2015-16中考数学模拟题汇编(含答案分析)
云南省2015-16中考数学模拟卷(含答案分析)
云南省2015-16中考数学模拟试卷1、 5的相反数是( )A 、51- B 、51 C 、5-D 、52、下列运算正确的是( )A 、246x x x +=B 、326()x x -=C 、235a b ab +=D 、632x x x ÷=3、下图中所示的几何体的主视图是( )4、要使函数y=1-x 有意义,自变量x 的取值范围是( )A 、x ≥1B 、x ≤1C 、x>1D 、x<15、如图,C 是⊙O 上一点,若圆周角∠ACB=40°,则圆心角∠AOB 的度数是( )A 、50°B 、60°C 、80°D 、90°6、如图,ABCD 中,对角线AC 和BD 相交于点O ,如果 AC=12 , BD=10, AB=m , 那么m 的取值范围是( )A 、10<m<12B 、2<m<22C 、1<m<11D 、5<m<6 7、函数(0)ky k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )图 A B C D8、二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,a-b-c ,b+c-a ,2ba-这四个式子中,值为正数的有( )A 、4个B 、3个C 、2个D 、1个一、选择题1. C2. B3. D4. A5. C6. C7. C8. A一、选择题:请将唯一正确答案的编号填入答卷中,本题共8题,每题3分,共24分。
A .B .C .D .Oxy-1 19、如果3a =,那么a b b-= .10、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个.11、当x = 时,分式2233x x x ---的值为零.12、已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是 . 13、某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 米.14、若圆锥的母线长为3 cm ,底面半径为2 cm ,则圆锥的侧面展开图的面积 cm.二、填空题9. 12 10. 2n-1 11. -1 12. 外切13. 4.8 14. 6π15、(411(2015)()2---+1二、填空题:请将正确答案填在横线上,本题共6题,每题3分,共18分。
2015中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2015-2016中考数学模拟试题(含答案分析)
2015-2016中考数学模拟试题(含答案分析)中考数学模拟测试一、选择题(本题有10个小题,每小题3分,共30分)1.16的平方根是(▲)A。
4B。
2C.±4D.±22.估算331的值(▲)A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间3.若反比例函数y=k/x(其中k≠0,x≠0,3m),x的图象经过点(m,其中m≠0),则此反比例函数的图象在(▲)A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限4.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是(▲)5.把二次根式(x-1)/(1-x)中根号外的因式移到根号内,结果是(▲)A.1-xB.-1-xC.-x-1D.x-16.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙XXX于C,若∠A=25°,则∠D等于(▲)A.20°B.30°C.40°D.50°7.函数y=3-x+1/(x-4)中自变量x的取值范围是(▲)A.x≤3B.x=4C.x<3且x≠4D.x≤3且x≠48.函数y=ax+b和y=ax+bx+c在同一直角坐标系内的图象大致是(▲)9.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为(▲)A.15°或30°B.30°或45°C.45°或60°D.30°或60°10.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△D的面积为(▲)A、10B、12C、14D、16二、填空题(共6小题,每题4分.共24分)11.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为____▲______.12.一串有趣的图案按一定的规律排列(如图):按此规律在右边的圆中画出的第____▲______个图案。
2016中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑)1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五圆弧 角 扇形 菱形 等腰梯形A. B. C. D.类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .(第9题图)(第11题图)(第12题图)16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?(第23题图)(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=CBDE主视图左视图俯视图14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2015-2016年中考数学模拟试题(1)
2015-2016年中考第二次模拟考试数学试卷(1)说明:满分120分,考试时间为100分钟一、选择题(每小题3分,共30分) 1.-3的倒数是( ) A.31-B.31C.3D.-32.下列计算正确的是( )A .3a+2a=6aB .532a a a =+C .426a a a =÷ D .532)(a a =3.某市在一次扶贫助残活动中,共捐款5280000元,将5280000用科学记数法表示为( ) A.5.28×106B.5.28×107C. 52.8×106D.0.528×1074.下列图形既是中心对称图形又是轴对称图形的是( )A .正三角形B .正方形C .正五边形 D.平行四边形 5.如图是由四个小正方体叠成的一个几何体,它的左视图是( )A .B .C .D .6.某校男子足球队的年龄分布情况如下表:A. 15,15B. 15,14C.16,15D.14,15 7. 一个多边形的每个内角都等于120°,则这个多边形的边数为()A.4B. 5C.6D.78.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A.21 B. 32 C. 31 D.529.不等式组⎪⎩⎪⎨⎧>-<+xx x 1231的解集是( )A.1>xB.2<xC.21≤≤xD.21<<x10.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长23m ,某钓者想看看鱼钓 上的情况,把鱼竿AC 转动到C A '的位置,此时露在水面上的鱼线C B ''为33m , 则鱼竿转过的角度是( )A .60°B .45°C .15°D .90° 二、填空题(每小题4分,共24分) 11.分解因式:222m -= .12.如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC 的大小应为 13.分式方程233x x=-的解是 . 14.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为 .15.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B . 若∠ABP=33°,则∠P= .三、解答题(每小题6分,共18分)17.计算|12|60sin 4)32015()31(01-︒+--+--18.如图,某农场有一块长40m ,宽32m 的矩形种植地,为方便管理, 准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植 面积为1140m 2,求小路的宽.19.如图,已知线段AB.(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法); (2)在(1)中所作的直线l 上任意取两点M 、N (线段AB 的上方),连接AM 、AN 、BM 、BN.求证:∠MAN=∠MBN.四、解答题(每小题7分,共21分)(第12题)(第10题)20.先化简,再求值:2211()2b a b a b a ab b -÷+--+ ,其中a =1-2,b =1+221.如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是E 、F ,并且DE =DF . 求证:四边形ABCD 是菱形.22.某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图: (1)成绩x 在_________范围的人数最多;是_________人.(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是______(3)从测验成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.五、解答题(每小题9分,共27分)23.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物线的解析式; (2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与 到点C 的距离之和最小,求出点M 的坐标.(第21题)24.如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点D ,过点D 作DE⊥BC 于点E ,且∠BDE=∠A. (1)求证:DE 是⊙O 的切线;(2)若AC=16,tanA=,求⊙O 的半径.25.如图,在平面直角坐标系中,△ABC 的顶点A 在x 轴负半轴上,顶点C 在x 轴正半轴上,顶点B 在第一象限,过点B 作BD ⊥y 轴于点D ,线段OA ,OC 的长是一元二次方程x 2﹣12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A ,C 的坐标;(2)反比例函数y=的图象经过点B ,求k 的值;(3)在y 轴上是否存在点P ,使以P ,B ,D 为顶点的三角形与以P ,O ,A 为顶点的三角形相似?若存在,请写出满足条件的点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.(第24题)(第25题)。
2015中考数学模拟试卷及答案
2015中考数学模拟试卷一、选择题(本大题共8小题,每小题4分,满分32分) 1.在数轴上表示2-的点离开原点的距离等于( A )A .2B .2-C .2±D .42.已知2243a b x y x y x y -+=-,则a +b 的值为( C ). A. 1 B. 2 C. 3 D. 4 3.从某个方向观察一个正六棱柱,可看到如图所示的图形,其 中四边形ABCD 为矩形,E 、F 分别是AB 、DC 的中点.若 AD =8,AB =6,则这个正六棱柱的侧面积为( D ) A .48 3 B .96 C .144 D .96 34.如图,以点P 为圆心,以25为半径的圆弧与x 轴交于A ,B 两点,点A 的坐标为(2,0),点B 的坐标为(6,0),则圆心P 的坐标为( C )A.(4, 14) B .(4,2) C.(4,4) D.(2, 26)5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( B )A .121 B .61 C .41D .316.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( A ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠57.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90º,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y = kx (x >0)上,则k =( B )A .2B .3C .4D .68.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y轴的正半轴的交点在(02),的下方.下列结论: ①420a b c -+=;②ac <0;③4a+2b+c <0;④-2<2ba-<0.其中正确结论是( D ). A.①④ B. ②④ C.①③④ D.①②③④ 二.填空题(本大题共8个小题,每小题4分,共32分) 9.当的值为最小值时,a 的取值为﹣2 . 10.已知关于x 的分式方程2x +2 - ax +2=1的解为负数,那么字母a 的取值范围a>0. 11.如图AB 是⊙O 的直径,AB=4,AC 是弦,AC=23,∠AOC 的度数是120°.12.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3 cm ,AB=8 cm ,则图中阴影部分面积为___30______cm2.OAB PxyABD CEF (第3题)13.如图,△ABC 是等腰直角三角形,∠ACB=90°,CB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ’C ’,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是____4π____ (结果保留π). 14.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与CD 交于点F ,AG CD ⊥于点G , 则AGAF 的值为 23 . 15.如图,在平面直角坐标系中有一正方形AOBC,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(422-)的圆内切于△ABC ,则k 的值为__4______。
2015届中考数学模拟试卷附 答案
2015届中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2 3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤45.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.36.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是__________.10.分解因式:a3﹣9a=__________.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为__________m.12.若在实数范围内有意义,则x的取值范围是__________.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为__________°.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为__________m.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是__________cm.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是__________.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为__________.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=__________.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为__________;(2)条形统计图中存在错误的是__________(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.26.某仓储系统有12条输入传送带,12条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图(2),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3).(1)每条输入传送带每小时进库的货物流量为多少吨?每条输出传送带每小时出库的货物流量为多少吨?(2)在0时至5时内,仓库内货物存量y(吨)与时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在4时至5时有多少条输入传送带和输出传送带在工作?27.【情境阅读】在图1中,点A在边OB上,点D在边OC上,且AD∥BC﹒将这样的图形定义为“A型”﹒将△OAD绕着点O旋转α°(0<α<90)得到新的图形(如图2),将图2中的四边形A′B′C′D′称为“准梯形”,A′D′称为上底,B′C′称为下底﹒【新知学习】(1)若情境阅读中的△OBC是等腰直角三角形,OB=OC,∠BOC=90°,其余条件不变﹒①请说明图2中的△O′A′B′≌△O′D′C′﹒②在图1中,S四边形ABCD=S△OBC﹣S△OAD,请探索图2中的S四边形A′B′C′D′与图1中的S四边的大小关系﹒【变式探究】形ABCD(2)如图3,四边形ABCD是由有一个角是60°的“A型”通过旋转变换得到的“准梯形”,AD 是上底,BC是下底,且AB=5,BC=8,CD=5,DA=2﹒求这个“准梯形”的面积.【迁移拓展】(3)如图4是由具有公共直角顶点的“A型”绕着直角定点旋转α°(0<α<90)得到的“准梯形”,斜边AD为上底,斜边BC为下底,且AB=3,BC=4,CD=6,AD=3.求这个“准梯形”的面积.28.如图,在平面直角坐标系中,四边形ABCD为梯形,AD∥BC,∠C=90°,tan∠ABC=2,点D(﹣8,6),将△AOB沿直线AB翻折,点O落在点E处,直线AE交x轴于点F.(1)求点F的坐标;(2)矩形AOCD以每秒1个单位长度的速度沿x轴向右运动,当点C′与点F重合时停止运动,运动后的矩形A′O′C′D′与△AOF重合部分的面积为S,设运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,在矩形A′O′C′D′运动过程中,直线A′O′与射线AB交于G,是否存在时间t,使点A关于直线FG的对称点恰好落在x轴上?若存在,求t的值;若不存在,请说明理由.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣1,所以最大的数是3.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:分别根据同底数幂的乘法、同底数幂的除法、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、a3•a2=a3+2=a5,故本选项错误;B、a6÷a3=a6﹣3=a3,故本选项正确;C、(a﹣b)2=a2+b2﹣2ab,故本选项错误;D、(﹣a2)3=﹣a6,而(﹣a3)2=a6,故本选项错误.故选B.点评:本题考查的是同底数幂的除法及乘法、幂的乘方与积的乘方法则及完全平方公式,熟知以上知识是解答此题的关键.3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的图形,可得答案.解答:解:A、的主视图是第一层两个小正方形,第二层左边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左两个小正方形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤4考点:解一元一次不等式组.专题:计算题.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:依题意得:在数轴上表示为:∴原式的解集为3<x≤4.故选D.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.5.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.3考点:多边形内角与外角.分析:任何多边形的外角和是360度,根据n边形的内角和是(n﹣2)•180°,可得方程(n ﹣2)•180=360,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得(n﹣2)•180=360,解得:n=4,故选C.点评:本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.6.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查考点:全面调查与抽样调查;众数;方差;随机事件.分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断即可.解答:解:A、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.点评:本题考查了必然事件的定义,方差的性质,众数的定义及抽样调查的定义,知识点较多,但都是基础知识,需牢固掌握.7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.考点:圆周角定理;锐角三角函数的定义.专题:压轴题;网格型.分析:由题意可得:∠AOB=90°,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠APB的度数,又由特殊角的三角函数值,求得答案.解答:解:由题意得:∠AOB=90°,∴∠APB=∠AOB=45°,∴tan∠APB=tan45°=1.故选A.点评:此题考查了圆周角定理与特殊角的三角函数值问题.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.考点:规律型:点的坐标.分析:根据题意确定出A1,A2,A3,A4…纵坐标,归纳总结得到点A2015的纵坐标与A3纵坐标相同,即可得到结果.解答:解:∵点A1的坐标为(3,0),OA1=OC2=3,在Rt△OA2C2中,∠A2OC2=30°,设A2C2=x,则有OA2=2x,根据勾股定理得:x2+9=4x2,解得:x=,即OA2=2,∴A2纵坐标为2,由OA2=OC3=2,在Rt△OA3C3中,∠A3OC3=30°,设A3C3=y,则有OA3=2y,根据勾股定理得:y2+12=4y2,解得:y=2,即OA3=4,∴A3纵坐标为0,∵2015÷4=503…3,∴点A2015的纵坐标与A3纵坐标相同,为0.故选:A.点评:此题考查了规律型:点的坐标,判断出点A2015的纵坐标与A3纵坐标相同是解本题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是2.考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.10.分解因式:a3﹣9a=a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.分析:本题应先提出公因式a,再运用平方差公式分解.解答:解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为8×10﹣8m.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000008m=8×10﹣8;故答案为:8×10﹣8.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若在实数范围内有意义,则x的取值范围是x≤.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,1﹣2x≥0,解得x≤.故答案为:x≤.点评:本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为70°.考点:平行线的性质.专题:探究型.分析:先根据平角的定义求出∠CEB的度数,再由平行线的性质即可得出结论.解答:解:∵∠AEC=110°,∠AEC+∠CEB=180°,∴∠CEB=180°﹣110°=70°,∵AB∥DF,∴∠CDF=∠CEB=70°.故答案为:70.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为2m.考点:垂径定理的应用;勾股定理.分析:根据题意可得出AO=5cm,AC=4cm,由勾股定理得出CO的长,则CD=OD﹣OC=AO ﹣OC.解答:解:如图所示:∵输水管的半径为5m,水面宽AB为8m,水的最大深度为CD,∴DO⊥AB,∴AO=5m,AC=4m,∴CO==3(m),∴水的最大深度CD为:CD=OD﹣OC=AO﹣OC=2m.故答案是:2.点评:本题考查的是垂径定理的应用及勾股定理,根据题意构造出直角三角形是解答此题的关键.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是2cm.考点:圆锥的计算.专题:计算题.分析:把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2cm.故答案为2.点评:主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是10.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为7.考点:反比例函数与一次函数的交点问题.分析:先解两函数式组成的方程组,得出一个一元二次方程,根据根与系数的关系得出m+n=3,mn=1,再根据完全平方公式变形后代入求出即可.解答:解:方程组得:=﹣x+3,即x2﹣3x+1=0,∵点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,∴m+n=3,mn=1,∴m2+n2=(m+n)2﹣2mn=32﹣2×1=7,故答案为:7.点评:本题考查了反比例函数和一次函数的交点问题,一元二次方程的根与系数的关系,完全平方公式的应用,主要考查学生的理解能力和计算能力.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=8.考点:反比例函数综合题.分析:先根据反比例函数比例系数k的几何意义得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值.解答:解:根据题意可知,S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=k,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴s2=k,s3=k,∴k+k+k=,解得k=8.故答案为:8.点评:此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴与y轴引垂线形成的矩形面积等于反比例函数的比例系数|k|.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=2﹣1+1﹣﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把分子分母因式分解,接着把除法运算化为乘法运算,则约分后得到原式=﹣,然后把a2+3a﹣1=0变形得到a2+3a=1,再利用整体代入的方法计算.解答:解:原式=÷=•=﹣=﹣,∵a2+3a﹣1=0,∴a2+3a=1,∴原式=﹣=﹣.点评:分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为200;(2)条形统计图中存在错误的是C(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据A、B的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图A、B长方形是正确的;(2)根据(1)的计算判断出C的条形高度错误,用调查的学生人数乘以C所占的百分比计算即可得解;(3)求出D的人数,然后补全统计图即可;(4)用总人数乘以A、B所占的百分比计算即可得解.解答:解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×=360(人).答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBF E是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?考点:三角形中位线定理;平行四边形的判定;菱形的判定.专题:几何图形问题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.考点:列表法与树状图法;根的判别式;点的坐标;概率公式.专题:计算题.分析:(1)四个数字中正数有一个,求出所求概率即可;(2)表示出已知方程根的判别式,根据方程有实数根求出a的范围,即可求出所求概率;(3)列表得出所有等可能的情况数,找出点(x,y)落在第二象限内的情况数,即可求出所求的概率.解答:解:(1)根据题意得:抽取的数字为正数的情况有1个,则P=;(2)∵方程ax2﹣2ax+a+3=0有实数根,∴△=4a2﹣4a(a+3)=﹣12a≥0,且a≠0,解得:a<0,则关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率为;(3)列表如下:﹣3 ﹣1 0 2﹣3 ﹣﹣﹣(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1 (﹣3,﹣1)﹣﹣﹣(0,﹣1)(2,﹣1)0 (﹣3,0)(﹣1,0)﹣﹣﹣(2,0)2 (﹣3,2)(﹣1,2)(0,2)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD==≈36.33(米),…2分在Rt△BDC中,BD=≈12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分点评:此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.考点:切线的判定与性质;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)连接OD,求出∠EOC=∠DOC,根据SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据全等三角形的性质求出CE=CD=4,根据平行四边形性质求出OA=3,根据平行四边形的面积公式求出即可.解答:(1)证明:连接OD,∵OD=OA,∴∠ODA=∠A,∵四边形OABC是平行四边形,。
2015~2016学年度九年级数学科中考模拟考试卷(含参考答案)
2015~2016学年度九年级学年考试数学试卷(中考模拟试卷)一、选择题(每题3分,共30分)1、在-3,- ,0,3这四个数中,最小的数是( )A、-3B、-C、0D、32、某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是( )3、或一组数据-2,0,2,3,x的极差为6,则x的值是( )A、4B、4或-8C、-3D、4或-34、若三角形的两边长分别为3和7,则第三边的长可能是( )A、3B、4C、5D、105、下列方程有两个相等的实数根的是( )A、x2+2x-1=0B、3x2-2x+4=0C、4x2-20x+25=0 错误!未定义书签。
D、x2+10x-25=06、在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为( )A、5B、7C、8D、127、十边形的外角和等于( )A、2880ºB、360ºC、1080ºD、1440º8、已知点(a+1,-0.5a+1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是( )9、函数y= 的图象与直线y=x没有交点,那么k的取值范围是( )A、k>1B、k<1C、k>-1D、k<-110、如图,已知⊙O直径AB⊥CD 于点E,则下列结论错误的是( )A、CE=DEB、AE=OEC、B╭C╮=B╭D╮D、△OCE≌△ODE二、填空题(每小题4分,共24分)11、若使二次根式有意义,则x的取值范围是______________。
12、分解因式:a3b-4ab=__________________.13、如果|a-1|+(b+2)2=0,则(a+b)2016的值是_______.14、如图,将△ABC绕点A按顺时针方向旋转40º得△ADE,则∠BAD=______度.15、如图,菱形ABCD中,AB=5,∠BCD=120º,则对角线AC的长是________。
2015-2016学年度下学期九年级数学模拟试卷(含答案)
2015~2016学年度下学期九年级数学模拟试卷注意事项: 4大页,五道大题,26小题,满分150分,考试时间120分钟;2.请根据要求在答题卡上规范作答,在本试卷上作答无效.一、选择题(本大题共有8小题,每小题3分,共24分) 1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰三角形B .平行四边形C .直角三角形D .圆2.如图1的几何体是由4个完全相同的正方体组成的,这个几何体的左视图是( )3.下列一元二次方程中,没有实数根的是( ) 图1 A .2210x x --= B .2210x x -+=C .210x -=D .2230x x ++=4.如图2,BD 是⊙O 的直径,∠CBD=30°,则∠A 的度数为( ) A .30°B .45°C .60°D .75°5.小明在一次班会中参与知识抢答活动,现有语文题2道,数学题3道, 综合题4道,他从中随机抽取一道,抽中数学题的概率是( ) A . B . C . D . 6.如图3,△ABC 中,DE ∥BC ,13AD AB =,DE=3,则BC 边的长是( ) 图2 A .6 B .7 C .8D .97.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台 电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,下列方程 正确的是( )A .()181x x +=B .2181x x ++=C .()1181x x x +++=D .()21181x ++= 图38.已知抛物线()21y x =-+上的两点A ()11,x y 和B ()22,x y ,如果121x x <<-,那么下列结论一定成立的是( )A .y 1<y 2<0B .0<y 1<y 2C .0<y 2<y 1D .y 2<y 1<0二、填空题(本大题共有8小题,每小题3分,共24分) 9.分解因式:244ab ab a -+= .10.如图4,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若AB =10,CD =8,则OP =__________. 图4 11.已知关于x 的一元二次方程210x ax a ++-=有一个根为3,则a 的值为__________.12.一枚质地均匀的骰子,六个面分别刻有1到6的点数,连续抛掷这个骰子两次,则向上一面的点数和为6的概率是__________.13.如图5,用一个圆心角为120°,半径为3的扇形做一个圆锥的侧面,则这个圆锥的底面圆的半径为__________.图5 图6 图714.将抛物线22y x =-向上平移1个单位,再向右平移2个单位,得到新的抛物线解析式为__________. 15. 如图6,为了缓解市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌.已知立杆AB 高度为3米,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°,计算路况显示牌BC 的高度是 __________米.(3 1.732≈,结果精确到)16.如图7,在△ABC 中,∠BAC=70°,在同一平面内将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=__________.三、解答题(本大题共有4小题,其中17、18、19题各9分,20题12分,共39分) 17.计算:()10sin 6012342016-︒-+⨯-.18.化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭.19.如图,在平行四边形ABCD 中,BE 、CF 分别平分∠ABC 、∠BCD ,交AD 于E 、F 两点,求证:AF=DE.20.某学校为了解该校七年级学生的身高状况,抽样调查了部分同学,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):(1)请根据所提供的信息补全频数分布直方图;(2)样本的中位数在统计图的哪个范围内?(直接写出答案)(3)如果上述样本的平均数为157cm,方差为0.8;该校八年级学生身高的平均数为159cm,方差为0.6,那么(填“七年级”或“八年级”)学生的身高比较整齐;(4)从所有七年级学生中随机抽选一名,该学生的身高不低于155cm的概率为 .四、解答题(本大题共有3小题,其中21、22题各9分,23题10分,共28分)21.某校九年级准备购买一批笔奖励优秀学生,在购买时发现,每只笔可以打九折,用360元钱买的笔,打折后购买的数量比打折前多10只,求打折前每支笔的售价是多少钱?22.如图,直线2y x =-+与反比例函数ky x=的图象相交于点A (a ,3),且与x 轴相交于点B . (1)求该反比例函数的表达式;(2)若P 为y 轴上的点,且△AOP 的面积是△AOB 的面积的23, 请求出点P 的坐标.23.如图,四边形ABCD 是平行四边形,点A ,B ,C 在⊙O 上,AD 与⊙O 相切于点A ,射线AO 交BC于点E ,交⊙O 于点F ,点G 在射线AF 上,且∠GCB=2∠BAF . (1)求证:直线GC 是⊙O 的切线;(2)若AB=25,AD= 4,求线段GC 的长.五、解答题(本大题共有3小题,其中24题11分,25、26题各12分,共35分)24.如图1,在△ABC中,∠ACB=90°,AC=3cm,BC=4cm,点D为AB中点,连结CD,动点P、Q从点C同时出发,点P沿BC边C→B→C以2a cm/s的速度运动;点Q沿CA边C→A以a cm/s的速度运动,当点Q到达点A时,两点停止运动,以CQ,CP为边作矩形CQMP,当矩形CQMP与△CDB重叠部分的图形是四边形时,设重叠部分图形的面积为y(cm2).P、Q两点运动时间为t(s),在点P由C→B过程中,y与t的图象如图2所示.(1)求a、m的值;(2)求y与t的函数关系式,并写出t的取值范围.25.已知:过△ABC的顶点作直线MN∥AC,D为BC边上一点,连结AD,作∠ADE=∠BAC交直线MN于点E,DE交AB于点F(如图1).(1)找出图中与∠BED相等的角,并证明;(2)若AB=AC(如图2),其它条件不变,求证:AD=DE;(3)若AB=kAC(如图3),其它条件不变,探究线段AD,DE之间的数量关系,并证明.(用含k 的式子表示)26.如图,抛物线2y x bx c =-++交x 轴于A (1,0),B (5,0)两点,顶点为D ,直线132y x =-+交x 轴、y 轴于点E 、F ,交抛物线于M 、N 两点.(1)抛物线的解析式为 ;点D 的坐标为 ; (2)点P 为直线MN 上方的抛物线上的点,当△PMN 的面积最大时,求点P 的坐标;(3)在抛物线上是否存在点Q ,使点Q 关于直线EF 的对称点在x 轴上?若存在,求出点Q 的坐标;若不存在,请说明理由.2015~2016学年度下学期九年级数学模拟试卷答案一、选择题1、D2、C3、D4、C5、B6、D7、C8、A二、填空题a b-;10、 3 ;9、()2211、 -2 ; 12、536;13、 1 ; 14、()2221y x =--+; 15、 2.2 ; 16、 40° . 三、解答题 17、原式=|23-32|+23-1 =23-1…………9分(结果错误、不规范但其余步骤正确得8分) 18、原式=1a b+ 19、21、解:22、 (1)∵点A (a ,3)在直线2y x =-+ 上,∴ 3=-a +2.∴ a =-1.…………………………………………………… 1分 ∴A (-1,3).…………………………………………… … 2分∵点A (-1,3)在反比例函数ky =x的图象上,∴31k=-. ∴ k = -3. ……………… ……… 3分∴3y =x-. ……………………………………………… 4分(2)(0,4 )或(0,-4 ).……………………………………9分 23、【分析】(1)首先连接OC ,由AD 与⊙O 相切,可得FA ⊥AD ,四边形ABCD 是平行四边形,可得AD ∥BC ,然后由垂径定理可证得F 是的中点,BE=CE ,∠OEC=90°,又由∠GCB=2∠BAF ,即可求得∴∠GCB+∠OCE=90°,继而证得直线GC 是⊙O 的切线;(2)首先由勾股定理可求得AE 的长,然后设⊙O 的半径为r ,则OC=OA=r ,OE=3﹣r ,则可求得半径长,易得△OCE ∽△CGE ,然后由相似三角形的对应边成比例,求得线段GC 的长. 【解答】(1)证明:连结OC∵AD与⊙O相切于点AAF为⊙O直径,∴AF⊥AD,又∵四边形ABCD平行四边形,∴AD∥BC,∴AF⊥BC,∴∠OEC=90°,BE=CE,=,∴∠COE=2∠BAF,∵∠GCB=2∠BAF,∴∠COE=∠GCB,∵∠COE+∠OCE=90°,∴∠GCB+∠OCE=90°,即∠OCG=90°,∴OC⊥CG,又∵OC为半径,∴GC为⊙O的切线;(2)∵AD=4,∴BC=4,∴BE=2,在Rt△ABE中,AE==4,设⊙O的半径为r,则在Rt△OCE中,OC2=OE2+CE2,∴r2=(4﹣r)2+22,解得r = ,∴OE= 4﹣= ,又∵∠COE=∠GCB,∠OEC=∠GEC=90°∴△OCE∽△CGE,∴= ,即= .∴CG = .24、【分析】(1)根据图象可知,当t= 时,点M落在AB边上,根据△BPM∽△BCA,得到比例式,计算求出a,根据点D为AB中点,DQ∥BC,求出m;(2)分0<t≤、<t<2、2<t<3三种情况,根据相似三角形的性质解答即可.【解答】解(1)由图象得:当t= 时,点M落在AB边上,如图3所示,CP= ×2a= a,CQ=a,∵△BPM∽△BCA,∴= ,即= ,解得:a=1,根据题意得,当QM过点D时,t=m,如图4所示,∵点D 为AB 中点,DQ ∥BC ,∴点Q 为AC 中点∴t = ,∴m = ;(2)当0<t ≤ 时,如图5,CD 与QM 的交点是点G ,∵△CQG ∽△ACB , ∴ = ,即 = ,整理得:QG= t , ∴S △CQG = •t •t= t 2,∴y=2t 2﹣t 2= t 2,当<t <2时,如图5,PM 与BD 交点是H ,∴△BHP ∽△BAC ,∴ = ,即 = ,∴HP=BP ,∴y=S △BCD ﹣S △BHP =3﹣BP •BP=3﹣BP 2=3﹣(4﹣2t )2=﹣t 2+6t ﹣3;当2<t <3时,同理得到y=3﹣(2t ﹣4)2=﹣t 2+6t ﹣3.25、【分析】(1)∠BAD=∠BED ,理由为:由MN 与AC 平行,得到一对内错角相等,再由已知角相等,等量代换得到∠EBA=∠ADE ,再由对顶角相等,得到△EBF ∽△ADF ,利用相似三角形的对应角相等即可得证;(2)以D 为圆心,DB 为半径画弧交AB 于Q ,则DB=DQ ,如图2所示,利用等边对等角得到一对角相等,再由AB=AC ,得到∠ABC=∠C ,进而得到∠BDQ=∠BAC ,根据已知角相等,利用等式的性质得到∠BDE=∠QDA ,再由DB=DQ ,利用AAS 得到△BED ≌△QAD ,利用全等三角形的对应边相等即可得证;(3)作∠BDQ=∠ADE ,交AB 于点Q ,如图3所示,利用两对角相等的三角形相似得到△BED ∽△QAD ,以及△BDQ ∽△BAC ,由相似得比例,根据AB=kAC ,即可确定出AD ,DE 之间的数量关系.【解答】解:(1)∠BAD=∠BED ,理由为:证明:∵MN ∥AC ,∴∠EBA=∠BAC , ∵∠BAC=∠ADE ,∴∠EBA=∠ADE ,又∵∠AFD=∠EFB ,∴△EBF ∽△ADF ,∴∠BED=∠BAD;(2)以D为圆心,DB为半径画弧交AB于Q,则DB=DQ,∴∠DBQ=∠DQB,∵AB=AC,∴∠ABC=∠C,∴∠BDQ=∠BAC,∵∠ADE=∠BAC,∴∠BDQ=∠ADE,∴∠BDQ﹣∠EDQ=∠ADE﹣∠EDQ,即∠BDE=∠QDA,在△BED和△QAD中,,∴△BED≌△QAD(AAS),∴AD=DE;(3)作∠BDQ=∠ADE,交AB于点Q,如图3所示,∴∠BDQ﹣∠EDQ=∠ADE﹣∠EDQ,即∠BDE=∠ADQ,∵∠BED=∠BAD,∴△BED∽△QAD,∴= ,∵∠ABC=∠QBD,∠BDQ=∠ADE=∠BAC,∴△BDQ∽△BAC,∴= =k,∴= k,即DE=kAD.26、【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得顶点式解析式,可得顶点坐标;(2)根据自变量与函数值的对应关系,可得P,G点坐标,根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PG的长,根据解方程组,可得M、N的横坐标,根据面积的和差,可得二次函数,根据二次函数的性质,可得P点的横坐标,再根据自变量与函数值的对应关系,可得P 点坐标;(3)根据相似三角形的判定与性质,可得∠ADG=∠FEO,根据余角的性质,可得∠IDH+∠DIH=90°,根据直角三角形的判定,可得∠DHE=90°,根据线段垂直平分线的定义,可得EF为AD中垂线,根据线段垂直平分线的性质,可得直线ED上的点关于直线EF的对称点都在x轴上,根据解方程组,可得Q点坐标.【解答】解:(1)将A、B点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+6x﹣5,y=﹣x2+6x﹣5=﹣(x﹣3)2+4,点D 的坐标为(3,4);故答案为:y=﹣x 2+6x ﹣5,(3,4);(2)如图1,过P 作PG ⊥x 轴交EF 于G 点,设P (m ,﹣m 2+6m ﹣5),G (m ,﹣m+3), PG=﹣m 2+6m ﹣5﹣(﹣m+3)=﹣m 2+m ﹣8.联立抛物线与直线EF ,得 , 化简,得:2x 2﹣13x+16=0,解得x 1=,x 2=,S △PMN =S △PGN +S △PGM =PG •(x N ﹣3)+PG •(3﹣x M )= PG (x N ﹣x M ) =(﹣m 2+m ﹣8)(﹣) =﹣(m ﹣)2+, 当m=时,S 最大=, 当m=时,﹣m 2+6m ﹣5=﹣()2+6×﹣5=, 即P (,),当△PMN 的面积最大时,点P 的坐标(,);(3)如图2,连接AD 交MN 于点H ,过D 作DG ⊥x 轴于G ,连接DE ,∴AG=2,DG=4,=,又∵F (0,3),E (6,0),∴= ∴=,∴△OFE ∽△GAD ,∴∠ADG=∠FEO ,∴∠DHE=∠DGE=90°∴EF ⊥AD ,又∵AD中点为(2,2),将(2,2)代入EF解析式2=﹣×2+3,∴H为AD中点,∴EF为AD中垂线,连结ED,则直线ED上的点关于直线EF的对称点都在x轴上.∵D(3,4),E(6,0),∴y DE=﹣x+8,连接DE与抛物线,得:消元,得:﹣x+8=﹣x2+6x﹣5.解得x1=3,﹣x+8=4,Q(3,4);x2=,﹣x+8=,Q(,);∴在抛物线上存在点Q,使点Q关于直线EF的对称点在x轴上,点Q的坐标为Q1(3,4),Q2(,).。
2015-2016中考数学模拟测试考卷(含答案分析)
中考数学模拟测试试题仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内,错选、漏选、多选均不得分.1.下列运算中,正确的是 ( )A .5a-2a=3B .()22224x y x y +=+C .842x x x ÷= D .41)2(2=--2.据初步统计,2010年浙江省实现生产总值(GDP)27100亿元,全省生产总值增长11.8%。
在这里,若将27100亿元以元为单位用科学记数法表示则为( ) A .111071.2⨯ B .121071.2⨯ C .10101.27⨯D .1010271⨯3.如图摆放的几何体的俯视图是 ( ) 09年中考模拟卷改编4.使代数式x x --87有意义的自变量x 的取值范围是 ( )A.7≥xB. 87≠>x x 且C. 87≠≥x x 且D. 7>x5.在一个不透明的口袋中放着红色、黑色、黄色的橡皮球共有30个,它们除颜色外其它全相同.小刚通过多次摸球试验后发现从中摸到红色球或黄色球的频率稳定在0.15和0.45之间,则口袋中黑色球的个数可能是 ( ) A .14 B .20 C .9D .66.已知两圆的半径满足方程03622=+-x x ,圆心距为5,则两圆的位置关系为 ( )A .相交B .外切C .内切D .外离7.若用(1)、(2)、(3)、(4)四幅图分别表示变量之间的关系,将下面的(a )、(b )、(c )、(d )对应的图象排序 ( ) 10年中考模拟卷改编(1)(2)(3)(4)(a)面积为定值的矩形(矩形的相邻两边长的关系)(b)运动员推出去的铅球(铅球的高度与时间的关系)(c)一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)(d)某人从A地到B地后,停留一段时间,然后按原速返回(离开A地的距离与时间的关系)A.(3)(4)(1)(2)B.(3)(2)(1)(4)C.(4)(3)(1)(2)D.(3)(4)(2)(1)8.已知抛物线y=ax2+2ax+4(0<a<3),A(x1,y1)B(x2,y2)是抛物线上两点,若x1>x2,且x1+x2=1-a, 则()07年乐清中学自主招生考试改编A. y1< y2B. y1= y2C. y1> y2D. y1与y2的大EDC BA(第10题图) A B C DF OGH E小不能确定9.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A为圆心,AB 为半径的圆弧外切,则tan ∠EAB 的值是( )09广西崇左改编 A.43B.34C.45 D.3510. 如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中正确结论的个数为( ) BBS 习题改编①OH =21BF ; ②∠CHF =45°; ③GH =41BC ;④DH2=HE ·HBA. 1个B. 2个C. 3个D. 4个二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:a a -5=____________________. 原创12.对正实数b a ,定义运算法则b a ab b a ++=*2,若103=*x ,则x 的值是____________. 原创13.如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h 为_____________米。
2015届中考数学模拟试卷附答案
2015届中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上)1.下列各数中,属于无理数的是( )A.﹣2 B.0 C.D.0.101001000 2.如图中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.下列运算正确的是( )A.B.a3•a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a64.甲、乙两人在相同的条件下各射靶10次,射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8.下列说法中不一定正确的是( )A.甲、乙射击成绩的众数相同B.甲射击成绩比乙稳定C.乙射击成绩的波动比甲较大D.甲、乙射中的总环数相同5.不等式组的解集在数轴上表示为( )A.B.C.D.6.如图,某个反比例函数的图象经过点P,则它的解析式为( )A.y=(x>0)B.y=(x>0)C.y=(x<0)D.y=(x<0)7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,HF平分∠EFD,若∠1=110°,则∠2的度数为( )A.55°B.40°C.35°D.45°8.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( )A.2个B.3个C.4个D.5个二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.2﹣1=__________.10.分解因式:x2﹣4=__________.11.一个多边形的每个外角都等于72°,则这个多边形的边数为__________.12.2014年3月14日,“玉兔号”月球车成功在距地球约384400公里远的月球上自主唤醒,将384400这个数用科学记数法表示为__________.13.已知正四边形的外接圆的半径为2,则正四边形的周长是__________.14.已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为__________.15.如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为__________.16.如图,已知l3∥l4∥l5,它们依次交直线l1、l2于点E、A、C和点D、A、B,如果AD=2,AE=3,AB=4,那么CE=__________.17.如图,在△ABC中,G是重心,点D是BC的中点,若△ABC的面积为6cm2,则△CGD 的面积为__________cm2.18.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为__________.三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:(π﹣2015)0++|﹣2|;(2)解方程:1﹣=.20.先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.21.2014年6月,我校结合全省中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生4800名,请你估计该校最喜爱科普类书籍的学生人数.22.某市今年理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每个考生从三个物理实验(题签分别用代码W1、W2,W3表示)、两个化学实验题(题签分别用代码H1、H2表示)、两个生物实验(题签分别用代码S1、S2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从它们中随机的各抽取一个题签.(1)直接写出他恰好抽到H2的情况;(2)求小亮抽到的题签的代码的下标(例如“W2”的下标是“2”)之和为5的概率.23.如图,在矩形ABCD中,点F是CD中点,连接AF并延长交BC延长线于点E,连接AC.(1)求证:△ADF≌△ECF;(2)若AB=1,BC=2,求四边形ACED的面积.24.如图,小明在大楼45米高(即PH=45米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上,点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡脚(即∠ABC)的度数等于__________度;(2)求A、B两点间的距离.(结果精确到1米,参考数据:≈1.732)25.如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD的延长线的垂线PQ,垂足为C.(1)求证:PQ是⊙O的切线;(2)已知⊙O的半径为2,若过点O作OE⊥AD,垂足为E,OE=,求弦AD的长.26.如图,线段AB、CD分别是一辆轿车和一辆客车在行驶过程中油箱内的剩余油量y1(升)、y2(升)关于行驶时间x(小时)的函数图象.(1)写出图中线段CD上点M的坐标及其表示的实际意义;(2)求出客车行驶前油箱内的油量;(3)如果两车同时从相距300千米的甲、乙两地出发,相向而行,匀速行驶,已知轿车的行驶速度比客车的行驶速度快30千米/小时,且当两车在途中相遇时,它们油箱中所剩余的油量恰好相等,求两车的行驶速度.27.已知△ABC中,点E为边AB的中点,将△ABC沿CE所在的直线折叠得△A′EC,BF∥AC,交直线A′C于F.(1)如图①,若∠ACB=90°,∠A=30°,BC=,求A′F的长;(2)如图②,若∠ACB为任意角,已知A′F=a,求BF的长(用a表示);(3)如图③,若∠ACB为任意角,猜想出AC、CF、BF之间的数量关系:__________,并说明理由;(4)如图④,若∠ACB=120°,BF=8,BC=6,则AC的长为__________.28.在平面直角坐标系xOy中,一块含60°角的三角板作如图1摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0),抛物线y=x2+bx+c经过点A、B、C.(1)请直接写出点B、C的坐标:B(__________,__________)、C(__________,__________);(2)求经过A、B、C三点的抛物线的函数表达式;(3)如图2现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上)1.下列各数中,属于无理数的是( )A.﹣2 B.0 C.D.0.101001000考点:无理数.分析:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.解答:解:∵﹣2、0是整数,∴﹣2、0是有理数;∵0.101001000是有限小数,∴0.101001000是有理数;∵是无限不循环小数,∴是无理数.故选:C.点评:此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.如图中,既是轴对称图形又是中心对称图形的是( )A.B.C. D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列运算正确的是( )A.B.a3•a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a6考点:二次根式的加减法;幂的乘方与积的乘方;同底数幂的除法.分析:此题可根据二次根式的加减运算法则;同底数幂相乘,同底数幂相乘除及积的乘方运算法则去验证每个选项是否正确即可.解答:解:A、原式=2﹣=,故本选项错误;B、a3•a2=a5,故本选项正确;C、a8÷a2=a6,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误.故选B.点评:本题考查了二次根式的加减和整式的混合运算:积的乘方;同底数幂相乘;同底数幂相乘除掌握好每种运算法则是解题的必备工具.4.甲、乙两人在相同的条件下各射靶10次,射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8.下列说法中不一定正确的是( )A.甲、乙射击成绩的众数相同B.甲射击成绩比乙稳定C.乙射击成绩的波动比甲较大D.甲、乙射中的总环数相同考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵甲射击成绩的方差是1.2,乙射击成绩的方差是1.8,∴S甲2<S乙2,∴甲射击成绩比乙稳定,乙射击成绩的波动比甲较大,∵甲、乙两人在相同的条件下各射靶10次,∴甲、乙射中的总环数相同,虽然射击成绩的平均数都是8环,但甲、乙射击成绩的众数不一定相同;故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.不等式组的解集在数轴上表示为( )A. B. C. D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<0;由②得,x≤1,故此不等式组的解集为:x<0,在数轴上表示为:故选B.点评:本题考查的是在数轴上表示不等式组的解集,熟知实心原点与空心原点的区别是解答此题的关键.6.如图,某个反比例函数的图象经过点P,则它的解析式为( )A.y=(x>0)B.y=(x>0)C.y=(x<0)D.y=(x<0)考点:待定系数法求反比例函数解析式.专题:待定系数法.分析:先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.解答:解:设反比例函数的解析式为(k≠0)由图象可知,函数经过点P(﹣1,1)得k=﹣1∴反比例函数解析式为y=(x<0).故选D.点评:本题考查了待定系数法求反比例函数的解析式,由反比例函数图象上点的坐标代入求得k值即可.7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,HF平分∠EFD,若∠1=110°,则∠2的度数为( )A.55°B.40°C.35°D.45°考点:平行线的性质.分析:根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.解答:解:∵∠1=110°,∴∠3=∠1=110°,∵AB∥CD,∴∠DFE=180°﹣∠3=180°﹣110°=70°,∵HF平分∠EFD,∴∠DFH=∠DFE=×70°=35°,∵AB∥CD,∴∠2=∠DFH=35°.故选C.点评:本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.8.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( )A.2个B.3个C.4个D.5个考点:点的坐标.专题:新定义.分析:首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.解答:解:如图1,,到l1的距离为2的点是两条平行直线l3、l4,到l2的距离为1的点也是两条平行直线l5、l6,∵两组直线的交点一共有4个:A、B、C、D,∴距离坐标为(2,1)的点的个数有4个.故选:C.点评:此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.2﹣1=.考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂的定义:a﹣p=(a≠0,p为正整数)求解即可.解答:解:2﹣1=,故答案为:.点评:本题考查了负整数指数幂的定义,解题时牢记定义是关键,此题基础性较强,易于掌握.10.分解因式:x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法.专题:因式分解.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.11.一个多边形的每个外角都等于72°,则这个多边形的边数为5.考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:多边形的边数是:360÷72=5.故答案为:5.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.12.2014年3月14日,“玉兔号”月球车成功在距地球约384400公里远的月球上自主唤醒,将384400这个数用科学记数法表示为3.844×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:384400=3.844×105,故答案为:3.844×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.已知正四边形的外接圆的半径为2,则正四边形的周长是8.考点:正多边形和圆.分析:连接OA、OB,由正四边形的性质得出∠AOB=90°,AB=BC=CD=DA,由勾股定理求出AB,即可求出正四边形的周长.解答:解:如图所示:连接OA、OB,∵四边形ABCD是正四边形,∴∠AOB=90°,AB=BC=CD=DA,∵OA=OB=2,∴AB==2,∴正四边形的周长=4AB=8.故答案为:8.点评:本题考查了正四边形的性质、勾股定理、正四边形周长的计算;熟练掌握正四边形的性质,并能进行推理计算是解决问题的关键.14.已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为4.考点:根与系数的关系.专题:计算题.分析:设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.解答:解:设方程另一根为t,根据题意得2+t=6,解得t=4.故答案为4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为.考点:几何概率.分析:先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.解答:解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为:.点评:此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.16.如图,已知l3∥l4∥l5,它们依次交直线l1、l2于点E、A、C和点D、A、B,如果AD=2,AE=3,AB=4,那么CE=9.考点:平行线分线段成比例.分析:根据平行线分线段成比例定理得出比例式,代入求出AC即可.解答:解:∵l3∥l4∥l5,∴=,∵AD=2,AE=3,AB=4,∴=,∴AC=6,∴CE=6+3=9,故答案为:9.点评:本题考查了平行线分线段成比例定理的应用,解此题的关键是能根据定理得出比例式.17.如图,在△ABC中,G是重心,点D是BC的中点,若△ABC的面积为6cm2,则△CGD 的面积为1cm2.考点:三角形的重心.专题:计算题.分析:由于点D是BC的中点,则根据三角形面积公式得到S△ACD=S△ABC=3,再利用重心性质得到AG:GD=2:1,然后再利用三角形面积公式可计算出S△CGD=S△ACD=1(cm2).解答:解:∵点D是BC的中点,∴BD=CD,∴S△ACD=S△ABC=×6=3,∵G是重心,∴AG:GD=2:1,∴S△CGD=S△ACD=×3=1(cm2).故答案为1.点评:本题考查了三角形重心:三角形的重心是三角形三边中线的交点.重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了三角形面积公式.18.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为(2,1006).考点:等腰直角三角形;点的坐标.专题:压轴题;规律型.分析:由于2012是4的倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2012在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答.解答:解:∵2012是4的倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2012÷4=503 0∴A2012在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2012的纵坐标为2012×=1006.故答案为:(2,1006).点评:本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:(π﹣2015)0++|﹣2|;(2)解方程:1﹣=.考点:实数的运算;解分式方程;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,第二项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=1+2+2﹣=3+;(2)去分母得:x﹣1﹣1=﹣2x,解得:x=,经检验x=是分式方程的解.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用完全平方公式化简,第二项利用平方差公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=a2+4ab+4b2+b2﹣a2=4ab+5b2,当a=﹣1,b=2时,原式=﹣8+20=12.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.2014年6月,我校结合全省中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生4800名,请你估计该校最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.分析:(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.解答:解:(1)90÷30%=300(名),故,一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)4800×=1080(名).答:4800名学生中估计最喜爱科普类书籍的学生人数为1080人.点评:本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.22.某市今年理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每个考生从三个物理实验(题签分别用代码W1、W2,W3表示)、两个化学实验题(题签分别用代码H1、H2表示)、两个生物实验(题签分别用代码S1、S2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从它们中随机的各抽取一个题签.(1)直接写出他恰好抽到H2的情况;(2)求小亮抽到的题签的代码的下标(例如“W2”的下标是“2”)之和为5的概率.考点:列表法与树状图法.专题:计算题.分析:(1)直接根据概率公式求解;(2)先画出树状图展示所有12种等可能的结果数,再找出题签的代码的下标(例如“W2”的下标是“2”)之和为5的结果数,然后根据概率公式计算.解答:解:(1)他恰好抽到H2的概率=;(2)画树状图为:共有12种等可能的结果数,其中题签的代码的下标(例如“W2”的下标是“2”)之和为5的结果数为4,所以小亮抽到的题签的代码的下标(例如“W2”的下标是“2”)之和为5的概率==.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,在矩形ABCD中,点F是CD中点,连接AF并延长交BC延长线于点E,连接AC.(1)求证:△ADF≌△ECF;(2)若AB=1,BC=2,求四边形ACED的面积.考点:矩形的性质;全等三角形的判定与性质;平行四边形的判定与性质.分析:(1)由矩形的性质和已知条件得出DF=CF,∠ADF=∠ECF,由ASA即可证明△ADF≌△ECF;(2)证明四边形ACED是平行四边形,即可得出四边形ACED的面积=AD×DC.解答:(1)证明:∵F是CD中点,∴DF=CF,∵四边形ABCD是矩形,∴AD∥BC,即AD∥CE.∴∠ADF=∠ECF,在△ADF和△ECF中,∵,∴△ADF≌△ECF(ASA);(2)解:∵四边形ABCD是矩形,∴AD=BC=2,AB=CD=1,CD⊥AD.由(1)知,△ADF≌△ECF.∴AD=CE.∵AD∥CE,∴四边形ACED是平行四边形,∴四边形ACED的面积=AD×DC=2,点评:本题考查了矩形的性质、全等三角形的判定与性质、平行四边形的判定与性质以及面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.24.如图,小明在大楼45米高(即PH=45米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上,点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡脚(即∠ABC)的度数等于30度;(2)求A、B两点间的距离.(结果精确到1米,参考数据:≈1.732)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:(1)根据俯角以及坡度的定义即可求解;(2)在直角△PHB中,根据三角函数即可求得PB的长,然后利用直角△PBA为等腰直角三角形,即可求解.解答:解:(1)∵tan∠ABC=1:,∴∠ABC=30°;故答案为:30;(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,又∠APB=45°,∴△PAB为等腰直角三角形,在直角△PHB中,PB===30,在直角△PBA中,AB=PB=30≈52米.点评:此题考查了解直角三角形的应用,用到的知识点是俯角的定义以及坡度坡角的知识,注意能借助俯角构造直角三角形并解直角三角形是关键,注意数形结合思想的应用.25.如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD的延长线的垂线PQ,垂足为C.(1)求证:PQ是⊙O的切线;(2)已知⊙O的半径为2,若过点O作OE⊥AD,垂足为E,OE=,求弦AD的长.考点:切线的判定.分析:(1)由同圆的半径相等和角平分线证出∠OTA=∠CA T,得出OT∥AC,由PQ⊥AC,证出PQ⊥OT,即可得出结论;(2)由垂径定理得出AE=DE,由勾股定理求出AE,即可得出AD的长.解答:(1)证明:连接OT,如图1所示:∵OA=OT,∴∠OA T=∠OTA,∵AT平分∠BAD,∴∠OA T=∠CAT,∴∠OTA=∠CAT,∴OT∥AC,∵PQ⊥AC,∴PQ⊥OT,∴PQ是⊙O的切线;(2)解:如图2所示:∵OE⊥AD,∴AE=DE,∠AEO=90°,∴AE===1,∴AD=2AE=2.点评:本题考查了切线的判定、垂径定理、勾股定理、平行线的判定;熟练掌握圆的有关性质,证明平行线和运用垂径定理是解决问题的关键.26.如图,线段AB、CD分别是一辆轿车和一辆客车在行驶过程中油箱内的剩余油量y1(升)、y2(升)关于行驶时间x(小时)的函数图象.(1)写出图中线段CD上点M的坐标及其表示的实际意义;(2)求出客车行驶前油箱内的油量;(3)如果两车同时从相距300千米的甲、乙两地出发,相向而行,匀速行驶,已知轿车的行驶速度比客车的行驶速度快30千米/小时,且当两车在途中相遇时,它们油箱中所剩余的油量恰好相等,求两车的行驶速度.考点:一次函数的应用.分析:(1)根据直角坐标系得出M点的坐标,进而得出其表示的实际意义;(2)首先求出直线CD的解析式,求出图象与y轴的交点坐标即可得出答案;(3)设客车的速度为xkm/时,则小轿车的速度为(x+30)km/时,先根据相遇问题表示出相遇时间,再由图象可以求出客车和小轿车每小时的耗油量,再根据剩余的油相等建立方程求出其解即可.解答:解:(1)行驶1小时后油箱内还有60升的油;(2)将M(1,60),D(3,0)代入解析式y=ax+b,得:,解得:.故CD的解析式为y=﹣30x+90,点C的坐标是(0,90).故客车行驶前油箱内的油量是90升;(3)设客车的速度为xkm/时,则小轿车的速度为(x+30)km/时,所以两车的相遇时间为:,轿车每小时的耗油量为60÷4=15升,客车每小时耗油量为90÷3=30升.∵相遇时,它们油箱中所剩余的油量恰好相等,∴90﹣30×=60﹣15×,解得:x=60,经检验,x=60是原方程的解,轿车的速度为:60+30=90千米/时.答:客车60千米/小时,轿车90千米/小时.点评:本题考查了运用待定系数法求一次函数的解析式的运用,相遇问题的解法的运用,解答本题时先表示出两车相遇的时间利用剩余的油量相等建立分式方程是关键,分式方程要检验是解答的必要过程,学生容易忘记.27.已知△ABC中,点E为边AB的中点,将△ABC沿CE所在的直线折叠得△A′EC,BF∥AC,交直线A′C于F.(1)如图①,若∠ACB=90°,∠A=30°,BC=,求A′F的长;(2)如图②,若∠ACB为任意角,已知A′F=a,求BF的长(用a表示);(3)如图③,若∠ACB为任意角,猜想出AC、CF、BF之间的数量关系:AC=CF﹣BF,并说明理由;(4)如图④,若∠ACB=120°,BF=8,BC=6,则AC的长为8+2..考点:几何变换综合题.分析:(1)根据翻折得出AC=A'C,利用含30°的直角三角形的性质进行解答即可;(2)连接A′B,根据翻折的性质可得A′E=AE,A′C=AC,∠A=∠CA′E,根据中点定义可得AE=BE,从而得到BE=A′E,然后根据等边对等角可得∠EA′B=∠EBA′,根据两直线平行,内错角相等可得∠A=∠ABF,然后求出∠FA′B=∠FBA′,根据等角对等边可得A′F=BF;(3)图(3)连接A′B,根据翻折的性质可得A′E=AE,A′C=AC,∠A=∠CA′E,根据中点定义可得AE=BE,从而得到BE=A′E,然后根据等边对等角可得∠EA′B=∠EBA′,根据两直线平行,内错角相等可得∠A=∠ABF,然后求出∠FA′B=∠FBA′,根据等角对等边可得A′F=BF,再根据A′C=CF﹣A′F整理即可得证;(4)连接A′B,过点F作FG⊥BC于G,根据两直线平行,同旁内角互补求出∠CBF=60°,然后解直角三角形求出BG、FG,再求出CG,然后利用勾股定理列式求出CF,再根据AC=CF+BF代入数据计算即可得解.。
2015-2016中考数学模拟测试考题(含答案分析)
中考数学模拟测试试题一、仔细选一选(本题10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确的选项前的字母填在答卷中的相应的格子内,注意可以用多种不同的方法来选取正确的答案。
1.2011年3月5日第十一届全国人民代表大会第四次会议在京召开,会议期间议案560多件,提案5762件,充分体现了广大政协委员为发展社会主义民主、推动科学发展、促进社会和谐建言献策的政治责任感。
用科学计数法表示收到的提案数量(保留2个有效数字)( ▲ ) (原创)A .B .C .D . 2.如图1,给你用一副三角板画角,不可能画出的角的度数是: ( ▲ )(原创)A .105°B .75°C .155°D .165° 3.现给出下列四个命题: ①无公共点的两圆必外离 ②位似三角形是相似三角形 ③菱形的面积等于两条对角线的积④三角形的三个内角中至少有一内角不小于600 ⑤对角线相等的四边形是矩形其中选中是真命题的个数的概率是( ▲ )(原创)3107.5⨯3108.5⨯41057.0⨯310762.5⨯图1A .51B .52C .53D .544.一个几何体是由一些大小相同的小正方块摆成的,三视图如图所示,则组成这个几何体的小正方块有(A 、4个B 、5个C 、6个D 、75.已知线段a 和锐角α∠ ,求作ABC Rt ∆ ,使它的一边为a ,一锐角为α∠ ,满足上述条件的大小不同的可以画这样的三角形( ▲ )。
(原创) A .1个 B .2个 C .3个 D .4个6.在平行四边形ABCD 中,E 为CD 上一点,DE:EC=1:2,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则=∆∆∆A B F E B F D E F S S S ::( ▲ )(原创) A .1:3:9 B .1:5:9 C .2:3:5 D .2:3:97. 已知点A 的坐标为(2,3),O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转900得OA1,再将点A1作关于X 轴对称得到A2,则A2的坐标为( ▲ )(原创) A .(-2,3)B .(-2,-3)C .(-3,2)D .(3, 2)8. 给出下列命题:①反比例函数x y 2=的图象经过一、三象限,且y 随x 的增大而减小;②对角线相等且有一BCAE E EDDDD(第10个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图);④相等的弧所对的圆周角相等.其中正确的是( ▲ )(习题摘录改编)(A )③④ (B )①②③ (C )②④ (D )①②③④9.如图,两个反比例函数y = k1x 和y = k2x 在第一象限内的图象依次是C1和C2,设点P 在C1上,PC ⊥x 轴于点C ,交C2于点A ,PD ⊥y 轴于点D ,交C2于点B ,则四边形PAOB 的面积为( ▲ )(改编)A .k1+k2B .k1-k2C .k1·k2 D.k1k210. 如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记11223B D E B D EB D E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则 A .n S =14n ABC S △ B .n S =13n +ABC S △C .n S =()121n +ABC S △ D .n S =()211n +ABC S △AE CBD O (第15题F ( ▲ )(习题摘录)A 、6B 、62C 、24D 、4 二、认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。
2015-2016年中考数学模拟试题
2016年初中毕业班数学模拟考试一、选择题(本大题共20小题;每小题3分,满分60分, 在每小题给出的四个选项中,只有一项是符合题目要求的, 把正确答案填在答题纸的选择题答题栏中) 1. ﹣的相反数是( ) A .﹣ B .C .﹣5D . 52、下列运算正确的是( )A .3-1=-3 B3 C .(a b 2)3=a 3b 6 D .a 6÷a 2=a 33、下列图形中,是中心对称图形但不是轴对称图形的是()4、第六次全国人口普查数据显示,某市常驻人口约为556.82万人,此数用科学记数法表示正确的一个不相同的几何体是( )A ①②B ②③C ②④D ③④6、如图,在△ABC 中,∠B=46°,∠C=54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即(第6题图) (第7题图) (第8题图)8、如图,△ABC 中,AB=4,BC=6,∠B=60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数1610、如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE=3,AE=2,则MF 的长是( ) ABC 1 D)12、二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +=0;③当m ≠1时,a b +>2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③ B .②④ C .②⑤ D .②③⑤①正方体 ②圆柱 ③圆锥④球(第12题图) (第13题图) (第15题图)13、如图,AB 是⊙O 的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S 阴影=( )A . πB . 2πC .D .π 14、甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色 C16、如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:(第16题图) (第18题图)17、某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x )(4﹣0.5x )=15 B .(x+3)(4+0.5x )=15 C .(x+4)(3﹣0.5x )=15 D .(x+1)(4﹣0.5x )=1518、如图,已知矩形ABCD 的长AB 为5,宽BC 为4,E 是BC 边上的一个动点,AE ⊥EF ,EF 交CD 于点F .设BE=x ,FC=y ,则点E 从点B 运动到点C 时,能表示y关于x 的函数关系的大致图象是( )19、若不等式组无解,则实数a的取值范围是( )20、.如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45 ,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…。
2015-2016学年初三毕业生中考数学仿真试卷及答案2
2015-2016学年初三毕业生中考数学仿真试卷及答案下面各题均有四个选项,其中只有一个..是符合题意的. 1.13的倒数是A .3B .3-C .13D.13-2.一根头发丝的直径约为0.00 006纳米,用科学记数法表示0.00 006,正确的是 A .6×10-6B . 6×10-5C . 6×10-4D . 0.6×10-43.下面的几何体中,主视图为三角形的是A B C D4.函数y=x 的取值范围是A .2x ≠ B .2x > C .2x ≥ D .2x ≤5.妈妈在端午节煮了10个粽子,其中5个火腿馅,3个红枣馅,2个豆沙馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红枣馅粽子的概率是 A .110B .15C .310D .126.下面的几何图形中,既是轴对称图形又是中心对称图形的是A B C D菱形扇形平行四边形等边三角形7.如图,A ,B 是函数2=y x的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,如果△ABC 的面积记为S ,那么A .4S =B .2S =C .24S <<D .4S >8.甲、乙、丙、丁四位同学角逐“汉字听写大赛”的决赛资 格,表中统计了他们五次测试成绩的平均分和方差.如果 从这四位同学中,选出一位成绩较好且状态稳定的同学参 加全市“汉字听写大赛”,那么应选 A .甲 B .乙 C .丙 D .丁9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2米,那么适合该地下车库的车辆限高标志牌为(参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)AB C D10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B 重合),AB =4,M 是OA 的中点,设线段MN 的长为x ,△MNO 的面积为y ,那么下列图象中,能表示y 与x 的函数关系的图象大致是A B C DFCBAEA O BM N图3图1图2二、填空题(本题共18分,每小题3分)11.分解因式:34a a-=.12.如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E,如果35ADDB=,AE=6,那么EC的长为.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知AB的长是_________m.14.将二次函数245y x x=-+化为2()y x h k=-+的形式,那么=h k+.15.在四边形ABCD中,如果AB AD=,AB CD∥,请你添加一个..条件,使得该四边形是菱形,那么这个条件可以是 .16.如图,在平面直角坐标系xOy中,直线l的表达式是y x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O 为圆心,OB1长为半径画弧交y轴于点A2;再过点A2作y轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点B4的坐标为,2015OA =.三、解答题(本题共30分,每小题5分)17.计算:20152cos45++︒(-1).18.已知:如图,AB=AE,∠1=∠2 ,∠B=∠E .求证:BC=ED.CABED图121AE33x19.解不等式组:240,321 5.x x +⎧⎨-->⎩≤()20.已知3=y x ,求代数式22212y x y x xy y x ⎛⎫--⋅ ⎪-+⎝⎭的值.21.已知关于x 的方程2(3)30(0)mx m x m -++=≠.(1)求证:方程总有两个实数根;(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m 的值.22.列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,E 为BC 边上的一点,将△ABE 沿AE 翻折得到△AFE ,点F 恰好落在线段DE 上.(1)求证:∠FAD =∠CDE ;(2)当AB =5,AD =6,且tan 2ABC ∠=时,求线段EC 的长.BFACED24.某校九年级有200名学生参加《中小学生国家体质健康标准》测试赛活动.为了解本次测试的成绩分布情况,从中抽取了20名学生的成绩进行分组整理.现已完成前15个数据的整理,还有后5个数据尚未累计:62,83,76,87,70,学生测试成绩频数分布表学生测试成绩频数分布直方图(1)请将剩余的5个数据累计在“学生测试成绩频数分布表”中,填上各组的频数与频率,并补全“学生测试成绩频数分布直方图”; (2)这20个数据的中位数所在组的成绩范围是;(3)请估计这次该校九年级参加测试赛的学生中约有多少学生成绩不低于80分.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F .26.问题背景:在△ABC中,AB,BC,AC,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC的高,借用网格就能计算出它的面积.CBA图1 图2(1)请你直接写出△ABC的面积________;思维拓展:(2)如果△MNP,,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积.五、解答题(本题共22分,第27题7分,第28题7分,第2927.在平面直角坐标系xOy中,抛物线21y ax bx=++经过(13)A,,(21)B,两点.(1)求抛物线及直线AB的解析式;(2)点C在抛物线上,且点C的横坐标为3.将抛物线在点A,C之间的部分(包含点A,C)记为图象G,如果图象G沿y轴向上平移t(0t>)个单位后与直线AB只有一个公共点,求t的取值范围.28.已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=40°时,∠ADE =°;(2)如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M ,EN 与FD 的延长线交于点N . ♊依题意补全图形;♋猜想线段EM 与EN 之间的数量关系,并证明你的结论.EC图1 图229.对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y M ≤,那么称这个函数是有上界函数,在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2. (1)分别判断函数1y x=-(0x <)和23y x =-(2x <) 是不是有上界函数?如果是有上界函数,求其上确界; (2)如果函数2y x =-+(,a x b b a ≤≤>)的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围;(3)如果函数222y x ax =-+(15x ≤≤)是以3为上确界的有上界函数,求实数a的值.。
浙江省2015-16年中考数学模拟试题及答案(含答案解析)
浙江省2015-16年中考数学模拟试题一.选择题(共10小题,每小题3分,共30分)温馨提示:每小题有四个答案,只有一个是正确的,请将正确的答案选出来! 1.下列计算正确的是( ) A .235a a a +=B .1234)(a a =C .236a a a ⋅=D .326a a a =÷2.若一个三角形三个内角度数的比为1︰2︰3,那么这个三角形最小角的正切值为( ) A.31 B. 21 C. 33 D. 23 3.在盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率 是52如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为41则原来盒里有白色棋 子( )A.1颗B.2颗C.3颗D.4颗24.5200,40k x x x k +<+-=若则关于的一元二次方程的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断 5.一个圆柱的侧面展开图是一个面积为10的矩形,这个圆柱的高为L 与这个圆柱的底面半径r 之间的函数关系为( )A 、正比例函数B 、反比例函数C 、一次函数D 、二次函数 6.如图,几个完全相同的小正方体组成一个几何体,这个几何体的三视图中面积最大的是( )A.主视图B.左视图C.俯视图D.主视图和左视图 7.如图所示,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为( )A.π-10B.π-8C.π-12 D .π-6 8.如图所示,OAC ∆和BAD ∆都是等腰直角三角形,090=∠=∠ADB ACO ,反比例函数k y =在第一象限的图象经过点B ,若1822=-AB OA ,则k 的值为( )9.若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角 是( )A .90°B .120°C .150°D .180°10.定义运算,错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试题汇编一、选择题1.(湖里区二次适应性考试)已知半径分别为5 cm和8 cm的两圆相交,则它们的圆心距可能是()A.1 cm B.3 cm C.10 cm D.15 cm 答案:C2.(教育联合体)如图,已知AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD①AD⊥BC,②∠EDA=∠B,③OA=12AC,④DEA.1个B.2个C.3个D.4个答案:D3.(安徽省模拟)如图,AB是⊙O的直径,点D、E是圆的三等分点,AE、BD的延长线交于点C,若CE=2,则⊙O中阴影部分的面积是()A.43π-B.23πC.23πD.13π答案:A4.(重庆市綦江中学模拟1).在直角坐标系中,⊙A、⊙B的BC第3题位置如图所示.下列四个点中,在⊙A 外部且在⊙B 内部的是( ) A.(1,2) B.(2,1). C.(2,-1). D.(3,1) 答案C5.(聊城冠县实验中学二模)如下图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cmC .32cmD .52cm答案C6.(广州市中考六模)、如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( )A. 29cm πB. 218cm πC. 227cm π D. 236cm π答案:B7.(广州市中考六模)如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC 等于( )A. 60°B. 100°C. 80°D. 130° 答案:C8.(广西桂林适应训练)如图,圆弧形桥拱的跨度AB = 12米,拱高CD =4米,则拱桥的半径为( ).A.6.5米B.9米C.13米D.15米 答案:A9.(广西桂林适应训练)如图,BD 是⊙O 的直径,∠CBD=30,7题图8题图9题第5题则∠A 的度数为( ).[来A.30B.45C.60D.75 答案:C10.(山东新泰)已知⊙O1的半径为5cm ,⊙O2的半径为3cm ,圆心距O1O2=2,那么⊙O1与⊙O2的位置关系是( )A .相离B .外切C .相交D .内切 答案:D11.(济宁师专附中一模)如图,A B C D ,,,为⊙O 的四等分点,动点P从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t(s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )答案:C12.(武汉市中考拟)已知:如图,以定线段AB 为直径作半圆O ,P 为半圆上任意一点(异于A 、B ),过点P 作半圆O 的切线分别交过A 、B 两点的切线于D 、C,AC 、BD 相交于N 点,连结ON 、NP.下列结论:四边形ANPD 是梯形;第11题AB C D OP BDtACtON=NP ; DP ·PC 为定植; PA 为∠NPD 的平分线. 其中一定成立的是A.①②③B.②③④C.①③④D.①④ 答案:B13.( 年河南模拟)如图,圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切,若⊙A 、⊙B 、⊙C 的半径分别为a,b,c,(0<c <a <b),则a 、b 、c 一定满足的关系式为( ) A.2b=a+c=C.111c a b =+=+答案:D14.(湖南模拟)⊙O1和⊙O2半径分别为4和5,O1O2=7,则⊙O1和⊙O2的位置关系是( )A.外离B.相交C.外切D.内含 答案:B15.(湖南模拟)圆锥的母线长为3,底圆半径为1,则圆锥的侧面积为第16( )A.3πB.4πC.πD.2π 答案:A16.(厦门湖里模拟)如图,正三角形ABC 内接于⊙O,动点P在圆周的劣弧AB 上,且不与A 、B 重合,则∠BPC 等于A .30 B .60 C .90 D .45 答案:B17.(西湖区月考)如图,一种圆管的横截面是同心圆的圆环面,大圆的弦AB 切小圆于点C ,大圆弦AD 交小圆于点E 和F .为了计算截面(图中阴影部分)的面积,甲、乙、丙三位同学分别用刻度尺测量出有关线段的长度.甲测得AB 的长,乙测得AC 的长,丙测得AD 的长和EF 的长.其中可以算出截面面积的同学是( )A .甲、乙B .丙C .甲、乙、丙D .无人能算出 答案:C18.(西湖区月考)四个半径为r 的圆如图放置,相邻两个圆交点之间的距离也为r ,不相邻两个圆的圆周上两点间的最短距离等于2,则r的值是( )A2B.2C.2D3答案:A19.(铁岭加速度辅导学校)如图(3),已知AB是半圆O的直径,∠BAC=32º,D是弧AC的中点,那么∠DAC的度数是()A.25ºB.29ºC.30ºD.32°答案:B20.(天水模拟)已知两圆的半径分别为3和4,圆心距为8,那么这两个圆的位置关系是()A.内切B.相交C.外离D.外切答案:C二、填空题1.(河南模拟)圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=____°答案:902.(河南模拟)如图,已知⊙O的半径为R,AB是⊙O的直径,D是AB 延长线上一点,第2题D A4题DC 是⊙O 的切C 是切点,连接AC,若∠CAB=300, 则BD 的长为 答案:R ;3.( 河南模拟)如图,是一张电脑光盘的表面,两个圆心都是O,大圆的弦AB 所在的直线是小圆的切线,切点为C ,已知大圆的半径为5cm ,小圆的半径为1cm ,则弦AB 的长是多少?答案:4.(广东省中考拟)如图2,AB 是⊙O 的直径,∠COB=70°,则∠A=_____度. 答案.35.5.(武汉市中考拟)如图,点P 在y 轴上,P 交x 轴于A B ,两点,连结BP 并延长交P 于C ,过点C 的直线2y x b =+交x 轴于D ,且P的半径为BA4AB =.若函数ky x =(x<0)的图象过C 点,则k=___________. 答案:-46.(铁岭加速度辅导学校)如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r 米,圆心角均为90,则铺上的草地共有 平方米.答案:2πr7.(浙江永嘉)如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠P=50°,那么∠ACB 等于____ .13、65°;8.(广州市中考六模)、如图:AB 是⊙O 的直径,弦垂足为E ,如果AB =10cm , CD =8cm ,那么AE . 答案:3.75(第6题) A (第8题) 第7题∠C=90°,∠A=30°,点0在斜边AB 上,半径为2的⊙O 过 点B ,切AC 边于点D ,交BC 边于点E ,则由线段CD ,CE 及 弧DE 围成的隐影部分的面积为答案:π32233-10.(广州市中考六模)、如果点P 在坐标轴上,以点P 为圆心,512为半径的圆与直线l :434+-=x y 相切,则点P 的坐标是答案:(0,0)或(6,0)三、解答题1.( 河南模拟)如图,以Rt △ABC 的直角边AB 为直径的半圆O ,与斜边AC 交于D ,E 是BC 边上的中点,连结DE.DE 与半圆O 相切吗?若相切,请给出证明;若不相切,请说明理由;若AD 、AB 的长是方程x2-10x+24=0的两个根,求直角边BC 的长.解:(1)DE 与半圆O 相切.证明: 连结OD 、BD ∵AB 是半圆O 的直径∴∠BDA=∠BDC=90° ∵在Rt △BDC 中,E 是BC 边上的中点∴DE=BE∴∠EBD=∠BDE∵OB=OD∴∠OBD=∠ODB 又∵∠ABC=∠OBD+∠EBD=90°∴∠ODB+∠EBD=90°∴DE与半圆O相切.(2)解:∵在Rt△ABC中,BD⊥AC∴Rt△ABD∽Rt△ABC∴ABAC=ADAB即AB2=AD·AC∴AC=AB2AD∵AD、AB的长是方程x2-10x+24=0的两个根∴解方程x2-10x+24=0得:x1=4 x2=6∵AD<AB ∴AD=4 AB=6 ∴AC=9在Rt△ABC中,AB=6 AC=9∴BC=AC2-AB2 =81-36 =3 52.(湖南模拟)如图4,平行四边形ABCD中,以A为圆心,AB为半径的圆分别交AD、BC于F、G,•延长B A交圆于E.求证:EF=FG.证明:连结AG.∵A为圆心,∴AB=AG.∴∠ABG=∠AGB.∵四边形ABCD为平行四边形.∴AD∥BC.∠AGB=∠DAG,∠EAD=∠ABG . GFEDCBA∴∠DAG=∠EAD. ∴EF FG =.3.(湖南模拟)如图 ,以△ACF 的边AC 为弦的圆交AF 、CF 于点B 、E,连结BC,且满足AC2=CE ·CF.求证:△ABC 为等腰三角形.证明:连结AE.∵AC2=CE ·CF,∴AC CFCE AC =又∵∠ACE=∠FCA.∴△ACE ∽△FCA. ∴∠AEC=∠FAC. ∵AC BC =. ∴AC=BC,∴△ABC 为等腰三角形.4.( 中考模拟2)如图,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) .(1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值;(2)求正六边形1T ,2T 的面积比21:S S 的值 .答案:(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形,所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a 5.( 中考模拟2)如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积; (3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 . 答案: 圆锥; 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB′=120°,C 为弧BB′中点,所以BD=33 . 6.(长沙市中考模拟)在Rt ABC △中,90ACB ∠=°,D 是AB 边上一点,以BD 为直径的O ⊙与边AC 相切于点E ,连结DE长线交于点F .(1)求证:BD BF =;(2)若64BC AD ==,,求O ⊙的面积.答案:1)证明:连结OE 。