初三动点问题
中考动点问题经典题型归类总结附答案
专题十动点型问题考点一:建立动点问题的函数解析式(或函数图像)例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
(一)点动问题.例2 (2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.思路分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t 的函数表达式,继而可得出函数图象. 解:在Rt △ADE 中,AD=2213AE DE +=,在Rt △CFB 中,BC=2213BF CF +=,①点P 在AD 上运动:对应训练2.(2013•北京)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2.设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .2.A(二)线动问题例3 (2013•荆门)如右图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是( )A.B.C.D.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.对应训练3.(2013•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A.B.C.D.3.A(三)面动问题例4 (2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A.B.C.D.解:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,A符合;故选A.对应训练4.(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.4.A究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.(4)△QMN 为等腰三角形的情形有两种,需要分类讨论,避免漏解.解:(1)∵C (7,4),AB ∥CD ,∴D (0,4).∵sin ∠DAB=22, ∴∠DAB=45°,∴OA=OD=4,∴A (-4,0).设直线l 的解析式为:y=kx+b ,则有4-40b k b =⎧⎨+=⎩, 解得:k=1,b=4,∴y=x+4.∴点A 坐标为(-4,0),直线l 的解析式为:y=x+4.(2)在点P 、Q 运动的过程中:①当0<t≤1时,如答图1所示:过点C 作CF ⊥x 轴于点F ,则CF=4,BF=3,由勾股定理得BC=5.过点Q 作QE ⊥x 轴于点E ,则BE=BQ•cos ∠CBF=5t•35=3t . ∴PE=PB -BE=(14-2t )-3t=14-5t ,S=12PM•PE=12×2t×(14-5t )=-5t 2+14t ; ②当1<t≤2时,如答图2所示:过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5,PE=AF-AP-EF=11-2t-(5t-5)=16-7t,S=12PM•PE=12×2t×(16-7t)=-7t2+16t;③当点M与点Q相遇时,DM+CQ=CD=7,即(2t-4)+(5t-5)=7,解得t=167.当2<t<167时,如答图3所示:MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,S=12PM•MQ=12×4×(16-7t)=-14t+32.(3)①当0<t≤1时,S=-5t2+14t=-5(t-75)2+495,∵a=-5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,S=-7t2+16t=-7(t-87)2+647,∵a=-7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647;③当2<t<167时,S=-14t+32∵k=-14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)△QMN为等腰三角形,有两种情形:①如答图4所示,点M在线段CD上,MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,由MN=MQ,得16-7t=2t-4,解得t=209;②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.故当t=209或t=125时,△QMN为等腰三角形.对应训练5.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A 运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q 两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ 扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.5.解:(1)当点P沿A-D运动时,AP=8(t-1)=8t-8.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ=12AB•QE=12BQ×12,4当0<t≤1时,如图③.∵S △BPM =S △BQM ,∴PM=QM .∵AB ∥QR ,∴∠PBM=∠QRM ,∠BPM=∠MQR ,在△BPM 和△RQM 中PBM QRMBPM MQR PM QM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPM ≌△RQM .∴BP=RQ ,∵RQ=AB ,∴BP=AB∴13t=13,解得:t=1当1<t≤83时,如图④.∵BR 平分阴影部分面积,∴P 与点R 重合.34∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或83时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A-D之间或D-A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50-5t=50-8(t-1)+13,或50-5t=8(t-1)-50+13,解得:t=7或t=95 13.当P在A-D之间或D-A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50-5t+13=8(t-1)-50,解得:t=121 13.∴当t=7,t=9513,t=12113时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.中考真题演练一、选择题1.(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.51.D2.(2013•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变2.D3.(2013•盘锦)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()A.B.C.D.3.B4.(2013•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.54.B5.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.516、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A、①②③B、①④⑤(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.6.解:(1)∵A(8,0),B(0,6),8.(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF 重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O如图,过O 点作OK ⊥MN 于K ,∴∠MON=2∠NOK ,MN=2NK ,在Rt △ONK 中,sin ∠NOK=2NK NK ON =, ∴∠NOK 随NK 的增大而增大,∴∠MON 随MN 的增大而增大,∴当MN 最大时∠MON 最大,当MN 最小时∠MON 最小,①当N ,M ,A 分别与D ,B ,O 重合时,MN 最大,MN=BD ,∠MON=∠BOD=90°,S 扇形MON 最大=π(cm 2),②当MN=DC=2时,MN 最小,∴ON=MN=OM ,∴∠NOM=60°,S 扇形MON 最小=23π(cm 2), ∴23π≤S 扇形MON ≤π. 故答案为:30°.9.(2013•重庆)已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平8.解:(1)∵四边形ABCD是平行四边形,∴AD=BC=6.在Rt△ADE中,AD=6,∠EAD=30°,∴AE=AD•cos30°=33,DE=AD•sin30°=3,∴△AED的周长为:6+33+3=9+33.(2)在△AED向右平移的过程中:(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△D0NK.∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0•tan30°=3t,∴S=S△D0NK=12ND0•NK=12t•3t=32t2;(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0KN.∵AA0=2t,∴A0B=AB-AA0=12-2t,∴A0N=12A0B=6-t,NK=A0N•tan30°=33(6-t).∴S=S四边形D0E0KN=S△ADE-S△A0NK=12×3×33-12×(6-t)×33(6-t)=-36t2+23t-332;(III)当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D0IJKN.∵AA 0=2t,∴A0B=AB-AA0=12-2t=D0C,∴A0N=12A0B=6-t,D0N=6-(6-t)=t,BN=A0B•cos30°=3(6-t);易知CI=BJ=A0B=D0C=12-2t,∴BI=BC-CI=2t-6,S=S梯形BND0I-S△BKJ=12[t+(2t-6)]• 3(6-t)-12•(12-2t)•33(12-2t)=-1336t2+203t-423.综上所述,S与t之间的函数关系式为:S=2223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t tS t t tt t t⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩.(3)存在α,使△BPQ为等腰三角形.理由如下:经探究,得△BPQ∽△B1QC,故当△BPQ为等腰三角形时,△B1QC也为等腰三角形.(I)当QB=QP时(如答图4),则QB1=QC,∴∠B1CQ=∠B1=30°,即∠BCB1=30°,∴α=30°;(II)当BQ=BP时,则B1Q=B1C,若点Q在线段B1E1的延长线上时(如答图5),∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,即∠BCB1=75°,∴α=75°.10.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式.11.解:(1)当点P 运动到点F 时,∵F 为AC 的中点,AC=6cm ,∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s ,∴BQ=AF=3cm ,∴CQ=8cm -3cm=5cm ,故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t -3=8,t=112, BQ 的长度为112×1=112(cm );(3)∵D 、E 、F 分别是AB 、BC 、AC 的中点,∴DE=12AC=12×6=3, DF=12BC=12×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°,∵∠QBM=∠CBA ,∴△MBQ ∽△ABC ,∴BQ MQ BC AC=, ∴86x MQ =,MQ=34x,分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD=34x(7-x)即y=-34x2+214x;②当4≤x<112时,重叠部分为矩形,如图3,y=3[(8-X)-(X-3))]即y=-6x+33;③当112≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x)]即y=6x-33.213.解:(1)如图,2如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)(3)如图3,连接ME ,∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE ∵在△COD 与△MED 中COA DEMODC MD EOC ME∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM设OD=x 则CD=DM=OM -OD=4-x 则RT △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=(4-x )2∴x=32,∴D (32,0)设直线CE 的解析式为y=kx+b ∵直线CE 过C (0,2),D (32,0)两点,则3022k b b ⎧+=⎪⎨⎪=⎩,解得:432k b ⎧=-⎪⎨⎪=⎩。
中考数学压轴题之动点问题
D C BA PQ K E D C B A 中考压轴题之动点问题1. (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△P AQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题:(1) 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出154 y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.2. (2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;(2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;(4)△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由.备用图3. (2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).(1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直接..写出t 的值.4. (2011山西太原)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t >),△MPQ 的面积为S .(1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围.(3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.B 备用图F E DC BAF E O P D C B F E O P D C B F E O P D C B 5. (2011四川重庆)如图,矩形ABCD 中,AB =6,BC =23,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线P A 匀速运动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线P A 的同侧,设运动的时间为t 秒(t ≥0).(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.备用图1 备用图26. (2011山东烟台)如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为41633y x =-+,点A 、D 的坐标分别为(-4,0),(0,4).动点P 自A 点出发,在AB 上匀速运动.动点Q 自点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外).(1)求出点B 、C 的坐标;(2)求S 随t 变化的函数关系式;(3)当t 为何值时S 有最大值?并求出最大值.备用图。
九年级中考压轴——动点问题集锦
九年级中考压轴——动点问题集锦1、已知等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动。
过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒。
1) 当四边形MNQP为矩形时,有MN=QP,即MN在运动t秒后,线段QP的长度为3+t。
因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的面积为2根号3*t平方+2t。
2) 四边形MNQP的面积为S,运动时间为t。
因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的高为2根号3.由于四边形MNQP是矩形,所以MN=QP=3+t,PQ=2根号3.因此,S=PQ*MN=2根号3*(3+t)。
函数关系式为S=2根号3*t+6根号3,t的取值范围为t≥0.2、在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=42,∠B=45度。
动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动。
设运动的时间为t 秒。
1) 因为三角形ABD和三角形CBD相似,所以BD=AB-AD=39.由于三角形BCD是直角三角形,所以BC=BD/根号2=39/根号2.2) 当MN∥AB时,由于三角形BMD和三角形BAC相似,所以BD/AB=MD/MN,即39/42=2t/(3+t),解XXX13秒。
3) 当△MNC为等腰三角形时,由于三角形MNC和三角形ABD相似,所以CN/AD=MN/BD,即CN/3=(3+t)/39,XXX13秒。
3、在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上。
动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点。
初三数学动点类模考100题答案
参考答案与详解1.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠ADB=90°,∵在Rt△ACD中,AD==3,∴BD=AB﹣AD=5﹣3=2,∴在Rt△BCD中,tan∠B===2;(2)当点M落在BC边上时,如图1,由题意得:AP=3t,tan∠CAB=,∴PQ=PN=MN=4t,BN=2t,∴3t+4t+2t=5,t=;(3)分三种情况:①当0<t≤时,如图1,正方形PQMN与△ABC重叠部分是正方形PQMN,∴S=PQ2=(4t)2=16t2;②当N与B重合时,如图2,AP=3t,PQ=PB=4t,∴3t+4t=5,t=,当<t<时,如图3,正方形PQMN与△ABC重叠部分是五边形EQPNF,③当≤t<1时,如图4,正方形PQMN与△ABC重叠部分是梯形EQPB,∴AP=3t,PN=4t,∴BN=7t﹣5,PB=4t﹣(7t﹣5)=﹣3t+5,在Rt△APQ中,AQ=5t,∴QC=5﹣5t,∵AC=AB,∴∠ACB=∠ABC,∵QE∥AB,∴∠QEC=∠ABC,∴∠QEC=∠ACB,∴QE=QC=5﹣5t,∴S=S梯形QPBE=(QE+PB)×PQ,=(5﹣5t+5﹣3t)×4t=﹣16t2+20t;综上所述,S与t之间的函数关系式为:.(4)如图2,当t=时,CQ=QG=5﹣5t=,∴GM=4t﹣=,∴QG=GM,∴S△QGB=S△GMB,∴S梯形GQPB:S△GMB=3:1,当P与D重合时,t=1,如图5,则S△CDB:S四边形CBNM=×2×4:(42﹣×2×4),=1:3,∴<t≤,1≤t<.2.【解答】解:(1)在Rt△ABC中,∵∠C=90°,AB=10,BC=6,∴AC===8,∵CQ=t,∴AQ=8﹣t(0≤t≤4).(2)①当PQ∥BC时,=,∴=,∴t=s.②当PQ∥AB时,=,∴=,∴t=3,综上所述,t=s或3s时,当PQ与△ABC的一边平行.(3)①如图1中,a、当0<t<时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣t)=﹣16t2+24t.b、如图2中,当<t≤2时,重叠部分是四边形PNQE.S=S四边形PEQF﹣S△PFN=(16t2﹣24t)﹣•[5t﹣(8﹣t)]•[5t﹣(8﹣t)]=.c、如图3中,当2<t≤3时,重叠部分是五边形NPBQ.S=S四边形PBCF﹣S△FNM=t•[6﹣3(t﹣2)]﹣•[t﹣4(t﹣2)]•[t﹣4(t﹣2)]=﹣t2+32t﹣24.②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(4﹣4t):(4﹣t)=1:2,解得t=s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴DE:DQ=NE:FQ=1:3,∴(4t﹣4):(4﹣t)=1:3,解得t=s,综上所述,当t=s或s时,DF将矩形PEQF分成两部分的面积比为1:2.3.【解答】解:(1)①∵四边形ABCD是矩形,∴∠B=90°,∴AC====15;故答案为:15;②∵四边形ABCD是矩形,∴∠D=90°,AD=BC=3,CD=AB=6,∵EF⊥AC,∴∠APF=90°=∠D,∵∠PAF=∠DAC,∴△APF∽△ADC,∴=,即=,解得:PF=8t;故答案为:8t;(2)当点F与点D重合时,如图1所示:∵∠APD=∠ADC=90°,∠PAD=∠DAC,∴△APD∽△ADC,∴=,即=,解得:t=;(3)分情况讨论:①当0<t≤时,如图2所示:由(1)②得:PF=8t,同理:PE=2t,∴EF=10t,∴l=4(8t+2t)=40t;②当<t≤3时,如图3所示:EF=10t=,l=4×=30.③当3<t<时,如图4所示:同(1)①得:△CPF∽△ABC∽△EPC,∴=,=,即=,=,解得:PF=(15﹣4t),PE=2(15﹣4t),∴EF=PF+PE=(15﹣4t),∴l=4×(15﹣4t)=﹣40t+150;(4)如图3所示:对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时,则PE:PF=1:2,或PF:PE=1:2,①PE:PF=1:2时,∵EF=,∴PF=EF=5,同理可证:△CPF∽△CDA,∴=,即=,解得:PF=(15﹣4t),∴(15﹣4t)=5,解得:t=;②PF:PE=1:2时,PF=EF=,则(15﹣4t)=,解得:t=;综上所述,对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值为或.4.【解答】解:(1)∵在菱形ABCD中,∠B=60°,∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,∵PQ⊥AC,∴△APQ是等腰三角形,∴PF=QF,PF=PA•sin60°=2t×=,∴PQ=2t;(2)当点M落在边BC上时,如图2所示:由题意得:△PDN是等边三角形,∴PD=PN,∵PN=PQ=×2t=3t,∴PD=3t,∵PA+PD=AD,即2t+3t=4,解得:t=.(3)当0<t≤时,如图1所示:PQ=2t,PN=PQ=×2t=3t,S=矩形PQMN的面积=PQ×PN=2t×3t=6t2;当<t<1时,如图3所示:记PN与CD的交点为E,MN与CD的交点为F,∵△PDE是等边三角形,∴PE=PD=AD﹣PA=4﹣2t,∠FEN=∠PED=60°,∴NE=PN﹣PE=3t﹣(4﹣2t)=5t﹣4,∴FN=NE=(5t﹣4),∴S=矩形PQMN的面积﹣2△EFN的面积=6t2﹣2××(5t﹣4)2=﹣19t2+40t﹣16,即S=﹣19t2+40t﹣16;(4)分两种情况:当0<t≤时,如图4所示:记OM与PN的交点为H,∵△ACD是等边三角形,∴AC=AD=4,∵O是AC的中点,∴OA=2,OG是△MNH的中位线,∴OG=3t﹣(2﹣t)=4t﹣2,NH=2OG=8t﹣4,∴△MNH的面积=MN×NH=×2t×(8t﹣4)=×6t2,解得:t=;当<t≤2时,如图5所示:记OM与PQ的交点为E,AC与PQ的交点为F,∵AC∥QM,∴△OEF∽△MEQ,∴=,即=,解得:EF=,∴EQ=t+,∴△MEQ的面积=×3t×(t+)=×6t2,解得:t=;综上所述,当直线OM将矩形PQMN分成两部分图形的面积比为1:2时,t的值为或.5.【解答】解:(1)如图1中,当点N落在边DC上时,∵△DEC是等腰直角三角形,∴当点P与D重合时,点N落在CD上,∵PE=DE=4,∴t==2s时,点N落在边DC上;(2)①如图2中,当0<t≤2时,重叠部分是正方形EMPN,S=PE2=2t2;②如图3中,当2<t≤4时,重叠部分是五边形EFDGM,S=×42×+•(2t)2×﹣(2t﹣4)2=﹣t2+8t﹣4;③如图4中,当t>4时,重叠部分是四边形EFDA,S=8+4=12.综上所述,S=(3)①如图5中,设EM交BD于G,当EG=2GM时,∵EG=2,∴GM=,∴EN=3,∴PE=EM=6,∴t==3s.②如图6中,当MG=2GE时,MG=4,EM=6,PE=12,t==6s.综上所述,t=3s或6s时,正方形PMEN被直线BD分成2:1两部分;6.【解答】解:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时,<t<,t=1或.7.【解答】解:(1)∵∠C=90°,AC=4,BC=2,∴AB==2,如图2,当D与C重合时,CP⊥AB,cos∠A=,即,AP=,tan∠A=,即,∴PD=t,∴当0<t≤时,如图1,PE=2PD=2×t=t,如图3,AP=t,∴PB=2﹣t,tan∠DBP=,即==2,PD=4﹣2t,当<t≤2时,如图3,PE=2PD=2(4﹣2t)=8﹣4t;(2)当点F落在BC上时,如图4,BE=2﹣2t,EF=PD=t,∵EF=2BE,∴t=2×,t=(秒);(3)当0<t≤时,如图1,矩形PEFD与△ABC重叠部分图形是矩形PEFD,S=PD•PE==;如图5,当E与B重合时,PB=2PD,则2﹣t=2×,t=1,当1<t≤时,如图6,cos∠A=,即,AD=t,∴CD=4﹣t,∵DM∥AB,∴∠CDM=∠A,∴cos∠A=cos∠CDM=,即,DM=2﹣t,S=t=﹣+5t;综上,S与t之间的函数关系式是:S=.(4)①如图1,当0<t≤1时,过Q作QH⊥AB于H,∵AP=t,BQ=2t,∴PE=t,PD=t,BH=t,∴EH=BE﹣BH=2﹣2t﹣t=2﹣t,∵矩形PEFD面积是△QEF面积的4倍,∴=4×,t=0(舍)或;②当1<t≤2时,如图7,过Q作QH⊥AB于H,∵PE=t,PB=2﹣t,∴BE=PE﹣PB=t﹣(2﹣t)=2t﹣2,∵BQ+CQ=2t,∴BQ=4﹣2t,∴BH==,∵矩形PEFD面积是△QEF面积的4倍,∴=4×[+2t﹣2],t=0(舍)或;综上,t的值是秒或秒.8.【解答】解:(1)如图1,在Rt△ABC中,AB=6,BC=8,D、E分别为边AB、AC的中点,∴AD=AB=3,DE=BC=4,当点P在线段EA上运动时,PE=t﹣AD﹣DE=t﹣7(7<t<12);(2分)(2)分两种情况:①当0<t≤3时,如图2,∵PN∥BC,∴△APN∽△ABC,∴,∴,∴PN=,∵四边形PNQM是正方形,∴PN=PB=,∵AP+PB=AB,∴t+=6,∴t=,(3分)②当3<t≤7时,如图3,∵PE=PQ=BD=3,∵DP+PE=DE,∴t﹣3+3=4,∴t=4,(4分)综上所述,当点N落在AC边上时,t的值是秒或4秒;(3)分三种情况:①当≤t≤3时,如图4,S=PB2=(6﹣t)2=t2﹣12t+36;(5分)②当3<t≤4时,如图5,S=PQ2=32=9;(6分)③当7≤t<12时,如图1,由题意得:PE=t﹣7,∴AP=5﹣(t﹣7)=12﹣t,∵PQ∥AB,∴△CPQ∽△CAB,∴,∴,∴PQ=,∵△PNF∽△CBA,∴=,∴=,∴FN=,S=PQ2﹣PN•NF=[(t﹣2)]2﹣×××(t﹣2)2=;(8分)(4)分两种情况:①当S△EFC:S四边形ABFE=1:2时,即S△EFC:S△ABC=1:3,∴S△ABC=3S△EFC,过E作EG⊥BC于G,∴×6×8=3××3×FC,∴FC==,由(2)得:PK=t,同理得:AK=,∴KN=PN﹣PK=6﹣t﹣t=6﹣,KE=5﹣,∵KN∥FC,∴,∴KN•EC=KE•FC,∴5(6﹣)=,t=;②如图7,当S△AEK:S四边形BKEC=1:2时,即S△AEK:S△ABC=1:3,∴S△ABC=3S△AEK,∴×6×8=3××4×AK,∴AK=4,由(3)知:FN=,∴FM=MN﹣FN=﹣=,∵sin∠C=,∴FC==,∴EF=5﹣FC=,∵FN∥AK,∴,∴FN•AE=EF•AK,∴5×=4×,∴t=;(10分)综上所述,t的值为或.9.【解答】解:(1)由题意得:答案为:(2﹣t);(2)如图1,当点F落在边AD上时,t的值秒;(3)分两种情况:①当0<t≤时,Q在BD上,如图1,过P作PM⊥BD于M,则△BPM是等腰直角三角形,∵PB=t,∴PM=t,∴S=DQ•PM=2t•t=2t2;②当<t≤1时,Q在BD上,如图3,过Q作QH⊥AB于H,∵BQ=2﹣2t,∴QH=(2﹣2t),∵PF∥BD,∠ADB=90°,∴∠ANP=90°,∵AP=2﹣t,∴AN=PN=2﹣t,∴S=S△ADB﹣S△ANP﹣S△PBQ=﹣=t2+t.③当1<t≤2时,如图4,Q在BC上,同②知:AN=PN=2﹣t,∵EQ∥BD,DE∥BQ,∴四边形BDEQ是平行四边形,∠DEQ=90°,∴EQ=BD=2,BQ=DE=2t﹣2,∵EN=DN+DE=2﹣(2﹣t)+(2t﹣2)=3t﹣2,S=﹣=﹣=﹣t2+11t﹣6;综上,S与t之间的函数关系式为:S=;(4)存在两种情况:①当FQ过BD的中点O时,如图5,则OB=OD=1,∵∠DOM=∠BOQ,∠MDO=∠OBQ,∴△MDO≌△QBO(ASA),∴BQ=DM=DE=2t﹣2,∴MN=EN﹣2DM=(3t﹣2)﹣2(2t﹣2)=2﹣t,∵AN=PN=2﹣t,∴FN=t,∵∠NFM=∠BOQ,∴tan∠NFM=tan∠BOQ,即,∴,2t2﹣t﹣2=0,t=或;②当Q在BD的中点上时,如图6,则2t=1,t=;综上,t=秒或t=秒.10.【解答】解:(1)当0<t≤时,h=2t.当<t≤4时,h=3﹣(2t﹣3)=﹣t+.(2)当点E落在AC边上时,DQ∥AC,∵AD=DB,∴CQ=QB,∴2t=,∴t=.(3)①如图1中,当≤t<时,作PH⊥AB于H,则PH=PA•sinA=t,DQ=﹣2t,∴S=t•(﹣2t)=﹣t2+t.②如图2中,当<t≤4时,同法可得S=t•(2t﹣)=t2﹣t.(4)当点E落在直线CD上时,CD将▱PEQD分成的两部分图形面积相等.有两种情形:①当点E在CD上,且点Q在CB上时(如图3所示),过点E作EG⊥CA于点G,过点D作DH⊥CB于点H,易证Rt△PGE≌Rt△DHQ,∴PG=DH=2,∴CG=2﹣t,GE=HQ=CQ﹣CH=2t﹣,∵CD=AD,∴∠DCA=∠DAC∴在Rt△CEG中,tan∠ECG===,∴t=.②当点E在CD上,且点Q在AB上时(如图4所示),过点E作EF⊥CA于点F,∵CD=AD,∴∠CAD=∠ACD.∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,∴PF=PC=,PE=DQ=﹣2t,∴在Rt△PEF中,cos∠EPF===,11.【解答】解:(1)如图1故答案为:.(2)①如图2,∵四边形PQMN是正方形,∴∠BQM=90°,∵∠B=45°,∴BQ=MQ,即7﹣t=2t,解得t=,故当0<t≤时,S=(2t)2=4t2;②如图3,∵∠BQF=90°,∠B=45°∴BQ=FQ=7﹣t,∠BFQ=∠MFE=45°,则MF=MQ﹣QF=3t﹣7,∵∠M=90°,∴ME=MF=3t﹣7,则S=(2t)2﹣×(3t﹣7)2=﹣t2+21t﹣(<t<);综上,S=.(3)S△ABC=AB•CG=×14×8=56,①如图4,作HR⊥AB于点R,∵四边形PQMN为正方形,且PM为对角线,∴∠HPB=∠B=45°,∴HR=PB=×(14﹣7+t)=,∵PM将△ABC面积平分,∴S△PBH=S△ABC,则•(7+t)•=×56,解得t=﹣7+4(负值舍去);②如图5,作KT⊥AB于T,设KT=4m,由tanA==知AT=3m,∵∠KQT=45°,∴KT=QT=4m,则AQ=3m+4m=7m,又AQ=14﹣(7﹣t)=7+t,则7m=7+t,∴m=,∵直线NQ将△ABC面积平分,∴S△AKQ=S△ABC,即×7m×4m=×56,整理,得:m2=2,则()2=2,解得:t=﹣7+7(负值舍去),综上,t的值为4﹣7或7﹣7.12.【解答】解:(1)当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3.(2)①当点N在AC上时,解得t=.②当点N在BC上时,解得t=5综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,s=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,s=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,s=S正方形MNPD﹣S△EFN=(t﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,s=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴=,则有=,解得t=1.如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴=,∴=,解得t=.如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴=,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.13.【解答】解:(1)由题意得,BQ=2t,当0≤t≤3时,QC=6﹣2t,当3<t≤6时,QC=2t﹣6;(2)∵△ABC为等边三角形,∴∠A=60°,当PQ⊥AC时,∠QPA=30°,∴AQ=AP,即t=2×(12﹣2t),解得,t=;(3)作QH⊥AB于H,如图①,在Rt△QBH中,QH=BQ•sinB=t,则S=×PB×QH=×(6﹣t)×t=﹣t2+3t;如图②,在Rt△QAH中,QH=AQ•sinA=×(12﹣2t)=6﹣t,则S=×PB×QH=×(6﹣t)×(6﹣t)=(6﹣t)2;(4)当点Q为AC的中点时,△APQ的面积=△PCQ的面积,即12﹣2t=3,解得,t=,如图①,作CE⊥AB于E,则CE=AC•sinA=×6=3,∴△ABC的面积=×6×3=9,=,∴△BPC的面积=9﹣t,∴△APC的面积=t,=,∴△APQ的面积=3t﹣t2,∴△PCQ的面积=t2﹣t,当△APQ的面积=△PCB的面积时,9﹣t=3t﹣t2,整理得,t2﹣t+4=0,△=1﹣16=﹣15<0,方程无解,当△CPQ的面积=△PCB的面积时,t2﹣t=9﹣t,解得,t1=3,t2=﹣3(舍去),综上所述,在△APQ、△PCQ、△PBC中,其中的某两个三角形面积相等时,t=或t=3.14.【解答】解:(1)在Rt△ABC中,AB===5,故答案为5.(2)如图1中,∵PA∥MN,PN∥AM,∴四边形PAMN是平行四边形,∴MN=PA=x,AM=PN==x,当点N在BC上时,sinA==,=,∴x=.(3)①当0≤t≤时,如图1,,,∴y=PN+MN+PM=x+x+x=4x.②当<t<时,如图2,y=4x﹣EN﹣NF+EF==,EN=PN﹣PE==,∴.③当≤t≤5时,如图3,y=PM+PE+EM==,∴.(4)如图4中,当点G是AC中点时,满足条件∵PN∥AG∴,∴,∴如图5中,当点D是AB中点时,满足条件.∵MN∥AD∴,∴,∴综上所述,满足条件的x的值为或.15.【解答】解:(1)连结AQ、MD,∵当AP=PD时,四边形AQDM是平行四边形,∴3t=3﹣3t,解得:t=,∴t=s时,四边形AQDM是平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴△AMP∽△DQP,∴=,∴=,∴AM=t,即在P、Q运动的过程中,总有CQ=AM;(3)∵MN⊥BC,∴∠MNB=90°,∵∠B=45°,∴∠BMN=45°=∠B,∴BN=MN,∵BM=AB+AM=1+t,在Rt△BMN中,由勾股定理得:BN=MN=(1+t),∵四边形ABCD是平行四边形,∴AD∥BC,∵MN⊥BC,∴MN⊥AD,设四边形ANPM的面积为y,∴y=×AP×MN=×3t×(1+t)=t2+t(0<t<1).假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,∴t2+t=×3×,整理得:t2+t﹣1=0,解得:t1=,t2=(舍去),∴当t=s时,四边形ANPM的面积是平行四边形ABCD的面积的一半.16.【解答】解:(1)当点Q与点C重合时,∵PQ⊥AB,△ABC是等腰直角三角形,∴AP=BP=AB=4,∴4÷=4(s),即当点Q与点C重合时,t=4;故答案为:4;(2)①当0<t≤4时,如图①中,设PR、PQ分别交AB于点E、F,则重叠部分为△PEF,∵AP=t,∴EF=PE=t,∴S=S△PEF=•PE•EF=t2.②当4<t≤时,如图②中,设PR、RQ分别交AB于E、G,则重叠部分为四边形PEGQ.∵PQ=PC=8﹣t,∴PR=16﹣2t,∴RE=PR﹣PE=16﹣3t,∴S=S△PRQ﹣S△REG=(8﹣t)2﹣(16﹣3t)2=﹣t2+32t﹣64.③当<t<8时,如图③中,则重合部分为△PRQ,∴S=S△PRQ=PQ2=(8﹣t)2=t2﹣16t+64.(3)分情况讨论:①如图④所示:根据三角形的面积关系得:AM=BM=AB=4,根据等腰直角三角形的性质得:PM=PB=BM,∴AP=AB=6,∴t=6,解得:t=6;②如图⑤所示:同②得:t=;③如图⑥所示:点M不可能是AC中点,此种情形不存在.综上所述:点R与△ABC的顶点的连线平分△ABC面积时t的值为6或.17.【解答】解:(1)故答案为:①25;②3t.(2)当▱PQMN为矩形时,∠NPQ=90°,∵PN⊥AB,∴PQ∥AB,∴由题意可知AP=CQ=5t,CP=20﹣5t,∴,解得t=,即当▱PQMN为矩形时t=.(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=15﹣5t,PN=QM=3t.∴AN=AP•cosA=4t,BG=BQ•cosB=9﹣3t,QG=BQ•sinB=12﹣4t,∵.▱PQMN在三角形内部时.有0<QM≤QG,∴0<3t≤12﹣4t,∴0<t.∴NG=25﹣4t﹣(9﹣3t)=16﹣t.∴当0<t时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16﹣t)=﹣3t2+48t.Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQMG 时,即:0<12﹣4t<3t,解得:,▱PQMN与△ABC重叠部分图形为梯形PQMG的面积S===.综上所述:当0<t时,S=﹣3t2+48t.当,S=.(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,有两种情况,Ⅰ.如解题图(4)1,PR∥BC,PR与AB交于K点,R为MN中点,过R点作RH⊥AB,∴∠PKN=∠HKR=∠B,NK=PN•cot∠PKN=3t=,∵NR=MR,HR∥PN∥QM,∴NH=GH=,HR=,∴GM=QM﹣QG=3t﹣(12﹣4t )=7t﹣12.HR=.∴KH=HR•cot∠HKR==,∵NK+KH=NH,∴,解得:t=,Ⅱ.如解题图(4)2,PR∥BC,PR与AB交于K点,R为MQ中点,过Q点作QH⊥PR,∴∠HPN=∠A=∠QRH,四边形PCQH为矩形,∴HQ=QR•sin∠QRH=∵PC=20﹣5t,∴20﹣5t=,解得t=.综上所述:当t=或时,点P且平行于BC的直线经过▱PQMN一边中点,18.【解答】解:(1)当点Q在AB上时,∴;,当点Q在AC上时,.(2)当点R落在AC上时,解得.(3)如图1中,当时,重叠部分是△PQR,可得.如图4中,当时,重叠部分是四边形PQNM.可得.如图5中,当时,重叠部分是△PQM.可得.(4)①如图6中,当点R落在△ABC的中位线MN上时,作RH⊥PM.则四边形PQRH是矩形,易证RP=RM,∵RH⊥PM,∴PH=HM=RQ,∴PM=2RQ,∴﹣t=2•t,解得t=.②如图7中,当点R落在△ABC的中位线MN上时,易知BQ=,可得,t=.③如图8中,当点R落在△ABC的中位线MN上时,易知:PQ=可得:(5﹣t)=,解得t=④如图9中,当点R落在△ABC的中位线MN上时,易知RQ=BM=,可得t=,解得t=.综上所述,满足条件的t的值为:,,,.19.【解答】解:(1)如图1中,在Rt△BPQ中,∵∠BPQ=90°,∠B=30°,BP=t,∴PQ=BP•tan30°=t.(2)①如图1中,当0<t≤2时,重叠部分是△PQM,S=t2.②如图2中,当2<t<3时,重叠部分是四边形PQFE,S=S△PQM﹣S△EFM=t2﹣(3t﹣6)2=﹣2t2+9t﹣9,综上所述,S=.(3)①如图3﹣1中,当点M落在中线AE上时,作MH⊥BC于H.∵MH∥AC,∴=,∴=,解得t=②如图3﹣2中,当点M落在中线CK上时,t==.③如图3﹣3中,当点M落在中线CK上时,由PM=PC•cos30°,可得:[3﹣(t﹣3)]=•(t﹣3),解得t=5.④如图3﹣4中,当点M落在中线BF上时,作MH⊥AC于H.∵MH∥BC,∴=,∴=,解得t==,综上所述,满足条件的t的值为s或s或5s或s.20.解:(1)当M与D重合时,如图1,由题意得:AP=4x,此时4x=3.6,x=,∴当0<x≤时,如图2,M在CD的延长线上,DM=﹣5x+;②当<x<时,如图3,M在边CD上,DM=8﹣(﹣5x)=5x﹣;(2)∵四边形ABCD是矩形,∴AB∥CD,∴△MPC∽△NPA,∴=()2=,∴=,∴=,∴x=;(3)分三种情况:①当0<x≤时y=20x;②当<x≤时,△MEN与矩形ABCD重合部分图形是△MEN,,y=18;③当<x<时,△MEN与矩形ABCD重合部分图形是四边形MEBG,y=18﹣BN﹣GN+BG=18﹣(5x﹣8)﹣+=﹣+;综上,y与x之间的函数关系式为:y=;(4)分两种情况:①当F在∠ACB的平分线上,如图6,过F作GH∥AB,交AC于H,交BC于G,∴GH⊥BC,∵PF⊥PC,∴∠CFP=∠CFG,∴CG=CP=10﹣4x,∵F是PN的中点,FH∥AN,∴AH=PH=2x,∴CH=10﹣2x,∵∠CHG=∠CAB,∴sin∠CHG=sin∠CAB=,∴=,x=;②当F在∠ABC的平分线上,如图7,过F作GH∥AB,交AC于H,交BC于G,过H 作HQ⊥AB于Q,同理得:AH=2x,sin∠HAQ=,HQ=BG=1.2x,∵BF平分∠ABC,∴∠GBF=45°,∴FG=BG=1.2x,由①知:FH是△PAN的中位线,∴FH=AN=x,∴GH=FH+FG=2.5x+1.2x=3.7x,∵cos∠CHG=,∴=,x=,综上,x的值是秒或秒.21.【解答】解:(1)如图1中,.故答案为9t.(2)如图2中,点A′落在BC边上时,t=.(3)①如图1中,当0<t≤时,重叠部分是△PMA′,S=•3t•4t=6t2②如图3中,当<t≤时,重叠部分是四边形PMTS.S=S△PMA′﹣S△TSA′=6t2﹣•(9t﹣8)2=﹣48t2+96t ﹣.③如图4中,<t≤2时,重叠部分是△PBS.S=×(8﹣4t)2=6t2﹣24t+24,综上所述,S=.(3)如图5中,当直线CA′平分∠PA′M时,设CA′交AB于Q,作QE⊥AC于E,交PA′于G.∵∠A′MQ=∠A′GQ=90°,∠QA′M=∠QA′G,A′Q=A′Q,∴△A′QM≌△A′QG,∴A′M=A′G=3t,∴PG=PA′﹣A′G=2t,∴QG=QM=t,PQ=t,∵PA′∥AC,∴=,∴=,∴t=s.如图6中,当CM平分∠PMA′时,作CE⊥AB于E.∵CE==,∴BE==,∵∠CME=45°,∴CE=EM=,∴BM=EM﹣EB=﹣=,∴AM=9t=10+,∴t=s.综上所述,t=s或s时,点C和△PA′M中一个顶点的直线平分△PA′M的内角.22.【解答】解:(1)由题意得:BP=2t如图1,过A作AD⊥BC于D,①当点Q在线段AB上时,即0<t≤1时,PQ=t;②当点Q在线段AC上时,即1<t<2时PQ=PC==2﹣t;(2)点M在△ABC内部时t的取值范围是<t<2;(3)分三种情况:①0<t≤1时,如图5,正方形PQMN与△ABC重叠部分图形是四边形DNPQ,BP=2t,PQ=PN=MD=t,∴BN=2t﹣t=t,∴DN=t=DM,∴S=S正方形MNPQ﹣S△MDQ==;②当1<t<时,如图6,正方形PQMN与△ABC重叠部分图形是五边形ODNPQ,∵PQ=PN=MN=2﹣t,∴BN=BP﹣PN=2t﹣(2﹣t)=3t﹣2,∵tan∠B=,DN=BN=,∴DM=MN﹣DN=2﹣t﹣=3﹣t,∵tan∠MOD=tan∠B==,∴OM=2MD,∴S=S正方形MNPQ﹣S△MDO=(2﹣t)2﹣=(2﹣t)2﹣=﹣+11t﹣5;③当≤t<2时,如图7,正方形PQMN与△ABC重叠部分图形是正方形MNPQ,S=PQ2=(2﹣t)2=t2﹣4t+4;综上,S与t之间的函数关系式为:S=;(4)存在四种情况:①如图8,M在中位线MQ上,则Q是AB的中点,BQ=,∴BP=1=2t,t=;②如图9,M在中位线MT上,则T是BC的中点,BT=2,∴MT∥AC,∴∠C=∠BTM,∴tan∠BTM===,∴NT=BP,∵BP+TN﹣BT=PN,∴2t+2t﹣2=t,t=;③如图10,M在中位线MQ上,∴Q是AC的中点,同理得CP=1=4﹣2t,t=;④如图11,M在中位线MT上,T是BC的中点,CP=TN=4﹣2t,PQ=PN=2﹣t,∵CT=TN+PN+PC,∴2=2(4﹣2t)+2﹣t,t=;综上,t的值是秒或秒或秒或秒.23.【解答】解:(1)如图1中,作EM⊥AC于M.∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵DH⊥AB,∴∠DHA=∠C=90°,∵∠A=∠A,∴△AHD∽△ACB,∴=,∴=,∴AH=4t,∴AE=2AH=8t,∵EM∥BC,∴=,∴=,∴EM=t,∴sin∠EDG===.(2)如图2中,由(1)可知:DM==t,∵AD+DM+CM=8,∴5t+t+5t=8,解得t=.(3)①如图3﹣1中,当0<t≤时,重叠部分是菱形DEFG,S=DG•EM=5t×t=24t2.②如图3﹣2中,当≤t<时,重叠部分是四边形DEMC,S=•(EM+CD)•CM=[8﹣5t+(10﹣8t)]•t=﹣t2+t.③如图3﹣3中,当≤t<时,重叠部分是三角形DCM,S=•(8﹣5t)2•=(8﹣5t)2.(4)①当点P落在DF上时,如图4﹣1中,易证AD=DC=4,t=.②如图4﹣2中,当点P落在FG上时,作CM⊥EG于M.由△PBE≌△PCM,可得BE=CM=10﹣8t,CG=(10﹣8t),∴10t=8+(10﹣8t),解得t=.综上所述,满足条件的t的值为或s.24.【解答】解:(1)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(2)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(3)当0≤t≤2时,如图3,由题意可知CP=2t,∴S=S△PCQ=×2t×3=3t;当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,∴S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,∴S=S△BCM=×4×=;综上可知S=;(4)如图6,∵∠OAD=∠OAB=45°,OA=4,∴D(0,4),设直线AD解析式为y=kx+b,代入,得:,解得,∴直线AD解析式为y=﹣x+4,由题意知C(0,3),P(2t,3),Q(t,0),∴CP的中点坐标为(t,3),CQ中点坐标为(,),PQ中点坐标为(t,),若直线AD经过CP中点,则﹣t+4=3,解得t=1;若直线AD经过CQ中点,则﹣+4=,解得t=5;若直线AD经过PQ中点,则﹣t+4=,解得t=;综上,∠OAB的角平分线经过△CQP边上中点时的t值为1或5或.25.【解答】解:(1)如图1中,故答案为t.(2)如图2中,当D与点C重合时,∵PQ⊥PD,PR⊥CD,∴∠QPD=∠PRQ=∠PRD=90°,∵∠PCR+∠CPR=90°,∠CPR+∠DPR=90°,∴∠DPR=∠PCR,∴△CPR∽△PDR,∴=,∴PR2=CR•DR,∴(t)2=(5﹣t)•t,解得t=3.∴t=3s时,C,Q重合.(3)①当0<t≤3时,如图3中,S=•PR•QR=•t•(t﹣t)=t2.②当3<t≤时,如图3﹣1中,S=•PR•CR=•t•(5﹣t)=﹣t2+2t.综上所述,S=.(4)①如图4﹣1中,当点P在线段AB的垂直平分线上时,设AB的垂直平分线交AB于N,交BC于M.易知BM=BN=,PM=PD,∴DM=BM+BD=,∵PR⊥DM,∴DR=DM=,∴t=,∴t=.②如图4﹣2中,当点P在线段BC的垂直平分线上时,DR=CR=,可得t =,解得t=.③如图4﹣3中,当点P在线段AC的垂直平分线上时,PR=CM=,可得t=,解得t =.综上所述,满足条件的t的值为s或s或s.26.【解答】解:(1)∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴当0<t≤3时,点Q在线段AC上运动,CQ=6﹣2t,当3<t≤7时,点Q在线段BC上运动,CQ=2t﹣6;(2)∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10,当点M落在边BC上时,如图1,∵QM∥AB,∴△CQM∽△CAB,∴==,∴CQ=QM,∵PM∥AC,QM∥AB,∴四边形APMQ是平行四边形,∴QM=AP=t,∴6﹣2t=t,解得:t=;(3)如图2,当0<t<时,S=2t•t=t2,如图3,当5<t<7时,S=[10﹣t﹣(14﹣2t)]×(14﹣2t)=﹣t2+t﹣63;综上所述,S与t之间的函数关系式为:S=;(4)①当0<t≤3时,当Q在线段AC上运动时,即AQ=2t,AP=t,∴AQ=2AP,②如图4,当点Q在线段BC上运动时,PM=2PN,即(14﹣2t)=2[10﹣t﹣(14﹣2t)],解得:t=,如图5,当点Q在线段BC上运动时,2PM=PN,即2×(14﹣2t)=[10﹣t﹣(14﹣2t)],解得:t=,∴当▱PMQN的一边是它邻边2倍时,t的取值范围为:0<t≤3或或.27.【解答】解:(1)如图1,∵∠C=90°,AC=8厘米,BC=6厘米,∴AB=10(cm),∴cosA=,sinA=,tanA=,设AP=5x,∴PA′=AD=APcos∠A=×5x=4x,CP=8﹣5x,∴cos∠CPA′=cos∠A===,∴x=,(2)①当0<x≤,如图2,∴PA′=AD=APcosA=3x,∴A′D=AP=5x,∴y=4x+3x+5x=12x,②当<x≤时,如图3∴PE===,DF=DB×cosA=8﹣x,∴y=3x++8﹣x+x﹣6=12﹣x,即:当0<x≤时,y=12x,当<x≤时,y=﹣x+12;(3)同(1)一样有,sinB=,cosB=,tanB=,①当A′B′⊥AB时,如图6,∴DH=PA'=AD=4x,HE=B′Q=EB=3x,∵AB=2AD+2EB=2×4x+2×3x=10,∴x=,∴A′B′=QE﹣PD=4x﹣3x=x=.②当A′B′⊥BC时,如图7,∴B′E=5x,DE=10﹣7x,∴cosB==,∴x=.③当A′B′⊥AC时,如图8,DA'=PA=5x,DE=×5x=x,∴4x+x+3x=10,∴x=.④当Q,P都到达C后,如图9,∵A′B′∥AB且AB=A′B′=10,此时t=s.28.【解答】解:(1)如图1,过D作DM⊥AB于M,EG=t;(2)t=4;(3)当点G在DC上时,存在三种情况:①当4≤t<6时,G在DC上,E在F的左边,如图3,矩形EFHG与四边形ABCD重叠部分是矩形EFHG,,∴S=EF•EG=4×(12﹣2t)=﹣8t+48;②当6<t≤8时,如图4,G在DC上,E在F的右边,矩形EFHG与四边形ABCD重叠部分是矩形EFHG,∴S=EF•EG=4×(2t﹣12)=8t﹣48;③当8<t≤12时,如图5,矩形EFHG与四边形ABCD重叠部分是五边形EFMDG,∵AF=BE=t﹣(2t﹣12)=12﹣t,Rt△AFM中,∠AMF=30°,∴FM=AF=(12﹣t),∴HM=4﹣FM=4﹣(12﹣t)=t﹣8,∴DH=t﹣8,∴S=S矩形EFHG﹣S△DHM=8t﹣48﹣=8t﹣48﹣=﹣;综上,S(cm2)与t(秒)的函数关系式为:S=;(4)分三种情况:①当BD∥FG时,如图6,∴,即,t=3;②当AC∥EH时,如图7,则∠FEH=∠BAC,tan∠BAC=tan∠FEH=,即,t=;③当BD∥EH时,如图8,∠CDB=∠GHE,∴tan∠CDB=tan∠GHE,∴,∵BC=EG,∴CD=GH,即CG=DH,由(3)知DH=t﹣8,∴t﹣8=12﹣t,t=10;综上,t的值为3秒或秒或10秒.29.【解答】解:(1)故答案为:2t;(2)∵以每秒2个单位长度的速度沿边AB向点B运动,过点P作PD⊥AB交折线AC、CB于点D,以PD为边在PD右侧作正方形PDEF,∴△APD是等腰直角三角形,AP=PD,过点C作CK⊥AB于K,交QG于点H,如图1所示:则CH⊥QG,∵△ABC是等腰直角三角形,∴CK=AB=×10=5,当点E与点N重合时,CH+QN+EF=CK=5,∵△CQG是等腰直角三角形,∴△CHQ是等腰直角三角形,∴CQ=CH,此时,CQ=t,AP=DP=EF=2t,∴CH===t,QG=QN=CQ=×t=2t,∴t+2t+2t=5,解得:t=1;(3)由题意得:正方形PDEF与正方形QGMN重叠部分图形是正方形,(4)当正方形PDEF与正方形QGMN完全重合时,3t=5,t=;分两种情况:①当1<t≤时,如图2所示:由(1)得:QG=GM=2t,△CQG是等腰直角三角形,由(2)得:EF=2t,CH=t,CK=5,∴S=[2t﹣(5﹣3t)]2=(5t﹣5)2=25t2﹣50t+25,即S与t之间的函数关系式为S=25t2﹣50t+25;②当<t<5时,如图3所示:S=(5﹣t)2=t2﹣10t+25,即S=t2﹣10t+25;(4)分三种情况:①当EM⊥BC时,如图4所示:由题意得:(5﹣2t)=10﹣2t,解得:t=0,不合题意舍去;②当EM⊥AC时,如图5所示:由题意得:×3t=10﹣2t,解得:t=;③当EM⊥AB时,正方形PDEF与正方形QGMN重合,此时t=;综上所述,当直线EM与△ABC的边垂直时,t的值为或.30.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠CAD=∠CAB=∠DAB=60°,∴△ADC,△ABC都是等边三角形,∵PE⊥AB,PA=2t,∴∠PEA=90°,∠APE=30°,∴AE=PA=t,∴BE=AB﹣AE=4﹣t.(2)当点P与点O重合时,PA=OA=2=2t,∴t=1时,点P与点O重合.(3)当0<t≤1时,如图1中,重叠部分是四边形PEAF,S=2××t×t=t2.当1<t≤2时,如图2中,重叠部分是五边形AEMNF,S=S四边形PEAF﹣S△PMN=t2﹣()2=﹣t2+t﹣.(4)如图4﹣1中,当PQ′⊥BC时,易知PC=2CQ′,可得4﹣2t=2×6t,解得t=.如图4﹣2中,当点Q与点F重合时,PQ⊥AB,则有:6t+t=8,t=如图4﹣3中,当点Q与点E重合时,PQ′⊥AD,则有:6t=8+t,t=,综上所述,满足条件的t的值为s或s或s.31.【解答】解:(1)∵PD⊥AB,∴∠APD=90°,∵∠A=60°,PA=t,∴PD=PA=.故答案为t.(2)①当AD=DC时,2t=1,t=.②当CD=DB时,AP=4﹣,t=,综上所述,满足条件的t的值为或.(3)当0<t<1时,如图1中,∵DE∥AB,∴=,∴=,∴DE=4﹣4t,∴S=•DE•DP=﹣2t2+2t.当1<t<4时,如图2中,。
人教版九年级数学中考动点问题专项练习及参考答案
人教版九年级数学中考动点问题专项练习例题1. 抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在B 的左侧),与y轴相交于点C ,顶点为D .⑴ 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;⑵ 连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为;① 用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?② 设BCF ∆的面积为S ,求S 与m 的函数关系式. 【答案】⑴()10A -,,()30B ,,()03C ,.抛物线的对称轴是:1x =.⑵①设直线BC 的函数关系式为:y kx b =+. 把()()3003B C ,,,分别代入得:303.k b b +=⎧⎨=⎩,解得:13k b =-=,. 所以直线BC 的函数关系式为:3y x =-+. 当1x =时,132y =-+=,∴()12E ,. 当x m =时,3y m =-+, ∴()3P m m -+,.在223y x x =-++中,当1x =时,4y =. ∴()14D ,当x m =时,223y m m =-++∴()223F m m m -++,.∴线段422DE =-=,线段()222333PF m m m m m =-++--+=-+. ∵PF DE ∥∴当PF ED =时,四边形PEDF 为平行四边形. 由232m m -+=解得:1221m m ==,.(不合题意,舍去). 因此,当2m =时,四边形PEDF 为平行四边形.②设直线PF 与x 轴交于点M ,由()30B ,,()00O ,,可得:3OB OM MB =+=. ∵BPF CPE S S S ∆∆=+.即()11112222S PF BM PF OM PF BM OM PF OB =⋅+⋅=⋅+=⋅.∴()()221393303222S m m m m m =⨯-+=-+≤≤.例题2. 如图,已知抛物线(1)2)0y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【答案】(1)∵抛物线2(1))0y a x a =-+≠经过点()20A -,,∴09a =+a =∴二次函数的解析式为:2y =+(2)∵D 为抛物线的顶点∴(1D 过D 作DN OB ⊥于N ,则DN =,3AN =,∴6AD ==∴60DAO ∠=︒∵OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形 ∴6OP =∴()6t s =②当DP OM ⊥时,四边形DAOP 是直角梯形 过O 作OH AD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =) ∴5OP DH ==,()5t s =③当PD OA =时,四边形DAOP 是等腰梯形 ∴2624OP AD AH =-=-=∴()4t s =综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.(3)由(2)及已知,60OC OB COB OCB =∠=,,°△是等边三角形 则62OB OC AD OP t BQ t =====,,,∴()6203OQ t t =-<< 过P 作PE OQ ⊥于E,则PE =∴113322263(62)BCPQ t S t -=⨯⨯⨯-⨯=233633228t ⎛⎫-+⎪⎝⎭ 当32t =时,BCPQ S 的面积最小值为6338 ∴此时33324OQ OP OE ==,=,∴39334443PE QE ===- ∴222233933442PE QE PQ ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭=例题3. 已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,cos ∠BAO =13.设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图1,当⊙P 与⊙O 外切时,求y 与x 之间的函数关系式,并写出函数的定义域;(3)当∠OCA =∠OPC 时,求⊙P 的半径.图1 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2.(2)如图2,作CH ⊥AP ,垂足为H . 由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC CH==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)99y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OCOC OP =.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154.②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC .所以AO ACAC AP =.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274.图4 图5 图6例题4. 如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B 的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P、D、B三点作⊙Q,与y轴的另一个交点为E,延长DQ交⊙Q于F,连结EF、BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A、B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2∶1?如果存在,求出此时点P的坐标;如果不存在,请说明理由.图1【答案】(1)直线AB的函数解析式为y=-x+4.(2)①如图2,∠BDE=∠CDE=∠ADP;②如图3,∠ADP=∠DEP+∠DPE,如图4,∠BDE=∠DBP+∠A,因为∠DEP=∠DBP,所以∠DPE=∠A=45°.所以∠DFE=∠DPE=45°.因此△DEF是等腰直角三角形.于是得到2y x=.图2 图3 图4(3)①如图5,当BD∶BF=2∶1时,P(2,2).思路如下:由△DMB∽△BNF,知122BN DM==.设OD=2m,FN=m,由DE=EF,可得2m+2=4-m.解得23m=.因此4(0,)3D.再由直线CD与直线AB求得交点P(2,2).②如图6,当BD∶BF=1∶2时,P(8,-4).思路同上.图5 图6例题5. 在Rt △ABC 中,∠C =90°,AC =6,53sin =B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3【答案】(1) 在Rt △ABC 中,AC =6,53sin =B ,所以AB =10,BC =8.过点M 作MD ⊥AB ,垂足为D .在Rt △BMD 中,BM =2,3sin 5MD B BM==,所以65MD =.因此MD >MP ,⊙M 与直线AB 相离. 图4(2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况.②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形.在Rt △BOM 中,BM =2,4cos 5BO B BM==,所以85BO =.此时425OA =.③如图6,当OM =OP 时,设底边MP 对应的高为OE .在Rt △BOE 中,BE =32,4cos 5BE B BO==,所以158BO =.此时658OA =.图5 图6(3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y .在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45BF y =.在Rt △ONF 中,4105OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55x y x y y +=--+.整理,得2505040x y x -=+.定义域为0<x <5.图7 图8例题6. 如图1,甲、乙两人分别从A 、B 两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以每小时4千米的速度行走,t 小时后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达点O 前,MN 与AB 不可能平行;(2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长.设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值. 图1【答案】 (1)当M 、N 都在O 右侧时,24122OM t t OA-==-,642163ON t t OB-==-,所以OM ON OAOB≠.因此MN 与AB 不平行.(2)①如图2,当M 、N 都在O 右侧时,∠OMN >∠B ,不可能△OMN ∽△OBA .②如图3,当M 在O 左侧、N 在O 右侧时,∠MON >∠BOA ,不可能△OMN ∽△OBA .③如图4,当M 、N 都在O 左侧时,如果△OMN ∽△OBA ,那么ON OA OMOB=.所以462426t t -=-.解得t =2.图2 图3 图4(3)①如图2,24OM t =-,12OH t =-,2)MH t =-.(64)(12)52NH ON OH t t t =-=---=-.②如图3,42OM t =-,21OH t =-,1)MH t =-.(64)(21)52NH ON OH t t t =+=-+-=-.③如图4,42OM t =-,21OH t =-,1)MH t =-.(21)(46)52NH OH ON t t t =-=---=-.综合①、②、③,s 222MN MH NH ==+22221)(52)16322816(1)12t t t t t ⎤=-+-=-+=-+⎦. 所以当t =1时,甲、乙两人的最小距离为12千米.例题7. 已知点 (1,3)在函数ky x=(0x >)的图像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数ky x=(0x >)的图像经过A 、E 两点,若45ABD ∠=︒,求E 点的坐标.【解析】点(1,3)在函数k y x=的图像上,3k =.又E 也在函数k y x =的图像上,故设E 点的坐标为(m ,3m). 过E 点作EF x ⊥轴于F ,则3EF m=. 又E 是对角线BD 的中点,62AB CD EF m===. 故A 点的纵坐标为6m ,代入3y x =中,得A 点坐标为 (2m ,6m). 因此22m mBF OF OB m =-=-=.由45ABD ∠=︒,得45EBF ∠=︒,BF EF =. 即有32m m=.解得m =而0m >,故m =则E 点坐标为【答案】例题8. 如图,11POA ∆、212PA A ∆都是等腰直角三角形,点1P 、2P 在函数4y x=(0x >)的图像上,斜边1OA 、12A A 、都在x 轴上,求点2A 的坐标.【解析】分别过点1P 、2P 做x 轴的垂线,根据题意易得1PC OC =,21P D A D =,14PC OC ⋅=,24P D OD ⋅=,得2OA =,所以2A(0).【答案】2A(0).例题9. 如图所示,()()111222P x y P x y ,,,,……,()n n n P x y ,在函数()90y x x=>的图象上,11OP A ∆,212P A A ∆,323P A A ∆,…,1n n n P A A -∆,…都是等腰直角三角形,斜边1121n n OA A A A A -,,…,都在x 轴上,则12n y y y +++=…______________.【解析】由已知易得()133P ,,则13y =,点2P 横坐标为26y +, 那么可得()2269y y +=,解得23y =,同理点3P横坐标为3y,那么可得()339y y =,解得3y =依此类推,n P的纵坐标为n y =∴1233n y y y +++=+++……【答案】例题10. 如图,P 是函数12y x=(0x >)图象上一点,直线1y x =-+交x 轴于点A ,交y 轴于点B ,PM Ox ⊥轴于M ,交AB 于E ,PN Oy ⊥轴于N ,交AB 于F.求AF BE ⋅的值.【解析】设点P (x ,y ),过点E 、F 分别作x 轴的垂线,21AF BE xy ⋅==. 【答案】1例题11. 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与BC ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等; (2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22k y x =. ∴1111122S x y k ==,2221122S x y k ==.∴12S S =,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形∴2112S k k =-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设存在这样的点F ,将沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,∵90EMN FMB FMB MFB ∠+∠=∠+∠= ∴EMN MFB ∠=∠.又∵90ENM MBF ∠=∠=, ∴ENM MBF △∽△. ∴EN EM MB MF= ∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭ ∴94MB =.222MB BF MF +=,解得218k =.∴21432k BF ==∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.例题12. 如图,点()1A m m +,,()31B m m +-,都在反比例函数ky x=的图象上. (1)求m k ,的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A B M N ,,,为顶点的四边形是平行四边形,试求直线MN 的函数表达式.【解析】(1)由题意可知,()()()131m m m m +=+-.解,得3m =.∴()()3462A B ,,,;∴4312k =⨯=.(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设1M 点坐标为()10x ,,1N 点坐标为()10y ,. ∵ 四边形11AN M B 为平行四边形,∴线段11N M 可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 坐标为(3,4),B 坐标为(6,2),∴1N 点坐标为042(,-),即102N (,); 1M 点坐标为(6-3,0),即1M (3,0).设直线11M N 的函数表达式为12y k x =+,把30x y ==,代入,解得123k =-. ∴ 直线11M N 的函数表达式为223y x =-+.②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设2M 点坐标为20x (,),2N 点坐标为20y (,).∵11221122AB N M AB M N AB N M AB M N ∥,∥,=,=,∴1221122N M M N N M M N ∥,=. ∴线段22M N 与线段11N M 关于原点O 成中心对称. ∴2M 点坐标为(-3,0),2N 点坐标为(0,-2).设直线22M N 的函数表达式为22y k x =-,把30x y =-=,代入,解得223k =-,∴ 直线M 2N 2的函数表达式为223y x =--.所以,直线MN 的函数表达式为223y x =-+或223y x =--.【答案】(1)3m =,12k =;(2)223y x =-+或223y x =--。
初中数学动点问题及练习题附参考答案
初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
中考压轴题十大类型之动点问题
念书破万卷下笔如有神第一讲中考压轴题十大种类之动点问题一、解题策略和解法精讲解决动点问题的要点是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,经过“对称、动点的运动”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间见解和合情推理。
在动点的运动过程中察看图形的变化情况,理解图形在不同样地址的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”研究题的基本思路 ,这也是动向几何数学问题中最中心的数学本质。
二、精讲精练1.(2011 吉林)如图,梯形 ABCD 中, AD∥BC,∠ BAD=90°, CE⊥ AD 于点E,AD=8cm,BC=4cm,AB=5cm.从初始时辰开始,动点 P,Q 分别从点 A,B 同时出发,运动速度均为 1cm/s,动点 P 沿 A-B-C-E 方向运动,到点 E 停止;动点 Q 沿 B-C-E- D 方向运动,到点 D 停止,设运动时间为x s,△ PAQ 2的面积为 y cm ,(这里规定:线段是面积为0 的三角形)解答以下问题:(1)当x=2s 时, y=_____ cm2;当x =9 s 时, y=_______ cm2.2(2)当5 ≤x ≤14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出y4S 梯形ABCD时x 的值.15(4)直接写出在整个运动过程中,使 PQ 与四边形 ABCE 的对角线平行的所..有 x 的值.2.(2007 河北)如图,在等腰梯形 ABCD 中, AD∥BC,AB=DC=50,AD=75,BC=135.点 P 从点 B 出发沿折线段 BA-AD-DC 以每秒 5 个单位长的速度向点 C 匀速运动;点 Q 从点 C 出发沿线段 CB 方向以每秒 3 个单位长的速度匀速运动,过点 Q 向上作射线 QK⊥BC,交折线段 CD-DA-AB 于点 E.点 P、Q 同时开始运动,当点 P 与点 C 重合时停止运动,点 Q 也随之停止.设点 P、Q 运动的时间是 t 秒( t>0).(1)当点 P 抵达终点 C 时,求 t 的值,并指出此时BQ 的长;(2)当点 P 运动到 AD 上时, t 为何值能使 PQ∥DC ?(3)设射线 QK 扫过梯形 ABCD 的面积为 S,分别求出点 E 运动到 CD、DA 上时, S 与 t 的关系式;(4)△PQE 可否成为直角三角形?若能,写出 t 的取值范围;若不能够,请说明原因.A DK A DP EBQ CBC备用图3.(2008 河北)如图,在Rt△ABC中,∠ C=90°, AB=50,AC=30,D,E,F 分别是 AC,AB,BC 的中点.点 P 从点D出发沿折线 DE-EF-FC-CD 以每秒7 个单位长的速度匀速运动;点Q从点 B 出发沿BA方向以每秒 4 个单位长的速度匀速运动,过点 Q 作射线 QK AB ,交折线BC-CA于点 G .点 P,Q 同时出发,当点 P 绕行一周回到点D时停止运动,点Q也随之停止.设点P, Q 运动的时间是t秒( t 0 ).(1)D,F两点间的距离是;(2)射线QK可否把四边形CDEF分成面积相等的两部分?若能,求出t 的值.若不能够,说明原因;(3)当点 P 运动到折线EF FC 上,且点P又恰巧落在射线 QK 上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出 t 的值...C K CD F D FP GA EQB A E B备用图4(.2011 山西太原)如图,在平面直角坐标系中,四边形 OABC 是平行四边形.直线 l 经过O、C两点.点A的坐标为( 8,0),点B的坐标为( 11,4),动点P在线段 OA 上从点 O 出发以每秒 1 个单位的速度向点 A 运动,同时动点 Q 从点 A出发以每秒 2 个单位的速度沿A→ B→C 的方向向点 C 运动,过点 P 作 PM 垂直于 x 轴,与折线 O- C- B 订交于点 M.当 P、 Q 两点中有一点抵达终点时,另一点也随之停止运动,设点 P、Q 运动的时间为 t 秒 ( t 0 ) ,△ MPQ 的面积为 S.(1)点 C 的坐标为 ________,直线l的剖析式为 __________.(2)试求点 Q 与点 M 相遇前 S 与 t 的函数关系式,并写出相应的 t 的取值范围.(3)试求题 ( 2) 中当 t 为何值时, S 的值最大,并求出S 的最大值.(4)随着 P、Q 两点的运动,当点 M 在线段 CB 上运动时,设 PM 的延长线与直线 l 订交于点N.试试究:当t为何值时,△QMN为等腰三角形?请直接写出 t 的值.ylC BM Qyl C QBMOP AxylC M Q BO P A x5.( 2011四川重庆)如图,矩形ABCD 中,AB=6,BC=2 3,点 O 是 AB 的中点,点 P 在 AB 的延长线上,且 BP= 3.一动点 E 从 O 点出发,以每秒 1 个单位长度的速度沿OA 匀速运动,抵达A 点后,立刻以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1 个单位长度的速度沿射线PA 匀速运动,点E、F 同时出发,当两点相遇时停止运动.在点 E、F 的运动过程中,以 EF 为边作等边△EFG,使△EFG 和矩形 ABCD 在射线 PA 的同侧,设运动的时间为 t 秒(t≥0).(1)当等边△EFG 的边 FG 恰巧经过点 C 时,求运动时间 t 的值;(2)在整个运动过程中,设等边△ EFG 和矩形 ABCD 重叠部分的面积为 S,请直接写出 S与 t 之间的函数关系式和相应的自变量t 的取值范围;(3)设 EG 与矩形 ABCD 的对角线 AC 的交点为 H,可否存在这样的 t,使△AOH 是等腰三角形?若存在,求出对应的 t 的值;若不存在,请说明原因.D C D CEO B F P A E O B F P备用图 1D CAE O BF P备用图 2三、测试提高1. (2011 山东烟台)如图,在直角坐标系中, 梯形 ABCD 的底边 AB 在 x 轴上, 底边 CD 的端点 D 在 y 轴上.直线 CB 的表达式为 y4 x16,点 A 、D3 3的坐标分别为(- 4,0),(0,4).动点 P 自 A 点出发,在 AB 上匀速运动.动点 Q 自点 B 出发,在折线 BCD 上匀速运动,速度均为每秒 1 个单位.当其中一个动点抵达终点时, 它们同时停止运动. 设点 P 运动 t (秒)时,△OPQ 的面积为 S (不能够组成△ OPQ 的动点除外). (1)求出点 B 、C 的坐标; (2)求 S 随 t 变化的函数关系式;(3)当 t 为何值时 S 有最大值?并求出最大值.备用图。
初三数学动点问题解题技巧
初三数学动点问题解题技巧
1.运用常识分析现象:问题中有两个变量(时间t和距离d),所以可以使用x=vt(物体速度v和时间t关联),d=vt(物体距离d和时间t也有关联)来描述时间和距离之间的关系。
2.用数理归纳:考虑从时间t1到 t2变化的情况,令s=d2-d1,s=vt2-
vt1=v(t2-t1)=v∆t;这是一个比较常的原理,得到的表达式可用来简化问题的解法。
3.用分析思考重新组织求解:将时间t和距离d抽象为一个整体,表述为一个乘法运算,即先乘以时间t,算出距离d,即d=vt。
由此可以多次迭代以确定每秒距离一定的最小速度v。
4.用计算求出结果:可以求出v的值来确定物体的最小速度,从而获得结果。
九年级中考数学动点问题压轴题专题训练(含答案)
九年级中考数学动点问题压轴题专题训练1.如图1, 在平面直角坐标系中, 四边形OABC各顶点的坐标分别为O(0, 0), A(3, 3 ), B(9, 5 ), C(14, 0). 动点P与Q同时从O点出发, 运动时间为t秒, 点P沿OC方向以1单位长度/秒的速度向点C运动, 点Q沿折线OA-AB-BC运动, 在OA, AB, BC上运动的速度分别为3, , (单位长度/秒). 当P, Q中的一点到达C点时, 两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2, 当点Q在AB上运动时, 求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P, Q的运动过程中, 若线段PQ的垂直平分线经过四边形OABC的顶点, 求相应的t值.图1 图22.如图, 抛物线y=-x2+bx+c与x轴交于A, B两点(A在B的左侧), 与y轴交于点N, 过A点的直线l:y=kx+n与y轴交于点C, 与抛物线y=-x2+bx+c的另一个交点为D, 已知A(-1, 0), D(5, -6), P 点为抛物线y=-x2+bx+c上一动点(不与A, D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时, 过P点作PE∥x轴交直线l于点E, 作PF ∥y轴交直线l于点F, 求PE+PF的最大值;(3)设M为直线l上的点, 探究是否存在点M, 使得以点N, C, M, P为顶点的四边形为平行四边形.若存在, 求出点M的坐标;若不存在, 请说明理由.3.如图, 在平面直角坐标系中, 抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点, 求AM+OM的最小值.4.设直线l1: y=k1x+b1与l2: y=k2x+b2, 若l1⊥l2, 垂足为H, 则称直线l1与l2是点H的直角线.(1)已知直线①;②;③;④和点C(0, 2), 则直线_______和_______是点C的直角线(填序号即可);(2)如图, 在平面直角坐标系中, 直角梯形OABC的顶点A(3, 0)、B(2, 7)、C(0, 7), P为线段OC上一点, 设过B、P两点的直线为l1, 过A、P两点的直线为l2, 若l1与l2是点P的直角线, 求直线l1与l2的解析式.5.如图①, 在平面直角坐标系xOy中, 已知抛物线y=ax2-2ax-8a与x轴相交于A, B两点(点A在点B的左侧), 与y轴交于点C(0, -4).(1)点A的坐标为, 点B的坐标为, 线段AC的长为, 抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q, 使得以点B, C, P, Q为顶点的四边形是平行四边形, 求点Q的坐标.①6.如图, 已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A.B(点A位于点B是左侧), 与y轴的正半轴交于点C.(1)点B的坐标为______, 点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P, 使得四边形PCOB的面积等于2b, 且△PBC是以点P为直角顶点的等腰直角三角形?如果存在, 求出点P的坐标;如果不存在, 请说明理由;(3)请你进一步探索在第一象限内是否存在点Q, 使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在, 求出点Q的坐标;如果不存在, 请说明理由.7.如图, 已知A.B是线段MN上的两点, , , . 以A为中心顺时针旋转点M, 以B为中心逆时针旋转点N, 使M、N两点重合成一点C, 构成△ABC, 设.(1)求x的取值范围;(2)若△ABC为直角三角形, 求x的值;(3)探究: △ABC的最大面积?8.如图, 已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴, 垂足为C, 在对称轴的左侧且平行于y轴的直线交线段AB于点N, 交抛物线于点M, 若四边形MNCB为平行四边形, 求点M的坐标.9.在平面直角坐标系中, 反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时, 求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大, 求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q, 当△ABQ是以AB为斜边的直角三角形时, 求k的值.10.如图, 已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3, 抛物线与x轴相交于A, B两点, 与y轴相交于点C, 已知B点的坐标为(8, 0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点, 点N为线段BC上的一点, 若MN∥y 轴, 求MN的最大值;(3)在抛物线的对称轴上是否存在点Q, 使△ACQ为等腰三角形?若存在, 求出符合条件的Q点坐标;若不存在, 请说明理由.11.如图, 直线y=2x+6与反比例函数y=(k>0)的图象交于点A(m, 8), 与x轴交于点B, 平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M, 交AB于点N, 连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象, 直接写出当x>0时不等式2x+6->0的解集;(3)直线y=n沿y轴方向平移, 当n为何值时, △BMN的面积最大?最大值是多少?12.如图, 在平面直角坐标系xOy中, 顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B, AO=BO=2, ∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM, 求∠AOM的大小;(3)如果点C在x轴上, 且△ABC与△AOM相似, 求点C的坐标.13.在直角梯形OABC中, CB//OA, ∠COA=90°, CB=3, OA=6, BA=. 分别以OA.OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D.E分别为线段OC.OB上的点, OD=5, OE=2EB, 直线DE交x轴于点F. 求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点, 在x轴上方的平面内是否存在另一点N, 使以O、D、M、N为顶点的四边形是菱形?若存在, 请求出点N的坐标;若不存在, 请说明理由.14.如图, 已知一次函数y=-x+7与正比例函数的图象交于点A, 且与x轴交于点B. (1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C, 过点B作直线l//y轴. 动点P从点O出发, 以每秒1个单位长的速度, 沿O—C—A的路线向点A运动;同时直线l从点B出发, 以相同速度向左平移, 在平移过程中, 直线l交x轴于点R, 交线段BA或线段AO于点Q. 当点P到达点A时, 点P和直线l都停止运动. 在运动过程中, 设动点P运动的时间为t秒.①当t为何值时, 以A.P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在, 求t的值;若不存在, 请说明理由.15.如图, 二次函数y=a(x2-2mx-3m2)(其中a、m是常数, 且a>0, m>0)的图像与x轴分别交于A.B(点A位于点B的左侧), 与y轴交于点C(0,-3), 点D在二次函数的图像上, CD//AB, 联结AD. 过点A作射线AE交二次函数的图像于点E, AB平分∠DAE.(1)用含m的式子表示a;(2)求证: 为定值;(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G, 联结GF, 以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在, 只要找出一个满足要求的点G即可, 并用含m的代数式表示该点的横坐标;如果不存在, 请说明理由.16.如图, 二次函数y=-x2+4x+5的图象的顶点为D, 对称轴是直线l, 一次函数y= x+1的图象与x轴交于点A, 且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C, N是线段DC上一点(不与点D, C重合), 点N的纵坐标为n.过点N作直线与线段DA, DB分别交于点P, Q, 使得△DPQ与△DAB 相似.①当n= 时, 求DP的长;②若对于每一个确定的n的值, 有且只有一个△DPQ与△DAB相似, 请直接写出n的取值范围.17.已知直线y=3x-3分别与x轴、y轴交于点A, B, 抛物线y=ax2+2x+c经过点A, B. (1)求该抛物线的表达式, 并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l, 点B关于直线l的对称点为C, 若点D在y 轴的正半轴上, 且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移, 平移后抛物线的顶点为P, 其对称轴与直线y=3x-3交于点E, 若, 求四边形BDEP的面积.18.如图, 在平面直角坐标系xOy中, 二次函数y=-x2+2x+8的图象与一次函数y=-x+b的图象交于A.B两点, 点A在x轴上, 点B的纵坐标为-7.点P是二次函数图象上A.B两点之间的一个动点(不与点A.B重合), 设点P的横坐标为m, 过点P作x轴的垂线交AB于点C, 作PD ⊥AB于点D.(1)求b及sin∠ACP的值;(2)用含m的代数式表示线段PD的长;(3)连接PB, 线段PC把△PDB分成两个三角形, 是否存在适合的m值, 使这两个三角形的面积之比为1∶2?如果存在, 直接写出m的值;如果不存在, 请说明理由.19.如图, 抛物线与x轴交于A.B两点(点A在点B的左侧), 与y轴交于点C.(1)求点A.B的坐标;(2)设D为已知抛物线的对称轴上的任意一点, 当△ACD的面积等于△ACB 的面积时, 求点D的坐标;(3)若直线l过点E(4, 0), M为直线l上的动点, 当以A、B、M为顶点所作的直角三角形有且只有三个时, 求直线l的解析式.20.已知平面直角坐标系中两定点A(-1, 0)、B(4, 0), 抛物线y=ax2+bx-2(a≠0)过点A.B, 顶点为C, 点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时, 求m的取值范围;(3)若m>, 当∠APB为直角时, 将该抛物线向左或向右平移t(0<t<)个单位, 点C、P平移后对应的点分别记为C′、P′, 是否存在t, 使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在, 求t的值并说明抛物线平移的方向;若不存在, 请说明理由.2021中考数学压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1.【答案】【思维教练】(1)设一次函数解析式, 将已知点A、B的坐标值代入求解即可;(2)S △CPQ=·CP·Qy, CP=14-t, 点Q在AB上, Qy即为当x=t时的y值, 代入化简得出S与t的函数关系式, 化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论, 当Q在OA上时, 过点C;当Q在AB上时, 过点A;当Q在BC上时, 过点C和点B, 再列方程并求解.解图1解: (1)把A(3, 3 ), B(9, 5 )代入y=kx+b,得, 解得,∴y=33x+23;(3分)(2)在△PQC中, PC=14-t,∵OA==6且Q在OA上速度为3单位长度/s,AB==4 且Q点在AB上的速度为单位长度/s,∴Q在OA上时的横坐标为t, Q在AB上时的横坐标为t,PC边上的高线长为33t+2 3.(6分)所以S=(14-t)( t+2 )=-t2+t+14 (2≤t≤6).当t=5时, S有最大值为.(7分)解图2(3)①当0<t ≤2时, 线段PQ 的中垂线经过点C(如解图1). 可得方程(332t )2+(14-32t )2=(14-t )2.解得t1= , t2=0(舍去), 此时t = .(8分)解图3②当2<t ≤6时, 线段PQ 的中垂线经过点A(如解图2).可得方程(33)2+(t -3)2=[3(t -2)]2.解得t1= , ∵t2= (舍去), 此时t = .③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25- t, 解得t = .(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2.解得t1= , t2= (舍去).此时t=38+2027.(11分)综上所述, t的值为, , , .(12分)【难点突破】解决本题的关键点在于对PQ的垂直平分线过四边形顶点的情况进行分类讨论, 在不同阶段列方程求解.2.【答案】[分析] (1)将点A, D的坐标分别代入直线表达式、抛物线的表达式, 即可求解;(2)设出P点坐标, 用参数表示PE, PF的长, 利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况, 分别求解即可.解:(1)将点A, D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A, D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0, -1), 则直线l与x轴的夹角为45°, 即∠OAC=45°,∵PE∥x轴, ∴∠PEF=∠OAC=45°.又∵PF∥y轴, ∴∠EPF=90°, ∴∠EFP=45°.则PE=PF.设点P坐标为(x, -x2+3x+4),则点F(x, -x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0, ∴当x=2时, PE+PF有最大值, 其最大值为18.(3)由题意知N(0, 4), C(0, -1), ∴NC=5,①当NC是平行四边形的一条边时, 有NC∥PM, NC=PM.设点P坐标为(x, -x2+3x+4), 则点M的坐标为(x, -x-1),∴|yM-yP|=5, 即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+ , -3- )或(2- , -3+ )或(4, -5);②当NC是平行四边形的对角线时, 线段NC与PM互相平分.由题意, NC的中点坐标为0, ,设点P坐标为(m, -m2+3m+4),则点M(n', -n'-1),∴0= = ,解得:n'=0或-4(舍去n'=0), 故点M(-4, 3).综上所述, 存在点M, 使得以N, C, M, P为顶点的四边形为平行四边形, 点M的坐标分别为:(2+ , -3- ), (2- , -3+ ), (4, -5), (-4, 3).3.【答案】(1)。
动点问题解题技巧总结
动点问题解题技巧总结一、 动点选择题(中考选择最后一道) 1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是,x y x y ,,1122)()( 确定纵坐标比+y y 212大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合 第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,<<x 04和<<x 48,区间中点x =2和x =6,x =2时,长段线垂,线垂的作过,===<BQ BP Q BP y 2223,1343则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向右运动面积一直增大,所以排除D 选项第二步,看特殊点,A,B,C 三个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了一个区间,<<x 02,区间中点x =1,x =1时,,长段,线垂,线垂的作过,====<S CQ BQ BH H BP 14823 1.5,33333则易得答案为A .二、 动点解答题几何图形动点问题(包括三角形,四边形,圆):此类问题动点是有运动速度和运动路径的,解决问题的步骤如下:第一步,确定动点运动的阶段(如果是在折线上面运动,每一个线段是一个阶段)为了方便理解,每一个阶段都任意画出动点的一个可能位置(动点解答题的解题关键是化动为静,这个“为静”指的是在每一个阶段里任意选一个位置,用t 把相关线段表示出来,这样运动的点在这个阶段内就是“静止”的了),画出对应的图第二步,根据路程=速度⨯时间把动点运动的路程表示出来,进而将每一个阶段涉及到的线段表示出来第三步,根据具体问题列出等量关系式,例如:涉及到面积问题,用21底⨯高表示出面积,根据题目条件列出等量关系式 中考再现1.(2015江苏省)如图所示,在中,,,,点从点出发沿边向点以的速度移动,点从点出发沿边向点以的速度移动,若、同时出发:(1)几秒钟后,可使?(2)几秒钟后,可使四边形的面积占的面积三分之二?1. 【分析】(1)第一步:确定分段,本题两个动点都只在一条线段移动,因此不用分段第二步,根据路程=速度 时间把动点运动的路程表示出来,设运动时间为t秒,P点从A出发,沿着AC运动,运动路程是AP= t,Q点从C出发,沿着CB运动,运动路程是CQ=2t ,第三步,根据具体问题列出等量关系式,即 AC-AP=CQ,即解得,,则秒钟后,.(2)第二问因为前两步已经在第一问解决,直接进入第三步的面积为:,四边形的面积占的面积三分之二,的面积占的面积三分之一,,解得,,,答:秒或秒钟后,可使四边形的面积占的面积三分之二.2. (2015湖北省)如图,在矩形中,,E 是AD 的中点.动点从A 点出发,沿路线以秒的速度运动,运动的时间为秒.将以EP 为折痕折叠,点A 的对应点记为. 当点在边AB 上,且点在边BC 上时,求运动时间;【分析】第一步:确定分段,本题只有一个动点P ,P 在线段AB 运动,不用分段 第二步,根据路程=速度⨯时间把动点运动的路程表示出来,运动时间为t 秒,P 点从A 出发,沿着AB 运动,运动路程是AP= t ,第三步,根据具体问题列出等量关系式当点在边AB 上,且点在边BC 上时,根据折叠不变性,为因又,,。
中考动点问题题型方法归纳
图(3)B图(1)B图(2) 动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.提示:第(3)问按直角位置分类讨论3、如图,已知抛物线33)1(2+-=x a y (0≠a )经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.提示:发现并充分运用特殊角∠DAB=60° 当△OPQ 面积最大时,四边形BCPQ 的面积最小。
中考复习专题之一动点问题 【含详细答案】
xAOQP By 图(3)ABC OEF ABCOD图(1) ABOE FC 图(2)动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段O A 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论 3、(2009重庆綦江)如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线O M A D ∥.过顶点D 平行于x 轴的直线交射线O M 于点C ,B 在x 轴正半轴上,连结B C . (1)求该抛物线的解析式;O M BH ACxy 图(1)O M B H A Cxy 图(2)xy M CD PQOAB PQA BC D(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线O M 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形D A O P 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿O C 和B O 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
初三数学几何动点题及方法精选幻灯片
【思路分析】本题和上题有所不同,上一题会给出一个条件使得动点静 止,而本题并未给出那个“静止点”,所以需要我们去分析由D运动产生的 变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂 直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。
6
【思路分析】这一问是典型的从特殊到一般的问法,那么思路很简 单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找 AC的垂线,就可以变成第一问的条件,然后一样求解。
A
D
N
B
M
C
2
【思路分析】解决动点问题,首先就是要找谁在动,谁没在动, 通过分析动态条件和静态条件之间的关系求解。对于大多数题目 来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意 味着BM,MC以及DN,NC都是变化的。但是我们发现,和这些动态的 条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也 是有关系的。所以当题中设定MN//AB时,就变成了一个静止问 题。由此,从这些条件出发,列出方程,自然得出结果。
A
M
D
60°
B P
Q C
11
以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现 特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求 解。如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不 变的。当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下 来我们看另外两道题.
A
M
D
G
E
FN
B
C
图2 14
【思路分析】如果△BEF任意旋转,哪些量在变化,哪些量不变呢?在△BEF的
旋转过程中,始终不变的依然是G点是FD的中点。可以延长一倍EG到H,从而构造
(完整版)(完整word)初三数学动点问题总结,推荐文档
解得:t=< (5分)
33
而MN=..NC= ..(1+t)
(4)①当MP=Mffl-(如图1)贝U有:NP=NC
即PC=2NC・4-t=2(1+t)
2当CM=CP^(如图2)
则有:
5
(1+t)=4-t
11
解得:t=/3当PM=PC寸(如图Fra bibliotek)则有:
在Rt△MNF中,PM2=MN2+PN2
33
而MN=.-NC= ..(1+t)
BC, CB DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(xm0),贝U AP=2xcm
CM=3xcm DN=x2cm
(1)当x为何值时,以PQ MN为两边,以矩形的边(AD或BC的一部分为第三边构成一个三角形;
(2)当x为何值时,以P,Q, M, N为顶点的四边形是平行四边形;
以P,Q,MN为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MCBQ=ND当点P在点N的右侧时,AN=MC BQ=PD所以可以根据这些条件列出方程关系式.
1当皿卩=皿时,那么PC=2NC据此可求出t的值.
2当CM=CPt,可根据CM和CP的表达式以及题设的等量关系来求出t的值.
3当MP=PC寸,在直角三角形MNP中先用t表示出三边的长,然后根据勾股定理即可得出t的值.
综上所述可得出符合条件的t的值.
解答:
解: (1)vAQ=3-t
•CN=4-(3-t)=1+t
四边形PCDQ勾成平行四边形就是PC=DQ列方程4-t=t即解;
初三动点试题及答案
初三动点试题及答案
一、选择题
1. 在平面直角坐标系中,动点P从原点O出发,沿x轴正方向以每秒
2个单位的速度移动,经过5秒后,点P的坐标是()。
A. (0, 0)
B. (10, 0)
C. (5, 0)
D. (0, 5)
答案:B
2. 动点Q从点(1, 2)出发,沿y轴正方向以每秒1个单位的速度移动,经过3秒后,点Q的坐标是()。
A. (1, 5)
B. (1, 2)
C. (4, 5)
D. (4, 2)
答案:A
二、填空题
3. 动点R从点(-3, 4)出发,沿直线y=2x+1以每秒3个单位的速度移动,经过2秒后,点R的坐标是()。
答案:(3, 11)
4. 动点S从点(2, -1)出发,沿直线y=-x+3以每秒2个单位的速度移动,经过4秒后,点S的坐标是()。
答案:(-6, 7)
三、解答题
5. 动点T从点(0, 0)出发,沿直线y=x以每秒1个单位的速度移动,求点T在移动了6秒后的位置。
答案:点T在移动了6秒后的位置为(6, 6)。
6. 动点U从点(-2, 3)出发,沿直线y=-2x+7以每秒1.5个单位的速度移动,求点U在移动了8秒后的位置。
答案:点U在移动了8秒后的位置为(-10, 5)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题五(四边形)例1、(2011•山西,26)如图,在平面直角坐标系中.四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,o ),点B 的坐标为(11.4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O 一C ﹣B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(t >0).△MPQ 的面积为S . (1)点C 的坐标为 ,直线l 的解析式为.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围. (3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.分析:(1)由平行四边形的性质和点A 、B 的坐标便可求出C 点坐标,将C 点坐标代入正比例函数即可求得直线l 的解析式;(2)根据题意,得OP=t ,AQ=2t ,根据t 的取值范围不同分三种情况分别进行讨论,得到三种S 关于t 的函数,解题时注意t 的取值范围;(3)分别根据三种函数解析式求出当t 为何值时,S 最大,然后比较三个最大值,可知当当t =83时,S 有最大值,最大值为1289; (4)根据题意并细心观察图象可知;当t =6013时,△QMN 为等腰三角形. 解答:解:(1)由题意知:点A 的坐标为(8,0),点B 的坐标为(11.4),且OA=BC ,故C 点坐标为C (3,4),设直线l 的解析式为y=kx ,将C 点坐标代入y=kx ,解得k=43, ∴直线l 的解析式为y=43x ;故答案为(3,4),y=43x ; (2)解:根据题意,得OP=t ,AQ=2t .分三种情况讨论: ①当0<t ≤52时,如图l ,M 点的坐标是(t ,43t ).过点C 作CD ⊥x 轴于D ,过点Q 作QE ⊥x 轴于E ,可得△AEO ∽△ODC ∴AQ AE QE OC OD CD ==,∴2534t AE QE ==,∴AE =65t ,EQ =85t ∴Q 点的坐标是(8+65t ,85t ),∴PE =8+61855t t t -=+ ∴S =21141216(8)2235153MP PE t t t t =⨯⨯+=+②当52<t ≤3时,如图2,过点q 作QF ⊥x 轴于F ,∵BQ=2t ﹣5,∴OF =11﹣(2t ﹣5)=16﹣2t ∴Q 点的坐标是(16﹣2t £¬4),∴PF =16﹣2t ﹣t =16﹣3t ∴S=211432(163)22233MP PF t t t t =⨯⨯-=-+③当点Q 与点M 相遇时,16﹣2t =t ,解得t =163.当3<t <163时,如图3,MQ =16﹣2t ﹣t =16﹣3t ,MP =4.S =12MP MF ∙=12•4•(16﹣3t )=﹣6t +32(3)解:①当0<t ≤52时,S=222162160(20)153153t t t +=+-∵a =215>0,抛物线开口向上,对称轴为直线t =20,∴当0<t ≤52时,S 随t 的增大而增大.∴当t =52时,S 有最大值,最大值为856.②当52<t ≤3时,S =﹣2t 2+23281282()339t t =--+. ∵a =﹣2<0,抛物线开口向下.∴当t =83时,S 有最大值,最大值为1289.③当3<t <163时,S =﹣6t +32,∵k =﹣6<0.∴S 随t 的增大而减小.又∵当t =3时,S=14.当t=163时,S =0.∴0<S <14.综上所述,当t =83时,S 有最大值,最大值为1289.(4)当t =6013时,△QMN 为等腰三角形.例2、(2011梧州,26,12分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=6cm ,AB=8cm ,BC=14cm .动点P 、Q 都从点C 出发,点P 沿C →B 方向做匀速运动,点Q 沿C →D →A 方向做匀速运动,当P 、Q 其中一点到达终点时,另一点也随之停止运动. (1)求CD 的长;(2)若点P 以1cm/s 速度运动,点Q 以22cm/s 的速度运动,连接BQ 、PQ ,设△BQP 面积为S (cm 2),点P 、Q 运动的时间为t (s ),求S 与t 的函数关系式,并写出t 的取值范围;(3)若点P 的速度仍是1cm/s ,点Q 的速度为acm/s ,要使在运动过程中出现PQ ∥DC ,请你直接写出a 的取值范围.分析:(1)过D 点作DH ⊥BC ,垂足为点H ,则在Rt △DCH 中,由DH 、CH 的长度,运用勾股定理即可求出CD 的长;(2)由于点P 在线段CB 上运动,而点Q 沿C →D →A 方向做匀速运动,所以分两种情况讨论:①点Q 在CD 上;②点Q 在DA 上.针对每一种情况,都可以过Q 点作QG ⊥BC 于G .由于点P 、Q 运动的时间为t (s ),可用含t 的代数式分别表示BP 、QG 的长度,然后根据三角形的面积公式即可求出S 与t 的函数关系式,并写出t 的取值范围;(3)令DQ=CP ,Q 点在AD 边上,求出a 的取值范围. 解答:解:(1)过D 点作DH ⊥BC ,垂足为点H ,则有DH=AB=8cm ,BH=AD=6cm . ∴CH=BC ﹣BH=14﹣6=8cm .在Rt △DCH 中,∠DHC=90°,CD =DH 2+CH 2=82cm .(2)当点P 、Q 运动的时间为t (s ),则PC=t .①当点Q 在CD 上时,过Q 点作QG ⊥BC ,垂足为点G ,则QC =22²t .又∵DH=HC ,DH ⊥BC ,∴∠C=45°.∴在Rt △QCG 中,QG =QC ²sin ∠C =22t ³sin 45°=2t . 又∵BP=BC ﹣PC=14﹣t ,∴S△BPQ =BP ³QG=(14﹣t )³2t=14t ﹣t 2.当Q 运动到D 点时所需要的时间t===4.∴S=14t ﹣t 2(0<t ≤4).②当点Q 在DA 上时,过Q 点作QG ⊥BC ,垂足为点G ,则:QG=AB=8cm ,BP=BC ﹣PC=14﹣t ,∴S △BPQ =BP ³QG=(14﹣t )³8=56﹣4t .当Q 运动到A 点时所需要的时间t===4+.∴S=56﹣4t (4<t ≤4+).综合上述:所求的函数关系式是:S=14t ﹣t 2(0<t ≤4),S=56﹣4t (4<t ≤4+);(3)要使运动过程中出现PQ ∥DC ,a 的取值范围是a ≥1+432..例3(2011•株洲,23,)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交BC 于Q .(1)求证:OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.分析:(1)本题需先根据四边形ABCD 是矩形,得出AD ∥BC ,∠PDO=∠QBO ,再根据O 为BD 的中点得出△POD ≌△QOB ,即可证出OP=OQ .(2)本题需先根据已知条件得出∠A 的度数,再根据AD=8厘米,AB=6厘米,得出BD 和OD 的长,再根据四边形PBQD 是菱形时,证出△ODP ∽△ADB ,即可求出t 的值,判断出四边形PBQD 是菱形. 解答:(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB ∴△POD ≌△QOB ∴OP=OQ(2)PD=8﹣t ∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm , ∴BD=10cm ,∴OD=5cm .当四边形PBQD 是菱形时,PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB ∴△ODP ∽△ADB ,∴BD AD PD OD =,即10885=-t , 解得t=47,即运动时间为47秒时,四边形PBQD 是菱形.例4、(2011•丹东,25,12分)己知:正方形ABCD .(1)如图1,点E 、点F 分别在边AB 和AD 上,且AE=AF .此时,线段BE 、DF 的数量关系和位置关系分别是什么?请直接写出结论.(2)如图2,等腰直角三角形FAE 绕直角顶点A 顺时针旋转∠α,当0°<α<90°时,连接BE 、DF ,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.(3)如图3,等腰直角三角形FAE 绕直角顶点A 顺时针旋转∠α,当a=90°时,连接BE 、DF ,猜想沟AE 与AD 满足什么数量关系时,直线DF 垂直平分BE .请直接写出结论.(4)如图4,等腰直角三角形FAE 绕直角顶点A 顺时针旋转∠α,当90°<α<180°时,连接BD 、DE 、EF 、FB 得到四边形BDEF ,则顺次连接四边形BDEF 各边中点所组成的四边形是什么特殊四边形?请直接写出结论.分析:(1)根据正方形的性质,AB=AD ,由AE=AF ,可得BE=DF 且BE ⊥DF ; (2)通过证明△DFA ≌△BEA ,可得(1)中的结论依然成立;(3)连接BD ,直线DF 垂直平分BE ,可得AD+AE=BD ,BD=2AD ,解答出即可;(4)如图,通过证明△DAF ≌△BAE ,可得DF=BE ,结合(2)中结论,可得到各边中点所组成的四边形的形状;解答:证明:(1)BE=DF 且BE ⊥DF ;(2)在△DFA 和△BEA 中,∵∠DAF=90°﹣∠FAB ,∠BAE=90°﹣∠FAB ,∴∠DAF=∠BAE , 又AB=AD ,AE=AF ,∴△DFA ≌△BEA ,∴BE=DF ;∠ADF=∠ABE ,∴BE ⊥DF ; (3)AE=(2﹣1)AD ; (4)正方形.例5、(2011天水,26)在梯形O ABC 中,CB ∥O A ,∠A O C =60°,∠O AB =90°,O C =2,BC =4,以点O 为原点,O A 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△D EF ,D E 在x 轴上(如图(1)),如果让△D EF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△D EF 运动时间为t ,△D EF 与梯形O ABC 重叠部分的面积为S ,求S 关于t 的函数关系式.(2)探究:在△D EF 运动过程中,如果射线D F 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△O A G 的面积与梯形O ABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.分析:(1)根据F 与B 重合前后及E 与A 重合前后,分三种情况求S 关于t 的函数关系式; (2)依题意得D (4﹣t ,0),求出直线O C 解析式,根据D F ∥O C 确定直线D F 解析式,再由△O A G 的面积与梯形O ABC 的面积相等,求出G 点纵坐标,根据G 点在抛物线上求G 点横坐标,代入直线D F 解析式求t ,判断是否符号t 的取值范围即可. 解答:解:(1)依题意得O A =5,当0≤t <1时,t 2,当1≤t <2时,2﹣t )2=t 2当2≤t ≤5时, (2)不存在.依题意,得C (1,B (5,抛物线对称轴为x =3, 抛物线与x 轴两交点坐标为O (0,0),(6,0),设抛物线解析式为y =ax (x ﹣6),将C 点坐标代入,得a = ,∴y =x (x ﹣6)=2x ,由C 点坐标可知,直线O C 解析式为y ,∵D F ∥O C ,∴设直线D F 解析式为y +k ,将D (4﹣t ,0)代入得k t ﹣4),∴直线D F :y t ﹣4),设△O A G 的O A 边上高为h ,由S △O A G =S 梯形O ABC ,得12³5³h=12³(4+5,将y 代入y =(x ﹣6)中,得x =3±∴F (3﹣)或(),分别代入直线D F :y t ﹣4)中,得t =145145﹣ 但0≤t ≤5,∴不存在.例6、(2011•泰州,28,12分)在平面直角坐标系xOy 中,边长为a (a 为大于0的常数)的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O ),顶点C 、D 都在第一象限. (1)当∠BAO=45°时,求点P 的坐标;(2)求证:无论点A 在x 轴正半轴上、点B 在y 轴正半轴上怎样运动,点P 都在∠AOB 的平分线上; (3)设点P 到x 轴的距离为h ,试确定h 的取值范围,并说明理由.分析:(1)当∠BAO=45°时,因为四边形ABCD 是正方形,P 是AC ,BD 对角线的交点,能证明OAPB 是正方形,从而求出P 点的坐标.(2)过P 点做x 轴和y 轴的垂线,可通过三角形全等,证明是角平分线. (3)因为点P 在∠AOB 的平分线上,所以h >0. 解答:解:(1)∵∠BPA=90°,PA=PB ,∴∠PAB=45°,∵∠BAO=45°,∴∠PAO=90°,∴四边形OAPB 是正方形,∴P 点的坐标为:(2a ,2a ).(2)作PE ⊥x 轴交x 轴于E 点,作PF ⊥y 轴交y 轴于F 点,∵∠BPE+∠EPA=90°,∠EPB+∠FPB=90°,∴∠FPB=∠EPA ,∵∠PFB=∠PEA ,BP=AP , ∴△PBF ≌△PAE ,∴PE=PF ,∴点P 都在∠AOB 的平分线上. (3)因为点P 在∠AOB 的平分线上,所以h >0. 例7、(2011江苏无锡,26,6分)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S .分析:(1)根据点A 绕点D 翻滚,然后绕点C 翻滚,然后绕点B 翻滚,半径分别为1、2、1,翻转角分别为90°、90°、150°,据此画出圆弧即可.(2)根据总结的翻转角度和翻转半径,求出圆弧与梯形的边长围成的扇形的面积即可. 解答:解:(1)作图如图;(2)∵点A 绕点D 翻滚,然后绕点C 翻滚,然后绕点B 翻滚,半径分别为1、2、1,翻转角分别为90°、90°、150°,∴S=22121436011502360)2(9023601180⨯⨯+⨯⨯+⨯⨯+⨯⨯πππ=2π+π+65π+2=37π+2.解答:解:(1)∵四边形OABC 是矩形,点A 、C 的坐标分别为(-3,0),(0,1),∴B (-3,1), 若直线经过点A (-3,0)时,则b=32,若直线经过点B (-3,1)时,则b= 52, 若直线经过点C (0,1)时,则b=1,①若直线与折线OAB 的交点在OA 上时,即1<b ≤32,如图1, 此时E (2b ,0),∴S=12OE •CO= 12³2b ³1=b ;②若直线与折线OAB 的交点在BA 上时,即32<b <52, 如图2∴S=S 矩-(S △OCD +S △OAE +S △DBE )=3-[ 12(2b-2)³1+ 12³(5-2b )•(-b )+ ³3(b- 32)] = 52b-b 2,∴S=12232535()222b b b b ⎧⎪⎪⎨⎪-⎪⎩<<<b <;例9.(07河北省)26. 如图16,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的函数关系式;(不必写出t的取值范围)(4)△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由. 解:(1)t =(50+75+50)÷5=35(秒)时,点P 到达终点C .此时,QC =35×3=105,∴BQ 的长为135-105=30. (2)如图8,若PQ ∥DC ,又AD ∥BC ,则四边形PQCD 为平行四边形,从而PD =QC ,由QC =3t ,BA +AP =5t 得50+75-5t =3t ,解得t =1258.经检验,当t =1258时,有PQ ∥DC .(3)①当点E 在CD 上运动时,如图9.分别过点A 、D 作AF ⊥BC 于点F ,DH ⊥BC 于点H ,则四边形图16ADHF 为矩形,且△ABF ≌△DCH ,从而FH = AD =75,于是BF =CH =30.∴DH =AF =40. 又QC =3t ,从而QE =QC ·tan C =3t ·CHDH =4t .(注:用相似三角形求解亦可) ∴S =S ⊿QCE =12QE ·QC =6t 2; ②当点E 在DA 上运动时,如图8.过点D 作DH ⊥BC 于点H ,由①知DH =40,CH =30,又QC =3t ,从而ED =QH =QC -CH =3t -30. ∴S = S 梯形QCDE =12(ED +QC )DH =120 t -600.(4)△PQE 能成为直角三角形.当△PQE 为直角三角形时,t 的取值范围是0<t ≤25且t ≠1558或t =35.下面是第(4)问的解法,仅供参考:①当点P 在BA (包括点A )上,即0<t ≤10时,如图9.过点P 作PG ⊥BC 于点G ,则PG =PB ²sin B =4t ,又有QE =4t = PG ,易得四边形PGQE 为矩形,此时△PQE 总能成为直角三角形. ②当点P 、E 都在AD (不包括点A 但包括点D )上,即10<t ≤25时,如图8. 由QK ⊥BC 和AD ∥BC 可知,此时,△PQE 为直角三角形,但点P 、E 不能重合,即 5t -50+3t -30≠75,解得t ≠1558. ③当点P 在DC 上(不包括点D 但包括点C ), 即25<t ≤35时,如图10.由ED >25³3-30=45, 可知,点P 在以QE =40为直径的圆的外部,故 ∠EPQ 不会是直角.由∠PEQ <∠DEQ ,可知∠PEQ 一定是锐角. 对于∠PQE ,∠PQE ≤∠CQE ,只有当点P 与C 重合,即t =35时,如图11,∠PQE =90°,△PQE 为直角三角形.综上所述,当△PQE 为直角三角形时,t 的取值范围是0<t ≤25且t ≠1558或t =35. 例10 (07吉林省) 28.如图①,在边长为的正方形ABCD 中,E F ,是对角线AC 上的两个动点,它们分别从点A ,点C 同时出发,沿对角线以1cm/s 的相同速度运动,过E 作EH 垂直AC 交Rt ACD △的直角边于H ;过F 作FG 垂直AC 交Rt ACD △的直角边于G ,连接HG ,EB .设HE ,EF ,FG ,GH 围成的图形面积为1S ,AE ,EB ,BA 围成的图形面积为2S (这里规定:线段的面积为0).E 到达C F ,到达A 停止.若E 的运动时间为s x ,解答下列问题:(1)当08x <<时,直接写出以E F G H ,,,为顶点的四边形是什么四边形,并求x 为何值时,12S S =. (2)①若y 是1S 与2S 的和,求y 与x 之间的函数关系式.(图②为备用图)图9H 图8图10(P )图11②求y 的最大值.解: (1)以E F G H ,,,为顶点的四边形是矩形.正方形边长为16AC ∴=.AE x =,过B 作BO AC ⊥于O ,则8BO =.24S x ∴=HE x =,162EF x =-,1(162)S x x ∴=-.当12S S =时,(162)4x x x -=.解得10x =(舍去),26x =.∴当6x =时,12S S =.(2)①当08x <≤时,2(162)4220y x x x x x =-+=-+.当816x ≤≤时,AE x =,16CE HE x ==-,162(16)216EF x x =--=-.1(16)(216)S x x ∴=--.2(16)(216)4252256y x x x x x ∴=--+=-+-.②当08x <≤时,2222202(1025)502(5)50y x x x x x =-+=--++=--+,∴当5x =时,y 的最大值为50.当816x ≤≤时,222522562(13)82y x x x =-+-=--+, ∴当13x =时,y 的最大值为82.综上可得,y 的最大值为82.例11.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米;(2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;图①图②(第28题)图①图②(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.解: (1)34PM =,(2)2t =,使PNB PAD △∽△,相似比为3:2 (3)PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,PM AM BN AB ∴=即()PM a t t a t PM t a a --==,,(1)3t a QM a-=-当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM++=()33(1)()22t a t t a a t t ta a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+,3t ≤,636aa∴+≤,则636a a ∴<≤,≤, (4)36a <≤时,梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3t a t t a ∴-=-,把66a t a=+代入,解之得a =±a = 所以,存在a ,当a =PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.例12.如图,在平面直角坐标系中,四边形OABC 为矩形,点A B ,的坐标分别为(40)(43),,,,动点M N,分别从点O B ,同时出发,以每秒1个单位的速度运动,其中点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动,过点N 作NP BC ⊥,交AC 于点P ,连结MP ,当两动点运动了t 秒时. (1)P 点的坐标为( , )(用含t 的代数式表示).(2)记MPA △的面积为S ,求S 与t 的函数关系式(04)t <<. (3)当t = 秒时,S 有最大值,最大值是 . (4)若点Q 在y 轴上,当S 有最大值且QAN △为等腰三角形时,求直线AQ 的解析式. [解] (1)344t t -,.N(2)在MPA △中,4MA t =-,MA 边上的高为34t ,13(4)24MPA S S t t ∴==-△.即233(04)82S t t t =-+<<.(3)322,.(4)由(3)知,当S 有最大值时,2t =,此时N 在BC 的中点处,如下图.设(0)Q y ,,则222224AQ OA OQ y =+=+,222222(3)QN CN CQ y =+=+-,2222232AN AB BN =+=+. QAN △为等腰三角形,①若AQ AN =,则2222432y +=+,此时方程无解. ②若AQ QN =,即222242(3)y y +=+-,解得12y =-. ③若QN AN =,即22222(3)32y +-=+,解得1206y y ==,.11(0)2Q ∴,-,2(00)Q ,,3(06)Q ,.当Q 为1(0)2-,时,设直线AQ 的解析式为12y kx =-,将(40)A ,代入得 114028k k -=∴=,.∴直线AQ 的解析式为1182y x =-.当Q 为(00),时,(40)A ,,(00)Q ,均在x 轴上, ∴直线AQ 的解析式为0y =(或直线为x 轴). 当Q 为(06),时,Q N A ,,在同一直线上,ANQ △不存在,舍去. 故直线AQ 的解析式为1182y x =-,或0y =. 例13. 如图12,直角梯形ABCD 中,90643AB CD A AB AD DC ∠====∥,°,,,,动点P 从点A 出发,沿A D C B →→→方向移动,动点Q 从点A 出发,在AB 边上移动.设点P 移动的路程为x ,点Q 移动的路程为y ,线段PQ 平分梯形ABCD 的周长. (1)求y 与x 的函数关系式,并求出x y ,的取值范围; (2)当PQ AC ∥时,求x y ,的值;(3)当P 不在BC 边上时,线段PQ 能否平分梯形ABCD 的面积?若能,求出此时x 的值;若不能,说明理由. 解:(1)过C 作CE AB ⊥于E ,则34CD AE CE ===,,可得5BC =,所以梯形ABCD 的周长为18.PQ 平分ABCD 的周长,所以9x y +=,因为06y ≤≤,所以39x ≤≤, 所求关系式为:939y x x =-+,≤≤. (2)依题意,P 只能在BC 边上,79x ≤≤.126PB x BQ y =-=-,,因为PQ AC ∥,所以BPQ BCA △∽△,所以BP BQBC BA=,得 12656x y--=,即6542x y -=, 解方程组96542x y x y +=⎧⎨-=⎩, 得87121111x y ==,. (3)梯形ABCD 的面积为18.当P 不在BC 边上,则37x ≤≤,(a )当34x <≤时,P 在AD 边上,12APQ S xy =△. 如果线段PQ 能平分梯形ABCD 的面积,则有192xy = 可得:918.x y xy +=⎧⎨=⎩,解得36x y =⎧⎨=⎩,;(63x y ==,舍去).(b )当47x ≤≤时,点P 在DC 边上,此时14(4)2ADPQ S x y =⨯-+. 如果线段PQ 能平分梯形ABCD 的面积,则有14(4)92x y ⨯-+=, 可得92217.x y x y +=⎧⎨+=⎩,此方程组无解.所以当3x =时,线段PQ 能平分梯形ABCD 的面积.例14..如图,在矩形ABCD中,AB =1AD =.点P 在AC 上,PQ BP ⊥,交CD 于Q ,PE CD ⊥,交于CD 于E .点P 从A 点(不含A )沿AC 方向移动,直到使点Q 与点C 重合..为止. (1)设AP x =,PQE △的面积为S .请写出S 关于x 的函数解析式,并确定x 的取值范围.(2)点P 在运动过程中,PQE △的面积是否有最大值,若有,请求出最大值及此时AP 的取值;若无,QBCDPA请说明理由.(1)解:过点P作PF BC⊥,垂足为F.在矩形ABCD中,PF AB∥PFC ABC ∴△∽△FC PC PFBC AC AB==∴又AP x=∵,1BC AD==,AB=又∵在Rt ABC△中,3AC==3P C x=-313FC x-=∴33xFC-=∴3133x xBF BC FC-=-=-=∴又PE CD⊥∵90PEC∠=∴°又在四边形PFCE中,90PFC BCD PEC∠=∠=∠=°∴四边形PFCE为矩形90FPE∠=∴°又PQ BP⊥∵90BPQ∠=∴°FPE BPQ∠=∠∴E P Q Q P F B P F F P∠+∠=∠+∠∴EPQ BPF∠=∠∴又90PEQ BFP∠=∠=°PEQ PFB∴△∽△EQ PEBF PF=∴又PE FC=EQ FCBF PF=∴又FC PFBC AB=FC BCPF AB=∴EQ BCBF AB=∴B C B FEQAB=·∴3xEQ=∴113223xS EQ PE-==∴··2S=+∴或23)S x x=-+过点B作BK AC⊥,垂足为K.在Rt ABC△中,由等积法可得1122AC BK AB BC=··AC BK AB BC=∴··31BK⨯=BK=∴由题意可得当Q与C重合时,P与K重合即AP AK=,由ABK ABC△∽△得AK ABBK BC=即x=83x=∴x∴的取值范围是83x<≤(2)PQE△面积有最大值由(1)可得2S x=+232x⎫=-⎪⎝⎭∴当32x=即32AP=时,S面积最大,即S=最大例15. 如图所示,菱形ABCD的边长为6cm,∠DAB=60°,点M是边AD上一点,且DM=2cm,点E、F分别从A、C同时出发,以1cm/s的速度分别沿边AB、CB向点B运动,EM、CD的延长线相交于G,GF交AD于O。