百一测评——初二上数学练习-图形与证明
初二上几何证明题100题专题训练之欧阳道创编
八年级上册几何题专题训练100题1、2、已知:在⊿ABC中,∠A=900,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。
3、已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。
4、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=ABMA⊥NA。
4、已知:如图(1),在△ABC中,BP、CP分C 别平分∠ABC和∠ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC.5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。
6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD ,连结EC 、ED ,求证:CE=DE 7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。
8. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数.9. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D10.如图,OP 平分∠AOB ,且OA=OB .(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.11. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。
初二数学图形与证明试题
初二数学图形与证明试题1.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【答案】D【解析】在△ABC中,∠A=36°,AB=AC,求得∠ABC=∠C=72°,且△ABC是等腰三角形.因为BD是△ABC的角平分线所以∠ABD=∠DBC=36°所以△ABD是等腰三角形.在△BDC中有三角形的内角和求出∠BDC=72°所以△BDC是等腰三角形.所以BD=BC=BE 所以△BDE是等腰三角形.所以∠BDE=72°, 所以∠ADE=36°, 所以△ADE是等腰三角形.共5个.故选D.【考点】角平分线的定义,三角形内角和、外角和,平角的定义.2.(本题满分8分)如图,已知□ABCD的对角线AC、BD相交于点O,四边形OCED为菱形.(1)求证:□ABCD是矩形;(2)连接AE、BE,AE与BE相等吗?请说明理由.【答案】(1)参见解析;(2)相等,理由参见解析.【解析】(1)利用对角线相等的平行四边形是矩形证得结论.(2)证明AE,BE,所在的三角形:△ADE≌△BCE,证得结论.试题解析:(1)∵四边形ABCD为平行四边形∴ AC=2OC,BD=2OD,∵四边形OCED是菱形∴OC=OD∴AC=BD又∵四边形ABCD为平行四边形,∴四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠BCD=90º,∵四边形OCED是菱形,∴ DE=CE,∴∠EDC=∠ECD,∴∠EDC+∠ADC =∠ECD+∠BCD,∴∠ADE=∠BCE,∴△ADE≌△BCE (SAS),∴AE=BE.【考点】1.矩形性质与判定;2.菱形性质的应用;3.证线段相等的方法.3.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且,四边形DCFE是平行四边形,则图中阴影部分的面积为().A.8B.6C.4D.3【答案】A.【解析】如图,过点A作AM⊥BC于点M,根据三角形的面积公式可得图中阴影部分的面积为,,由四边形DCFE是平行四边形可得DE=CF,又因,DE=CF可得BC=3DE,所以,即.所以图中阴影部分的面积为=8.故答案选A.【考点】平行四边形的性质;三角形的面积公式.4.如图,在□ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2B.3C.4D.5【答案】A.【解析】由平行四边形的性质可得AD=BC=6,AB=CD=4,再由平行线的性质和角平分线的定义可证得∠CED=∠CDE,所以CE=CD=4,即可得BE=BC-CE=6-4=2.故答案选A.【考点】平行四边形的性质;平行线的性质;等腰三角形的性质.5.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)【答案】①③【解析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再根据AO=CO得出△AOD≌△COB,从而得出BO=DO,最后根据对角线互相平分的四边形是平行四边形可得答案.【考点】平行四边形的判定6.(3分)如图,在正方形ABCD的内部作等边△ADE,连接BE,CE,则∠BEC的度数为.【答案】150°.【解析】由等边三角形的性质可得AD=DE,∠ADE=60°,由正方形的性质可得AD=DC,∠ADC=90°,所以DE=DC,CDE=∠ADC﹣∠ADE=90°﹣60°=30°,再根据等边对等角和三角形的内角和定理可得∠CED=∠ECD=(180°﹣30°)=75°,同理可得∠AEB=75°,所以∠BEC=360°﹣75°×2﹣60°=150°.【考点】正方形的性质;等边三角形的性质.7.若一个正方形的面积为8,则这个正方形的边长为()A.4B.2C.D.8【答案】B【解析】正方形的面积等于正方形边长的平方,设正方形的边长为x,根据题意可得:=8,则x==2.【考点】正方形的性质8.(3分)下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.1.5,2,2.5C.,1,D.40,50,60【答案】D【解析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.解:A、72+242=625=252,故是直角三角形,不符合题意;B、1.52+22=6.25=2.52,故是直角三角形,不符合题意;C、12+()2==()2,故是直角三角形,不符合题意;D、402+502=4100≠602,故不是直角三角形,符合题意.故选:D.【考点】勾股定理的逆定理.9.已知E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证:平行四边形ABCD是矩形.【答案】详见解析.【解析】如图,连接AC、BD交于点O,连接OE,已知AE⊥CE,BE⊥DE,根据直角三角形斜边上的中线等于斜边的一半得到OE=AC=BD,进而得到AC=BD,根据对角线相等的平行四边形是矩形即可判定平行四边形ABCD是矩形..试题解析:证明:连接AC、BD交于点O,连接OE,∵AE⊥CE,BE⊥DE,∴OE=AC=BD,∴AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD为矩形.【考点】平行四边形的性质;矩形的判定.10.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10D.11【答案】C.【解析】∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO=,∴BD=2BO=10,故选C.【考点】1.平行四边形的性质;2.勾股定理.11.(8分)如图,已知平行四边形ABCD,延长BC至E,使CE=BC,连接AC,DE,求证:AC=DE.【答案】见试题解析【解析】根据平行四边形的判定和性质定理即可得到结论.试题解析:证明:∵四边形ABCD 是平行四边形,∴AD=BC,AD∥BC,∵CE=BC,∴AD∥CE,AD=CE,∴四边形ACED是平行四边形,∴AC=DE.【考点】平行四边形的判定与性质.12.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.【答案】【解析】设DE=xcm,在折叠的过程中,BE=DE=x,AE=AB﹣BE=10﹣x,△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.∴x=(cm).【考点】勾股定理;翻折变换(折叠问题).13.如图,在平四边形ABCD中,对角线AC与BD相交于点O,P为线段BC上一点(除端点外),连接PO并延长交AD于点Q,延长BC到点E,使CE=BC,连接DE.(1)求证:BP=DQ;(2)已知AB=5,AC=6,若CD=BE,求△BDE的周长.【答案】见试题解析【解析】(1)由平行四边形的性质得出AD∥BC,OB=OD,AD=BC,CD=AB,得出∠OBP=∠ODQ,由ASA证明△BOP≌△DOQ,得出对应边相等即可;(2)先证明四边形ACED是平行四边形,得出DE=AC=6,再证明△BDE是直角三角形,根据勾股定理求出BD,即可得出结果.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,AD=BC,CD=AB,∴∠OBP=∠ODQ,在△BOP和△DOQ中,,∴△BOP≌△DOQ(ASA),∴BP=DQ;(2)解:∵AD=BC,CE=BC,∴AD=CE=BC,∵AD∥BC,∴AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=6,∵CD=BE,∴∠BDE=90°,BE=2CD=2AB=10,∴BD===8,∴△BDE的周长=BD+BE+DE=8+10+6=24.【考点】平行四边形的性质;全等三角形的判定与性质;勾股定理.14.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)CD的长;(2)作出△ABC的边AC上的中线BE,并求出△ABE的面积.(10分)【答案】(1)cm;(2)15cm2.【解析】(1)由勾股定理求得AB==13cm,再由S△ABC=×BC×AC=AB•CD即可求得CD的长;(2)已知BE为△ABC的边AC上的中线,根据S△ABE =S△ABC即可得△ABE的面积.试题解析:解:∵∠ACB=90°,BC=12cm,AC=5cm,∴AB==13cm,∵S△ABC=×BC×AC=30cm2,∴AB•CD=30,∴CD=cm;如图∵E为AC的中点,∴S△ABE =S△ABC=×30=15cm2.【考点】勾股定理;直角三角形面积的两种表示法;三角形的中线的性质.15.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求EC的长。
初二上几何证明题100题专题训练
M N DE B CA八年级上册几许题博题锻炼100题之阳早格格创做1、 已知:正在⊿ABC 中,∠A=900,AB=AC ,正在BC 上任与一面P ,做PQ ∥AB 接AC 于Q ,做PR ∥CA 接BA 于R ,D 是BC 的中面,供证:⊿RDQ 是等腰曲角三角形.2、 已知:正在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中面,AE ⊥BD ,AE 延少线接BC 于F ,供证:∠ADB=∠FDC.3、 已知:正在⊿ABC 中BD 、CE 是下,正在BD 、CE 或者其延少线上分别截与BM=AC 、CN=AB ,供证:MA ⊥NA.4、已知:如图(1),正在△ABC 中,BP 、CP 分别仄分∠ABC战∠ACB ,DE 过面P 接AB 于D ,接AC于E ,且DE ∥BC .供证:DE -DB=EC . 5、正在Rt △ABC 中,AB =AC ,∠BAC=90°,O 为BC 的中面.(1)写出面O 到△ABC 的三个顶面A 、B 、C 的距离的大小闭系(没有央供道明);(2)如果面M 、N 分别正在线段AB 、AC 上移动,正在移动中脆持AN =BM ,请推断△OMN 的形状,并道明您的论断.6、如图,△ABC 为等边三角形,延少BC 到D ,延少BA 到E ,AE=BD , 连结EC 、ED ,供证:CE=DE7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 仄分∠ABC ,DE ⊥BC 且BC =10,供△DCE 的周少.8. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是二个三角形的最少边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,供∠AEC 的度数.9. 如图,面E 、A 、B 、F 正在共一条曲线上,AD 与BC 接于面A BCO M NO, 已知∠CAE=∠DBF,AC=BD.供证:∠C=∠D10.如图,OP仄分∠AOB,且OA=OB.(1)写出图中三对于您认为齐等的三角形(注:没有增加所有辅帮线);(2)从(1)中任选一个论断举止道明.11. 已知:如图,AB=AC,DB=DC,AD的延少线接BC于面E,供证:BE=EC.12. 如图,正在△ABC中,AB=AD=DC,∠BAD=28°,供∠B战∠C的度数.13. 如图,B、D、C、E正在共背去线上,AB=AC,AD=AE,供证:BD=CE.14. 写出下列命题的顺命题,并推断顺命题的实假.如果是实命题,请赋予道明;•如果是假命题,请举反例道明.命题:有二边上的下相等的三角形是等腰三角形.15. 如图,正在△ABC中,∠ACB=90º,D是AC上的一面,且AD=BC,DE AC于D,∠EAB=90º.供证:AB=AE.16. 如图,等边△ABC中,面P正在△ABC内,面Q正在△ABC中,B,P,Q三面正在一条曲线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试道明您的论断.17. 如图,△ABC中,∠C=90°,AB的中垂线DE接AB于E,接BC于D,若AB=13,AC=5,则△ACD的周少为几?18.如图所示,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂脚分别是E,F,供证:CE=DF.19. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂脚为E ,AD ⊥CE ,垂脚为D.(1)推断曲线BE 与AD 的位子闭系是____;BE 与AD 之间的距离是线段____的少;(2)若AD =6 cm ,BE =2 cm ,供BE 与AD 之间的距离及AB 的少.20. 如图,已知 △ABC 、△ADE 均为等边三角形,面D 是BC 延少线上一面,连结CE ,供证:BD=CE 21. 如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 接BC•于面D ,供证:•BC=3AD.22. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中面,N 为AC中面,供证:MN ⊥AC .23、已知:如图所示,正在△ABC 中,∠ABC=45°,CD ⊥AB 于面D ,BE仄分∠ABC ,且BE ⊥AC 于面E ,与CD 相接于面F ,H 是BC 边的中面,对接DH 与BE 相接于面G .(1)供证:BF=AC ; (2)供证:DG=DF .24. 如图,面B ,D 正在射线AM 上,面C ,E 正在射线AN 上,且AB=BC=CD=DE ,已知∠EDM=84°,供∠A 的度数.25. 如图所示,正在△ABC 中,AB=AC ,BD ⊥AC 于面D ,CE ⊥AB 于面E ,BD ,CE 相接于F.供证:AF 仄分∠BAC.26. 如图所示,△ABC ≌△ADE ,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,供 ∠DFB 战∠DGB 的度数.27. 已知:如图,正在△ABC 中,AB=AC ,面D 正在边BC 上,DE ⊥AB ,DF ⊥AC ,且DE=DF ,B AED C供证:△ABD ≌△ACD28. 如图,一弛曲角三角形的纸片ABC ,二曲角边AC=6cm ,BC=8cm .现将曲角边AC 沿曲线AD 合叠,使它降正在斜边AB 上,且AC 与AE 沉合,供CD 的少.29. 已知:如图,正在△ABC 中,AB=AC ,BD 仄分∠ABC ,E 是底边BC 的延少线上的一面且CD=CE.(1)供证:△BDE 是等腰三角形(2)若 ∠A=36°,供∠ADE 的度数. 30. 如图,正在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延少线上一面,面E 正在BC 边上且BE=BD ,连结AE 、DE 、DC .(1)供证:AE=CD ;(2)若∠CAE=30°,供∠BDC 的度数.31. 如图,正在ABC ∆中,面D 正在AC 边上,DB=BC ,面E 是CD 的中面,面F 是AB 的中面,则不妨得到论断:12EF AB =,请道明缘由. 32. 已知:如图,正在ABC ∆中,C ABC ∠=∠,面D 为边AC 上的一个动面,延少AB 至E ,使BE=CD ,连结DE ,接BC 于面P.(1)DP 与PE 相等吗?请道明缘由.(2)若60C ∠=︒,AB=12,当DC=_________时,BEP ∆是等腰三角形.(没有必道明缘由)33. 如图,C 为线段BD 上一面(没有与面B ,D 沉合),正在BD 共侧分别做正三角形ABC 战正三角形CDE ,AD 与BE 接于一面F ,AD 与CE 接于面H ,BE 与AC 接于面G .(1)供证:BE=AD ;A B C D E(2)供∠AFG 的度数;(3)供证:CG=CH34. 已知:如图,正在△ABC 中,CD ⊥AB ,CD=BD ,BF 仄分∠DBC ,与CD ,AC 分别接与面E 、面F ,且DA=DE ,H 是BC 边的中面,连结DH 与BE 相接于面G .(1)供证:△EBD ≌△ACD ;(2)供证:面G 正在∠DCB 的仄分线上(3)探索索CF 、GF 战BG 之间的等量闭系,并道明您的论断.35. 如图,正在正在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延少线上一单,面E 正在BC 上,且AE=CF.(1)供证:CBF Rt ABE Rt ∆≅∆(2)若∠CAE=30°,供∠ACF 的度数36. 如图,△ACD 战△BCE 皆是等腰曲角三角形,∠ACD =∠BCE =90°,AE 接DC 于F ,BD 分别接CE ,AE 于面G 、H. 试预测线段AE 战BD 数量闭系,并道明缘由.37. 如图,正在△ABC 中,AB =AC ,AD 战BE 是下,它们相接于面H ,且AE =BE .供证:AH =2BD .38. 如图,正在ABC ∆中,32B ︒∠=,48C ︒∠=,,AE 仄分BAC ∠接BC 于面E ,DF AE ⊥于面F ,供ADF ∠AAM EGF D C B A 39. 如图所示,正在△ABC 中,已知面D ,E ,F 分别是BC ,AD ,CE 的中面,且ABC S ∆ =4,则BEF S ∆ 的值为几.40. 如图,ABC ∆中,90ACB ∠=,CD BA ⊥于D ,AE 仄分BAC ∠接CD 于F ,接BC 于E ,供证:CEF ∆是等腰三角形.41. 如图,正在四边形ABCD 中,DC ∥AB , BD 仄分∠ADC , ∠ADC=60°,过面B 做BE ⊥DC ,过面A 做AF ⊥BD ,垂脚分别为E 、F ,对接EF.推断△BEF 的形状,并道明缘由.42. 如图,已知Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,BC 与DE 相接于面F ,对接CD ,EB.(1)图中另有几对于齐等三角形,请您一一枚举;(没有必道明)(2)供证:CF =EF.43. 正在ABC ∆中,BO 仄分ABC ∠,面P 为曲线AC 上一动面,PO BO ⊥于面O .(1)如图1,当40ABC ︒∠=,60BAC ︒∠=,面P 与面C 沉适时,供APO ∠的度数;(2)如图2,当面P正在AC 延少线时,供证:()12APO ACB BAC ∠=∠-∠; (3)如图3,当面P 正在边AC 所示位子时,请间接写出APO ∠与ACB ∠,BAC ∠之间的数量闭系式.44. 如图,正在ABC ∆中,BAD DAC ∠=∠,DF AB ⊥,DM AC ⊥,AF=10cm , AC=14cm ,动面E 以2cm/s 的速度从A 面背F 面疏通,动面G 以1cm/s 的速度从C 面背A 面疏通,当一个面到达末面时,另一个面随之停止疏通,设疏通时间为t .(1) 供证:正在疏通历程中,没有管与何值,皆有2AED DGC S S ∆∆=; (2) 当与何值时,DFE ∆与DMG ∆齐等.D C45. 如图,正在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC合叠,使面B恰佳降正在边AC上,与面'B沉合,AE为合痕,供'EB的少度46. 如图,已知ΔABC是等腰曲角三角形,∠C=90°.(1)支配并瞅察,如图,将三角板的45°角的顶面与面C沉合,使那个角降正在∠ACB的里里,二边分别与斜边AB接于E、F二面,而后将那个角绕着面C正在∠ACB的里里转动,瞅察正在面E、F的位子爆收变更时,AE、EF、FB中最少线段是可末究是EF?写出瞅察截止.(2)探索:AE、EF、FB那三条线段是可组成以EF为斜边的曲角三角形?如果能,试加以道明.47. 已知BD,CE是△ABC的二条下,M、N分别为BC、DE的中面.(1)请写出线段MN与DE的位子有什么闭系?请道明缘由.(2)当∠A=45°时,请推断1△EMD为何种三角形,并道明缘由48. 如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过面A的一条曲线,且面B,C正在AE的二侧,BD⊥AE于面D,CE⊥AE于面E.(1)供证:BD=DE+CE;(2)若曲线AE绕面A转动到如图(2)的位子(BD<CE)时,其余条件没有变,问BD与DE,CE的闭系怎么样?请赋予道明;(3)若曲线AE绕面A转动到如图(3)的位子(BD>CE)时,其余条件没有变,问BD与DE,CE的闭系怎么样?请间接写出截止,没有需道明.49. 如图1,二个没有齐等的等腰曲角三角形OAB战等腰曲角三角形OCD 叠搁正在所有,而且有大众的曲角顶面O.(1)正在图1中,您创造线段AC ,BD 的数量闭系是________________ , 曲线AC ,BD 相接成_________度角.(2)将图1中的△OAB 绕面O 顺时针转动90°角,那时(1)中的二个论断是可创造?请搞出推断并道明缘由(3)将图1中的△OAB 绕面O 顺时针转动一个钝角,得到图3,那时(1)中的二个论断是可创造?请做出推断并道明缘由.50.△BEC 是等腰曲角三ABCD 的里积.51. △O ,过面O 分别做OD AB OE BC OF CA ⊥⊥⊥、、,垂脚分别为面D E F 、、. (1)如图1,若面O 是等边ABC △的三条下线的接面,请分别道明下列二个论断创造的缘由. 论断1.2OD OE OF ++=;论断2.32AD BE CF a ++=; (2)如图2,若面O 是等边ABC △内任性一面,则上述论断12、是可仍旧创造?(写出道理历程).52. 已知二个共一个顶面的等腰Rt △ABC ,Rt △CEF ,∠ABC=∠CEF=90°,对接AF ,M 是AF 的中面,对接MB 、ME .(1)如图1,当CB 与CE 正在共背去线上时,供证:MB ∥CF ;(2)如图1,若CB=a ,CE=2a ,供BM ,ME 的少;(3)如图2,当∠BCE=45°时,供证:BM=ME .53. 如图,已知ABC △中,∠B=∠C ,AB=AC=8厘米,BC=6厘米,面D 为AB 的中面.如果面P 正在线段BC 上以每秒2厘米的速度由B 面背C 面疏通,共时,面Q 正在线段CA 上以每秒a 厘米的速度由C 面背A 面疏通,设疏通时间为t (秒).O图1 图2 图B(1)用含t 的代数式表示线段PC 的少度;(2)若面P 、Q 的疏通速度相等,通过1秒后,BPD △ 与CQP △是可齐等,请道明缘由;(3)若面P 、Q 的疏通速度没有相等,当面Q的疏通速度a为几时,不妨使BPD △与CQP △齐等?(4)若面Q 以(3)中的疏通速度从面C 出收,面P 以本去的疏通速度从面B 共时出收,皆顺时针沿ABC △三边疏通,供通过多万古间面P 与面Q 第一次正在ABC △的哪条边上相逢?54. 如图,正在ABC ∆中,BAD DAC ∠=∠,DF AB ⊥,DM AC ⊥,AF=10cm ,AC=14cm ,动面E 以2cm/s 的速度从A 面背F 面疏通,动面G 以1cm/s 的速度从C 面背A 面疏通,当一个面到达末面时,另一个面随之停止疏通,设疏通时间为t .(1)供证:正在疏通历程中,没有管t 与何值,皆有2AED DGC S S ∆∆=;(2)当t 与何值时,DFE ∆与DMG ∆齐等供(3)正在(2)的前提下,若119126BD DC =,228AED S cm ∆=,BFD S ∆55. 已知等边△ABC 战面P ,设面P 到△ABC3边的AB 、AC 、BC•的距离分别是h1,h2,h3,△ABC 的下为h ,若面P 正在一边BC 上(图1),此时h=0,可得论断h1+h2+h3=h ,请您探索以下问题:当面P 正在△ABC 内(图2)战面P 正在△ABC 中(图3)那二种情况时,h1、h2、h3与h•之间有何如的闭系,请写出您的预测,并简要道明缘由.(1) (2) (3)D B C P AQ56.如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动面P从面C启初,按CABC的路径疏通,且速度为每秒2㎝,设疏通的时间为t秒.(1)供t为何值时,CP把△ABC的周少分成相等的二部分;(2)供t为何值时,CP把△ABC的里积分成相等的二部分;并供此时CP 的少;(3)供t为何值时,△BCP为等腰三角形?57. 已知,△ABC是边少3cm的等边三角形.动面P以1cm/s的速度从面A 出收,沿线段AB背面B疏通.(1)如图1,设面P的疏通时间为t(s),那么t=(s)时,△PBC是曲角三角形;(2)如图2,若另一动面Q从面B出收,沿线段BC背面C疏通,如果动面P、Q皆以1cm/s的速度共时出收.设疏通时间为t(s),那么t为何值时,△PBQ是曲角三角形?(3)如图3,若另一动面Q从面C出收,沿射线BC目标疏通.对接PQ接AC于D.如果动面P、Q皆以1cm/s的速度共时出收.设疏通时间为t(s),那么t为何值时,△DCQ是等腰三角形?(4)如图4,若另一动面Q从面C出收,沿射线BC目标疏通.对接PQ接AC于D,对接PC.如果动面P、Q皆以1cm/s的速度共时出收.请您预测:正在面P、Q的疏通历程中,△PCD战△QCD的里积有什么闭系?并道明缘由.58.如图所示,已知AD是∠BAC的仄分线,EF笔曲仄分AD接BC的延少线于面F,接AD于面E,对接AF,供证:∠B=∠CAF.59.如图所示,AD是∠BAC的仄分线,DE⊥AB,DF⊥AC,垂脚分别为E,F,对接EF,EF与AD接于面G,供证:AD笔曲仄分EF.60.已知一个等腰三角形二内角的度数之比为1:4,则那个等腰三角形顶角的度数为_________.15.如图所示,已知面D 是等边三角形ABC 的边BC 延少线上的一面,∠EBC=∠DAC ,CE ∥AB.供证:△CDE 是等边三角形.61.如图所示,正在△ABC 中,AB=AC ,正在AB 边上与面D ,正在AC 的延少线上与面E ,使得BD=CE ,对接DE 接BC 于面G ,供证:DG=GE.62.一艘轮船以15海里/时的速度由北背北航止,如图,正在A 处视小岛P ,测得∠PAN=15°,二小时后,轮船到达B 处,测得∠PBN=30°,正在小岛P 周围18海里的范畴内有暗礁,若轮船继承背北航止,有无触礁伤害?63.如图,公园内二条小河MO 、NO 正在O处汇合,二河产死的半岛上有一处古迹P.现计划正在二条小河上各建一座小桥Q 战R ,并正在半岛上建三段小路,连通二座小桥战古迹.那二座小桥应建正在那边,才搞使建盘费最少? 64. 三角形ABC 中,AB=AC ,∠BAC=120°,AB 的笔曲仄分线EF 接AB 于E ,接BC 于F .若FC=3cm ,则供BF 少度65. 正在Rt △ABC 中,∠CE 是斜边上的下.(1)请道明AB 的少.668cm ,•少BC•为10cm .痕为AE ).念一念,此时EC 67、如图一齐四边形草坪供那块草坪的里积.68. 如图,A 、B 二个小集镇正在河流CD 的共侧,分别到河的距离为AC=10N B A B千米,BD=30千米,且CD=30千米,当前要正在河边建一自去火厂,背A、B二镇供火,铺设火管的费用为每千米3万,请您正在河流CD上采用火厂的位子M,使铺设火管的费用最节省,并供出总费用是几?69.如图,A市局里站测得台风核心正在A市正东目标300千米的B处,以107千米/时的速度背北偏偏西60°的BF目标移动,距台风核心200•千米范畴内是受台风做用的地区.(1)A市是可会受到台风的做用?写出您的论断并赋予道明;(2)如果A市受那次台风做用,那么受台风做用的时间有多少?70、如图:正在△ABC中,∠C=2∠B,AD是△ABC的角仄分线,∠1=∠B,试道明AB=AC+CD71、如图,AD是∠BAC的角仄分线,DE⊥AB垂脚为E,DF⊥AC,垂脚为面F,且BD=CD 供证:BE=CF72、如图,面B战面C分别为∠MAN二边上的面,AB=AC.(1)按下列语句绘出图形:①AD⊥BC,垂脚为D;②∠BCN的仄分线CE与AD的延少线接于面E;③连结BE;(2)正在完毕(1)后没有增加线段战字母的情况下,请您写出除△ABD≌△ACD中的二对于齐等三角形:____≌____,____≌____;(3)并采用其中的一对于齐等三角形给予道明.73、已知:AB=AC,AD⊥BC,CE仄分∠BCN,供证:△ADB≌△ADC;△BDE≌△CDE.AB D CM NE74、如图,PB、PC分别是△ABC的中角仄分线且相接于面P.供证:面P正在∠A的仄分线上AB CP75、如图,△ABC中,p是角仄分线AD,BE的接面. 供证:面p正在∠C 的仄分线上76、下列道法中,过失的是()A.三角形任性二个角的仄分线的接面正在三角形的里里B.三角形二个角的仄分线的接面到三边的距离相等C.三角形二个角的仄分线的接面正在第三个角的仄分线上D.三角形任性二个角的仄分线的接面到三个顶面的距离相等77、如图正在三角形ABC中BM=MC∠ABM=∠ACM供证AM仄分∠BAC78、如图,AP、CP分别是△ABC中角∠MAC与∠NCA的仄分线,它们相接于面P,PD⊥BM于面D,PF⊥BN于面F.供证:BP为∠MBN的仄分线.79、如图,正在∠AOB的二边OA,OB上分别与OM=ON,OD=OE,DN 战EM相接于面C.供证:面C正在∠AOB的仄分线上.80、如图,∠B=∠C=90°,M是BC的中面,DM仄分∠ADC.(1)若对接AM,则AM是可仄分∠BAD?请您道明您的论断;(2)线段DM与AM有何如的位子闭系?请道明缘由.81、八(1)班共教上数教活动课,利用角尺仄分一个角(如图所示).安排了如下规划:(Ⅰ)∠AOB是一个任性角,将角尺的曲角顶面P介于射线OA、OB之间,移动角尺使角尺二边相共的刻度与M 、N 沉合,即PM=PN ,过角尺顶面P 的射线OP 便是∠AOB 的仄分线.(Ⅱ)∠AOB 是一个任性角,正在边OA 、OB 上分别与OM=ON ,将角尺的曲角顶面P 介于射线OA 、OB 之间,移动角尺使角尺二边相共的刻度与M 、N 沉合,即PM=PN ,过角尺顶面P 的射线OP 便是∠AOB 的仄分线.(1)规划(Ⅰ)、规划(Ⅱ)是可可止?若可止,请道明;若没有成止,请道明缘由;(2)正在规划(Ⅰ)PM=PN 的情况下,继承移动角尺,共时使PM ⊥OA ,PN ⊥OB .此规划是可可止?请道明缘由.内的一面,PE ⊥AB ,PF ⊥AC ,垂脚分别为面E ,F ,AE=AF.供证:(1)PE=PF ;(2)面P 正在∠BAC 的角仄分线上.83、如图,面D 、B 分别正在∠A 的二边上,C 是∠A 内一面,AB=AD ,BC=CD ,CE ⊥AD 于E ,CF ⊥AF 于F.供证:CE=CF84、已知三角形三边少为a ,b ,c ,且丨a+b+c 丨+丨a-b-c 丨=10,供b 的值.85、已知:∠1=∠2,CD=DE ,EF//AB ,供证:EF=AC86、如图,△ABC 战△ADE 皆是等腰曲角三角形,CE与BD 相接于面M,BD 接AC 于面N ,道明:(1)BD=CE.(2)BD ⊥CE.87、如图,已知AD ∥BC ,∠PAB 的仄分线与∠CBA 的仄分线相接于E ,CE 的连线接AP 于D .供证:AD+BC=ABB ACD F 2 1 E88、如图,△ABC中BA=BC,面D是AB延少线上一面,DF⊥AC于F接BC于E,供证:△DBE是等腰三角形.89、如图,正在△ABC中,AC=BC,∠ACB=90°,D是AC上一面,AE⊥BD 接BD的延少线于E,且AE=1BD.供证:BD是∠ABC的角仄分线.290、如图,∠BAD=∠CAD,AD⊥BC,垂脚为面D,BD=CD可知哪些线段是哪个三角形的角仄分线、中线、下?91、如图所示,正在△ABC中,已知AC=8,BC=6,AD⊥BC于D,AD=5,BE⊥AC于E,供BE的少92、如图,AD是△ABC的角仄分线,DE∥AB,DF∥AC,EF接AD于面O.请问:DO是△DEF的角仄分线吗?请道明缘由.(2)若将论断与AD是∠CAB的角仄分线、DE∥AB、DF∥AC中的任一条件接换,所得命题精确吗?93、如图,△ABC中,∠ABC与∠ACB的仄分线接于面I,根据下列条件,供∠BIC的度数.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=°(2)若∠ABC+∠ACB=120°,则∠BIC=°(3)若∠A=90°,则∠BIC=°;(4)若∠A=n°则∠BIC=°(5)从上述估计中,咱们能创造∠BIC与∠A的闭系吗?AIB C94、如图,供证∠A+∠B+∠C+∠D+∠E=180°95、如图,没有准则的五角星图案,供证:∠A+∠B+∠C+∠D+∠E=180°96、D为△ABC的边AB上一面,且∠ADC=∠ACD.供证:∠ACB>∠B97、如图,D是BC延少线上的一面,∠ABC.∠ACD的仄分线接于面E,供证:∠E=1/2∠A98、如图,BE与CD相接于面A,CF为∠BCD的仄分线,EF为∠BED的角仄分线.(1)试供∠F与∠B,∠D的闭系;(2)若∠B:∠D:∠F=2:4:x 供X的值99、如图,正在△ABC中,∠B=47°,三角形的中角∠DAC战∠ACF的仄分线接于面E,则∠AEC=度.100.如图,正在Rt△ABC中,已知∠ACB=90°,AC=BC,D为DC的中面,CE⊥AD于E,BF∥AC接CE的延少线于面F.供证:AB笔曲仄分DF.。
(完整版)八年级上册——全等三角形证明题题型归类训练
(完整版)八年级上册——全等三角形证明题题型归类训练-CAL-FENGHAI.-(YICAI)-Company One1《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C .求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分O C E BDAABEO FD3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .AFC BDEG2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AE4、在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.ABC FD E5、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。
初二上几何证明题100题专题训练
MN DEB C AA B C DE P 图 ⑴八年级上册几何题专题训练100题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC的中点,求证:⊿RDQ 是等腰直角三角形。
RQDCABP2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
EFDCAB3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .5、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。
(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明);(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。
6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD , 连结EC 、ED ,求证:CE=DE7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。
8. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数.A B COM NFO E DCB A9. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D10.如图,OP平分∠AOB ,且OA=OB .(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明.11. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。
初二上册数学证明练习题
初二上册数学证明练习题证明1:三角形的内角和为180度三角形是平面上三个点的连接线段,我们需要证明三角形的内角和为180度。
证明:设三角形的三个内角分别为A、B、C,现证明A+B+C=180度。
首先,我们可以通过画一条线段,将三角形分成两个小三角形,如下图所示:A/ \/ \/____\B C对于三角形ABC,我们将其分成两个小三角形ABD和ACD。
根据直角三角形的性质,我们可以知道直角三角形ABD的内角B = 90度。
同样地,直角三角形ACD的内角C = 90度。
而根据全角的性质,我们知道直线AD上的所有内角之和为180度。
即,由于直线AD是三角形ABC的边,我们可以得出等式:B + A + C = 180度。
综上所述,我们证明了三角形的内角和为180度。
证明2:正方形的对角线相等正方形是一个具有四个相等边且四个内角均为直角的四边形,我们需要证明正方形的对角线相等。
证明:设正方形ABCD的边长为a,对角线AC和BD的长度分别为d1和d2。
我们需要证明d1 = d2。
首先,我们可以通过连接顶点A和顶点C,构成直角三角形ACD 和直角三角形ABC。
根据勾股定理,我们可以得到直角三角形ACD的斜边AC的长度为d1:AC² = AD² + CD²同样地,我们可以得到直角三角形ABC的斜边AC的长度为d2:AC² = AB² + BC²因为正方形的边长均为a,所以我们可以得到以下等式:AD = CD = BC = AB = a将以上等式代入勾股定理的公式中,我们可以得到:d1 = a² + a² = 2a²d2 = a² + a² = 2a²因此,d1 = d2。
综上所述,我们证明了正方形的对角线相等。
证明3:平行四边形的对角线互相平分平行四边形是具有两对平行的边的四边形,我们需要证明平行四边形的对角线互相平分。
八年级上册几何证明题
八年级上册几何证明题一、三角形内角和定理相关证明题。
1. 已知:在△ABC中,∠A = 50°,∠B = 60°,求证:∠C = 70°。
解析:根据三角形内角和定理,三角形内角和为180°。
在△ABC中,因为∠A+∠B +∠C=180°,已知∠A = 50°,∠B = 60°,所以∠C=180°∠A ∠B = 180°-50° 60° = 70°。
2. 如图,在△ABC中,AD是∠BAC的平分线,∠B = 70°,∠C = 30°,求∠ADC的度数。
解析:根据三角形内角和定理,在△ABC中,∠BAC=180°∠B ∠C = 180°-70° 30° = 80°。
因为AD是∠BAC的平分线,所以∠BAD = 1/2∠BAC = 40°。
在△ABD中,根据三角形外角性质,∠ADC = ∠B+∠BAD,所以∠ADC = 70°+40° = 110°。
二、等腰三角形性质证明题。
3. 已知:在等腰△ABC中,AB = AC,∠A = 80°,求∠B和∠C的度数。
解析:因为AB = AC,所以△ABC是等腰三角形,根据等腰三角形两底角相等的性质,设∠B =∠C=x。
根据三角形内角和定理,∠A+∠B +∠C = 180°,即80°+x + x = 180°,2x=180° 80°,2x = 100°,x = 50°,所以∠B =∠C = 50°。
4. 如图,在等腰三角形ABC中,AB = AC,BD⊥AC于点D,求证:∠CBD=(1)/(2)∠A。
解析:设∠A=x。
因为AB = AC,所以∠ABC =∠ACB=(1)/(2)(180° x)=90°-(x)/(2)。
初二数学几何证明题(5篇可选)
初二数学几何证明题(5篇可选)第一篇:初二数学几何证明题1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M 是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。
如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC 且与AB的延长线交与点E,求证四边形AECD是等腰梯形?6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。
求证:EF=BE+DF第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论AEB第三篇:初二几何证明题初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。
M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D求证:∠AHE=∠BGE证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF ∵FM‖BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC证明:BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)==>BE=AB*BC/(BC+AC)同理:CD=AC*BC/(BC+AB)假设AB≠AC,不妨设AB>AC.....(*)AB>AC==>BC+ACAC*BC==>AB*AB/(BC+AC)>AC*BC/(BC+AB)==>BE>CDAB>AC==>∠ACB>∠ABC∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2==>∠BEC>∠BDC过B作CE平行线,过C作AB平行线,交于F,连DF则BECF为平行四边形==>∠BFC=∠BEC>∠BDC (1)BF=CE=BD==>∠BDF=∠BFDCF=BE>CD==>∠CDF>∠CFD==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC (2)(1)(2)矛盾,从而假设(*)不成立所以AB=AC。
八年级上册几何证明题专项练习
八年级上册几何证明题专项练习八年级上册几何证明题专项练习1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.7.如图,点A,B,C,D在同一条直线上,CE ∥DF,EC=BD,AC=FD.求证:AE=FB.8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.16.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE 交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.18.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN 相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.20.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.21.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.22.如图,点E是∠AOB的平分线上一点,EC ⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.24.如图,在△ABC中,AB=AC,AD是BC 边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.25.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.26.如图,已知△ABC中,AB=AC,BD、CE 是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.27.如图,在△ABC中,AB=AC,点D、E、F 分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.28.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF ⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.29.图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN 交于点F,探究△CEF的形状,并证明你的结论.30.如图①,△ABC中,AB=AC,∠B、∠C 的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.。
八年级上册几何证明题专项练习
八年级上册几何证明题专项练习八年级上册几何证明题专项练习1.如图,△ABC、△CDE均为等腰直角三角形,ACB=DCE=90,点E在AB上.求证:△CDA≌△CEB.2.如图,BDAC于点D,CEAB于点E,AD=AE.求证:BE=CD.3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,A=D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.4.如图:点C是AE的中点,A=ECD,AB=CD,求证:B=D.5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.6.如图,BEAC,CDAB,垂足分别为E,D,BE=CD.求证:AB=AC.7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.8.如图,在△ABC中,AC=BC,C=90,D是AB的中点,DEDF,点E,F分别在AC,BC上,求证:DE=DF.9.如图,点A、C、D、B 四点共线,且AC=BD,A=B,ADE=BCF,求证:DE=CF.10.如图,已知CAB=DBA,CBD=DAC.求证:BC=AD.11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,1=2.(1)求证:BD=CE;(2)求证:M=N.14.如图,ACB=90,AC=BC,ADCE,BECE,垂足分别为D,E.求证:△ACD≌△CBE.15.如图,四边形ABCD中,E点在AD上,BAE=BCE=90,且BC=CE,AB=DE.求证:△ABC≌△DEC.16.如图,在△ABC中,AB=CB,ABC=90,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若CAE=30,求BDC的度数.17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BEAE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.18.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若MFN=70,求MCN的度数.19.已知△ABC中,AD是BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:BAF=ACF.20.如图所示,在Rt△ABC中,ACB=90,AC=BC,D为BC边上的中点,CEAD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.21.如图:在△ABC中,C=90,AD是BAC的平分线,DEAB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.22.如图,点E是AOB的平分线上一点,ECOA,EDOB,垂足分别为C、D.求证:(1)ECD=EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.23.如图,四边形ABCD中,B=90,AB∥CD,M为BC边上的一点,且AM平分BAD,DM平分ADC.求证:(1)AMDM;(2)M为BC的中点.24.如图,在△ABC中,AB=AC,AD 是BC边上的中线,BEAC于点E.求证:CBE=BAD.25.如图,已知AB=AC=AD,且AD∥BC,求证:C=2D.26.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若ABC=50,求BOC的度数.27.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当A=40时,求DEF的度数.28.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EFDE,交BC的延长线于点F.(1)求F的度数;(2)若CD=2,求DF的长.29.图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.30.如图①,△ABC中,AB=AC,B、C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若ABAC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.。
初二上第一学期几何证明阶段测试卷
2017学年第一学期初二第19章几何证明单元测试卷班级 __________学号 __________姓名 成绩 _________一、选择题(每小题 分,共 分)如图,✌,直线☜☞分别交✌, 于点☜,☞,☜☝平分∠ ☜☞,若 ,则 的度数为☎ ✆.✌ 下列命题正确的是☎ ✆✌垂直于同一条直线的两条直线互相平行; 互余的两个角都是锐角; 两条直线被第三条直线所截,同旁内角互补; 面积相等的三角形全等 如图 在△✌中 ✌=✌ ⊥✌于 则下列判断正确的是☎ ✆✌∠✌=∠ ∠✌=∠✌ ∠✌=∠ ∠✌= ∠ 如图,△✌,∠ 090 ✌平分∠ ✌若 ♍❍那么 到✌的距离是( )✌♍❍ ♍❍ ♍❍ ♍❍ 已知在 ♦△✌中,斜边✌的垂直平分线 ☜交✌于☜直角边✌于点 ,若∠ = ,则∠✌等于 ☎ ✆. ✌. ; . ; . ; . .第 题图 第 题图 第 题图第 题图 如图 ✌=✌= 那么∠ 与∠ 之间的关系满足☎ ✆✌✌∠ = ∠ ∠ +∠ = ° ∠ + ∠ = °∠ -∠ = °二、填空题(每题 分,共 分)ABC △中,ABC ∠和ACB ∠的平分线相交于点O ,若110BOC ∠,则BAC ∠的度数为 . 写出“ 等腰三角形的定义”是♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉.等腰三角形一腰上的高与底边所夹的角为 °,那么这个等腰三角形的顶角为 度..将命题“等角对等边”改写为“如果 ,那么 ”的形式:♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉ ♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉.若已知一个三角形的两边的长分别为 和 那么其第三边上的中线长❍的取值范围是♉♉♉♉♉♉♉♉♉♉♉♉♉。
初二数学图形与证明试题答案及解析
初二数学图形与证明试题答案及解析1.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有()个.A.1B.2C.3D.4【答案】C【解析】∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,∴①正确;∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,∴②错误;点H与点A重合时,设BF=x,则AF=FC=8-x,在Rt△ABF中,,即,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,∴③正确;过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得EF=2,∴④正确;【考点】图形的翻折、勾股定理.2.如图,沿折叠后,点落在边上的处,DE∥BC,,则的度数为.【答案】80°.【解析】先根据折叠的性质可得∠ADE=∠ED,再由平行线的性质可得∠B=∠ADE=50°,由平角的性质即可求=180°-∠ADE-∠ED=180°-50°-50°=80°.【考点】折叠的性质;平行线的性质;平角的性质.3.如图,在□ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=_____度.【答案】20.【解析】∵ DB=DC,∴∠DBC=∠C=70°,∵是□ABCD,∴AD∥BC,∴∠ADB=∠DBC=70º,∵AE⊥BD于E,∴∠AED=90º,∴∠DAE=90-70=20º.【考点】平行四边形性质.4.如图,△ABC为等腰三角形,如果把它沿底边BC翻折后,得到△DBC,那么四边形ABDC为().A.菱形B.正方形C.矩形D.一般平行四边形【答案】A.【解析】此题先判定四边形ABDC为平行四边形,再通过邻边相等判定四边形ABDC为菱形,∵△ABC为等腰三角形,∴∠ABC=∠ACB,又∵折叠角相等,∴∠ABC=∠DBC,∠ACB=∠DCB,∴∠ABC=∠DCB,∠ACB=∠DBC,∴AB∥DC,AC∥BD,∴四边形ABDC为平行四边形,又∵折叠边相等,AB=BD,∴四边形ABDC为菱形.【考点】菱形的判定.5.将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的倍(木条宽度忽略不计),则这个平行四边形的最小内角为度.【答案】45【解析】如图所示:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的,∴BC=CE,∵sin∠CBE==,∴∠CBE=∠A=45°.【考点】1.矩形的性质;2.平行四边形的性质.6.(本题10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F 同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是,始终保持不变;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=cm,连接EF,当EF与GH的夹角为45°,求t的值.【答案】(1)等腰直角三角形;(2);(3)3.【解析】(1)判断三角形CDE和三角形CBF全等是解题的关键;(2)此题过点E作EN∥AB,交BD于点N,证明△EMN≌△FMB,得出EM=FM,于是AM是直角三角形AEF斜边EF中线,只要求出EF长,AM长就求出来了;(3)设EF与GH交于P,连接CE,CF,若∠EPH=45°,前面已证∠EFC=45º,显然GH∥CF,又有AF∥DC,可判断四边形GFCH是平行四边形,CF=GH=,在Rt△CBF中,用勾股定理求出BF长,即t值求出.试题解析:(1)∵点E,F的运动速度相同,且同时出发移动t秒,∴DE=BF=t,又∵CD=CB,∠CDE=∠CBF,∴△CDE≌△CBF,∴CE=CF,∠DCE=∠BCF,∠ECF=∠ECB+∠BCF=∠ECB+∠DCE=90º,∴△CEF的形状是等腰直角三角形;(2)先证△EMN≌△FMB,过点E作EN∥AB,交BD于点N,∴∠END=∠ABD=∠EDN=45°,∴EN="ED=BF=2" ,可证△EMN≌△FMB(AAS),∴EM=FM,Rt△AEF中,AE=4,AF=6+2=8,EF=,∴AM=EF=.(3)连接CE,CF,设EF与GH交于P,由(1)得∠CFE=45°,又∠EPH=45°,∴GH∥CF,又AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=,在Rt△CBF中,得BF=3,∴t=3.【考点】1.正方形性质;2.三角形全等及勾股定理的运用;3.平行四边形的判定与性质.7.下列命题中是真命题的有()个.①相等的角是对顶角;②两直线被第三条直线所截,内错角相等;③若m2=n2,则m=n;④平行四边形的对角线互相平分;⑤一组对边平行,一组对边相等的四边形是平行四边形.A.0B.1C.2D.3【答案】B.【解析】命题①相等的角是对顶角,如两个直角相等,但两个直角不一定是对顶角,命题①错误;命题②两直线被第三条直线所截,内错角相等,命题②错误,正确的为两条平行线被第三条直线所截,所得的内错角相等;命题③若m2=n2,则m=n,如,但2≠-2,命题③错误;命题④平行四边形的对角线互相平分,根据平行四边形的性质可得,命题④正确;命题⑤一组对边平行,一组对边相等的四边形是平行四边形,根据平行四边形的判定可得一组对边平行且相等的四边形是平行四边形,命题⑤错误.故答案选B.【考点】命题与定理.8.已知,如图,点B、E、C、F四点在同一条直线上,AB∥DE,AB=DE,AC、DE相交于点O,BE=CF.求证:AC=DF.【答案】详见解析.【解析】已知AB∥DE,根据平行线的性质可得∠B=∠E,再由BE=CF可得BC=EF,根据SAS可判定△ABC≌△DEF,即可得AC=DF.试题解析:证明:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.【考点】平行线的性质;全等三角形的判定及性质.9.(3分)下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.1.5,2,2.5C.,1,D.40,50,60【答案】D【解析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.解:A、72+242=625=252,故是直角三角形,不符合题意;B、1.52+22=6.25=2.52,故是直角三角形,不符合题意;C、12+()2==()2,故是直角三角形,不符合题意;D、402+502=4100≠602,故不是直角三角形,符合题意.故选:D.【考点】勾股定理的逆定理.10.已知一直角三角形的木板,三边的平方和为1800,则斜边长为.【答案】30.【解析】∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为1800,则斜边的平方为三边平方和的一半,即斜边的平方为=900,∴斜边长==30.故斜边长为30.【考点】勾股定理.11.顺次连接四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.以上都不对【答案】A.【解析】如图四边形ABCD,E、N、M、F分别是DA,AB,BC,DC中点,连接AC,DE,根据三角形中位线定理可得:EF平行且等于AC的一半,MN平行且等于AC的一半,根据平行四边形的判定,可知四边形为平行四边形.故选A.【考点】三角形中位线定理.12.已知三组数据:①2,3,4;②3,4,5;③1,,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.②B.①②C.①③D.②③【答案】D.【解析】①∵22+32=13≠42,∴以这三个数为长度的线段不能构成直角三角形,故不符合题意;②∵32+42=52,∴以这三个数为长度的线段能构成直角三角形,故符合题意;③∵12+()2=22,∴以这三个数为长度的线段能构成直角三角形,故符合题意.故构成直角三角形的有②③.故选D.【考点】勾股定理的逆定理.13.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.【答案】8【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CE=OC=OD=2,∴四边形CODE的周长=2×4=8;【考点】1.菱形的判定与性质;2.矩形的性质.14.一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?求出四边形ABCD的面积.【答案】36.【解析】根据勾股定理的逆定理,判断出△ABD、△BDC的形状,从而判断这个零件是否符合要求;这个零件的面积=△ABD的面积+△BDC的面积,再根据三角形面积公式即可求解.试题解析:∵AD=4,AB=3,BD=5,DC=13,BC=12,∴AB2+AD2=BD2,BD2+BC2=DC2,∴△ABD、△BDC是直角三角形,∴∠A=90°,∠DBC=90°,∴这个零件的面积=△ABD的面积+△BDC的面积=3×4÷2+5×12÷2,=6+30,=36.故这个零件的面积是36.【考点】1.勾股定理的逆定理;2.勾股定理.15.等腰△ABC的腰长AB=10cm,底BC为16cm,面积为 .【答案】48cm2.【解析】如图所示,∵AB=AC=10cm,AD⊥BC,∴BD=CD=BC=8cm,在Rt△ABD中,根据勾股定理得:AD=cm.∴S△ABC=BC•AD=×16×6=48cm2.【考点】1.勾股定理;2.等腰三角形的性质.16.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交C于F,EG⊥AB于G,请判断四边形GECF的形状,并证明你的结论.【答案】四边形GECF是菱形,理由详见解析.【解析】根据全等三角形的判定定理HL进行证明Rt△AEG≌Rt△AEC(HL),得到GE=EC;根据平行线EG∥CD的性质、∠BAC平分线的性质以及等量代换推知∠FEC=∠CFE,易证CF=CE;从而根据邻边相等的平行四边形是菱形进行判断.试题解析:四边形GECF是菱形,理由如下:∵∠ACB=90°,∴AC⊥EC.又∵EG⊥AB,AE是∠BAC的平分线,∴GE=CE.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL),∴GE=EC,∵CD是AB边上的高,∴CD⊥AB,又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA,∵Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,∴GE=EC=FC,又∵EG∥CD,即GE∥FC,∴四边形GECF是菱形.【考点】菱形的判定.17.将一副常规的三角尺如图放置,则图中∠AOB的度数是()A.75°B.95°C.105°D.120°【答案】C【解析】由已知可得∠ACO=45°-30°=15°,根据三角形外角的性质可得∠AOB=∠A+∠ACO=90°+15°=105°.故答案选C.【考点】三角形外角的性质.18.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【答案】D【解析】选项A,根据三角形的内角和定理可知一个三角形中至少有一个角不少于60°,选项A正确;选项B,三角形的中线都在三角形的内部,不可能在三角形的外部,选项B正确;选项C,根据等底同高的两个三角形的面积相等可知三角形的中线把三角形的面积平均分成相等的两部分,选项C正确;选项D,直角三角形由三条高,其中两条是直角边,选项D错误.故答案选D.【考点】三角形的内角和定理;三角形的高线、中线.19.如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD=_______.【答案】35°.【解析】已知△ABC≌△ADE,根据全等三角形的性质可得∠CAB=∠EAD,所以∠EAC=∠CAB-∠EAB,∠BAD=∠EAD-∠EAB,即∠BAD=∠EAC=35°.【考点】全等三角形的性质.20.如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.【答案】详见解析.【解析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,根据SAS可得△ABC≌△DEF,再由全等三角形的对应边相等即可得出BC=EF.试题解析:证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【考点】全等三角形的判定及性质.21.(3分)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD 长为_____________cm.【答案】4.【解析】连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.【考点】菱形的性质;线段垂直平分线的性质.22.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,C.1,1,D.1,2,【答案】D.【解析】A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.【考点】解直角三角形.23.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【答案】B.【解析】试题解析:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选B.【考点】全等三角形的应用.24.如果等腰三角形的一个角为80°,那么它的一个底角为__________.【答案】50°或80°.【解析】试题解析:由题意知,分两种情况:(1)当这个80°的角为顶角时,则底角=(180°-80°)÷2=50°;(2)当这个80°的角为底角时,则另一底角也为80°.【考点】等腰三角形的性质25.一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是_________.【答案】10cm.【解析】如图,可以把A和B展开到一个平面内,即圆柱的半个侧面是矩形:矩形的长是圆柱底面周长的一半即2π=6.矩形的宽是圆柱的高8.根据勾股定理可得,爬行的最短路程是矩形的对角线的长为10cm.【考点】最短路径问题;勾股定理.26.在等腰三角形中有一个角是50°,它的顶角是()或().【答案】50°,80°.【解析】因为题目中没有指明该角是顶角还是底角,所以要分两种情况进行分析.①50°是底角,则顶角为:180°-50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.【考点】三角形内角和定理、等腰三角形的性质.27.(12分)如图,在五角星ABCDE中,试说明:∠A+∠B+∠C+∠D+∠E=180°.【答案】详见解析.【解析】如图,根据三角形外角的性质可得∠B+∠D=∠1,∠A+∠C=∠2,在由三角形内角和定理可知∠1+∠2+∠E=180°,即可得∠B+∠D+∠A+∠C+∠E=180°.试题解析:解:如图∵∠1是△BDF的外角,∴∠B+∠D=∠1,同理∠A+∠C=∠2,由三角形内角和定理可知∠1+∠2+∠E=180°,即,∠B+∠D+∠A+∠C+∠E=180°.【考点】三角形外角的性质;三角形内角和定理.28.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12B.13C.14D.18【答案】B.【解析】∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【考点】1.等腰三角形的判定与性质;2.平行线的性质.29.如图,Rt△ABC中,∠C=90°,D是AB的中点,若AB=10,则CD的长等于.【答案】5.【解析】∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=AB,∵AB=10,∴CD=×10=5.故答案为:5.【考点】直角三角形斜边上的中线.30.等腰三角形中有一个角等于70º,则它的底角度数是()A.70ºB.55ºC.40º或55ºD.70º或55º【答案】D.【解析】①当这个角是顶角时,底角=(180°﹣70°)÷2=55°;②当这个角是底角时,另一个底角为70°,因为70°+70°<180°,符合三角形内角和定理;故选D.【考点】1.等腰三角形的性质;2.分类讨论.31.到三角形三边距离相等的点是()A.三角形三边垂直平分线的交点B.三角形有三条高的交点C.三角形三条角平分线的交点D.三角形三条中线的交点【答案】C.【解析】∵OG⊥AB,OF⊥AC,OG=OF,∴O在∠A的平分线上,同理O在∠B的平分线上,O在∠C的平分线上,即O是三条角平分线的交点,故选C.【考点】1.角平分线的性质;2.三角形的角平分线、中线和高.32.若等腰三角形一个外角等于100,则它的顶角度数为().A.20°B.80°C.20°或80°D.无法确定【答案】C.【解析】①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选C.【考点】1.等腰三角形的性质;2.分类讨论.33.下列说法中,错误的有()①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有两边及一角对应相等的两个三角形全等.A.1个B.2个C.3个D.4个【答案】C.【解析】①全等三角形的周长相等,但周长相等的两个三角形不一定全等,故①错误;②周长相等的等边三角形,边长也相等,根据SSS可判定两三角形全等,故②正确;③判定全等三角形的过程中,必须有边的参与,故③错误;④有两边对应相等,且两边的夹角对应相等的两三角形全等(SAS),故④错误;所以错误的结论有①③④,故选C.【考点】全等三角形的判定.34.(本题7分)△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B 的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.【答案】(1)答案见试题解析;(2)当y=90°﹣x或y=90°+x或x=45°且y>x或y=135°﹣或y=135°﹣x时△ABC存在伴侣分割线.【解析】(1)首先了解伴侣分割线的定义,然后把角ABC分成90°角和20°角即可;(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形;第二种情况:△BDC是直角三角形,△ABD是等腰三角形分别进行分析.试题解析:(1)如图所示:(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=x.当∠A=90°时,△ABC存在伴侣分割线,此时y=90°﹣x,当∠ABD=90°时,△ABC存在伴侣分割线,此时y=90°+x,当∠ADB=90°时,△ABC存在伴侣分割线,此时x=45°且y>x;第二种情况:△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时180°﹣x﹣y=y﹣90°,∴y=135°﹣,当∠BDC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时∠A=45°,∴y=135°﹣x.综上所述,当y=90°﹣x或y=90°+x或x=45°且y>x或y=135°﹣或y=135°﹣x时△ABC存在伴侣分割线.【考点】1.作图—应用与设计作图;2.分类讨论.35.如图,正方形ABCD的对角线相交于点O,△OEF是正三角形,且AE=BF,则∠AOE= .【答案】15°.【解析】试题解析:∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°.∵△OEF是正三角形,∴OE=OF,∠EOF=60°.在△AOE和△BOF中,,∴△AOE≌△BOF(SSS),∴∠AOE=∠BOF,∴∠AOE=(∠AOB﹣∠EOF)÷2=(90°﹣60°)÷2=15°.【考点】1.全等三角形的判定与性质;2.等边三角形的性质;3.正方形的性质.36.如图,△ABC中,∠C=90°.(1)在BC边上作一点P,使得点P到点C的距离与点P到边AB的距离相等(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=4,BC=3,求CP的长.【答案】(1)作图见解析;(2)CP的长为.【解析】(1)作∠CAB的平分线,交BC于点P,过点P作PD⊥AB于D,则PC=PD;(2)先利用HL证明Rt△ADP≌Rt△ACP,得出AD=AC=3,再设PC=x,则PD=x,BP=4-x,在Rt△BDP中,由勾股定理得出(4-x)2=x2+12,解出x的值即可.试题解析:(1)如图,点P即为所求;(2)∵AP平分∠CAB,PD⊥AB于D,∠C=90°,∴PD=PC.在Rt△ADP和Rt△ACP中,∴Rt△ADP≌Rt△ACP(HL).∴AD=AC=4.在Rt△ABC中,由勾股定理,得AB=5.∴BD=5﹣4=1.设PC=x,则PD=x,BP=3﹣x,在Rt△BDP中,由勾股定理,得PD2+BD2=PB2,即(3﹣x)2=x2+12,解得:x=.答:CP的长为.【考点】1.角平分线的性质;2.勾股定理;3.作图—基本作图.37.若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【答案】D【解析】根据三角形内角和以及等腰三角形的性质可得:顶角的度数为:180-72×2=36°.【考点】等腰三角形38.(10分)如图,在等腰RT△中,,,点是斜边的中点,点、分别为、边上的点,且.(1)判断与的大小关系,并说明理由;(2)若,,求△的面积.【答案】(1)(1分)连接,证明全等(其它方法酌情给分);(2)【解析】(1)连接AD,利用三线合一可得到AD⊥BC,AD=CD=BD,从而得到∠CDF=∠ADE,然后利用ASA证得△DCF≌△ADE后即可证得DF=DE;(2)根据(1)中结论可证:△EDF为等腰直角三角形,在Rt△AEF中,利用勾股定理可将EF的值求出,进而可求出DE、DF的值,代入三角形面积公式计算即可.试题解析:(1)连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,AD=CD=BD,∵DE⊥DF,∴∠CDF+∠ADF=∠EDA+∠ADF,即∠CDF=∠ADE,在△DCF和△ADE中,∠C=∠DAE,∠CDF=∠ADE,CD=AD,∴△DCF≌△ADE(AAS),∴DF=DE;(2)解:由(1)知:AE=CF=6,同理AF=BE=8.∵∠EAF=90°,∴.∴EF=10,又∵由(1)知:△AED≌△CFD,∴DE=DF,∴△DEF为等腰直角三角形,,,【考点】等腰三角形的性质、勾股定理、全等三角形的判定与性质.39.如图,△ABC中,∠BAC=100°,EF, MN分别为AB,AC的垂直平分线,如果BC="12" cm,那么△FAN的周长为 cm,∠FAN= .【答案】12,20°.【解析】∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【考点】线段垂直平分线的性质.40.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7B.7或9C.7D.9【答案】B【解析】根据三角形的三边关系,得:第三边大于8-3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选B.【考点】三角形三边关系41.如图,△ABC为等边三角形,D为射线BC上一点,∠ADE=60°,DE与∠ACB的外角平分线交于点E.(1)如图1,点D在BC上,求证:CA=CD+CE;(2)如图2,若D在BC的延长线上,直接写出CA、CD、CE之间的数量关系.【答案】(1)证明见试题解析;(2)CA=CE-CD.【解析】(1)首先在AC上截取CM=CD,由△ABC为等边三角形,易得△CDM是等边三角形,继而可证得△ADM≌△EDC,即可得AM=EC,则可证得CA=CD+CE;(2)首先在AC延长线上截取CM=CD,由△ABC为等边三角形,易得△CDM是等边三角形,继而可证得△ADM≌△EDC,即可得AM=EC,则可证得CA=CE﹣CD.试题解析:证明:(1)在AC上截取CM=CD,∵△ABC是等边三角形,∴∠ACB=60°,∴△CDM是等边三角形,∴MD=CD=CM,∠CMD=∠CDM=60°,∴∠AMD=120°,∵∠ADE=60°,∴∠ADE=∠MDC,∴∠ADM=∠EDC,∵DE与∠ACB的外角平分线交于点E,∴∠ACE=60°,∴∠DCE=120°=∠AMD,在△ADM和△EDC中,∵∠ADM=∠EDC,MD=CD,∠AMD=∠ECD,∴△ADM≌△EDC(ASA),∴AM=EC,∴CA=CM+AM=CD+CE;(2)CA=CE﹣CD.证明:在AC的延长线上截取CM=CD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠DCM=60°,∴△CDM是等边三角形,∴MD=CD=CM,∠CMD=∠CDM=60°,∵DE与∠ACB的外角平分线交于点E,∴∠ACE=∠DCE=60°,∴∠ECD=∠AMD,∵∠ADE=60°,∴∠ADE=∠CDM,∴∠ADM=∠EDC,在△ADM和△EDC中,∵∠ADM=∠EDC,MD=CD,∠AMD=∠ECD,∴△ADM≌△EDC(ASA),∴AM=EC,∴CA=AM﹣CM=CE﹣CD.【考点】1.等边三角形的性质;2.全等三角形的判定与性质.42.下列三条线段,能组成三角形的是()A.3,3,3B.3,3,6C.3,2,5D.3,2,6【答案】A.【解析】选项B, 3+3=6;选项C, 3+2=5;选项D, 3+2<6.根据三角形的三边关系可得选项B、C、D不能构成三角形,故答案选A.【考点】三角形的三边关系.43.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .【答案】55°.【解析】试题分析:在△ABD与△ACE中,因∠BAC=∠DAE,即∠1+∠CAD=∠CAE+∠CAD,可得∠1=∠CAE.又因为AB=AC,AD=AE,根据SAS可判定△ABD≌△ACE,根据全等三角形的对应角相等可得∠2=∠ABD.再由三角形外角的性质可得∠3=∠1+∠ABD=∠1+∠2 =25°+30°=55°.【考点】全等三角形的判定及性质.44.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于.【答案】10°.【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=10°.故答案为:10°.【考点】1.多边形内角与外角;2.三角形内角和定理.45.如图,将长AB=5cm,宽AD=3cm的矩形纸片ABCD折叠,使点A与C重合,折痕为EF,则AE长为 cm.【答案】3.4【解析】根据矩形的性质可得:BC=AD=3cm,设AE=xcm,则BE=(5-x)cm,根据折叠图形的性质可得CE=AE=xcm,根据Rt△BCE的勾股定理可得:,解得:x=3.4【考点】折叠图形的性质、勾股定理46.计算:如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.【答案】见解析【解析】根据FB=CE得出BC=EF,根据平行得出∠B=∠E,∠ACB=∠DFE,从而得出三角形全等.试题解析:∵FB=CE ∴BC=EF ∵ AB∥ED ∴∠B=∠E ∵ AC∥EF ∴∠ACB=∠DFE∴△ABC≌△DEF ∴AC=DF【考点】三角形全等的判定及性质47.已知等腰三角形的两条边长分别是3和7,则它的周长是()A.17B.15C.13D.13或17【答案】A【解析】当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.【考点】等腰三角形的性质48.如图,∠AOP=∠BOP=15°,PC∥OA,PQ⊥OA,若PC=4,则PQ=___ __.【答案】2【解析】过点P作PE⊥OB,根据题意可得:∠COP=∠CPO=15°,根据外角的性质可得:∠ECP=30°,根据直角三角形的性质可得:PE=2,根据角平分线的性质可得:PQ=PE=2.【考点】角平分线的性质、直角三角形49.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两锐角相等【答案】D【解析】A可利用SAS来判定全等,故正确;B可利用AAS来判定全等,故正确;C可利用HL判定全等,故正确;D面积相等不一定退出两直角三角形全等,没有相关的判定方法,故不正确.故选D【考点】直角三角形全等的判定50.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72°B.45°C.36°D.30°【答案】C【解析】根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°.故选C【考点】三角形的内角和51.如图,∠1=∠2,要使△ABE ≌△ACE,则还需添加一个条件是.【答案】∠B=∠C等【解析】根据题意,易得∠AEB=∠AEC,又由AE公共边,所以根据全等三角形的判定方法容易寻找添加条件为:当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【考点】全等三角形的判定52.△ABC中,AB=AC,D为AB上一点,且AD=CD=BC,则∠A的度数为()A.30°B.36°C.40°D.45°【答案】B.【解析】试题解析:∵AB=AC,AD=CD=BC,∴∠A=∠ACD,∠B=∠ACB=∠CDB,设∠A=x°,则∠ACD=∠A=x°,∴∠B=∠ACB=∠CDB=∠A+∠ACD=2x°∵∠A+∠B+∠ACB=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°.故选B.【考点】等腰三角形的性质.53.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.试说明:AF⊥CD.【答案】参见解析.【解析】连接AC、AD.利用已知条件证明△ABC≌△AED(SAS).得出AC=AD.因为点F 是CD的中点.所以利用等腰三角形性质即可得出AF⊥CD.试题解析:连接AC、AD.在△ABC和△AED中,∵AB=AE,∠B=∠E,BC=ED,∴△ABC≌△AED(SAS).∴AC=AD.∴△ACD为等腰三角形.∵F为CD的中点,∴AF⊥CD.【考点】1.全等三角形的判定与性质;2.等腰三角形性质.54.(2015秋•句容市月考)已知△ABC中,∠BAC=150°,AB、AC的垂直平分线分别交BC 于E、F.求∠EAF的度数.【答案】120°.【解析】根据三角形内角和定理可求∠B+∠C;根据垂直平分线性质,EA=EB,FA=FC,则∠EAB=∠B,∠FAC=∠C,∠EAF=∠BAC﹣∠EAB﹣∠FAC=140°﹣(∠B+∠C).解:设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∠BAC=150°∴x+y=30°.∵AB、AC的垂直平分线分别交BC于E、F,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C.∴∠EAF=∠BAC﹣(x+y)=150°﹣30°=120°.【考点】线段垂直平分线的性质.55.下面每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.D.5、12、13【答案】C【解析】能构成直角三角形则说明两条短的边的平方和等于长的边的平方.3²+4²=5²;6²+8²=10²;5²+12²=13².【考点】直角三角形的判定56.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【答案】证明见解析.【解析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.试题解析:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.【考点】全等三角形的判定与性质.57.如图,已知一块四边形的草地ABCD,其中∠A=60°,∠B=∠D=90°,AB=20米,CD=10米,求这块草地的面积.【答案】150.【解析】所求四边形ABCD的面积=S△ABE -S△CED.分别延长AD,BC交于点E,在直角三角形中解题,根据角的正弦值与三角形边的关系,可求出各边的长,然后代入三角函数进行求解.。
初二上几何证明题100题专题训练
C A B C DE P 图 ⑴八年级上册几何题专题训练100题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC中点,求证:⊿RDQ 是等腰直角三角形。
B2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。
8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.ABCOMNOEDCB 9. 如图,点E、A、B、F在同一条直线上,AD与BC交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D10.如图,OP平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.11. 已知:如图,AB=AC,DB=DC,AD的延长线交BC于点E,求证:BE=EC。
(完整版)八年级上册几何证明题专项练习
八年级上册几何证明题专项练习1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.16.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.18.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.20.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.21.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.22.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.25.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.26.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.27.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.28.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.29.图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.30.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.。
初二上几何证明题100题专题训练
八年级上册几何题专题练习100题1、 已知:在⊿ABC 中,∠A=900,AB=AC,在BC 上任取一点P,作PQ ∥AB 交AC 于Q,作PR ∥CA 交BA 于R,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形.2、 已知:在⊿ABC 中,∠A=900,AB=AC,D 是AC 的中点,AE ⊥BD,AE 延伸线交BC 于F,求证:∠ADB=∠FDC.3、 已知:在⊿ABC 中BD.CE 是高,在BD.CE 或其延伸线上分离截取BM==AB,求证:MA ⊥NA.4.已知:如图(1),在△ABC 中,BP.CP 分离等分∠ABC 和∠ACB,DE 过点P 交AB 于D,交AC 于E,且DE ∥BC .求证:DE -DB=EC .5.在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点.(1)写出点O 到△ABC 的三个极点A .B .C 的距离的大小关系(不请求证实);(2)假如点M .N 分离在线段AB .AC 上移动,在移动中保持AN =BM ,请断定△OMN 的外形,并证实你的结论.6.如图,△ABC 为等边三角形,延伸BC 到D,延伸BA 到E,AE=BD,贯穿连接EC.ED,求证:CE=DE7.如图,等腰三角形ABC 中,AB =AC,∠A =90°,BD 等分∠ABC,DE ⊥BC 且BC =10,求△DCE 的周长.8. 如图,已知△EAB ≌△DCE,AB,EC 分离是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数.9. 如图,点E.A.B.F 在统一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D10.如图,OP 等分∠AOB,且OA=OB .(1)写出图中三对你以为全等的三角形(注:不添加任何帮助线);(2)从(1)中任选一个结论进行证实. M N DEB CA A BCO M N11. 已知:如图,AB =AC,DB =DC,AD 的延伸线交BC 于点E,求证:BE =EC.12. 如图,在△ABC 中,AB=AD=DC,∠BAD=28°,求∠B 和∠C 的度数.14. 写出下列命题的逆命题,并断定逆命题的真假.假如是真命题,请赐与证实;•假如是假命题,请举反例解释.命题:有双方上的高相等的三角形是等腰三角形.15. 如图,在△ABC 中,∠ACB=90º, D 是AC 上的一点,且AD=BC,DE AC 于D, ∠EAB=90º.求证:AB=AE .16. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么外形的三角形?试证实你的结论.17. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E,交BC 于D,若AB=13,AC=5,则△ACD 的周长为若干?18.如图所示,AC ⊥BC,AD ⊥BD,AD =BC,CE ⊥AB,DF ⊥AB,垂足分离是E,F,求证:CE =DF.19. 如图,已知△ABC 中,∠ACB =90°,AC =BC,BE ⊥CE,垂足为E,AD ⊥CE,垂足为D.(1)断定直线BE 与AD 的地位关系是____;BE 与AD 之间的距离是线段____的长;(2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长.20. 如图,已知 △ABC.△ADE ,点D 是BC 延伸线上一点,贯穿连接CE,求证:BD=CE 21. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD AC 交BC •于点D ,求证:•BC =3AD . 13. 如图,B.D.C.E 在统一向线上,AB=AC,AD=AE,求证:BD=CE.B AE DC22. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC .23.已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D,BE 等分∠ABC,且BE ⊥AC 于点E,与CD 订交于点F,H 是BC 边的中点,衔接DH 与BE 订交于点G .(1)求证:BF=A C; (2)求证:DG=DF .24. 如图,点B,D 在射线AM 上,点C,E 在射线AN 上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A 的度数.25. 如图所示,在△ABC 中,AB=AC,BD ⊥AC 于点D,CE ⊥AB 于点E,BD,CE 订交于F.求证:AF 等分∠BAC.26. 如图所示,△ABC ≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求 ∠DFB 和∠DGB 的度数.27. 已知:如图,在△ABC 中,AB=AC,点D 在边BC 上,DE ⊥AB,DF ⊥AC,且DE=DF, 求证:△ABD ≌△ACD28. 如图,一张直角三角形的纸片ABC,两直角边AC=6cm,BC=8cm .现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且AC 与AE 重合,求CD 的长.29. 已知:如图,在△ABC 中,AB=AC,BD 等分∠ABC,E 是底边BC 的延伸线上的一点且CD=CE.(1)求证:△BDE 是等腰三角形(2)若 ∠A=36°,求∠ADE 的度数. 30. 如图,在△ABC 中,AB=CB,∠ABC=90°,D 为AB 延伸线上一点,点E 在BC 边上且BE=BD,贯穿连接AE.DE.DC .(1)求证:AE=CD;(2)若∠CAE=30°,求∠BDC 的度数.31. 如图,在ABC 中,点D 在AC 边上,DB=BC,点E 是CD 的中点,点F 是AB 的中点,A B C D E请解释来由.32. 已知:如图,点D为边AC上的一个动点,延伸AB至E,使BE=CD,贯穿连接DE,交BC于点P.(1)DP与PE相等吗?请解释来由.(2当DC=_________时.(不必解释来由)33. 如图,C为线段BD上一点(不与点B,D重合),在BD同侧分离作正三角形ABC 和正三角形CDE,AD与BE交于一点F,AD与CE交于点H,BE与AC交于点G.(1)求证:BE=AD;(2)求∠AFG的度数;(3)求证:CG=CH34. 已知:如图,在△ABC中,CD⊥AB,CD=BD,BF等分∠DBC,与CD,AC分离交与点E.点F,且DA=DE,H是BC边的中点,贯穿连接DH与BE订交于点G.(1)求证:△EBD≌△ACD;(2)求证:点G在∠DCB的等分线上(3)试摸索CF.GF和BG之间的等量关系,并证实你的结论.35. 如图,在在△ABC中,AB=CB,∠ABC=90°,F为AB延伸线上一单,点E在BC 上,且AE=CF.(1(2)若∠CAE=30°,求∠ACF的度数36. 如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分离交CE,AE于点G.H. 试猜测线段AE和BD数目关系,并解释来由.37. 如图,在△ABC 中,AB =AC ,AD 和BE 是高,它们订交于点H ,且AE =BE .求证:AH =2BD .38. 如图,在ABC ∆中,32B ︒∠=,48C ︒∠=,AD BC⊥于点D ,AE 等分BAC ∠交BC 于点E ,DF AE ⊥于点F ,求ADF ∠的度数.39. 如图所示,在△ABC 中,已知点D ,E ,F 分离是BC ,AD ,CE 的中点,且ABC S ∆ =4,则BEF S ∆ 的值为若干.40. 如图,ABC ∆中,90ACB ∠=,CD BA ⊥于D ,AE 等分BAC ∠交CD 于F ,交BC 于E ,求证:CEF ∆是等腰三角形.41. 如图,在四边形ABCD 中,DC ∥AB, BD 等分∠ADC, ∠ADC=60°,过点B 作BE ⊥DC,过点A 作AF ⊥BD,垂足分△BEF 的外形,并解释来由.42. 如图,已知Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,BC 与DE 订交于点F ,衔接CD ,EB .(1)图中还有几对全等三角形,请你一一列举;(不必证实)(2)求证:CF =EF .43. 在ABC ∆中,BO 等分ABC ∠,点P 为直线AC 上一动点,PO BO ⊥于点O .(1)如图1,当40ABC ︒∠=,60BAC ︒∠=,点P 与点C 重应时,求APO ∠的度数;(2)如图2,当点P 在AC 延伸线时,求证:()12APO ACB BAC ∠=∠-∠; E DACF GHAE HB DC DC(3)如图3,当点P 在边AC 所示地位时,请直接写出APO ∠与ACB ∠,BAC ∠之间的数目关系式.44. 如图,在ABC ∆中,BAD DAC ∠=∠,DF AB ⊥,DM AC ⊥,AF =10cm , AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点活动,动点G 以1cm /s 的速度从C 点向A 点活动,当一个点到达终点时,另一个点随之停滞活动,设活动时光为t .(1) 求证:在活动进程中,不管取何值,都有2AED DGC S S ∆∆=; (2) 当取何值时,DFE ∆与DMG ∆全等.45. 如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 正好落在边AC 上,与点'B 重合,AE 为折痕,求'EB 的长度46. 如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操纵并不雅察,如图,将三角板的45°角的极点与点C 重合,使这个角落在∠ACB 的内部,双方分离与斜边AB 交于E .F 两点,然后将这个角绕着点C 在∠ACB 的内部扭转,不雅察在点E .F 的地位产生变更时,AE .EF .FB 中最长线段是否始终是EF ?写出不雅察成果.(2)摸索:AE .EF .FB 这三条线段可否构成以EF 为斜边的直角三角形?假如能,试加以证实.47. 已知BD,CE 是△ABC 的两条高,M.N 分离为BC.DE 的中点.(1)请写出线段MN 与DE 的地位有什么关系?请解释来由.(2)当∠A=45°时,请断定1△EMD 为何种三角形,并解释来由48. 如图(1),已知△ABC 中,∠BAC =90°,AB =AC,AE 是过点A 的一条直线,且点MEG F D C B AB,C 在AE 的两侧,BD ⊥AE 于点D,CE ⊥AE 于点E.(1)求证:BD =DE +CE;(2)若直线AE 绕点A 扭转到如图(2)的地位(BD <CE)时,其余前提不变,问BD 与DE,CE 的关系若何?请赐与证实;(3)若直线AE 绕点A 扭转到如图(3)的地位(BD >CE)时,其余前提不变,问BD 与DE,CE 的关系若何?请直接写出成果,不需证实.49. 如图1,两个不全等的等腰直角三角形OAB 和等腰直角三角形OCD 叠放在一路,并且有公共的直角极点O .(1)在图1中,你发明线段AC,BD 的数目关系是________________ , 直线AC,BD 订交成_________度角.(2)将图1中的△OAB 绕点O 顺时针扭转90°角,这时(1)中的两个结论是否成立?请做出断定并解释来由(3)将图1中的△OAB 绕点O 顺时针扭转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出断定并解释来由.一过离作(1)如图1,,请分离解释下列两个结论成立的来由. 结论1结论2 (2)如图2,,(写出说理进程).52. 已知两个共一个极点的等腰Rt △ABC ,Rt △CEF ,∠ABC =∠CEF =90°,衔接AF ,M 是AF 的中点,衔接MB .ME .图1 图(1)如图1,当CB 与CE 在统一向线上时,求证:MB ∥CF ;(2)如图1,若CB =a ,CE =2a ,求BM ,ME 的长;(3)如图2,当∠BCE =45°时,求证:BM =ME .53. 如图,已知ABC △中,∠B =∠C ,AB =AC=8厘米,BC =6厘米,点D 为AB 的中点.假如点P 在线段BC 上以每秒2厘米的速度由B 点向C 点活动,同时,点Q 在线段CA 上以每秒a 厘米的速度由C 点向A 点活动,设活动时光为t (秒).(1)用含t 的代数式暗示线段PC 的长度;(2)若点P .Q 的活动速度相等,经由1秒后,BPD △ 与CQP △是否全等,请解释来由;(3)若点P .Q 的活动速度不相等,当点Q 的活动速度a 为若干时,可以或许使BPD △与CQP △全等?(4)若点Q 以(3)中的活动速度从点C 动身,点P以本来的活动速度从点B 同时动身,都顺时针沿ABC △三边活动,求经由多长时光点P 与点Q 第一次在ABC △的哪条边上相遇?54. 如图,在ABC ∆中,BAD DAC ∠=∠,DF AB ⊥,DM AC ⊥,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点活动,动点G 以1cm /s 的速度从C 点向A 点活动,当一个点到达终点时,另一个点随之停滞活动,设活动时光为t .(1)求证:在活动进程中,不管t 取何值,都有2AED DGC S S ∆∆=;(2)当t 取何值时,DFE ∆与DMG ∆全等(3)在(2)的前提下,若119126BD DC =,228AED S cm ∆=,求BFD S ∆55. 已知等边△ABC 和点P,设点P 到△ABC3边的AB.AC.BC•的距离分离是h 1,h 2,h 3,△ABC 的高为h,若点P 在一边BC 上(图1),此时h=0,可得结论h 1+h 2+h 3=h,请你摸索以下问题: D B C P A Q当点P在△ABC内(图2)和点P在△ABC外(图3)这两种情形时,h1.h2.h3与h•之间有如何的关系,请写出你的猜测,并扼要解释来由.(1) (2) (3)56.如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开端,按CABC的路径活动,且速度为每秒2㎝,设活动的时光为t秒. (1)求t为何值时,CP把△ABC的周长分成相等的两部分;(2)求t为何值时,CP把△ABC的面积分成相等的两部分;并求此时CP的长;(3)求t为何值时,△BCP为等腰三角形?57. 已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A动身,沿线段AB向点B活动.(1)如图1,设点P的活动时光为t(s),那么t=(s)时,△PBC是直角三角形;(2)如图2,若另一动点Q从点B动身,沿线段BC向点C活动,假如动点P.Q都以1cm/s的速度同时动身.设活动时光为t(s),那么t为何值时,△PBQ是直角三角形?(3)如图3,若另一动点Q从点C动身,沿射线BC偏向活动.衔接PQ交AC于D.假如动点P.Q都以1cm/s的速度同时动身.设活动时光为t(s),那么t为何值时,△DCQ是等腰三角形?(4)如图4,若另一动点Q从点C动身,沿射线BC偏向活动.衔接PQ交AC于D,衔接PC.假如动点P.Q都以1cm/s的速度同时动身.请你猜测:在点P.Q的活动进程中,△PCD和△QCD的面积有什么关系?并解释来由.58.如图所示,已知AD是∠BAC的等分线,EF垂直等分AD交BC的延伸线于点F,交AD于点E,衔接AF,求证:∠B=∠CAF.59.如图所示,AD是∠BAC的等分线,DE⊥AB,DF⊥AC,垂足分离为E,F,衔接EF,EF与AD交于点G,求证:AD垂直等分EF.60.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为_________.15.如图所示,已知点D 是等边三角形ABC 的边BC 延伸线上的一点,∠EBC=∠DAC,CE ∥AB.求证:△CDE 是等边三角形.61.如图所示,在△ABC 中,AB=AC,在AB 边上取点D,在AC 的延伸线上取点E,使得BD=CE,衔接DE 交BC 于点G,求证:DG=GE.62.一艘汽船以15海里/时的速度由南向北航行,如图,在A 处望小岛P,测得∠PAN=15°,两小时后,汽船到达B 处,测得∠PBN=30°,在小岛P 四周18海里的规模内有暗礁,若汽船持续向北航行,有无触礁安全? 63.如图,公园内两条小河MO.NO 在O 处会合,两河形成的半岛上有一处事迹P.现筹划在两条小河上各建一座小桥Q和R,并在半岛上修三段巷子,连通两座小桥和事迹.这两座小桥应建在何处,才干使修路费起码? 64. 三角形ABC 中,AB=AC,∠BAC=120°,AB 的垂直等分线EF 交AB 于E,交BC 于F .若FC=3cm,则求BF 长度65. 在Rt △ABC 中,∠ACB=90度,(1)请解释△BCD 是正三角形,(66.如图,小红用一张长方形纸片为10cm .当小红折叠时,极点D 时EC 有多长?• 67.如图一块四边形草坪ABCD,求这块草坪的面积.68. 如图,A.B 两个小集镇在河道CD 的同侧,分离到河的距离为AC=10千米,BD=30千米,且CD=30千米,如今要在河畔建一自来水厂,向A.B 两镇供水,铺设水管的费用N BA A B为每千米3万,请你在河道CD上选择水厂的地位M,使铺设水管的费用最节俭,并求出总费用是若干?69.如图,A市气候站测得台风中间在A市正东偏向300千米的B处,以/时的速度向北偏西60°的BF偏向移动,距台风中间200•千米规模内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并赐与解释;(2)假如A市受此次台风影响,那么受台风影响的时光有多长?70.如图:在△ABC中,∠C=2∠B,AD是△ABC的角等分线,∠1=∠B,试解释AB=AC+CD71.如图,AD是∠BAC的角等分线,DE⊥AB垂足为E,DF⊥AC,垂足为点F,且BD=CD 求证:BE=CF72.如图,点B和点C分离为∠MAN双方上的点,AB=AC.(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的等分线CE与AD的延伸线交于点E;③贯穿连接BE;(2)在完成(1)后不添加线段和字母的情形下,请你写出除△ABD ≌△ACD外的两对全等三角形:____≌____,____≌____;(3)并选择个中的一对全等三角形予以证实.73.已知:AB=AC,AD⊥BC,CE等分∠BCN,求证:△ADB≌△ADC;△BDE≌△CDE.AB D CM NE74.如图,PB.PC分离是△ABC的外角等分线且订交于点P.求证:点P在∠A的等分线上AB CP75.如图,△ABC中,p是角等分线AD,BE的交点. 求证:点p在∠C的等分线上76.下列说法中,错误的是()A.三角形随意率性两个角的等分线的交点在三角形的内部B.三角形两个角的等分线的交点到三边的距离相等C.三角形两个角的等分线的交点在第三个角的等分线上D.三角形随意率性两个角的等分线的交点到三个极点的距离相等77.如图在三角形ABC中BM=MC∠ABM=∠ACM求证AM等分∠BAC78.如图,AP.CP分离是△ABC外角∠MAC与∠NCA的等分线,它们订交于点P,PD⊥BM 于点D,PF⊥BN于点F.求证:BP为∠MBN的等分线.79.如图,在∠AOB的双方OA,OB上分离取OM=ON,OD=OE,DN和EM订交于点C.求证:点C在∠AOB的等分线上.80.如图,∠B=∠C=90°,M是BC的中点,DM等分∠ADC.(1)若衔接AM,则AM是否等分∠BAD?请你证实你的结论;(2)线段DM与AM有如何的地位关系?请解释来由.81.八(1)班同窗上数学活动课,应用角尺等分一个角(如图所示).设计了如下筹划:(Ⅰ)∠AOB是一个随意率性角,将角尺的直角极点P介于射线OA.OB之间,移动角尺使角尺双方雷同的刻度与M.N重合,即PM=PN,过角尺极点P的射线OP就是∠AOB 的等分线.(Ⅱ)∠AOB是一个随意率性角,在边OA.OB上分离取OM=ON,将角尺的直角极点P 介于射线OA.OB之间,移动角尺使角尺双方雷同的刻度与M.N重合,即PM=PN,过角尺极点P的射线OP就是∠AOB的等分线.(1)筹划(Ⅰ).筹划(Ⅱ)是否可行?若可行,请证实;若不成行,请解释来由;(2)在筹划(Ⅰ)PM=PN 的情形下,持续移动角尺,同时使PM ⊥OA,PN ⊥OB .此筹划是否可行?请解释来由.82.如图,P 是∠BAC 内的一点,PE ⊥AB,PF ⊥AC,垂足分离为点E,F,AE=AF. 求证:(1)PE=PF;(2)点P 在∠BAC 的角等分线上.83.如图,点D.B 分离在∠A 的双方上,C 是∠A 内一点,AB=AD,BC=CD,CE ⊥AD 于E,CF ⊥AF 于F.求证:CE=CF84.已知三角形三边长为a,b,c,且丨a+b+c 丨+丨a-b-c 丨=10,求b 的值.85.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC86.如图,△ABC 和△ADE 都是等腰直角三角形,CE 与BD订交于点M,BD 交AC 于点N,证实:(1)BD=CE.(2)BD ⊥CE.87.如图,已知AD ∥BC ,∠PAB 的等分线与∠CBA 的等分线订交于E ,CE 的连线交AP 于D .求证:AD +BC =AB 88.如图,△ABC 中BA=BC,点D 是AB 延伸线上一点,DF ⊥AC 于F 交BC 于E,求证:△DBE 是等腰三角形.89.如图,在△ABC 中,AC =BC,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延伸线于E,且.求证:BD 是∠ABC 的角等分线.90.如图,∠BAD=∠CAD,AD ⊥BC,垂足为点D,BD=CD 可知哪些线段是哪个三角形的角等分线.中线.高?91.如图所示,在△ABC 中,已知AC=8,BC=6,AD ⊥BC 于D,AD=5,BE ⊥AC 于E,求BE 的D E A B CF B A C D F 2 1 E长92.如图,AD是△ABC的角等分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角等分线吗?请解释来由.(2)若将结论与AD是∠CAB的角等分线.DE∥AB.DF∥AC中的任一前提交流,所得命题准确吗?93.如图,△ABC中,∠ABC与∠ACB的等分线交于点I,依据下列前提,求∠BIC的度数.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=°(2)若∠ABC+∠ACB=120°,则∠BIC=°(3)若∠A=90°,则∠BIC=°;(4)若∠A=n°则∠BIC=°(5)从上述盘算中,我们能发明∠BIC与∠A的关系吗?AIB C94.如图,求证∠A+∠B+∠C+∠D+∠E=180°95.如图,不规矩的五角星图案,求证:∠A+∠B+∠C+∠D+∠E=180°96.D为△ABC的边AB上一点,且∠ADC=∠ACD.求证:∠ACB>∠B97.如图,D是BC延伸线上的一点,∠ABC.∠ACD的等分线交于点E,求证:∠E=1/2∠A98.如图,BE与CD订交于点A,CF为∠BCD的等分线,EF为∠BED的角等分线.(1)试求∠F与∠B,∠D的关系;(2)若∠B:∠D:∠F=2:4:x 求X的值99.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的等分线交于点E,则∠AEC=度.100.如图,在Rt△ABC中,已知∠ACB=90°,AC=BC,D为DC的中点,CE⊥AD于E,BF∥AC交CE的延伸线于点F.求证:AB垂直等分DF.。
初二上几何证明题100题专题训练之欧阳科创编
B C 八年级上册几何题专题训练100题2、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
3、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE⊥BD,AE 延长线交BC 于F ,求证:∠ADB=∠FDC。
4、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证MA⊥NA。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .5、在Rt△ABC 中,AB =AC ,∠BAC=90°,O 为BC 的中点。
(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明);(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。
6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到CO NE,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。
8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.9. 如图,点E、A、B、F在同一条直线上,AD与BC交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D10.如图,OP平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.11. 已知:如图,AB=AC,DB=DC,AD的延长线交BC 于点E,求证:BE=EC。
(完整版)初二上几何证明题100题专题训练(可编辑修改word版)
A D P E 八年级上册几何题专题训练 100 题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在 BC 上任取一点 P ,作 PQ∥AB 交 AC 于 Q ,作 PR∥CA 交 BA 于 R ,D 是 BC的中点,求证:⊿RDQ 是等腰直角三角形。
C2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是 AC 的中点,AE⊥BD,AE 延长线交 BC 于 F ,求证:∠ADB=∠FDC。
3、 已知:在⊿ABC 中 BD 、CE 是高,在 BD 、CE 或其延长线上分别截取 BM=AC 、CN=AB ,求证:MA⊥NA。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点 P 交 AB 于 D ,交 AC 于 E ,且 DE ∥ BC .求证:DE -DB=EC .BC5、在Rt△ABC 中,AB=AC,∠BAC=90°,O 为BC 的中点。
(1)写出点O 到△ABC 的三个顶点A、B、C 的距离的大小关系(不要求证明);(2)如果点M、N 分别在线段AB、AC 上移动,在移动中保持AN=BM,请判断△OMN 的形状,并证明你的结论。
CNOA M B6、如图,△ABC 为等边三角形,延长BC 到D,延长BA 到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC 中,AB=AC,∠A=90°,BD 平分∠ABC,DE⊥BC 且BC=10,求△DCE 的周长。
8.如图,已知△EAB≌△DCE,AB,EC 分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.9.如图,点 E、A、B、F 在同一条直线上,AD 与BC 交于点 O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠DC DOE B10.如图,OP 平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.11.已知:如图,AB=AC,DB=DC,AD 的延长线交 BC 于点E,求证:BE=EC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职业技能题库&在线云笔试平台
试卷名称:初二上数学练习-图形与证明试卷描述:mm笔试题目、招聘笔试、微信考试、在线考试
试卷链接:/store/open/paperInfo/43081 &vt=B015122501
试卷限时:50分
一.判断题
每题分值:2分
是否题目乱序:是
是否选项乱序:是
是否可回溯:是
难度:中
2015/12/23 打印试卷
/paperPreview?paperId=43081 1/3
请留下您的个人信息
姓名
学号
2015/12/23 打印试卷
/paperPreview?paperId=43081 2/3
答题须知
1、本卷分为图形与证明一部分,满分100分,考试时间45分钟
2、请书写工整,保持卷面整洁
3、答题前请先填写自己的个人信息
图形与证明
本部分5道题,满分100分
1、【问答题】图形与证明->三角形
已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3
职业技能题库&在线云笔试平台
2、【问答题】图形与证明->三角形
问题发现:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
(1)求证:△ACD≌△BCE;
(2)求证:CD∥BE.
拓展探究:
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,
连接BE,求∠AEB的度数.
3、【问答题】图形与证明->四边形
如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照
这样走下去,他第一次回到出发地A点时,一共走了_____米.
4、【问答题】图形与证明->三角形
(本题满分8分)如图,在四边形中,,是的平分线,,连
接、,
2015/12/23 打印试卷
/paperPreview?paperId=43081 3/3
求证:(1);(2)是的平分线.
5、【问答题】图形与证明->三角形
如图,在中,,.
(1)直接写出的大小(用含的式子表示);
(2)以点为圆心、长为半径画弧,分别交、于、两点,并连接、.
若=30°,求的度数.
第2页。