词:数学建模;数学建模竞赛;素质教育;教学改革中图分类号:G 642Q 29 文献表示码:A1 数学建模的历史回顾数学作为人类的一种知识体系,它的产生与发展从来都是与人类的社会生产活动密切联系着的.几何学的知识来源于丈量土地、水利建设、房屋与陵墓的建筑施工,器皿与工具的制作;算术的知识来源于产品的生产、储备、分配、交换与流通等社会实践,这是众所周知的.在运用数学知识来解决一个个具体的实际问题时,首要的一步是要把问题所涉及的各种物理量及各个物理量之间的关系暂时地剥离去它们的物理含义,转换成数学的量及数学符号、语言、表达式,通过数学的推理、演算得到结果,然后再结合原来的物理含义,得出实际问题的答案.这是简单的数学建模过程.十七世纪,牛顿为了研究机械运动的普遍规律,确立了变速运动过程中的瞬时速度,加速度的数学表示形式,从而建立了m x ″=f (x ,x ′,t )(质量×加速度=作用力)的质点动力学数学模型(在建模同时也创立了微积分这一新的数学工具).此后,关于热传导的数学模型,弦振动的数学模型,流体力学的数学模型,电磁场运动的数学模型,分子运动的统计力学模型等等纷纷建立,这就使得物理学不再单纯是一种基于实验的经验科学,而且还获得了牢固的理论基础和强有力的推理工具,成了推动许多自然科学和工程技术科学发展的强劲动力.以前,工程技术人员所以要学习和掌握高等数学和工程数学,主要是在于掌握和理解相关工程科学中的各种技术原理.如机械工程中的机械原理,化学工程中的传热传质原理,土木工程中的结构原理,电器工程中的电工原理,电磁学原理,以及支撑这些原理的应用基础科学如材料力学,流体力学,工程热力学,电磁场理论等等.至于具体的项目设计,制造,施工等,由于计算技术和计算手段跟不上趟,大多数情况下只能全部或部分地根据经验,再通过查查有关的技术手册,拉拉计算尺,查查四位、五位对数表,了不起再摇摇机械计算机粗略地算一算来完成.在管理工作中情况也差不多.比如简单的一个物资或交通调度问题,尽管在理论上寻求最优的调度方案没有任何的困难,但是当涉及的变量很多时,面对着海量的计算,人们也感到束手无策.大学阶段所学的微积分,工程数学和概率统计知识,一到面临实际问题,往往很难用上,久而久之,也就逐渐遗忘,‘还给了老师’,以致有些人还发出学了没有用的感叹.这种情况到了20世纪50年代随着电子计算机的出现和计算机程序设计方面的突破发生了转变.电子计算机以其飞快的计算速度,惊人的准确性使过去由于计算量太大,无法进行数学计算的问题具有解决的可能,所以它首先被应用于大型的科学计算、气象预报和军工科技领域.进入70年代,电子计算机无论从计算速度,存储容量,硬件的可靠性,人机对话,软件开发,设备价格的降低等各方面都取得了巨大的进第28卷增刊2003年10月广西大学学报(自然科学版)Jour nal of G uangx i U niv er sity (N at Sci Ed)Vo l.28,Sup. Oct.,2003 收稿日期:20030620;修订日期:20030828作者简介:戴牧民(1937广西大学教授.展,这就使一般的工程技术人员和管理工作人员在他们所从事的技术工作和管理工作中不但可以运用工程技术原理建立起相应问题的数学模型,而且具备了求解这些数学问题的计算手段.人们可以通过计算机对现实中的过程进行仿真,通过数字计算和逻辑演算寻求答案,做出最优的设计方案.其结果,或是大大地节约成本,或是大大地缩短技术开发周期,或是大大地提高工程质量或产品的技术含量,总之,大大地增进了经济效益.因此,运用数学建模的手段来解决工程领域和管理领域中的实际问题,将日益成为技术工作者和管理工作者所必须掌握的一种技能.这也是一个大趋势.2 数学建模的教学与数学建模竞赛如上所述,为了顺应这种趋势,在高等学校理工科人才的培养中,完全有必要把培养学生运用数学建模解决实际问题的意识,学习和掌握数学建模的方法和技能作为提高大学生综合素质的一项重要内容.为实现这一目标,一方面,在学校中开设数学建模的课程,一方面,开展数学建模竞赛活动,它们构成了相辅相成的两个方面.在国外,70年代,一批有识之士就开始倡导,在欧美一些国家的大学里开设了数学模型课程.1985年在美国首次开展了大学生数学建模竞赛,而且形成了今天仍在遵循的竞赛模式:(1)每个参赛队由3名大学生,1名指导教师组成.指导教师负责平时的指导培训,竞赛时指导教师不得参与.(2)参赛者可以查阅任何可以找到的书籍,期刊资料,可以使用各种计算机,应用软件和软件包.(3)赛期三天,到时参赛队必须提交一篇论文.论文应当包含针对所选赛题作出的问题的叙述和阐释,模型假设和模型的建立,计算的结果和讨论等内容.同时也形成了至今仍在遵循的命题及评价模式:(1)竞赛题都是从工程技术及管理工作中提炼出来的具体课题(有些经过适当的简化和剪裁,以适应竞赛者的数学水平和计算量),这些问题事先都没有唯一的准确的标准答案.(2)竞赛题的内容及陈述方式应当适合大学生的理解,不能太过专业化,解题所需要的数学工具应当适应理工科大学阶段数学教学的要求(微积分,常微分方程,线性代数和线性规划,概率论和数理统计等),不涉及太专业的数学如偏微分方程理论,随机过程理论等.(3)参赛论文的评判依据答案的正确性,模型的创造性和表述的清晰性等因素综合考虑.80年代开始,随着改革开放,我国的数学建模教学和数学建模竞赛活动也日益蓬勃地发展起来.1982年复旦大学首先在应用数学专业学生中开设了数学模型课程,随后很多院校也相继开设.1982年,朱尧辰,徐伟宣翻译出版了E. A.Bender 的“数学模型引论”;1987年,高教出版社出版了清华大学姜启源教授编著的“数学模型”一书.这是我国学者的第一本数学模型的著作.1989年,我国北京大学,清华大学和北京理工大学首次组队参加美国大学生数学建模竞赛并取得了可喜成绩.1990年,上海市举办了本市大学生数学建模竞赛.1992年11月首次举办了10个省市,79所院校参加的部分省市大学生数学建模竞赛.1993年底和1994年3月,国家教委高教司两次正式下文决定组织全国大学生数学建模,机械设计,电子设计竞赛,数学建模竞赛由中国工业应用数学学会具体组织实施.自1994年到2002年,参赛院校由最初的196所发展到572所,参赛队由94年的867个队发展到4448个队.1999年开始又增设了高校大专组的数学建模竞赛,当年有416个队参加竞赛,2002年参赛队达到913个队.至2002年止,国内出版的有关数学建模的书籍达到60种以上.我区的数学建模教学与数学建模竞赛得到了自治区教委的重视与支持.1994年,区教委根据国家教委教高司[1993]178号文件与教高司[1994]76号文件精神,决定成立全国大学生数学建模竞赛广西赛区组委会.组委会成员由教委高教处,广西数学学会负责人及部分高等院校数学教师组成,挂靠在广西数学学会,并负责具体组织本赛区的竞赛工作.1994年广西大学,广西师范大学,桂林电子工业学院3所院校组织了16个队参赛.后来陆续有广西师范学院,广西民族学院,广西工学院,桂林工学院,桂林陆军学院,桂林空军学院,柳州高等师范专科学校等院校参加.1999年,钦州,河池,右江,梧州,南宁等高等师范专科学校及广西财政专科学校、桂林航空航天高等专科学校等大专院校也先后参加了大专组的数学建模竞赛.2003年,广西大学首次组队参加美国大学生数学建模竞赛.3 数学建模课程与数学建模竞赛的意义十多年来数学建模课程的开设与全国大学生数学建模竞赛的开展充分证明,这项活动对深化高等7增刊戴牧民等:数学建模教学与数学建模竞赛的历史背景与意义8广西大学学报(自然科学版)第28卷 学校的数学课程改革,促进第二课堂活动的开展,推进大学生综合素质教育等方面都起到了积极的,有益的作用.(1)在数学教育中理论与实际之间的桥梁作用建国以来形成的高等教育体系中,理论联系实际的问题一直是从中央到社会各界广泛关注的问题.几十年来人们从各种角度理解理论联系实际的内涵,也从各个方面批判大学教育中理论脱离实际的现象,探索理论联系实际的途径.尤其是大学数学课程的教学更是首当其冲.一方面,众多的在工作岗位上工作的大学毕业生反映在大学阶段学过的数学理论知识用不上;一方面,社会上以至党政部门不少领导人虽然在口头上不否认高等数学是有用的,内心却总存在着怀疑.文化革命中甚至还出现过认为数学理论不过是数学家们孤芳自赏的象牙之塔,是资产阶级故弄玄虚,用来对工农兵实行管、卡、压,维护资产阶级对高等学校的统治的工具的愚昧的偏见.话虽如此,实际上当时的大学中高等数学的教学内容与毕业后实际从事的工作之间确实也存在着很明显的脱节.究其原因,一方面,大学中设置的高等数学、工程数学课原意是为理解和掌握各种现代基础理论提供基本的工具.数学是一切现代科学广泛使用的语言.试想,如果不具备微积分,向量分析与场论,微分方程,线性代数,概率统计等比较系统的知识,怎么能理解和掌握现代物理学,化学,材料科学,电工学,电子学,无线通信等后续专业课的内容?数学又是一们逻辑性特别强的学科,要掌握有关的系统知识,就不得不从函数的概念、性质,函数的变化率(导数)到微分、积分的概念,性质和计算;从线性方程的求解,n维向量,向量组的线性相关,线性无关性到矩阵的概念,矩阵的运算;从抽扑克牌,丢骰子引出概率概念,古典概型,到随机变量,分布函数,数学期望,方差等等,一个台阶一个台阶地拾级而上.在有限的课时内要完成这样一个教学过程,也就难免会使人们感到它是从概念到概念,从定理到定理,从理论到理论,学习起来枯燥乏味,学过后也不清楚它究竟如何应用.另一方面,就我国六、七十年代工农业生产的总体规模和技术水平来看,离现代化还有着极大的差距.在这种状态下从事实际工作,大学阶段所学的数学知识难以用上也是可以想象的.进入80时年代后,随着我国工农业生产水平的不断提高,科学技术进步的日新月异,加上计算机技术、计算技术的突飞猛进,计算机的应用日益普及,渗透到各个科研生产和管理部门.这就为数学理论与科研生产实际相结合提供了广阔的用武之地.面对这一形势,对大学阶段的数学教育进行深入的改革乃是大势所趋.在学校中开设数学建模课程,组织大学生参加数学建模竞赛,就是一项积极的措施.它在数学的理论知识与实际应用之间架起了一座桥梁.学生通过学习和实践,一方面加深、巩固了对数学理论知识的理解,摆脱了枯燥乏味的感觉,并进一步激励学生向更深入的数学理论层次进军;一方面锻炼了学生分析问题,动手解决问题的能力和初步掌握运用数学工具解决实际问题的方法.因此可以说,数学建模课程和数学建模竞赛,为大学数学教学理论联系实际架起了一座桥梁,为开启高校数学教育改革提供了一把钥匙.(2)提高大学生科技综合素质的有力措施大学生数学建模竞赛有两个明显的特点.一个是竞赛题的现实性与开放性,另一个是它是由三人小组参赛,通过集体努力共同完成的.因此参加一次数学建模竞赛实际上相当于一个小组在限定的短短三天时间内进行的一项突击攻关的小型科研过程.这无论是对参赛队员的智力、体力以及组织协调能力,团结协作能力都是一次严峻的挑战.它对于培养和锻炼学生的科技素质无疑能起到积极的作用.(1)由于竞赛题的设置来源于科研生产实际,不是纸上谈兵,不是书本上现成的东西,也没有现成的标准答案.因此,正确地理解题意,善于从题目的文字表述中迅速地领会出文字背后所包含的实际含义,从而准确地把握住问题的实质,弄清楚问题所涉及的各种因素的地位(主要的,次要的;有关的,无关的;…),性质(确定性的,随机的;连续的,离散的;动态的,静态的;…)及这些因素之间的关系,然后才有可能找出解决问题的关键,思考解题的方案,着手建立模型;在分析问题的过程中,有时还需要通过各种途径查找文献资料和数据资料;在解题过程中还要通过电子计算机,使用各种语言和应用软件编程计算,计算出数字结果,制表绘图;最后还得以论文形式写出问题的分析过程,计算过程,并展开讨论.这就要求学生对各项应用领域的科技知识有比较广泛的了解,具有比较广阔的视野,掌握文献检索的方法,熟悉计算机的操作,具备较好的文字表达能力.因此数学建模竞赛对参赛队员除了要求数学的必备知识外,还对他们的文字理解能力,编辑能力,表达能力,文献检索能力,计算能力,计算机编程、制表、绘图的能力提出了全面的要求.这些能力,如果不在平时就刻意地下一番功夫,临降磨枪是绝对做不到的.它需要指导教师平时有意识地引导和培养,学生自觉地有意识地学习、锻炼.这样做就能在数学建模课程的教学和数学建模竞赛中很好地体现出对学生科技综合素质的培养.(2)作为一项全国性的竞赛,竞赛题的设置当然有一定的难度,有较大的工作量,而且具有较大的探索空间和发挥的余地.单靠一个人的能力是很难做出优秀的解案,甚至是难以完成的,只有依靠集体的智慧,合力攻关.参赛队员们虽然来自同一院校,但往往属于不同的专业或不同班级,平日里彼此不一定熟悉、了解.一旦参赛,三名队员就组成了一个小集体.队员之间如何合理分工,协调,尽量发挥各个人的特长,能否做到互相默契,当某个环节碰到困难或出现差错时,能否相互支持、鼓励,而不是互相埋怨、扯皮,这些都是参赛成败的关键,里面是大有学问的.一次成功的参赛,对参赛成员在发扬团队精神,培养指挥协调能力等方面都是一次很好的锻炼,是能够受益终身的.我们曾经和参加过数学建模竞赛的学生聊过,他们普遍认为,参加数学建模竞赛是一次毕生难忘的经历.虽然在三天时间内,废寝忘食,甚至通宵不寐,精神上处于极度紧张、亢奋的状态,交完文稿后感觉简直就像是脱了一层皮一样.但是,一种战胜挑战后的成就感,一种在与同组队员共同奋斗中结成的战斗友谊,一种从事某项事业的切身的实践体验却会感到莫大的欣慰.这些都是在平常的学习生活中难以体验到的.4 几点意见和展望从我区第一次组队参加数学建模竞赛至今已近十年.回顾这些年来我区的竞赛活动的开展情况,确实是成绩斐然.为了进一步推动这项活动健康地发展,使之在我区高校教学改革中起到更好的促进作用,我们提出下面几点意见供大家参考.(1)数学建模课程的教学与参赛队员的培训方面,应当突出‘新’与‘活’两个字.数学建模课程的教学内容与传统的高等数学及工程数学课程的内容明显不同之处是,一个是十八、十九世纪就已经形成,并且已经系统化、理论化了的知识;一个则是深深地植根于现代科学技术领域的实际课题和奠立在许多现代数学工具和计算技术的基础之上的.建模的新视野,求解的新方法层出不穷(如层次分析,灰色预测,模糊评价,神经元网络,遗传算法等等).就教材来说,虽然出版有多种书籍可供选用,但是教学过程中应当不拘泥于课本的内容,随时注意吸收最新的知识,补充最新的案例,不断更新和改进教学内容.教学方法上也应当避免固守教材的安排,按固定的程式一个套路一个套路地教.一些基本的套路固然需要让学生掌握,更重要地是要通过课程的教学让学生掌握活的灵魂,即培养学生科学的思维方法,分析能力和灵活运用的能力.(2)在开设数学建模课程的同时,应当配套开设'数学实验'课程.设置这门课程的立意与数学建模课程有所不同,主要是教导学生如何运用计算机和各种数学软件来计算各种不同类型的数学问题.它与数学建模课程恰好是相辅相成的.打一个不太确切的比方,前者着重教动脑(分析),后者则着重教动手(计算),两者配合,则会相得益彰.已经开设数学实验课的学校,应当做好两门课的协调,尚未开设数学实验课的学校,则要尽快创造条件开出来.(3)加强数学建模课程任课教师和建模竞赛指导教师的培训工作.现今我区数学建模竞赛活动规模在逐年扩大,新参加的院校逐年增多.要巩固这些成果,保持这一势头,争取更好的成绩,提高从事数学建模课程教学的教师和建模竞赛的指导教师的水平是极端重要的一环.这也是我们组委会的一件重要的工作.(4)做好宣传工作.这里包括两个方面,一个方面是要做好对学生层面的宣传,激发广大学生报名学习的积极性(看来大多数学校目前还是作为选修课安排的);一个方面是对领导层面的宣传,使学校领导了解数学建模课程及数学建模竞赛活动对促进教学改革,开展素质教育等方面的积极意义,争取他们在人力物力财力等方面的支持.(5)呼吁各级有关部门和领导对这一新事物多多给予关注,特别是对从事数学建模教学和数学建模竞赛的教师在各方面都给予关怀和照顾.因为从事这项工作是一项非常之吃力不讨好的工作,需要花费大量的时间和精力.它的成果仅仅体现为竞赛论文能否得奖和得奖的级别.而这又不是仅仅取决于教9增刊戴牧民等:数学建模教学与数学建模竞赛的历史背景与意义10广西大学学报(自然科学版)第28卷 师个人因素的,它既涉及到参赛学生的能力和发挥情况,也涉及到其他各个院校参赛队的总体表现.一位教师全身心投入到这项工作,往往不得不要在科研方面和其他方面做出一定的牺牲.而这又不能不影响到这些教师职称的晋升,以及奖金和福利等多方面的利益.这也是国内许多名牌大学的教师很多都不愿意从事数学建模教学和指导竞赛工作,宁愿多多申报科研项目的原因.所以我们在这里不得不大声疾呼,恳切地吁请各级部门和领导在职称评定方面,奖金及福利方面制定一些有利于数学建模教学和数学建模竞赛(以及机械设计,电子设计竞赛)活动开展的规定.比如,参赛队获得全国一、二等奖的指导教师在业绩上可以比照获得自治区某个级别的科技进步奖或教学成果奖获得同等的待遇.在自治区教育厅领导的关怀和高教处的直接指导与支持下,我们广西赛区组委会计划今年7月在广西大学举行一次有关数学建模课程教学和数学建模竞赛的经验交流活动.同时我们也就此向各院校征集有关的论文,并征得《广西大学学报》同意,编辑一期增刊.我们期望通过这次交流活动和文集的出版能够促进我区数学建模教学和数学建模竞赛更蓬勃的发展.参考文献:[1] Bender E A.数学模型引论.朱尧辰,徐伟宣译.北京:科学普及出版社,1982.[2] 姜启源.数学模型[M].北京:高等教育出版社,1987.[3] 李大潜.中国大学生数学建模竞赛(第二版)[M].北京:高等教育出版社,2001.The background and significance of the teaching and competitionof mathematical modelingDAI M u-min,L Yue-jin(Colleg e of M athematics and I nfo rmat ion Science,G uang x i U niv ersit y,Nanning,530004,China)Abstract:The paper rev iew ed the histor ical background on m athematical modeling teaching and co mpetitio n as an activ ity dev elo ped in high scho ols.It also elabo rated the significance of the course and competition of m athematical mo deling in order to deepen the reformation of m athematical education and to im pro ve the co mprehensive quality of students.At last the paper g av e some prospect and sug gestion for improvement of the futur e w ork.Key words:mathematical mo deling;competition of M athematical m odeling;quality education; teaching refor matio n(责任编辑 张晓云)。

大学生数学建模竞赛3篇

大学生数学建模竞赛3篇

大学生数学建模竞赛第一篇:比赛概述全国大学生数学建模竞赛是一项集大学生数学、计算机、工程等多学科知识于一体的比赛活动。

此项比赛旨在提高大学生实际问题分析、建模和解决问题的能力,培养创新思维和团队合作意识,促进交流与合作,推动人才培养与学科发展。

比赛内容涉及到多个专业领域,如金融、工程、交通、物流、环境等等,解决实际问题,是一项富有挑战性的比赛。

比赛每年在全国范围内举办,由中国高等教育学会主办,由全国各高校联合举办,共分两个阶段,全国选拔赛和全国决赛。

全国选拔赛采取在线形式进行,全国各参赛高校组成一个网络,采用赛时24小时的方式进行。

全国决赛采取实地考试形式进行,具体考场地点根据比赛组织方的安排而定。

比赛要求参赛队伍分析问题、建立数学模型、获取数据、运用计算机技术、解决问题,最后要有完整的报告文本表述出自己的分析和解决思路,以及得出的结论。

该比赛对于大学生的课外学习和个人发展有着重要意义。

一方面锻炼了学生的实际问题解决能力,增强了学生对于理论知识的掌握和应用;另一方面,帮助学生加强对于团队合作和沟通能力的培养,提高了学生创新思维和综合素质,同时推动了各高校之间的交流与合作,促进了学科的发展。

因此,大学生要积极参加数学建模竞赛,为自己的未来打下良好的基础和提供更广阔的发展机会。

第二篇:比赛流程全国大学生数学建模竞赛,是一项流程复杂、充满挑战性的竞赛,需要参赛者有较高的数学建模和计算机技术水平。

整个比赛流程可以大致分为以下几步。

首先,报名。

每年比赛有固定的报名时间,学生需要及时关注比赛官方网站,了解报名程序和报名要求。

比赛一般需三人组成一队,队伍中至少要有一名本科生。

第二,选择题目。

比赛中将提供一般的情景和问题,参赛队伍需要根据自身兴趣和能力选择相关的题目进行解答。

第三,分析问题。

参赛队伍根据所选题目,运用数学建模和分析方法,深入解析问题,找到切入点和解决方案。

第四,获取数据。

根据所选题目,进行实地考察或者从已有的数据中获取相关信息,获得所需数据后将其清洗、整理和加工。

全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介全国大学生数学建模竞赛是教育部高教司和中国工业与应用数学学会共同主办、面向全国高校(包括高职高专院校)所有专业大学生的一项通讯竞赛,从1992年开始,每年一届,2013年的第22届竞赛有来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、印度和马来西亚的1326所院校、23339个队(其中本科组19892队、专科组3447队)、70000多名大学生报名参加(每队3名同学),是目前全国高校规模最大的基础性学科竞赛,也是也是世界上规模最大的数学建模竞赛;它是全国大学生规模最大的课外科技活动,能从一个侧面反映一个学校学生的综合能力。

竞赛2007年开始被列入教育部质量工程首批资助的学科竞赛之一。

一、什么是数学建模简而言之,数学建模就是用数学的方法解决实际问题。

当我们遇到一个实际问题时,首先对其进行分析,把其中的各种关系用数学的语言描述出来。

这种用数学的语言表达出来的问题形式就是数学模型。

一旦得到了数学模型,我们就将解决实际问题转化成了解决数学问题。

然后,就是选择合适的数学方法解决各个问题,最后将数学问题的结果作为实际问题的答案。

当然,这一结果与实际情况可能会有一些差距,所以我们就要根据实际情况对模型进行修改完善,重新求解,直至得到满意的结果。

实际上,数学建模对于同学们来讲并不是全新的事物,在中小学阶段做的数学应用题就是数学建模的简单形式。

现在,同学们学习了许多高等数学知识,所面临就是要用高等数学的知识和方法,并借助计算机来解决更接近实际的规模较大的问题。

所以参加数学建模活动是一个很有意义的科研实践机会,同时会让你认识到高等数学在实际生活中的巨大作用,提高学习数学的积极性。

二、数模竞赛的形式该竞赛每年9月(一般在上旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。

全国大学生数学建模竞赛的注意事项

全国大学生数学建模竞赛的注意事项

全国大学生数学建模竞赛的注意事项数学建模竞赛起源于20世纪80年代,如今已成为各类学科竞赛中备受关注的一项。

全国大学生数学建模竞赛是中国最高层次、最具权威性的数学建模竞赛,每年吸引着数以万计的大学生参与。

然而,为了在竞赛中取得好成绩,不仅要有扎实的数学基础和解决问题的能力,更需要学生们掌握一些注意事项。

本文将为大家列举全国大学生数学建模竞赛中的注意事项,帮助大家更好地备战竞赛。

1. 了解竞赛规则与要求在备战竞赛之前,务必仔细阅读相关的竞赛规则和要求。

了解竞赛的时间、地点、形式、题目类型等基本信息,以便做好合理安排。

此外,还要深入理解竞赛的评分标准,明确各个环节的重要性,有针对性地准备。

2. 熟悉数学建模方法与技巧数学建模竞赛注重解决实际问题的能力,因此掌握数学建模的方法与技巧至关重要。

在备战过程中,应该积极学习和掌握各种数学建模方法,如数理统计、最优化算法、微分方程建模等。

同时,要学会合理运用各种数学工具和软件,如Matlab、Mathematica等,提高解决问题的效率和准确性。

3. 培养团队合作能力全国大学生数学建模竞赛通常是以团队形式参赛,因此团队合作能力是比赛中不可或缺的一环。

在备战过程中,同学们应该积极配合,相互协作,分工合作。

分析和讨论题目时要充分倾听队友的意见,相互启发,共同寻找解决方案。

通过团队合作,可以更好地发挥每个人的优势,提高整体的实力。

4. 训练解题速度和思维逻辑数学建模竞赛中,时间是宝贵的资源,解题速度是决定成绩的重要因素之一。

为了提高解题速度,需要在备战过程中进行反复的解题训练。

模拟比赛场景,尽量追求快速解答,并通过检验结果来评估自己的准确度。

同时,要注重培养清晰的思维逻辑,理清问题的关键点,避免走进死胡同。

5. 练习过往竞赛真题全国大学生数学建模竞赛历届真题中包含了大量的经典问题和解题思路,而且一直以来都有一定的连续性。

通过练习历届真题,可以熟悉竞赛形式和题型,了解解题思路和难点。

数学建模与大学生数学建模竞赛

数学建模与大学生数学建模竞赛
评审标准
评审标准主要包括论文的创新性、实用性、完整性、准确性和规范性等方面。专家将根据论文的质量和 水平评选出最终的优胜者。
竞赛题目类型
竞赛题目类型多样,包括经济、工程、环境、社会等领域的问题,如“电力市场的输电阻塞管理”、 “互联网广告的投放效果评估”、“全球气候变化对人类的影响”等。
题目难度各异,要求参赛者具备扎实的数学基础、广泛的知识面和灵活的思维方式,能够运用数学建模 的方法解决实际问题。
02
大学生数学建模竞赛
竞赛简介
大学生数学建模竞赛是一项由教育部、 中国工业与应用数学学会等机构联合举 办的全国性学科竞赛,旨在培养大学生 的数学建模能力、团队协作精神和创新
实践能力。
该竞赛自1992年起每年一届,已成为 中国高等教育中影响力最大的数学学科 竞赛之一,吸引了越来越多的高校和参
赛者参与。
持续学习
不断学习和探索新的数学建模 方法和技巧,提高自己的数学
建模水平。
感谢您的观看
THANKS
数学建模与大学生数学建模 竞赛
contents
目录
• 数学建模简介 • 大学生数学建模竞赛 • 数学建模技巧 • 数学建模案例分析 • 大学生数学建模竞赛经验分享
01
数学建模简介
数学建模的定义
数学建模
运用数学语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段。
数学建模过程
数学建模不仅提高了自己的数学应用能力,也让自己更加热爱这门 学科,希望未来能够在这方面取得更大的成就。
对未来参赛者的建议
提前准备
尽早了解和准备数学建模竞赛 ,积累相关知识和经验。
多实践
通过参与实际项目或模拟比赛 ,提高自己的数学建模能力和 团队协作能力。

数学建模竞赛赛事汇总

数学建模竞赛赛事汇总

国际赛官方网站 行注册报名

中学生、大学生(本专)、研究生 、高校毕业生数模爱好者
/hdm cm/2016
报名网址: /w uyi/2016
五一数模联赛官网网站:
赛氪为东三省数学建模联 赛指定的官网: /n emcm/2016, 竞赛通知及题目下载地 址: /c /nl/32572 。
/
主要针对华中地区高校的在校大学 生,同时也欢迎非华中地区高校在 校大学生报名参加
营)
13
“数创杯”全国大学生数学建模 挑战赛
14 亚太地区数学建模竞赛
15 草原杯数学建模夏令营 16 MathorCup大学生数学建模挑战赛
17
第二届中国大数据建模年终总决 赛
18 第六届泰迪杯数据挖掘挑战赛 19 中青杯数学建模竞赛
全国大学生数学建模竞赛组委 会
数创杯”全国大学生数学建模 挑战赛组织委员会、陕西创新 人才发展研究院和172校园活动 网 河北省现场统计学会、亚太地 区大学生数学建模竞赛组委会 、数学家(原校苑数模)
报名费/队 年份 报名时间 竞赛时间 300 2017 6月20日 9月14日20:00-18日6:00
2017
11月30日-12月4日上午8时
2018
2018年2月6 日前
2018年2月9日-13日
成绩公示 10月中下旬
2017
报名截止时 间:2017年 7月31日
2017年9月16日8:00至9月20日12: 00
/
全国研究生数学建模竞赛微信服务
号:npgmcm
媒体支持:我爱竞赛网
/
()
/ 设本科生组和研究生组
11月10日-13日8:00
11月28日

数学模型与大学生数学建模简介

数学模型与大学生数学建模简介
2014-5-16 10
CUMCM历年赛题的简析
2003年:(A)SARS的传播问题(集体) (B)露天矿生产的车辆安排问题(吉林大:方沛辰) (D)抢渡长江问题(华中农大:殷建肃) 2004年:(A)奥运会临时超市网点设计问题(北工大:孟大志) (B)电力市场的输电阻塞管理问题(浙大:刘康生) (C)酒后开车问题(清华大学:姜启源) (D)公务员的招聘问题(信息工程大学:韩中庚) 2005年:(A)长江水质的评价与预测问题(信息工大:韩中庚) (B)DVD在线租赁问题(清华大学:谢金星等) (C) 雨量预报方法的评价问题(复旦:谭永基)
16
参加数学建模竞赛的方法
1.数学建模所需要的方法和知识
数学建模常用的方法: 机理分析、数据处理、综合评价、微分方程、 差分方程、概率统计、插值与拟合、优化方法等。 数学建模应具备的数学知识: 高等数学(微积分)、微分方程、基本运 筹学、线性代数、概率统计、数值计算等。 进一步拓展的知识: 图论与网络优化、排队论、模糊数学、 随机决策、多目标决策、随机模拟、灰色系 统理论、神经网络、时间序列等。
2014-5-16 15
2014-5-16
参加数学建模竞赛的方法
“基础永远是第一位的”, “收获永远与投入成正比”!
Mathematical modeling cannot be learned by reading books or listening to lectures, but only by doing!----Practice!

2014-5-16
23
推荐参考书
Hale Waihona Puke

叶其孝主编, 大学生数学建模竞赛辅导教材(一、二、三、 四), 湖南教育出版社,2001 CUMCM优秀论文汇编(1992-2000),中国物价出版社, 2002 姜启源等,数学模型(第三版),高等教育出版社,2003 刘来福等, 数学模型与数学建模(第二版), ,北京师范大 学出版社,2002. 杨启帆等, 数学建模,浙江大学出版社,1999. 袁震东等,数学建模,华东师范大学出版社,1997. 朱道元等,数学建模案例精选, 科学出版社,2003 乐经良等,数学实验,高等教育出版社,2001

全国大学生数学建模竞赛

全国大学生数学建模竞赛

全国大学生数学建模竞赛中国大学生数学建模竞赛,创办于1992年,每年一届,是全国高校规模最大的基础性学科竞赛,同时也是世界上规模最大的数学建模竞赛。

该竞赛旨在培养大学生的数学建模能力和创新精神。

2018年,共有来自全国33个省、市、区(包括香港、澳门和台湾)、美国和新加坡的1449所院校、42128个队(包括本科38573队和专科3555队),超过12万名大学生报名参加。

竞赛宗旨创新意识团队精神重在参与公平竞争。

指导原则指导原则:扩大受益面,保证公平性,推动教学改革,提高竞赛质量,扩大国际交流,促进科学研究。

规模与数据全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一。

该竞赛每年9月(一般在上旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。

同学可以向该校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系。

比赛时间2017年比赛时间是9月14号20:00到9月17号24:00,总共76小时,采取通讯方式比赛,比赛地点在各个高校。

比赛时间全国统一的,不可以与老师交流,可以在互联网查阅资料。

同学们在比赛期间应该注意安排时间,以免出现时间不够用的情况。

组委名单注:第五届专家组任期两年(2010-2011)。

2011年底任期届满后,组委会对专家组进行了调整,并决定此后不再对外公布专家组成员名单。

第五届组委会成员名单(2010-2013)及下属专家组成员名单第四届组委会成员名单及下属专家组成员名单第一、二、三届组委第一、二、三届组委会成员名单及下属专家组成员名单引各赛区组委会各赛区联系方式列表引[注1] 各赛区联系人请注意:若本赛区联系e-mail地址发生变化,请通知全国组委会进行修改。

[注2] 全国已成立赛区的有28个省、市、自治区,国内尚未成立赛区的区域组成联合赛区,其他(境外参赛学生)组成国际赛区,共30个赛区。

对高校数学竞赛和数学建模竞赛的思考和建议

对高校数学竞赛和数学建模竞赛的思考和建议

对高校数学竞赛和数学建模竞赛的思考和建议作者:丁士锋来源:《教育教学论坛》 2013年第9期丁士锋(中南大学数学与统计学院,湖南长沙410082)摘要:分析高校数学竞赛和数学建模竞赛的异同。

对高校数学竞赛和数学建模竞赛提出若干建议。

关键词:数学竞赛;数学建模;建议中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)09-0116-02数学是一门科学,也是一门艺术,更是一种文化。

在大学生中开展数学竞赛和数学建模竞赛活动可以视为数学文化在高校中的一种普及。

一、高校数学竞赛和数学建模竞赛的比较在高校数学教育中,高校数学竞赛和数学建模竞赛属于竞赛数学的范畴,竞赛数学更多的体现素质的培养和能力的发展。

二者之间既有差异,也有联系。

1.高校数学竞赛和数学建模竞赛的侧重点不同。

高校数学竞赛是一种基础型数学竞赛,侧重于学生对基础知识的掌握。

以全国大学生数学竞赛为例,它的赛题主要集中在微积分课程范围内,少部分涉及到高等代数课程。

数学建模竞赛是一种应用型数学竞赛。

数学建模竞赛的问题来自于工程技术、经济、生物、交通运输等领域。

解决这些问题需要从问题对象中提取信息,将这些信息转化为数学语言,建立模型,应用所学的数学知识(主要是分析、代数、概率、运筹学方面的知识)解决数学模型,并对原始问题进行解释验证或预测。

数学建模的并无确定答案。

从对学生素质的培养这个角度看,数学竞赛促进学生的纵向发展。

要在数学竞赛中取得成绩,学生学好基础知识是必要条件,此外还需要掌握较深的内容。

而数学建模竞赛较好地体现了对学生横向思维和发散思维能力的促进。

因为数学建模的问题一般来自其他领域,学生必须把掌握的数学知识进行整合,对问题进行综合整理。

一篇好的数学建模答卷就是一篇优秀的数学论文。

2. 高校数学竞赛和数学建模竞赛在本质上是一种基础教育,也是一种素质教育。

数学教育逐渐从传统的灌输式教育向开放式教育过渡。

高校数学竞赛和数学建模竞赛所体现出的数学教育,是开放式教育的一种表现形式。

全国大学生数学建模竞赛(以下简称竞赛)是国家教委高教司和中国工业与应用数学学会共同主办的面向全国大学

全国大学生数学建模竞赛(以下简称竞赛)是国家教委高教司和中国工业与应用数学学会共同主办的面向全国大学

全国大学生数学建模竞赛(以下简称竞赛)是国家教委高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

数学建模竞赛缘何受大学生青睐2006年的岁末,京城正飘洒着入冬以来的第一场雪花,而此时在人民大会堂新闻发布厅里却洋溢着青春的气息,来自全国的200多位同学和老师举行着全国大学生数学建模竞赛15周年庆典暨2006年高教社杯颁奖仪式。

15年的洗礼,15年的历程,这项竞赛的规模以年均25%以上的速度增长,成为目前全国高校规模最大的一项科技课外活动。

这项竞赛可以说是一项“舶来品”。

它最先是在1985年出现在美国。

1989年在几位教师的组织和推动下,我国几所大学的学生开始参加美国的数学建模竞赛。

经过两三年的参与,师生们都认为这项竞赛有利于学生的全面发展,也是推动数学建模教学在高校迅速发展的好形式。

1992年由中国工业与应用数学学会组织了我国10个城市的大学生数学模型联赛。

教育部领导及时发现并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。

师生们参赛的热情与日俱增。

参赛校数从1992年的79所增加到2006年的864 所;参赛队数从1992年的314队增加到2006年的9985队;累计达16万多大学生(53438队)。

同时,还出现了学生自发组织的专业和地区性竞赛,例如华东地区数学建模竞赛、苏北地区数学建模竞赛及电工数学建模竞赛等。

此外,我国参加美国大学生数学建模竞赛的队伍也在壮大,从1989年的3校4 队增加到2006年的100多所院校的660队(占2006年参赛队总数的68%)。

建模是数学走向应用的必经之路到底什么是数学建模呢?对此,中科院院士、竞赛全国组委会主任李大潜告诉我们,数学作为一门重要的基础学科和一种精确的科学语言,是以一种极为抽象的形式出现的。

大学生数学建模竞赛介绍

大学生数学建模竞赛介绍

2016 MCM and ICM
• Each team may choose any one of the six problem choices and should submit a solution to only one problem.
• MCM Problem A (continuous) MCM Problem B (discrete) MCM Problem C (data insights)
标准名称?求解问题使用的重要术语数学建模论文基本格式2?1问题重述?2问题分析?3模型假设与约定?4符号说明及名词定义?5模型建立与模型求解?补充假设条件明确概念引进参数?模型形式有多个形式的模型?6模型讨论参数的变化假设改变对模型的影响?7模型检验使用数据计算结果进行分析与检验?8模型优缺点改进方向推广新思想?9参考文献和网站?10附录计算程序各种详细数据和表格数学建模竞赛评分标准?论文摘要10分?模型建立40分模型详细分解和要求问题答案?模型计算20分?建模讨论15分?论文写作10分?论文印象5分数学建模竞赛的作用大学招聘
ICM Problem D (operations research/network science) ICM Problem E (environmental science) ICM Problem F (policy) • Mark your calendars the 2016 MCM/ICM dates are set for January 28 – February 1, 2016
2015 OUTSTANDING WINNERS
• THE FIVE OUTSTANDING WINNERS OF THE CONTINUOUS MCM (A) PROBLEM ARE: • Northwestern Polytechnical University, China • State University of New York, University at Buffalo, NY — MAA Prize Recipient • Chongqing University, China — SIAM Prize RecipientCentral South University, China — Ben Fusaro Award • University of Adelaide, Australia — INFORMS Prize Recipient • THE FIVE OUTSTANDING WINNERS OF THE DISCRETE MCM (B) PROBLEM ARE: • University of Colorado Boulder, CO — SIAM Prize Recipient & Two Sigma Scholarship Award • Bethel University, MN — MAA Prize Recipient & Frank Giordano Award • University of Colorado Boulder, CO • Colorado College, CO — INFORMS Prize Recipient • Tsinghua University, China • THE FIVE OUTSTANDING WINNERS OF THE INTERDISCIPLINARY ICM (C) PROBLEM ARE: • Xidian University, China • Shanghai Jiao Tong University, China • Xi'an Jiaotong University, China — Leonhard Euler Award • Tsinghua University, China • National University of Defense Technology, China • Also winning as a FINALIST is: • University of Colorado Denver, CO — INFORMS Prize Recipient • THE FOUR OUTSTANDING WINNERS OF THE INTERDISCIPLINARY ICM (D) PROBLEM ARE: • NC School of Science and Mathematics, NC — INFORMS Prize Recipient • Xi'an Jiaotong University, China • Humboldt State University, CA — Rachel Carson Award & Two Sigma Scholarship Award • Zhejiang University, China
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机技术和数学软件的迅速发展, 计算机技术和数学软件的迅速发展,为数学建模的应用提供 数学建模作为用数学方法解决实际问题的第一步, 数学建模作为用数学方法解决实际问题的第一步, 了强有力的工具; 越来越受到人们的重视。 了强有力的工具 越来越受到人们的重视。 如虎添翼
数学建模
计算机技术
知识经济
大学生数学建模竞赛
CUMCM命题思路 CUMCM命题思路
• 开放性:较大的灵活性,供参赛者发挥其创造能力 A题 – 连续模型,B题 – 离散模型,但不局限于此 • 实际背景/时代特征 :激发大学生们去思考一些问题 • 综合性:开拓知识结构 不是一个纯粹的单一问题 (如需要应用统计、优化知识 和 实际调研、 文献检索、计算机应用、论文写作等能力)
写好论文(答卷) 写好论文(答卷)的注意事项
• 完整——摘要;问题提出(用自己的语言);问题 分析;模型假设;模型建立;模型求解(算法设计 和计算机实现);结果(数据、图形);结果分析 和检验(如误差分析、统计检验、灵敏性检验); 优缺点,改进方向等;参考文献;附录(程序、更 多的计算结果、复杂的推导、证明等); • 摘要——主要模型(名称)、方法和结果,解决了 什么问题,有何特色等; • 表述清晰、简明,给出数学符号的确切含义、模 型假设的理由等。
数学建模与大学生数 学建模竞赛
山东农业大学大学信息学院数学系 张军本
你碰到过的数学模型——“航行问题” 航行问题” 你碰到过的数学模型 航行问题
甲乙两地相距 750 公里,船从甲到乙顺水航行需 30 小时, 从乙到甲逆水航行需 50 ,y表示水速,列出方程:
( x + y ) × 30 = 750 ( x − y ) × 50 = 750
y=5);
• 回答原问题(船速每小时20公里)。
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
模型: 抽象、简化 突出本质的描述。 模型:对现实对象抽象 简化 突出本质 抽象 简化、突出本质 数学模型: 对象,为了一个特定目的 目的, 数学模型:对于一个现实对象 对象 目的 根据其内在规律 规律,作出必要的简化假设 假设, 规律 假设 运用适当的数学工具 数学工具,得到的一个数学结构 数学结构。 数学工具 数学结构 数学建模: 数学建模:建立数学模型的全过程 全过程 (包括准备、建立、求解、检验、分析等)。 Motivation,Formulation,Solution,Verification
• 美国大学生数学建模竞赛 • 中国大学生数学建模竞赛
美国大学生数学建模竞赛(MCM)
• 1938年开始:Putnam大学生数学竞赛,每年12月,MAA举办 月 • 1985年开始:MCM,每年2月;COMAP举办,SIAM、 月 INFORMS、MAA等支持 • 我国大学生1989年(清华等)开始每年都参加,用英文 英文答卷 英文 • 2002年有11个国家(地区)522队参赛,其中美国以外241 队(46%); “国际竞赛”----“中美联赛” • 1996年起,复旦、中国科大、华东理工、清华、浙大、 国防科大先后荣获最高奖(Outstanding) • 1999年起又同时推出交叉学科竞赛(Interdisciplinary ( Contest in Modeling – ICM), 2002年106队参加 • 每年赛题和优秀答卷 赛题和优秀答卷刊登于同年 UMAP第3期 赛题和优秀答卷
求解得到 x=20, y=5, 答:船速每小时20公里 船速每小时20 20公里
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数); • 用符号表示有关量(x,
y表示船速和水速);
• 用物理定律(匀速运动的距离等于速度乘以
时间)列出数学式子(二元一次方程);
• 求解得到数学解答(x=20,
训练 历届赛题(《数学建模专题》)
数学建模竞赛组队的方式
• 尽可能地让不同专业的学生 组成一队,以利学科交叉; • 尽可能地让能力、素质方面不同的学生(创新 能力强的,认真踏实的,有组织能力的,文笔 好的,…)组成一队,以利优势互补; • 尽可能地让学生在队内充分磨合,达成默契, 形成“领袖”。
怎样提高数学建模水平
数学建模与其说是一门技术, 数学建模与其说是一门技术,不如说是一门艺术 技术大致有章可循 想象力 艺术无法归纳成普遍适用的准则 判断力 创新能力
洞察力
• 学习、分析、评价、改进别人作过的模型 • 亲自动手,认真作一些实际建模题目
CUMCM评阅标准 假设的合理性,建模的创造性, 假设的合理性,建模的创造性, 结果的正确性, 结果的正确性,表述的清晰程度


数学建模竞赛 (Mathematical Contest in Modeling)简介 )
内容
• 赛题 赛题:工程技术、管理科学中经过简化的实际问题
• 答卷 答卷:一篇包含模型假设、建立、求解、计算方法设计和 计算机实现、结果分析和检验、模型改进等方面的论文
数学建模竞赛培养学生创新精神, 数学建模竞赛培养学生创新精神,提高学生综合素质 运用学过的数学知识和计算机( 运用学过的数学知识和计算机(包括选择合 适的数学软件) 适的数学软件)分析和解决实际问题的能力 面对复杂事物的想象力、洞察力、 面对复杂事物的想象力、洞察力、创造力和 独立进行研究的能力 关心、 关心、投身国家经济建设的意识和理论联系实际的学风 团结合作精神和进行协调的组织能力 勇于参与的竞争意识和不怕困难、 勇于参与的竞争意识和不怕困难、奋力攻关的顽强意志 查阅文献、 查阅文献、收集资料及撰写科技论文的文字表达能力
创造性:不强调与参考答案的一致性和结果的精度 正确性:方法好的,结果一般比较好 但不一定是最好的 表述清晰:摘要提纲挈领 表达严谨、简捷,思路清新 不欣赏罗列一系列模型,又不作评价 格式符合规范,反对暴露身份
CUMCM评阅标准: 一些问题 数学模型最好明确、合理、简洁; 有些论文不给出明确的模型,只是根据赛题的情况, 实际上是用“凑”的方法给出结果,虽然结果大致是 对 的,没有一般性,不是数学建模的正确思路。 有的论文过于简单,该交代的内容省略了,难以看懂 有的队罗列一系列模型或假设,又不作比较、评价, 希望碰上参考答案,弄巧成拙 有的论文参考文献不全,或引用他人结果不作交代

全国大学生数学建模竞赛(CUMCM)
China Undergraduates Mathematical Contest in Modeling
• 1992年由中国工业与应用数学学会(CSIAM)组织第一次竞赛 • 1994年起由教育部高教司和CSIAM共同举办,每年一次(9月) 月 • 1993年全国大学生数学建模竞赛只有100多所学校400多个 1993年 队参加,而2004年则有700所学校的6881多队20000多学生参加--- 全国高校中规模最大的课外科技活动 • 每年赛题和优秀答卷 赛题和优秀答卷刊登于次年“数学的实践与认识”第1期; 赛题和优秀答卷 2001年起刊登于次年“工程数学学报”第1期 • 全国竞赛组委会设在清华大学数学科学系(100084) • 网址:/mcm/
---- 林家翘 (C. C. Lin)
数学建模的重要意义
•一、时代特点: 一 时代特点: 1、计算机技术的飞速发展(高速、小型、智能、价廉) 、计算机技术的飞速发展(高速、小型、智能、价廉) 2、社会日益数学化 、 高技术 ---- 本质上是数学技术 ; “数学是一种关键的、普遍的、可应用的技术” 数学是一种关键的、普遍的、可应用的技术” 会报告) 会报告) (总统委员
数学建模竞赛期间的注意事项
• 吃透题意,确定题目; • 抓住核心,重点突破; • 查阅资料、实际调查要适度; • 保证基本模型和求解的完成,在此基础上完善改进; • 根据建模的要求,可以增加、删除甚至修改题目的 条件; • 把握好用现成的模型和方法,与自己创新的模型和 方法之间的关系; • 论文主体由一人完成,并早些开始写作。
数学建模竞赛组织与培训 组织
• 教务部门、数学系 • 团委(北大) • 学生科协(清华) • 学生数学建模协会(安徽机电) • 课外兴趣小组(大连理工) 培训 基础 • 课程: 《数学实验》 选修 -《数学模型》 • 软件:计算(MATLAB、MATHEMATICA) 统计(SAS)、优化(LINDO)
形式
• 3名大学生组队,在3天内完成的通讯比赛
• 可使用任何“死”材料(图书、计算机、软件、互联网 等),但不得与队外任何人讨论(包括导师和上网讨论)
标准 宗旨
假设的合理性,建模的创造性,结果的正确性, 假设的合理性,建模的创造性,结果的正确性, 表述的清晰程度 创新意识 团队精神 重在参与 公平竞争
数学建模竞赛 促进数学教学改革
• 数学素质:抽象思维、数学应用能力 • 一些学校:获奖队的学生免试推荐读研 • 教学改革:数学建模融入基础课程(微积分、代数等) • 课程改革: 《数学建模》 == 数学建模》 《数学实验》 数学实验》
•山东农业大学:SRT创新学分和物质奖励 数学教育本身就是一种素质教育
相关文档
最新文档