Ch2线性规划
线性规划知识点总结
线性规划知识点总结线性规划(Linear Programming)是一种优化问题的数学方法,用于在一定的约束条件下,寻找一个线性目标函数的最优解。
线性规划常被应用于经济、生产、管理等领域,旨在优化资源的利用,实现目标的最大化或最小化。
本文将对线性规划的基本概念、问题建模、解决方法以及应用领域进行总结。
一、基本概念1.1 目标函数目标函数是线性规划的核心部分,通常用来衡量系统的效益。
它是一个关于决策变量的线性函数,其形式可以是最大化或最小化。
1.2 约束条件约束条件用来限制决策变量的取值范围,确保问题的解满足实际情况。
约束条件可以是等式约束或不等式约束,也可以包含多个条件。
1.3 决策变量决策变量是问题中的未知数,决策者需要根据实际情况确定其取值范围,以达到最优解。
二、问题建模2.1 目标函数的确定根据实际问题确定目标函数,并明确最大化或最小化的目标。
2.2 约束条件的设定根据问题的实际情况,将约束条件转化为线性等式或不等式,并将其表示成一组数学表达式。
2.3 决策变量的确定根据问题的要求,确定决策变量的取值范围,可用数学符号表示。
三、解决方法3.1 图形法图形法是线性规划中最直观的解法,适用于二维或三维线性规划问题。
通过绘制等式或不等式的图形,找出目标函数的最优解。
3.2 单纯形法单纯形法是一种高效的解法,适用于多维线性规划问题。
通过构建初始可行解,通过迭代计算,逐步接近最优解。
3.3 整数规划整数规划是线性规划的扩展,要求决策变量取值为整数。
其求解方法包括分支定界法、割平面法等。
四、应用领域4.1 生产与运作管理线性规划可用于生产计划、物流优化、资源调度等问题,通过最优化资源利用,降低成本、提高效益。
4.2 金融领域线性规划被广泛应用于证券组合优化、资产配置、风险管理等领域,帮助投资者做出最佳投资决策。
4.3 能源与环境管理线性规划用于能源生产、污染物排放控制等问题,通过均衡能源利用,降低环境影响。
线性规划知识点总结
线性规划知识点总结一、概述线性规划是一种数学优化方法,用于在给定的约束条件下最大化或最小化线性目标函数。
它在各个领域中都有广泛的应用,包括经济学、管理科学、工程等。
本文将对线性规划的基本概念、模型构建、解法以及应用进行详细总结。
二、基本概念1. 可行解:满足所有约束条件的解称为可行解。
2. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。
3. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
4. 约束条件:线性规划的变量需要满足一系列线性等式或不等式,称为约束条件。
三、模型构建1. 决策变量:线性规划中需要决策的变量,通常用x1, x2, ..., xn表示。
2. 目标函数:根据问题的要求,构建一个线性函数作为目标函数。
3. 约束条件:根据问题的限制条件,构建一系列线性等式或不等式作为约束条件。
四、解法1. 图形法:适用于二维线性规划问题,通过绘制约束条件的图形,找出目标函数的最优解。
2. 单纯形法:适用于多维线性规划问题,通过迭代计算,找出最优解。
3. 整数规划法:适用于决策变量需要为整数的线性规划问题,通过限制变量的取值范围,找出最优解。
4. 网络流法:适用于网络优化问题,通过建立网络模型,找出最优解。
五、应用1. 生产计划:线性规划可以帮助企业制定最优的生产计划,以最小化成本或最大化利润。
2. 资源分配:线性规划可以帮助政府或组织合理分配资源,以满足各方面的需求。
3. 运输问题:线性规划可以帮助解决物流运输问题,以最小化运输成本。
4. 投资组合:线性规划可以帮助投资者选择最优的投资组合,以最大化收益或最小化风险。
六、案例分析以生产计划为例,假设某公司有两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。
公司有两个工厂,分别生产产品A和产品B。
工厂1每天生产产品A需要耗费2小时,生产产品B需要耗费1小时;工厂2每天生产产品A需要耗费1小时,生产产品B需要耗费3小时。
线性规划的约束条件与解的存在性知识点总结
线性规划的约束条件与解的存在性知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在解决各种实际问题中,线性规划发挥着重要作用,而理解线性规划的约束条件与解的存在性是掌握这一方法的关键。
一、线性规划的基本概念线性规划问题通常是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。
这些约束条件和目标函数都是由线性方程或线性不等式组成。
目标函数可以表示为:Z = c₁x₁+ c₂x₂+… + cnxn ,其中 cj(j =1, 2, …, n)是常数,xj(j =1, 2, …, n)是决策变量。
约束条件则可以写成:a₁₁x₁+ a₁₂x₂+… + a₁nxn ≤(≥、=)b₁;a₂₁x₁+ a₂₂x₂+… + a₂nxn ≤(≥、=)b₂;…… ;am₁x₁+ am₂x₂+… +amnxn ≤(≥、=)bm 。
二、约束条件约束条件是对决策变量取值的限制。
它们决定了可行解的范围。
1、不等式约束不等式约束可以分为小于等于(≤)、大于等于(≥)两种情况。
例如,3x +2y ≤ 12 表示了一个约束条件,意味着变量 x 和 y 的取值组合必须使得 3x + 2y 的值不超过 12 。
2、等式约束等式约束形如 ax + by = c ,表示变量 x 和 y 的取值组合必须满足该等式。
3、非负约束在许多实际问题中,决策变量通常要求是非负的,即x ≥ 0 ,y ≥ 0 。
这是因为某些资源或数量不能为负数。
三、可行解与可行域满足所有约束条件的解称为可行解。
所有可行解的集合构成可行域。
例如,对于约束条件:x +y ≤ 5 ,x ≥ 0 ,y ≥ 0 ,点(2, 2) 是一个可行解,因为 2 + 2 =4 ≤ 5 ,且2 ≥ 0 ,2 ≥ 0 。
而所有满足这些条件的点(x, y) 构成的区域就是可行域。
可行域通常是一个凸多边形或凸多面体。
凸的性质意味着如果在可行域中取两个点,那么连接这两个点的线段上的所有点也都在可行域内。
线性规划的定义及解题方法
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划知识点
线性规划知识点一、概述线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。
它广泛应用于经济、工程、运输、资源分配等领域。
本文将介绍线性规划的基本概念、模型建立、求解方法以及应用案例。
二、基本概念1. 变量:线性规划中的决策变量表示问题中需要优化的量,可以是实数、整数或布尔值。
2. 目标函数:线性规划的目标函数是需要最小化或最大化的线性表达式,通常表示为求解最小值或最大值。
3. 约束条件:线性规划的约束条件是限制变量取值范围的线性等式或不等式。
4. 可行解:满足所有约束条件的变量取值组合称为可行解。
5. 最优解:在所有可行解中,使目标函数取得最小值或最大值的解称为最优解。
三、模型建立线性规划的建模过程包括确定决策变量、建立目标函数和约束条件。
1. 决策变量的确定:根据问题的实际情况,确定需要优化的变量及其取值范围。
2. 目标函数的建立:根据问题的要求,将需要最小化或最大化的目标转化为线性表达式。
3. 约束条件的建立:根据问题的限制条件,将约束条件转化为线性等式或不等式。
四、求解方法线性规划可以使用多种方法求解,常见的有单纯形法和内点法。
1. 单纯形法:单纯形法是一种迭代求解方法,通过不断移动顶点来逼近最优解。
它从一个可行解开始,通过交换变量的值来改进目标函数的值,直到找到最优解。
2. 内点法:内点法是一种基于迭代的方法,通过在可行域内寻找最优解。
它通过将可行域内的点逐渐移向最优解,直到找到最优解。
五、应用案例线性规划在实际应用中具有广泛的应用场景,以下是一个简单的应用案例:假设某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为8元。
公司有两个车间可供生产,每个车间每天的工作时间为8小时。
产品A每单位需要1小时的生产时间,产品B每单位需要2小时的生产时间。
车间1每天最多可生产100单位产品A或80单位产品B,车间2每天最多可生产80单位产品A或60单位产品B。
公司希望确定每天的生产计划,以最大化利润。
线性规划通过线性规划解决实际问题
线性规划通过线性规划解决实际问题线性规划是一种数学优化方法,广泛应用于解决实际问题。
它能够帮助我们合理安排资源,最大化利益或最小化成本。
通过线性规划,我们可以得到一个最优的决策方案。
一、线性规划的基本概念和原理线性规划是一种在约束条件下求解线性目标函数的优化问题。
它的基本概念包括决策变量、目标函数和约束条件。
1. 决策变量: 在线性规划中,我们需要定义一些决策变量,它们代表着我们需要做出的决策或者选择的方案。
2. 目标函数: 目标函数是线性规划中需要优化的目标,可以是最大化利润、最小化成本等。
3. 约束条件: 约束条件是限制线性规划问题的条件,可以是资源的限制、技术要求等。
线性规划的原理是通过建立数学模型,将实际问题转化为数学问题,然后通过求解数学模型来得到最优解。
二、线性规划的应用领域线性规划在实际中有着广泛的应用领域,下面举几个例子来说明:1. 生产计划: 一家制造厂需要决定如何安排生产计划,以最大化利润。
线性规划可以帮助厂商确定每种产品的生产数量,以及每种产品所需要的资源和人力安排。
2. 运输调度: 一个物流公司需要决定如何合理地调度运输车辆,以最小化运输成本。
线性规划可以帮助物流公司确定各个仓库之间的物流路径和货物的运输量。
3. 资源分配: 一个学校需要决定如何合理地分配教职工和学生的资源,以最大化教育效益。
线性规划可以帮助学校确定教职工的安排和学生的班级编排。
三、线性规划的解决步骤解决线性规划问题一般需要以下几个步骤:1. 建立模型: 根据实际问题,将问题转化为线性规划模型,包括确定决策变量、目标函数和约束条件。
2. 求解方法: 使用线性规划方法,如单纯形法、对偶法等,求解线性规划模型,得到最优解。
3. 解释结果: 对最优解进行解释和分析,确定最优决策方案。
四、线性规划方法的优势和局限性线性规划方法有一定的优势和局限性。
1. 优势:线性规划方法是一种成熟、有效、可靠的数学方法,能够提供合理的决策方案。
线性规划知识点
线性规划知识点一、什么是线性规划线性规划是一种数学优化方法,用于解决在给定约束条件下的线性目标函数的最优化问题。
线性规划的目标函数和约束条件都是线性的,因此可以通过线性代数的方法进行求解。
线性规划在实际问题中有广泛的应用,如生产计划、资源分配、运输问题等。
二、线性规划的基本要素1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中 Z 为目标函数值,c₁, c₂, ..., cₙ 为系数,x₁,x₂, ..., xₙ 为决策变量。
2. 决策变量:决策变量是问题中需要决策的变量,通常表示为x₁, x₂, ..., xₙ。
决策变量的取值决定了目标函数的值。
3. 约束条件:约束条件限制了决策变量的取值范围。
约束条件可以是等式约束或不等式约束,通常表示为 a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ +a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ,其中 a₁₁, a₁₂, ..., aₙₙ 为系数,b₁, b₂, ..., bₙ 为常数。
4. 非负约束:线性规划中通常要求决策变量的取值非负,即 x₁ ≥ 0, x₂ ≥ 0, ...,xₙ ≥ 0。
三、线性规划的解法线性规划可以通过不同的方法进行求解,常见的方法包括图形法、单纯形法和内点法。
1. 图形法:图形法适用于二维或三维的线性规划问题。
首先将目标函数和约束条件转化为几何形式,然后在坐标系中绘制约束条件的图形,最后通过图形的分析找到最优解点。
2. 单纯形法:单纯形法是一种通过迭代寻找最优解的方法。
该方法从一个可行解开始,通过不断移动到相邻的可行解来逐步接近最优解。
单纯形法的核心是单纯形表,通过表格的变换和计算来确定下一个迭代点,直到找到最优解。
3. 内点法:内点法是一种通过迭代寻找最优解的方法。
线性规划知识点总结
线性规划知识点总结引言概述:线性规划是一种数学优化方法,用于在给定的约束条件下最大化或者最小化线性目标函数。
它在各种领域中都有广泛的应用,包括经济学、管理学、工程学等。
本文将对线性规划的基本概念、模型构建、求解方法和应用进行详细阐述。
一、线性规划的基本概念1.1 目标函数:线性规划的目标函数是一个线性函数,用于表示需要最大化或者最小化的目标。
1.2 约束条件:线性规划的约束条件是一组线性等式或者不等式,用于限制变量的取值范围。
1.3 可行解与最优解:线性规划问题存在无穷多个可行解,但惟独一个最优解,即使满足所有约束条件且使目标函数取得最大(或者最小)值的解。
二、线性规划模型构建2.1 决策变量:线性规划模型中的决策变量是需要优化的变量,可以是实数、整数或者二进制数。
2.2 目标函数的构建:根据问题的具体要求,将目标转化为线性函数的形式,并确定是最大化还是最小化。
2.3 约束条件的建立:根据问题的限制条件,将其转化为线性等式或者不等式的形式,并确定约束条件的数学表达式。
三、线性规划的求解方法3.1 图形法:对于二维线性规划问题,可以使用图形法进行求解。
通过绘制约束条件的直线或者曲线,找到目标函数的最优解点。
3.2 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
通过迭代计算,不断改变基变量和非基变量的取值,直到找到最优解。
3.3 整数规划法:当决策变量需要取整数值时,可以使用整数规划法进行求解。
该方法将线性规划问题转化为整数规划问题,并采用分支定界等算法求解最优解。
四、线性规划的应用4.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化产量或者最小化成本。
4.2 资源分配:线性规划可以用于优化资源的分配,如确定最佳的人力资源配置、物资采购策略等。
4.3 运输问题:线性规划可以用于解决运输问题,如确定最佳的货物运输路线和运输量,以降低运输成本。
4.4 金融投资:线性规划可以用于优化金融投资组合,以最大化收益或者最小化风险。
线性规划原理范文
线性规划原理范文线性规划是一种数学优化方法,用于最大化或最小化一个线性目标函数在一组线性约束条件下的取值。
线性规划常常用于管理、经济学、工程和科学等领域的决策问题。
本文将介绍线性规划的原理和一些相关概念。
一、线性规划的基本概念1. 目标函数:线性规划的第一步是确定一个目标函数,这个函数是需要最大化或最小化的指标。
目标函数是由变量的线性组合构成的,通常表示为Z=c₁x₁+c₂x₂+...+cnxn,其中x₁、x₂、..,xn是变量,c₁、c₂、..,cn是系数。
2. 约束条件:线性规划的第二步是确定一组约束条件,这些条件限制了变量的取值范围。
约束条件通常是由变量的线性组合与一个给定的常数之间的关系构成,如a₁x₁+a₂x₂+...+aₙxn≤b,其中a₁、a₂、..,aₙ是系数,b是常数。
3.决策变量:决策变量是指在问题中需要决策的变量,也就是需要根据一定的规则或策略来确定其取值的变量。
决策变量是目标函数和约束条件中的变量。
二、线性规划的基本形式线性规划的基本形式可以表示为:最小化(或最大化)目标函数:Z=c₁x₁+c₂x₂+...+cnxn满足以下约束条件:a₁x₁+a₂x₂+...+aₙxn≤b₁aₙ₊₁x₁+aₙ₊₂x₂+...+a₂ₙxn≤b₂...a₂ₙ₋₁x₁+a₂ₙ₋₂x₂+...+a₄ₙxn≤bₙ₋₁其中x₁、x₂、..,xn是决策变量;c₁、c₂、..,cn是目标函数的系数;a₁、a₂、..,an是约束条件的系数;b₁、b₂、..,bₙ是约束条件的常数。
三、线性规划的解题过程线性规划的求解过程可以分为以下几个步骤:1.建立数学模型:根据实际问题的描述,将目标函数和约束条件转化成数学表达式。
2.确定决策变量的取值范围:根据问题的实际背景和限制条件,确定决策变量的取值范围。
3.描述目标函数和约束条件:将目标函数和约束条件转化成标准形式,即转化成上述的线性规划基本形式。
4.求解线性规划问题:利用线性规划求解方法,如单纯形法等,求解得到最优解。
第二章线性规划知识课件
方案 x1 x2 x3 x4 x5
2.9米 1 2 0 1 0
2.1米 0 0 2 2 1
1.5米 3 1 2 0 3
合计 7.4 7.3 7.2 7.1 6.6
余料 0 0.1 0.2 0.3 0.8
OBJ: MinZ 0x1 0.1x2 0.2x3 0.3x4 0.8x5
x1 2x2 x4 100 s.t. 3x12x3x2 2x24x3 x53x5101000
4) 移动等值线到可行域边界得到最优点
11
1.用图解法求解极大化问题
例1 OBJ : max Z 2 x1 3 x 2
x1 2x2 8
s
.
t
.
4
x
1
16 4 x 2 12
x1 , x 2 0
x x12x2 2
2x13x24
做目标函数2x1+3x2的等值线,与 3 阴影部分的边界相交于Q(4,2)点, 这表明最优解是:x1= 4,x2 =2
0
4x1=16 x1+2x2=8
Q(4,2) 4x2=12
4 Z=2x1+3x2
8 x1
12
例2
max Z 6 x 1 4 x 2
2 x 1 x 2 10
s
.t
.
x1 x2 8 x2 7
x 1 , x 2 0
最优解 : x1 2 x2 6 Z 36
x2
10 F
9
8E
7 ABG 3
A
533
1.5
B
221
0.7
每人每月最低需求量(单位) 60 40 35
例3 现要做100套钢架,每套需2.9米、2.1米和1.5米的圆钢各一
线性规划知识点
线性规划知识点引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将详细介绍线性规划的相关知识点。
一、线性规划的定义与基本概念1.1 目标函数:线性规划的目标是通过最大化或最小化目标函数来达到最优解。
目标函数是一条线性方程,表示需要优化的目标。
1.2 约束条件:线性规划问题还需要满足一组线性约束条件,这些条件对决策变量的取值范围进行了限制。
1.3 决策变量:决策变量是指在线性规划问题中需要进行决策的变量,其取值将影响目标函数的值。
二、线性规划的基本模型2.1 标准型线性规划:标准型线性规划是指目标函数为最小化问题,约束条件为等式形式的线性规划问题。
2.2 松弛变量与人工变量:为了将约束条件转化为等式形式,我们引入松弛变量和人工变量。
2.3 基变量与非基变量:在标准型线性规划中,基变量和非基变量是用来描述决策变量的状态的。
三、线性规划的解法3.1 单纯形法:单纯形法是一种常用的线性规划解法,通过迭代计算基变量和非基变量的取值,直到找到最优解。
3.2 对偶性理论:线性规划问题与其对偶问题之间存在着对偶关系。
对偶性理论可以帮助我们求解原始问题的最优解。
3.3 整数线性规划:当决策变量需要取整数值时,我们可以使用整数线性规划方法来求解。
整数线性规划问题更加复杂,通常需要使用分支定界等方法求解。
四、线性规划的应用领域4.1 生产计划:线性规划可以用于优化生产计划,通过合理安排生产资源和生产量,实现最大化利润或最小化成本。
4.2 运输问题:线性规划可以用于解决运输问题,通过合理分配运输量和运输路径,实现最优的物流方案。
4.3 资源分配:线性规划可以用于资源分配问题,如人力资源、资金分配等,通过最优化决策,实现资源的合理利用。
五、线性规划的局限性与拓展5.1 非线性规划:线性规划只适用于目标函数和约束条件为线性关系的问题。
对于非线性问题,我们需要使用非线性规划方法进行求解。
线性规划课件ppt
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
线性规划知识点
线性规划知识点一、概述线性规划是数学规划的一种重要方法,用于解决线性约束条件下的最优化问题。
它的基本思想是在一组线性约束条件下,找到使目标函数达到最大或者最小值的变量取值。
二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
通常用字母 Z 表示。
2. 约束条件:线性规划的变量需要满足一组线性不等式或者等式,称为约束条件。
通常用字母 Ai 表示。
3. 变量:线性规划的问题中,需要确定的变量称为决策变量。
通常用字母 Xi表示。
三、标准形式线性规划问题通常可以转化为标准形式,以便于求解。
标准形式的线性规划问题包括以下要素:1. 目标函数:目标函数是一个线性函数,需要最大化或者最小化。
2. 约束条件:约束条件是一组线性不等式或者等式。
3. 变量的非负性:变量需要满足非负性约束,即变量的取值不能为负数。
四、线性规划求解方法线性规划问题可以通过以下方法求解:1. 图形法:对于二维线性规划问题,可以通过绘制约束条件的直线和目标函数的等高线,找到最优解的位置。
2. 单纯形法:单纯形法是一种常用的求解线性规划问题的算法。
它通过迭代计算,逐步接近最优解。
3. 整数规划法:当决策变量需要取整数值时,可以使用整数规划方法求解。
整数规划问题相对于线性规划问题更加复杂,通常需要使用分支定界等方法求解。
五、线性规划的应用线性规划在实际问题中有广泛的应用,包括但不限于以下领域:1. 生产计划:线性规划可以匡助确定最优的生产计划,使得生产成本最低或者产量最高。
2. 运输问题:线性规划可以用于解决货物运输的最优路径问题,以降低运输成本。
3. 金融投资:线性规划可以用于确定最优的投资组合,以最大化收益或者最小化风险。
4. 资源分配:线性规划可以匡助确定资源的最优分配方案,以满足需求并最大化效益。
5. 排产问题:线性规划可以用于解决生产设备的排产问题,以最大化生产效率。
六、线性规划的局限性尽管线性规划具有广泛的应用领域,但它也有一些局限性:1. 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性关系。
线性规划知识点总结
线性规划知识点总结一、引言线性规划是一种优化问题求解方法,用于在给定的约束条件下,寻觅一个线性目标函数的最优解。
它在运筹学、经济学、工程学等领域有着广泛的应用。
本文将对线性规划的基本概念、模型建立、解法以及应用进行详细总结。
二、基本概念1. 变量:线性规划中的变量是决策的对象,可以是实数或者非负实数。
2. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,通常表示为Z=c₁x₁+c₂x₂+...+cₙxₙ,其中c₁、c₂、...、cₙ为系数,x₁、x₂、...、xₙ为变量。
3. 约束条件:线性规划的约束条件是限制变量取值的条件,通常表示为a₁x₁+a₂x₂+...+aₙxₙ≤b,其中a₁、a₂、...、aₙ为系数,b为常数。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数取得最大(或者最小)值的解称为最优解。
三、模型建立1. 确定决策变量:根据实际问题,确定需要优化的决策变量,例如生产数量、投资金额等。
2. 建立目标函数:根据问题要求,建立目标函数,明确是最大化还是最小化。
3. 建立约束条件:根据问题给出的限制条件,建立约束条件,包括线性不等式约束和非负约束。
4. 确定问题类型:根据目标函数和约束条件的形式,确定线性规划问题的类型,如标准型、非标准型、混合整数规划等。
5. 模型求解:使用线性规划的求解方法,求得最优解。
四、解法1. 图解法:对于二维线性规划问题,可以使用图解法进行求解。
首先绘制约束条件的直线,然后确定可行解区域,最后在可行解区域内寻觅目标函数的最优解。
2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
通过迭代计算,逐步改进解的质量,直到找到最优解。
3. 整数规划方法:当决策变量需要取整数值时,可以使用整数规划方法进行求解。
常见的方法包括分支定界法、割平面法等。
五、应用线性规划在实际问题中有着广泛的应用,以下是一些典型的应用领域:1. 生产计划:通过线性规划可以确定最佳的生产计划,以最大化利润或者最小化成本。
线性规划和最优解
线性规划和最优解线性规划是一种在数学和运筹学领域常见的问题求解方法,可以应用于各种现实生活中的决策问题。
它是通过一系列线性等式和不等式来建模,并在满足特定约束条件下求解使目标函数取得最优值的变量值。
线性规划的最优解能够帮助我们做出高效的决策,下面将详细介绍线性规划的原理和求解方法。
一、线性规划的基本概念线性规划中,我们首先需要明确问题的目标,并将其表示为一个线性函数,也被称为目标函数。
目标函数可以是最大化或最小化的,具体取决于问题的需求。
其次,我们需要确定一组变量,这些变量的取值将会对目标函数产生影响。
接下来,我们还需要列举出一系列约束条件,这些约束条件通常来自于问题的实际情况,例如资源限制、技术要求等。
最后,我们需要确定这些变量的取值范围,这也是约束条件的一部分。
二、线性规划的数学建模在线性规划中,我们可以通过以下步骤进行数学建模:1. 确定目标函数:根据问题的要求,我们可以定义一个线性函数作为目标函数。
例如,如果我们要最大化某个产品的利润,那么利润就可以是目标函数。
2. 列举约束条件:根据问题的实际情况,我们需要列举出一系列约束条件。
这些约束条件可以是线性等式或不等式,并且通常包含了变量的取值范围。
3. 确定变量的取值范围:根据问题的实际情况,我们需要确定变量的取值范围。
例如,如果某个变量代表一个产品的产量,那么它的取值范围可能是非负数。
4. 构建数学模型:根据目标函数、约束条件和变量的取值范围,我们可以构建一个数学模型,将问题转化为线性规划模型。
三、线性规划的最优解求解方法线性规划的最优解可以通过以下方法求解:1. 图形法:对于只有两个变量的简单线性规划问题,我们可以通过绘制变量的可行域图形,并计算目标函数在图形上的最优解点来求解问题。
2. 单纯形法:单纯形法是一种常用的求解线性规划问题的算法。
它通过逐步迭代改进解向量,从而逼近最优解。
这个方法通常适用于复杂的线性规划问题,可以在较短的时间内得到比较好的结果。
chapter2线性规划
二.线性规划问题的图解法
1.图解法求最大化的步骤:
第一步,得到可行域,也就是满足所有约束条
件的自变量组成的集合。 第二步,在可行域中找到使目标函数最大的那 一点,也就是最优解。 第三步,通过最优解,求出目标函数的最优值。
案例:考虑生产规划模型:
max z 50 x1 100 x 2 x1 x 2 300 2 x x 400 1 2 x 2 250 x1 , x 2 0
注3:
一般优化模型的基本类型: (1)只有目标函数而没有约束条件和非负约束 的特殊情况称为无约束规划. (2)当模型中的决策变量取值为连续数值(实 数)时,称为连续优化即通常所说的数学规划; 此时,如果目标函数与约束条件都是线性函数, 成为线性规划(linear programming,LP).至少 有一个是非线性函数,则称为非线性规划 (nolinear programming,NLP).特别当目标函数 为二次函数,而约束条件为线性函数,称为二 次规划(quadratic programming,QP).
件中含有变量的非线性的等式或不等式的数学
模型称之为非线性规划。
(2)线性规划的目标函数为线性函数:z=ax,x 为自变量,a为参数。当a>0时,z随着x的增加 而增加,无论x为多少,x增加一个单位带来的z 的增加总是同样的a。 由于其性质,没有约束条件的时候max z=ax是 不存在的,趋向于无穷大,所以现实的模型必 须包括对自变量取值的限制,例如加入 0<=x<=5。
max z 50 x1 100 x 2 x1 x 2 300 2 x x 400 1 2 x 2 250 x1 , x 2 0
线性规划知识点总结
线性规划知识点总结一、概述线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它的目标是找到使目标函数达到最大或最小值的变量取值。
线性规划广泛应用于经济学、工程学、管理学等领域,可以帮助优化资源分配和决策制定。
二、基本概念1. 变量:线性规划中的变量表示需要优化的决策变量,可以是实数或非负数。
2. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数称为目标函数。
3. 约束条件:线性规划的解必须满足一系列线性等式或不等式,这些等式或不等式称为约束条件。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。
三、标准形式线性规划问题可以通过标准形式来表示,其形式如下:最小化:C^T * X约束条件:A * X <= BX >= 0其中,C是目标函数的系数向量,X是变量向量,A是约束条件的系数矩阵,B是约束条件的常数向量。
四、常见解法1. 图形法:适用于二维或三维的线性规划问题,通过绘制约束条件的图形,并找到最优解所在的顶点。
2. 单纯形法:适用于高维的线性规划问题,通过不断迭代改进当前解,直到找到最优解。
3. 整数线性规划:当变量需要取整数值时,可以使用整数线性规划方法求解,如分支定界法、割平面法等。
五、常见应用1. 生产计划:线性规划可以帮助确定最佳的生产计划,以最大化产量或最小化成本。
2. 运输问题:线性规划可以解决运输问题,如确定最佳的运输路径和运输量,以最小化总运输成本。
3. 资源分配:线性规划可以优化资源的分配,如确定最佳的人力、物力和财力分配方案。
4. 投资组合:线性规划可以帮助确定最佳的投资组合,以最大化收益或最小化风险。
六、注意事项1. 线性假设:线性规划只适用于目标函数和约束条件均为线性的问题,不适用于非线性问题。
2. 敏感性分析:线性规划的解对目标函数系数和约束条件右端常数的变化具有一定的敏感性,需要进行敏感性分析。
线性规划知识点大一
线性规划知识点大一线性规划知识点解析线性规划(Linear Programming,简称LP)是一种求解线性约束条件下最优解的优化问题方法。
它在数学、经济学、运筹学等领域得到广泛应用。
本文将介绍线性规划的基本概念、模型建立、求解方法以及一些应用实例。
一、线性规划的基本概念线性规划的基本概念主要包括目标函数、约束条件、可行域等。
1. 目标函数:线性规划的目标是通过最大化或最小化目标函数来求得最优解。
目标函数通常是线性函数,可以是最大化利润、最小化成本等。
2. 约束条件:线性规划的约束条件是限制变量取值范围的一组线性等式或不等式。
约束条件可以限制资源的供应与需求、生产能力等,必须满足约束条件的要求。
3. 可行域:可行域是所有满足约束条件的解所构成的区域。
可行域是线性规划问题的解空间,最优解必然位于可行域内。
二、线性规划的模型建立线性规划问题的建模主要包括确定决策变量、建立目标函数和约束条件。
1. 决策变量:决策变量是问题中需要确定的变量,通常用x1,x2,...,xn表示。
决策变量的取值决定了问题的结果。
2. 目标函数:根据问题的目标,建立线性规划的目标函数。
目标函数可以是最大化利润、最小化成本等。
通常用C1x1+C2x2+...+Cnxn表示。
3. 约束条件:根据问题的约束条件,建立线性规划的约束条件。
约束条件可以是线性等式或不等式。
通常用A11x1+A12x2+...+A1nxn≤B1,A21x1+A22x2+...+A2nxn≤B2,...的形式表示。
三、线性规划的求解方法线性规划的求解方法主要有图形法和单纯形法。
1. 图形法:当问题的决策变量为二维或三维时,可以利用图形法求解线性规划问题。
图形法通过绘制可行域和等高线图的交点来确定最优解。
2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
它通过迭代计算,不断找到目标函数值更小(或更大)的解,直到找到最优解为止。
四、线性规划的应用实例线性规划在实际应用中有广泛的用途,以下以生产计划为例进行简单说明。
线性规划知识点
线性规划知识点一、概述线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它可以用来确定一组决策变量的最佳取值,使得目标函数达到最大或最小值。
线性规划广泛应用于工程、经济、运输、决策科学等领域。
二、基本概念1. 决策变量:线性规划中需要确定的未知数,表示问题中需要做出的决策。
2. 目标函数:线性规划中需要最大化或最小化的数学表达式,表示问题的目标。
3. 约束条件:线性规划中限制决策变量取值范围的条件,通常为一组线性等式或不等式。
4. 可行解:满足所有约束条件的决策变量取值组合。
5. 最优解:在所有可行解中使目标函数达到最大或最小值的决策变量取值组合。
三、标准形式线性规划问题通常可以表示为如下的标准形式:最小化(或最大化)目标函数约束条件:决策变量的非负性约束其中,目标函数和约束条件都是线性的。
四、求解方法1. 图形法:适用于二维线性规划问题,通过绘制约束条件的直线和目标函数的等高线,找到最优解。
2. 单纯形法:适用于多维线性规划问题,通过迭代计算,不断改进解的质量,最终找到最优解。
3. 整数规划方法:适用于决策变量需要取整数值的线性规划问题,通过引入额外的整数约束条件,将问题转化为整数规划问题。
五、线性规划的应用线性规划在实际应用中具有广泛的应用场景,如:1. 生产计划:通过线性规划确定最佳的生产计划,以满足需求并最小化成本。
2. 供应链管理:通过线性规划优化供应链中的物流、库存和生产决策,提高效率和降低成本。
3. 金融投资:通过线性规划确定最佳的投资组合,以最大化收益或最小化风险。
4. 运输调度:通过线性规划优化运输路线和调度计划,提高运输效率和降低成本。
5. 资源分配:通过线性规划优化资源的分配,如人力资源、物资、能源等,以提高利用效率。
六、线性规划的局限性虽然线性规划在许多问题中具有广泛的应用,但它也存在一些局限性:1. 线性假设:线性规划要求目标函数和约束条件都是线性的,不能处理非线性问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
生产计划的问题
Page 17
解:设 x1,x2,x3 分别为三道工序都由本公司加工的甲、乙、丙三种
产品的件数,x4,x5 分别为由外协铸造再由本公司加工和装配的甲、乙两
种产品的件数。 求 xi 的利润:利润 = 售价 - 各成本之和
产品甲全部自制的利润
产品甲铸造外协,其余自制的利润 产品乙全部自制的利润
人力资源分配的问题
Page 23
解:设 xi 表示第i班次时开始上班的司机和乘务人员数 ,这样我们建立如下的数学模型。
x1 + x2 + x3 + x4 + x5 + x6 约束条件:s.t. x1 + x6 ≥ 60 x1 + x2 ≥ 70 x2 + x3 ≥ 60 x3 + x4 ≥ 50 x4 + x5 ≥ 20 x5 + x6 ≥ 30 x1,x2,x3,x4,x5,x6 ≥ 0且全为整数
=23-(3+2+3)=15
=23-(5+2+3)=13 =18-(5+1+2)=10
产品乙铸造外协,其余自制的利润
产品丙的利润
=18-(6+1+2)=9
=16-(4+3+2)=7
可得到 xi (i = 1,2,3,4,5) 的利润分别为 15、10、7、13、9
元。
17
生产计划的问题
பைடு நூலகம்
Page 18
材料A 材料B
2 1
1 1.5
40 30
利润(元/件)
300
400
2.1 典型问题举例
2015年1月25日星期日 Page 6
线性规划的数学模型由 决策变量 Decision variables 目标函数Objective function 及约束条件Constraints 构成。称为三个要素。
怎样辨别一个模型是线性规划模型?
max(min) Z c1 x1 c2 x2
cn xn
a11 x 1 a12 x2 a1n xn (或 , )b1 a x a x a x (或 , )b 2n n 2 21 1 22 2 a x a x a x (或 , )b mn n m m1 1 m 2 2 x j 0, j 1, 2, , n
其特征是: 1.解决问题的目标函数是多个决策变量的
线性函数,通常是求最大值或 最小值; 2.解决问题的约束条件是一组多个决策变量 的线性不等式或等式。
2.1 典型问题举例
2015年1月25日星期日 Page 7
【例2-2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天需要的营业员如表1-2所示。
20
生产计划的问题
目标函数为计算利润最大化,利润的计算公式为: 利润 = [(销售单价 - 原料单价)* 产品件数]之和 -
Page 21
(每台时的设备费用*设备实际使用的总台时数)之和。
这样得到目标函数:
Max(1.25-0.25)(x111+x112)+(2-0.35)x221+(2.80-0.5)x312 – 300/6000(5x111+10x211)-321/10000(7x112+9x212+12x312)250/4000(6x121+8x221)-783/7000(4x122+11x322)200/4000(7x123).
2.1 典型问题举例
2015年1月25日星期日 Page 4
应用模型举例
【例2-1】生产计划问题。某企业在计划期内计划生产甲、乙两 种产品。按工艺资料规定,每件产品甲需要消耗材料A 2公斤, 消耗材料B 1公斤,每件产品乙需要消耗材料 A 1公斤,消耗材 料B 1.5公斤。已知在计划期内可供材料分别为 40、30公斤;每 生产一件甲、乙两产品,企业可获得利润分别为 300、400元, 如表1- 1所示。假定市场需求无限制。企业决策者应如何安排 生产计划,使企业在计划期内总的利润收入最大。
min Z x1 x 2 x3 x 4 x5 x 6 x 7 x1 x 4 x5 x 6 x 7 x x x x x 2 5 6 7 1 x1 x 2 x3 x 6 x 7 x1 x 2 x3 x 4 x 7 x1 x 2 x3 x 4 x5 x 2 x3 x 4 x5 x 6 x3 x 4 x5 x 6 x 7 x 0, j 1,2, ,7 j 300 300 350 400 480 600 550
Page 13
2.4 一些应用案例建模
2.1 典型问题举例
2015年1月25日星期日 Page 14
生产计划问题
人力资源规划问题 合理下料问题
配料问题(营养配餐、混合问题)
购销存问题(生产和库存系统优化、木材库存) 合理搭载问题(货轮装运优化) 投资计划问题(连续投资) 运输问题 仓库租赁问题(贷款问题)
2.4 一些应用案例建模
2015年1月25日星期日
Page 15
项目投资优化问题
厂址选择问题
飞行器能源优化问题
机械租赁问题 种植计划问题
生产计划的问题
Page 16
例.某公司面临一个是外包协作还是自行生产的问题 。该公司生产甲、乙、丙三种产品,都需要经过铸造、机 加工和装配三个车间。甲、乙两种产品的铸件可以外包协 作,亦可以自行生产,但产品丙必须本厂铸造才能保证质 量。数据如表。问:公司为了获得最大利润,甲、乙、丙 三种产品各生产多少件?甲、乙两种产品的铸造中,由本 公司铸造和由外包协作各应多少件?
班次 1 2 3 4 5 6 时间 6:00 —— 10:00 10:00 —— 14:00 14:00 —— 18:00 18:00 —— 22:00 22:00 —— 2:00 2:00 —— 6:00 所需人数 60 70 60 50 20 30
Page 22
设司机和乘务人员分别在各时间段一开始时上班,并 连续工作八小时,问该公交线路怎样安排司机和乘务人员, 既能满足工作需要,又配备最少司机和乘务人员? 22
x1,x2,x3,x4,x5 ≥ 0且全为整数
18
生产计划的问题
例.永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两 道工序加工。设有两种规格的设备A1、A2能完成 A 工序; 有三种规格的设备B1、B2、B3能完成 B 工序。Ⅰ可在A、B 的任何规格的设备上加工;Ⅱ 可在任意规格的A设备上加 工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设 备上加工。数据如表。问:为使该厂获得最大利润,应如 何制定产品加工方案?
表1-2 营业员需要量统计表
星期 一 二 三 四
需要人数 300 300 350 400
星期 五 六 日
需要人数 480 600 550
商场人力资源部应如何安排每天的上班人数,使商场总的营业员 最少。
2.1 典型问题举例
2015年1月25日星期日 Page 8
【解】 设xj(j=1,2,…,7)为休息2天后星期一到星期日开始上班 的营业员,则这个问题的线性规划模型为
为了书写方便,上式也可写成:
2.2 线性规划模型的一般形式
2015年1月25日星期日
Page 12
max(min) Z c j x j
j 1
n
n aij x j (或 , )bi j 1 x 0, j 1, 2, , n j
i 1, 2,
,m
在实际中一般xj≥0,但有时xj≤0或xj无符号限制。
星 期 一 二 三 四 需要 人数 300 300 350 400 星 期 五 六 日 需要 人数 480 600 550
2.1 典型问题举例
2015年1月25日星期日 Page 9
最优解:
1 X1 2 X2 3 X3 0 C1 67 C2 146 C3 404 >= 301 >= 350 >= 300 300 350 104 1 0
经整理可得:
Max0.75x111+0.7753x112+1.15x211+1.3611x212+1.9148x312-0.375x121-
0.5x221-0.4475x122-1.2304x322-0.35x123
21
人力资源分配的问题
某昼夜服务的公交线路每天各时间段内所需司机 和乘务人员数如下:
通过以上分析,可建立如下的数学模型:
目标函数: 约束条件:
Max
15x1 + 10x2 + 7x3 + 13x4 + 9x5 4x2 + 8x3 + 6x4 + 4x5 ≤ 12000 2x2 + 2x3 + 3x4 + 2x5 ≤ 10000
5x1 + 10x2 + 7x3 ≤ 8000 6x 1 + 3x 1 +
Page 19
19
生产计划的问题
5x111 + 10x211 6x121 + 8x221 4x122 s.t. 7x123 ≤ 6000 ( 设备 A1 ) ( 设备 A2 ) ( 设备 B1 ) ( 设备 B2 ) ( 设备 B3 )
Page 20
解:设 xijk 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工的数 量。建立如下的数学模型: 7x112 + 9x212 + 12x312 ≤ 10000 ≤ 4000 + 11x322 ≤ 7000 ≤ 4000