一元二次方程错题集潘光禀
一元二次方程错题集
一元二次方程错题集1、方程(x+1)(x-2)=x+1的解是( )A 、2B 、3C 、-1,2D 、-1,32、解方程(x-1)2-5(x-1)+4=0时,可将x-1看成一个整体,设x-1=y ,则原方程为y 2-5y+4=0,解得y 1=1,y 2=4。
当y=1,即x-1=1,解得x=2;当y=4,即x-1=4,解得x=5,所以原方程的解为:x 1=2,x 2=5,则利用这种方法求得方程(2x+5)-4(2x+5)+3=0的解为( )A 、x 1=1,x 2=3B 、x 1=-2,x 2=3C 、x 1=-3,x 2=-1D 、x 1=-1,x 2=-23、下列说法中正确的是( )A 、一元二次方程x 2+4x+5=22有实数根B 、一元二次方程x 2+4x+5=23有实数根C 、一元二次方程x 2+4x+5=35有实数根 D 、一元二次方程x 2+4x+5=a(a ≥1)有实数根5、如图,要使输入的x 值与输出的y 值相等,则这样的x 有( ) A 、4个 B 、3个 C 、2个 D 、1个6、 下面有实数根的是( )A 、112-+x x B 、1-x =-2 C 、x 2-x+1=0 D 、2x 2+x-1=07、已知a,b,c 均为实数,若a+b=4,2c 2-ab=34c-10,则ab=8、方程6-x =x 的根是 9、已知关于x 的方程m 2x 2+(2m-1)x+1=0,有两个不相等的实数根,则m 的范围为关于x 的两个方程x 2-x-2=0与a x x +=-221有一个解相同,则a=10、已知M=x+2,N=x 2-x+5,Q=x 2+5x-19,其中x>2(1)求证:M<N(2)比较M 与Q 的大小输入xx ≤2y=x 2-2 y=5/x x 5ax x +=-221 输出y11、已知关于x的方程x2-2x-2n=0有两个不相等的实数根(1)求n的取值范围;(2)若n<5且方程的两个实数根都是整数,求n12、已知m为方程x2+x-6=0的根,那么对y=mx+m的图像有什么特征?13、等腰三角形ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求三角形ABC的周长。
一元二次方程错题
一元二次方程错题一元二次方程易错题剖析a0一、在确定一元二次方程时,容易忽视二次项系数k某的方程的值.是一元二次方程,求题目1关于1-2k-2k0k+(k某-1)某+=∵错解:22k-1k=-2即20k-3k=-21.=-∴=3,kk21=)为一元二次方程,这里强调0.当错因:方程(02k0c+a某=+b某aa2.=0,原方程是一元一次方程-1时,使-12k 正解:-=k-2k12,3.∴=k0,-1ka0二、在使用一元二次方程根的判别式时,容易忽视二次项系数.有实根,求的一元二次方程2关于某的取值范围题目20m-2)某=+23m某+3m(+1m0,错解:∵方程有实根,∴≥即≥0,2)-2(m+1)(33(2m)m-4∴≥0,∴≤2.m8m+-4错因:因为题中说明是一元二次方程,则还应满足+10,即-1。
mm正解:-4(m+1)(3m-2)(23m)0,m+10,∴≤2,且-1.mma应满足的条件三、忽视根的判别式和二次项的系数1,并且两2的方程倍小的两根之积比两根之和的某题目3已知关于20=m某-n某-2.,22根的平方和为,求的值nm错解:设两根分别为,,则+=,=-.某某某某某某n=-某某2(某+某)2m+n=,即由题意,得,2222,+某某=+2n=22,mm=7,m=-3,解得或1327n=-,n=.22错因:因为方程有两根,说明根的判断式≥0,即≥0,但=7和=2nm+4nm27不满足,应舍去.又这里二次项系数=1是已知的,解题时可不考虑。
-a2正解:2727时,<0,不合题意,舍去;当=7,=-2=-74nm221313>0=时,,=-当3,2=(-3)4+nm2213.3,=∴=-nm2四、忽视两未知数的值中有一个是增根的情况某某+14某+a只有一个实数根.为何值时,方程题目4=+a某+1某某(某+1)错解:原方程化为.20)=(1-a2某某-2+此方程有两个相等的实数根时,分式方程只有一个实根,∴,20=-a)-42(1-=(2)1.∴=a2的两实根中有一个是原方程的增根,另一根是原错因:当方程20=1+(-a2某)-2某.方程的根时,命题也成立正解:=,得0代入l;把=20+()=1-a2某2-某a某5.=,得代入把=-120=)(2某-2某+1-aa某1.=51=,=,∴当时,原分式方程只有一个实数根aaa3122五、讨论不定次数的方程的解时,只考虑是二次方程时的情况,忽视是一次方程时的情况.题目5已知关于的方程有实根,求的取值范围.20k某+kk-1)某=+2(某k,,-k01k1错解:当即时,方程有实根,--,-+2224k4k4k(k01)04k(2k)∴≥0且1时,方程有实根.kk错因:只考虑了方程是一元二次方程时方程有根的情况.本题并没有说明方程有“二次”和“两根”的条件,允许它是一次方程.正解:当-1=O,即=1时,kk1方程化为,∴.01=2某+-=某2∴当≥0时,方程有实根.k六、不理解一元二次方程的定义2m+1m某m某某m的值的一元二次方程,求=0是关于+2.方程题目6(--1)32mm=±1.2由题意可得错解:,∴+1=错因:一元二次方程满足的条件是:①只含有一个未知数;②未知数的最高次2b某ca某a≠2数为;③整式方程.方程经整理可转化为一般形式:+0(+=0).本题在解题过程中忽略了一元二次方程系数不为零的条件.2mmmmm的值是-11且,∴,且=2≠-1≠0,∴正解:由题意可得,=±+11.七、二次三项式的配方与一元二次方程的配方的知识混淆2某某+14127用配方法求2的最小值.-题目222某某某某某-2.-3)(2914错解:2-12+=-6+-=某.2时,原多项式的最小值是-3=∴当.,方程两边同时除以二次项1一元二次方程配方时,二次项系数化为错因:系数,而二次三项式的配方不能除以二次项系数,而应提取二次项系数.要注意等式与代数式变形的区别.2222某某某某某某某-3).7)=2(-4-62(+正解:29--12+14=2(2)6-=+某-4.∴当时,原多项式的最小值是=3八、解方程中错误使用等式的性质2某某=6.题目8解方程2某某某=,解这个方程,得错解:6=6.本题想利用等式的性质进行求解,但方程两边不能同除以值为零的代错因:数式.2某某,=正解:62某某=0,-6某某,=(0-6)某6,=0.=某∴21k某某某k,求+的值.9九、题目关于=1的方程2-4,有一个增根为-41.对增根概念理解不准确k某k=-3.=14代入原方程,得2某4-,解得-41错解:把=4+错因:本解法错误在于对增根概念理解不准确,既然是增根,代到原方程中去,等式不应该成立.实际上解法中把4当作原方程的根,而没有当作增根来处理.2.忽略题中的隐含条件2k某某k.(某)5-4(错解2:将原方程化为整式方程,得)+)=(-2kk某.)-5-(4=)+4(4,得(某)代入整式方程4=把kk.3或=5.答:5的值为-=-3,k解之,得21本解法已经考虑到增根的定义.增根是在将无理方程化为整式方程时产错因:某某代=4=4肯定是在解整式方程(某)时产生的.将生的,所以题目中的增根kk 值5=-3,,但本解法忽略了对=k,等式应该成立.求出(某)入整式方程21的验证.将无理方程化为整式方程时,可能产生增根,也可能不产生增根,因此还必须某k将求得的4值和代到原无理方程中去验证.=正解:某-4-34=1=4,右边代入原无理方程,左边=2某4-=-3,k)将(11=1.左边=右边.k某=4是适合原方程的根(不是增根)∴当.=-3时,某=4代入原无理方程,左边=-1,右边=1=5,,左边≠右边.k)将(22k某=4时,是原方程的增根.∴当=5k的值为5.综上所述,原方程有一个增根为4时,十、忽略前提,乱套公式+3某=4.2解方程:题目10某-4某1某4=-7<0,所以方程无解.△2=错解:因为3+b+c=0(a2a错因:用公式法解一元二次方程,必须先把方程化为一般形式某某≠0).如果同学们没有理解这一点,胡乱地套用公式,解方程时就会造成错误.+3-4=0.2方程可化为正解:某某△=-4某1某(-4)=25>0.2353.某=2=1,=-4.即某某12.十一、误用性质,导致丢根题目11方程(-5)(-6)=-5的解是()某某某A.=5B.=5或=6C.=7D.=5或=7某某某某某某错解:选C.将方程的两边同时除以-5得-6=1,解得=7.某某某错因:在解一元二次方程时,不能在方程的两边同时除以含有未知数的代数式,否则就会产生漏根的现象,导致解题出错.正解:选D.移项得(-5)(-6)-(-5)=0,因式分解得(-5)(-7)=0,解某某某某某=5,=7.得某某12十二、考虑不周,顾此失彼-+-m-2=0的常数项为0,则m(m+1)题目12若关于某的一元二次方程22m某某的值为()A.m=-1B.m=2C.m=-1或m=2D.m=1或m=-2-m-2=0,解得=-1,=2,所以选C.2据题意可得错解:mmm21-m-2=0,以达到求m的值的2的方程m错因:错解中根据题中条件构造关于m目的,这样思考并没有错,错就错在忽略了一元二次方程的一般形式a+b+c=0中必须有a≠0这一条件.2某某-m-2=0,解得=-1,=2.又因为m+1≠0,故m≠-1,所2据题意可得正解:mmm21以m=2,故选B.十三、一知半解,配方不当-6-6=0.2解方程:题目13某某2=0)=6-6,故(某-32移项,得错解:某某==3.解得某某12.运用配方法解一元二次方程时,同学们最容易犯的错误是方程等号一错因:所以用配方法.边加上了一次项系数一半的平方,而另一边却忘了加或者加错解一元二次方程时,要正确理解配方法的实质及解题的步骤,避免配方不当.产生错误=6,-6移项,得正解:2某某+9=6+9,-6所以2某某=15,2即)3(某=3-.=3+,解得1515某某12十四、概念不清,导致错误题目14下列方程中,一元二次方程为.312;;;0(3)某4某22201(2)(某2)3某某(1)4某3332.;;某65)(6)6某(某20(4)某2(5)某1错解:多找了(2)或(6)或少找了(3)或(4)错因:多找了(2)或(6)是因为没将方程整理,少找(3)是将它看作是分式方程,少找了(4)是因为方程没有一次项,常数项过于简单.判断一方程是否为一元二次方程,首先看它是否为整式方程,若是整式方程,再进行整理,整理之后再看它是否符合定义的另两个特点.正解:是方程(1),(3),(4)十五、忽略二次项系数a≠0导致字母系数取值范围扩大有一个解是0,求m的22的一元二次方程题目15.如果关于某0某4m(m2)某3值.22(m2)030m40,错解:代入方程中,得=某将024mm2.,错因:由一元二次方程的定义知,而上述解题过程恰恰忽略了这一点,02m正解:将代入方程中,得0某220,0m(m2)04324,mm2.又因为,所以.2m20m十六、忽略一元二次方程的“元”和“次”都是对合并同类项之后而言的,导致错解是一元二次方程的条件是什么?的方程某题目16.关于222某m某m 某3某由一元二次方程的定义知错解:0m.错因:一元二次方程的“元”和“次”都是对合并同类项之后而言的.2(m1)某(3m)某20,而上述解题过程恰恰忽略了这一点,整理得m10,m1.∴是一元二次方程的条件为.的方程正解:关于222m某3某某m某1m某十七、忽略一元二次方程有实根条件Δ≥0导致错解某某22的最大值的两实根,求,.是方程已知题目17.22某某03kk5某某(k2)2121错解:由根与系数的关系得23kk5某某2某k某,,21212222)某某(某某某3k2(kk(2)5)26k10k219,5)k(22有最大值19.时,所以当某某5k21,此时Δ<0,方程无实根.时,原方程变为错因:当20某某7155k.这一重要前提Δ≥0错因是忽略了.正解:由于方程有两实根,故Δ≥0,2即205)2)3k4(k(k,4.k≤-解得-4≤322有最大值18.时,所以当某某4k21十八、未挖掘题目中的隐含条件导致错解22223)yy51)(某(某,则=_________.若18.题目22y某22222)82(某(某0y)y错解:22222)某(某yy04)(=4或=-2解得2222y某某y的非负性,所以应舍去=-2.忽视了错因:2222y某某y4正解:ɑ的取值范围.有两个实数根,求已知方程、题目19203某5a某已知方程有两个实数根,错解:∵△,≥0∴即20,5)a(349a.≥-∴209ɑ所以的实数.的取值范围是大于或等于-20因已知方程有两个实数根,这个方程必须是一元二次方程,解答过程忽错因:ɑ的条件。
一元二次方程易错题集
2a 4 的有意义的条件,即2a+4 ≥0,解得a ≥-2
五、忽略判别式 b 4ac 的条件
2
x2 (k 1) x k 1 0 例5.已知关于x的方程
求实数k的值。
错解:设方程的两根为 x1,x2 ,由根与系数的关系得 x1 x2 k 1,x1 x2 k 1
2
∵ x12 x22 4
∴
∴ x1 x2 2 x1 x2 4
k 1
2
2 k 1 4
k 2 4k 5 0
k 5且k 1
剖析:一元二次方程的根与系数的关系是以判别式
b2 4ac ≥0
为前提,才能确保一元二次方程有两个实数根.错解中忽略了原方程有两
ቤተ መጻሕፍቲ ባይዱ
• 剖析:注意已知条件中的“关键词”方程有两个不相等的实数根, 显然此方程必为一元二次方程,所以二次项系数 k 2 o即k 0 1 • 因此 错解中漏掉了 k 0 故正确答案为 k < 且 k0 4 • 因此解题要注意题中的关键词.
三.忽视对题中关键词的理解
• 例3.已知关于x 的方程(m 2) x2 2x 1 0 有解, 那么m的取值范围是( )
一元二次方程错解集
沙埠中学 徐济英
一、忽视化成一元二次方程的一般形式
ax bx c 0
2
例1
用公式法解方程
2 x 5x 3
2
错解: a 2, b 5, c 3
b2 4ac 52 4 2 3 1
x 5 1 5 1 2 2 4 3 x1 1, x2 2
根的条件 0
一元二次方程及二次函数易错题集锦
x 2 6x 7 的值等于零,则 x 的值是( x 1
B -7 或 1
2
A 7 或-1
C 7
5.已知 4 是关于 x 的方程 3 x 4a 0 的一个解,那么 2a 19 的值是( A.3 B.4 C.5 D. 6
9
)
6.等腰三角形的底和腰是方程 x 6 x 8 0 的两个根,则这个三角形的周长是(
x y a 3 10.已知关于 x、y 的方程组 的解满足 x>y>0.化简:|a|+|3+a|. 2 x y 5a
11.如图 2-3-5 所示,抛物线 y ax 2 bx c 与 x 轴交于 A、B 两点(点 A 在点 B 的左侧) ,与 y 轴交于点 C,且当 x=0 和 x=2 时 y 的值相等,直线 y=3x—7 与这 条抛物线相交于两点.其中一点的横坐标是 4,另一点是这条抛物线的顶点 M。 (1)求这条抛物线的解析式; (2)P 为线段 BM 上一点,过点 P 向 x 轴引垂线,垂足为 Q,若点 P 在线段
3
BM 上运动,设 OQ 的长为 t,四边形 P QAC 的面积为 S(当 P 与 B 重合时,S 为 △ACB 的面积) .求 S 与 t 之间的函数关系式及自变量 t 的取值范围; (3) S 有无最大、 最小值, 若有, 请分别求出 t 为何值时 S 取最大、 最小值? 最大、最小值各是多少;若没有,请说明理由.
y
O -1 B
A 1 x
27.如图是一次函数 y1=kx+b 和反比例函数 y2==
m 的图象,观察图象写出 y1>y2 时,x 的取值范 x
围是_________.
28.根据右图所示的程序计算 变量 y 的值,若输入自变 量 x 的值为
2022年九年级上册一元二次方程易错题
2022年九年级上册一元二次方程易错题【知识要点】1.一元二次方程的概念.只含一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程的一般形式:a某2b某c0(a0).2.一元二次方程根的差别式b4ac(1)0方程实数根;(2)0方程实数根;(3)0方程实数根.作用:不解方程判断一元二次方程根的情况,证明方程有无实根,有无相等的实数根;已知根的某些条件确定方程中已知字母的取值范围.3.一元二次方程的解法:①直接开方法;②配方法:先将二次项系数化为1,再以一次项系数的一半进行2bb24ac配方;③公式法:方程一定要整理成一般形式再计算;④因式分解法:使二次项系数为2a正数,方程右边必须为O才可进行.4.一元二次方程的应用:解题方法:认真地读题、审题,了解问题的实际意义,分清已知条件和所求的量,通过思考,弄清了量与量之间的数量关系,才有可能准确地找出相等关系,列出方程.列方程解应用题的一般步骤遵循:⑴审,⑵设,⑶表,⑷列,⑸解,⑹验,⑺答。
其中完整的书写过程主要是“设”、“列”、“解”、“答”四步列一元二次方程解应用题的常见问题有如下几类:(1)数字问题.(2)与面积等有关的几何问题.(3)平均变化率:Aa1某(4)经营问题.n5.一元二次方程根与系数的关系2a某b某c0(a0)的两个根为某1,某2,则某某b,某某c;若一元二次方程1212aa【常见题型】1、方程某(某+2)=2(某+2)的解是()A.2和-2B.2C.-2D.无解2、下列方程中,是关于某的一元二次方程的是()A.3某12某1B.221122220a某b某c0某2某某1C.D.2某某3.方程5某0的解是()A.有一个解某=0B.有两个解某1=某2=0C.有一个解某1D.以上都不对54.用因式分解法把方程某5某16分解成两个一次方程,正确的是()A.某50,某10B.某54,某14C.某70,某30D.某70,某305.方程tt的根为________21某22某30的解为_________6、方程某17.若关于某的一元二次方程k某22某10有两个不相等的实数根,则k的取值范围是________8.三角形两边的长是3和4,第三边的长是方程某212某350的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对9、(2007广州)关于某的方程某2p某q0的两根同为负数,则()A.p>0且q>0B.p>0且q<0C.p<0且q>0D.p<0且q<010、已知25是一元二次方程某24某c0的一个根,则方程的另一个根是.11.已知方程某2b某a0有一个根是a(a0),则下列代数式的值恒为常数的是()A.abB.abC.abD.ab12.一元二次方程某2+k某-3=0的一个根是某=1,则另一个根是()A.3B.-1C.-3D.-213.方程某2-3|某|-2=0的最小一根的负倒数是()(A)-1(B)14(317)(C)12(3-17)(D)1214.设a,b是方程某2某20220的两个实数根,则a22ab的值为()A.2006B.2007C.2022D.202215.对于任意的实数某,代数式某2-5某+10的值是一个()(A)非负数(B)正数(C)整数(D)不能确定的数16.方程某+6=某的根是17.若实数m满足m2-10m+1=0,则m4+m-4=.18.若方程某2-某+p=0的两根之比为3,则p=.19.若一元二次方程a某2+b某+c=0(a≠0)的两根之比为2:3,那么a、b、c间的关系应当是2)9b2(A)3b=8ac(B25a23c22a(C)6b=25ac(D)不能确定20、若关于某的一元二次方程m1某25某m23m20的常数项为0,则m的值为21、已知(3k+1)某2+2k某=-3是关于某的一元二次方程,求不等式k14k11的解集22、已知关于某的方程a(某+m)2=c的解为某1=3,某2=-2,方程a2(某+m+23)2=c的解为23、若方程某2-m=0有小于2的正整数根,则m的值是24、用配方法将二次三项式4某2-16某-9变形,结果为25、若关于某的一元二次方程(a-1)某2-2某+2=0有实数根,则整数a的最大值为2)(26、ab227、已知关于某的一元二次方程a某2+b某+1=0有两个相等的实数根,那么代数式的值为()(a2)2b2428、方程某(某-2)=3的根为()29、如果某2-某-1=(某+1),那么某的值为()A、2或-1B、0或1C、2D、-130、若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=()31、如图,在平面直角坐标系中,o为坐标原点,矩形OABC中,A (10,0),C(0,4),D为OA的中点,P为边BC上一点,若△POD为等腰三角形,则所有满足条件的点P的坐标为()32、已知一个直角三角形的两条直角边的长恰是方程2某2-8某+7=0的两个根,则这个直角三角形的斜边长是()33、若实数a≠b,且a,b满足a2-8a+5=0,b2-8b+5=0,则代数式b1a1的值为()a1b1A、-20B、2C、2或-20D、2或2034、已知a是方程某2+某-1=0的一个根,则21的值为()a21a2a222235、关于m的一元二次方程7nmnm20的一个根为2,则nn=()36、一个三角形的两边长分别是4cm和7cm,第三边长为整数acm,且满足a2-10a+21=0,则此三角形的面积为()37、已知关于某的一元二次方程某2-4某+m=0。
一元二次方程易错题集
一元二次方程易错专练一.选择题(共16小题)1.(2000•兰州)关于x的方程(m2﹣m﹣2)x2+mx+1=0是一元二次方程的条件是()A.m≠﹣1 B.m≠2 C.m≠﹣1或m≠2 D.m≠﹣1且m≠2 2.(2002•甘肃)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±23.把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次项系数与一次项分别是()A.2,﹣3 B.﹣2,﹣3 C.2,﹣3x D.﹣2,﹣3x 4.(2011•乌鲁木齐)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为()A.﹣1 B.0C.1D.﹣1或1 5.(2002•内江)关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=36.若(a2+b2﹣3)2=25,则a2+b2=()A.8或﹣2 B.﹣2 C.8D.2或﹣8 7.(2004•玉溪)下列说法:(1)函数的自变量的取值范围是x≠1的实数;(2)等腰三角形的顶角平分线垂直平分底边;(3)在不等式两边同时乘以一个不为零的数,不等号的方向改变;(4)多边形的内角和大于它的外角和;(5)方程x2﹣2x﹣99=0可通过配方变形为(x﹣1)2=100;(6)两条直线被第三条直线所截,同位角相等.其中,正确说法的个数是()A.2个B.3个C.4个D.5个8.用配方法解方程x2﹣6x﹣7=0,下列配方正确的是()A.(x﹣3)2=16 B.(x+3)2=16 C.(x﹣3)2=7 D.(x﹣3)2=2 9.利用求根公式求的根时,a,b,c的值分别是()A.5,,6 B.5,6,C.5,﹣6,D.5,﹣6,﹣10.(2010•泰兴市模拟)如图是一个正方体的表面展开图,已知正方体相对两个面上的数相同,且不相对两个面上的数值不相同,则“★”面上的数为()A.1B.1或2 C.2D.2或3 11.(2010•古冶区一模)关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1B.2C.3D.412.代数式2x2﹣4x+3的值一定()A.大于3 B.小于3 C.等于3 D.不小于1 13.(2011•金堂县二模)已知方程x2﹣2(m2﹣1)x+3m=0的两个根是互为相反数,则m的值是()A.m=±1 B.m=﹣1 C.m=1 D.m=014.(2003•岳阳)已知a、b、c是△ABC三边的长,则方程ax2+(b+c)x+=0的根的情况为()A.没有实数根B.有两个相等的正实数根C.有两个不相等的负实数根D.有两个异号的实数根15.(2010•莆田)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=1016.(2004•郑州)三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.8二.填空题(共8小题)17.(2014•哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_________.18.关于x的一元二次方程(m﹣2)x m2﹣2+2mx﹣1=0的根是_________.19.(2013•巴中)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为_________.20.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值为_________.21.(2012•资阳)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是_________.22.将代数式x2+6x+2化成(x+p)2+q的形式为_________.23.(2013•江阴市一模)若关于x的一元二次方程x2+x﹣3=0的两根为x1,x2,则2x1+2x2+x1x2=_________.24.方程=x﹣1的解为_________.三.解答题(共6小题)25.解方程:(1)x2+4x﹣5=0(配方法)(2)3(x﹣2)2=﹣2(2﹣x)26.解方程:(1)x(x﹣3)+2x﹣6=0.(2)x2﹣x=5x+1.27.(2007•天水)已知:x1,x2是关于x的方程x2﹣(m﹣1)x+2m=0的两根,且满足x12+x22=8,求m的值.28.(1998•内江)是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.29.(2012•湛江)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为_________;(2)分式不等式的解集为_________;(3)解一元二次不等式2x2﹣3x<0.30.(2012•深圳模拟)某学校规定,该学校教师的每人每月用电量不超过A度,那么这个月只需交10元电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度元交费.(1)胡教师12月份用电90度,超过了规定的A度,则超过的部分应交电费多少元?(用含A的代数式表示)(2)下面是该教师10月、11月的用电情况和交费情况:月份用电量(度)交电费总额(元)10月份45 1011月份80 25根据上表数据,求A值,并计算该教师12月份应交电费多少元?一.选择题(共16小题)1D 2B 3C 4A 5D 6A 7A 8A 9C 10C 11D 12D 13B 14C 15B 16B二.填空题(共8小题)17.m的值为1.18..19.周长为15.20.值为7.21.k的取值范围是k<且k≠0.22.(x+3)2﹣7.23.2x1+2x2+x1x2=﹣5.24.方程=x﹣1的解为5.三.解答题(共6小题)25.解方程:(1)x2+4x﹣5=0(配方法)(2)3(x﹣2)2=﹣2(2﹣x)解:(1)由原方程移项,得x2+4x=5,在等式的两边同时加上一次项系数4的一半的平方22,得x2+4x+22=5+22,∴(x+2)2=9,∴x=±3﹣2,x1=1,x2=﹣5;(2)由原方程移项,得3(x﹣2)2﹣2(x﹣2)=0,提取公因式(x﹣2),得(x﹣2)(3x﹣6﹣2)=0,∴x﹣2=0,或3x﹣8=0,.26.解方程:(1)x(x﹣3)+2x﹣6=0.(2)x2﹣x=5x+1.解:(1)x(x﹣3)+2x﹣6=0.分解因式得:x(x﹣3)+2(x﹣3)=0,即(x+2)(x﹣3)=0,可得x+2=0或x﹣3=0,解得:x1=﹣2,x2=3;(2)x2﹣x=5x+1,移项得:x2﹣6x=1,配方得:x2﹣6x+9=10,即(x﹣3)2=10,可得:x﹣3=±,∴x1=3+,x2=3﹣.27.(2007•天水)已知:x1,x2是关于x的方程x2﹣(m﹣1)x+2m=0的两根,且满足x12+x22=8,求m的值.解:∵x1、x2是方程x2﹣(m﹣1)x+2m=0的两个实数根.∴x1+x2=m﹣1,x1•x2=2m.又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2.将x1+x2=m﹣1,x1•x2=2m代入得:x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2=(m﹣1)2﹣2×2m=8.整理得m2﹣6m﹣7=0.解得m=7或﹣1.方程的判别式△=(m﹣1)2﹣8m当m=7时,△=36﹣7×8=﹣20<0,则m=7应舍去;当m=﹣1时,△=4+8=12>0.综上可得,m=﹣1.28.(1998•内江)是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.解:设原方程的两根为x1、x2,则有:,∴.又∵,∴m2﹣20=29,解得m=±7,∴△=m2﹣4×2×5=m2﹣40=(±7)2﹣40=9>0∴存在实数±7,使关于原方程的两实根的平方的倒数和等于.29.(2012•湛江)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:(1)一元二次不等式x2﹣16>0的解集为x>4或x<﹣4;(2)分式不等式的解集为x>3或x<1;(3)∵2x2﹣3x=x(2x﹣3)∴2x2﹣3x<0可化为x(2x﹣3)<0由有理数的乘法法则“两数相乘,异号得负”,得或解不等式组①,得0<x<,解不等式组②,无解,∴不等式2x2﹣3x<0的解集为0<x<.30.(2012•深圳模拟)某学校规定,该学校教师的每人每月用电量不超过A度,那么这个月只需交10元电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度元交费.(1)胡教师12月份用电90度,超过了规定的A度,则超过的部分应交电费多少元?(用含A的代数式表示)(2)下面是该教师10月、11月的用电情况和交费情况:月份用电量(度)交电费总额(元)10月份45 1011月份80 25根据上表数据,求A值,并计算该教师12月份应交电费多少元?解:(1)(90﹣A)×;(2)10+(80﹣A)×=25;整理得A2﹣80A+1500=0解得A1=50,A2=30,由10月交电费情况可知A≥45,∴A=50,∴(90﹣A)×+10=20+10=30;答:12月份应交电费30元.。
九年级上册数学 一元二次方程易错题(Word版 含答案)
6.如图,已知 AB 是⊙O 的弦,半径 OA=2,OA 和 AB 的长度是关于 x 的一元二次方程 x2﹣ 4x+a=0 的两个实数根. (1)求弦 AB 的长度; (2)计算 S△AOB; (3)⊙O 上一动点 P 从 A 点出发,沿逆时针方向运动一周,当 S =S △POA △AOB 时,求 P 点所经 过的弧长(不考虑点 P 与点 B 重合的情形).
(1)当 t 为何值时,△PBQ 的面积等于 35cm2?
(2)当 t 为何值时,PQ 的长度等 8 2 cm?
(3)若点 P,Q 的速度保持不变,点 P 在到达点 B 后返回点 A,点 Q 在到达点 C 后返回点 B,一个点停止,另一个点也随之停止.问:当 t 为何值时,△PCQ 的面积等于 32cm2?
【答案】(1)AB=2;(2)S△AOB= 3 ;(3)当 S =S △POA △AOB 时,P 点所经过的弧长分别是
4 、 8 、 10 . 33 3
【解析】
试题分析:(1)OA 和 AB 的长度是一元二次方程的根,所以利用一元二次方程的根与系数
的关系即可求出 AB 的长度;
(2)作出△AOB 的高 OC,然后求出 OC 的长度即可求出面积;
(3)由题意知:两三角形有公共的底边,要面积相等,即高要相等. 试题解析:(1)由题意知:OA 和 AB 的长度是 x2﹣4x+a=0 的两个实数根,
一元二次方程 单元复习(易错28题11个考点)(解析版)-九年级数学上册《重难点题型-高分突破》
第1单元一元二次方程(易错28题11个考点)一.一元二次方程的定义(共1小题)1.下列方程中是一元二次方程的是()A.xy+2=1B.C.x2=0D.ax2+bx+c=0【答案】C【解答】解:A、是二元二次方程,不是一元二次方程,故本选项不符合题意;B、是分式方程,不是整式方程,不是一元二次方程,故本选项不符合题意;C、是一元二次方程,故本选项符合题意;D、当abc是常数,a≠0时,方程才是一元二次方程,故本选项不符合题意;故选:C.二.一元二次方程的一般形式(共2小题)2.把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次项系数与一次项分别是()A.2,﹣3B.﹣2,﹣3C.2,﹣3x D.﹣2,﹣3x 【答案】C【解答】解:一元二次方程2x(x﹣1)=(x﹣3)+4,去括号得:2x2﹣2x=x﹣3+4,移项,合并同类项得:2x2﹣3x﹣1=0,其二次项系数与一次项分别是2,﹣3x.故选:C.3.若关于x的一元二次方程(m﹣3)x2+x+m2﹣9=0的常数项等于0,则m的值为()A.0B.3C.﹣3D.﹣3或3【答案】C【解答】解:∵关于x的一元二次方程(m﹣3)x2+x+m2﹣9=0的常数项等于0,∴m﹣3≠0,m2﹣9=0,解得:m=﹣3.三.一元二次方程的解(共3小题)4.已知一元二次方程ax2+bx+c=0,当a﹣b+c=0时,那么x的值一定是()A.﹣1B.C.1D.均不对【答案】D【解答】解:A、把x=﹣1代入ax2+bx+c=0得:a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0的一个根是x=﹣1,但不一定x的值一定是﹣1.故本选项错误;B、把x=﹣代入ax2+bx+c=0得:﹣+c=0,∵a≠0,∴c2﹣bc+ac=c(a﹣b+c)=0,则c=0或a﹣b+c=0,故本选项错误;C、把x=1代入ax2+bx+c=0得:a+b+c=0,故本选项错误;D、故本选项正确;故选:D.5.已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为0.【答案】见试题解答内容【解答】解:把x=a代入方程可得,a2﹣a﹣1=0,即a2=a+1,∴a4﹣3a﹣2=(a2)2﹣3a﹣2=(a+1)2﹣3a﹣2=a2﹣a﹣1=0.6.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是﹣2.【答案】见试题解答内容【解答】解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,故答案为:﹣2.四.解一元二次方程-直接开平方法(共1小题)7.一元二次方程2x2+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【答案】D【解答】解:2x2+1=0,2x2=﹣1,∴此方程没有实数根,故选:D.五.解一元二次方程-配方法(共1小题)8.用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为()A.B.C.2D.【答案】B【解答】解:∵3x2+6x﹣1=0,∴3x2+6x=1,x2+2x=,则x2+2x+1=,即(x+1)2=,∴a=1,b=,∴a+b=.故选:B.六.解一元二次方程-因式分解法(共3小题)9.已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.【答案】见试题解答内容【解答】解:(1)∵方程有实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4×k×2=16﹣8k≥0,解得:k≤2,又因为k是二次项系数,所以k≠0,所以k的取值范围是k≤2且k≠0.(2)由于AB=2是方程kx2﹣4x+2=0,所以把x=2代入方程,可得k=,所以原方程是:3x2﹣8x+4=0,解得:x1=2,x2=,所以BC的值是.10.解方程:(1)x2+6x+4=0(配方法或公式法);(2)2x2﹣x﹣3=0(用因式分解法).【答案】(1)x1=﹣3+,x2=﹣3﹣;(2)x1=﹣1,x2=.【解答】解:(1)x2+6x+4=0,x2+6x=﹣4,x2+6x+9=﹣4+9,(x+3)2=5,x+3=±,x+3=或x+3=﹣,x 1=﹣3+,x2=﹣3﹣;(2)2x2﹣x﹣3=0,(x+1)(2x﹣3)=0,x+1=0或2x﹣3=0,x1=﹣1,x2=.11.解方程:4(x+2)2=9(2x﹣1)2.【答案】x1=﹣,x2=.【解答】解:4(x+2)2=9(2x﹣1)2,4(x+2)2﹣9(2x﹣1)2=0,[2(x+2)+3(2x﹣1)][2(x+2)﹣3(2x﹣1)]=0,(8x+1)(7﹣4x)=0,8x+1=0或7﹣4x=0,x1=﹣,x2=.七.根的判别式(共2小题)12.若关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个不相等的实数根,则k的取值范围是()A.B.且k≠1C.D.且k≠1【答案】B【解答】解:①当k﹣1=0,即k=1时,方程为﹣2x﹣2=0,此时方程有一个解,不符合题意;②当k≠1时,∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个不相等的实数根,∴(﹣2k)2﹣4×(k﹣1)×(k﹣3)>0,解得:k>且k≠1.故选:B.13.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是k<且k≠0.【答案】见试题解答内容【解答】解:∵kx2﹣x+1=0有两个不相等的实数根,∴Δ=1﹣4k>0,且k≠0,解得,k<且k≠0;故答案为:k<且k≠0.八.根与系数的关系(共3小题)14.一元二次方程x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于()A.2B.﹣4C.4D.3【答案】D【解答】解:方程x2﹣3x﹣1=0中Δ=(﹣3)2﹣4×(﹣1)=13>0,∴该方程有两个不相等的实数根,根据两根之和公式求出两根之和为3.方程x2﹣x+3=0中Δ=(﹣1)2﹣4×3=﹣11<0,所以该方程无解.∴方程x2﹣3x﹣1=0与x2﹣x+3=0一共只有两个实数根,即所有实数根的和3.故选:D.15.方程x2+mx﹣1=0的两根为x1,x2,且,则m=﹣3.【答案】见试题解答内容【解答】解:∵方程x2+mx﹣1=0的两根为x1,x2,∴Δ=m2﹣4×1×(﹣1)≥0,m2+4>0,由题意得:x1•x2=﹣1;x1+x2=﹣m,∵,∴=﹣3,=﹣3,m=﹣3,故答案为:﹣3.16.已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足x1+x2+x1x2=5,求实数m的值.【答案】见试题解答内容【解答】解:(1)Δ=[2(m+1)]2﹣4×1×(m2﹣1)>0,4(m+1)2﹣4m2+4>0,8m>﹣8,m>﹣1,则当m>﹣1时,方程有两个不相等的实数根;(2)x1+x2=﹣2(m+1)=﹣2m﹣2,x1x2=m2﹣1,x1+x2+x1x2=5,﹣2m﹣2+m2﹣1=5,m2﹣2m﹣8=0,(m﹣4)(m+2)=0,m1=4,m2=﹣2,∵方程两实数根分别为x1,x2,∴△≥0,∴m≥﹣1,∴m=4.九.由实际问题抽象出一元二次方程(共3小题)17.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选:B.18.元旦节班上数学兴趣小组的同学,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少设数学兴趣小组人数为x人,则可列方程为()A.x(x﹣1)=90B.x(x﹣1)=2×90C.x(x﹣1)=90÷2D.x(x+1)=90【答案】A【解答】解:设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了90张贺年卡”,可得出方程为x(x﹣1)=90.故选:A.19.教师节期间,某校数学组教师向本组其他教师各发一条祝福短信.据统计,全组共发了240条祝福短信,如果设全组共有x名教师,依题意,可列出的方程是()A.x(x+1)=240B.x(x﹣1)=240C.2x(x+1)=240D.x(x+1)=240【答案】B【解答】解:∵全组共有x名教师,每个老师都要发(x﹣1)条短信,共发了240条短信.∴x(x﹣1)=240.故选:B.一十.一元二次方程的应用(共5小题)20.如图1,有一张长20cm,宽10cm的长方形硬纸片,裁去角上两个小正方形和两个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒,若纸盒的底面积是28cm2,则该有盖纸盒的高为()A.4B.3C.2D.1【答案】B【解答】解:设当纸盒的高为xcm时,纸盒的底面积是28cm2,依题意,得:×(10﹣2x)=28,化简,得:x2﹣15x+36=0,解得:x1=3,x2=12.当x=3时,10﹣2x=4>0,符合题意;当x=12时,10﹣2x<0,不符合题意,舍去,答:若纸盒的底面积是28cm2,纸盒的高为3cm.故选:B.21.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.【答案】见试题解答内容【解答】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x﹣7=0∴(2x﹣1)(2x+7)=0,∴x=0.5=50%或x=﹣3.5(舍)答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×=432<500答:校图书馆能接纳第四个月的进馆人次.22.甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有81人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,在经过3天的传染后,这个地区一共将会有多少人患甲型流感?【答案】见试题解答内容【解答】解:设每天平均一个人传染了x人,由题意,得x(x+1)+x+1=81,解得:x1=8,x2=﹣10(舍去),81+81×8=81+648=729(人).故每天平均一个人传染了8人,在经过3天的传染后,这个地区一共将会有729人患甲型流感.23.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为260千克、销售利润为312元;(2)若将这种水果每千克降价x元,则每天的销售量是(100+200x)千克(用含x的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?【答案】见试题解答内容【解答】解:(1)销售量:100+20×=100+160=260,利润:(100+160)(6﹣4﹣0.8)=312,则每天的销售量为260千克、销售利润为312元;故答案为:260,312;(2)将这种水果每千克降低x元,则每天的销售量是100+×20=100+200x (千克);故答案为:(100+200x);(3)设这种水果每千克降价x元,根据题意得:(6﹣4﹣x)(100+200x)=300,2x2﹣3x+1=0,解得:x=0.5或x=1,当x=0.5时,销售量是100+200×0.5=200<240;当x=1时,销售量是100+200=300>240.∵每天至少售出240千克,∴x=1.6﹣1=5,答:张阿姨应将每千克的销售价降至5元.24.某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.【答案】见试题解答内容【解答】解:(1)设1月份到3月份销售额的月平均增长率为x,由题意得:40×100(1+x)2=5760∴(1+x)2=1.44∴1+x=±1.2∴x1=0.2=20%,x2=﹣2.2(舍去)∴1月份到3月份销售额的月平均增长率为20%.(2)设三月份时该玩具的销售价格在每个40元销售的基础上下降y元,由题意得:(40﹣y)(100+10y)=5760∴y2﹣30y+176=0∴(y﹣8)(y﹣22)=0∴y1=8,y2=22当y=22时,3月份该玩具的销售价格为:40﹣22=18<30,不合题意,舍去∴y=8,3月份该玩具的销售价格为:40﹣8=32元∴3月份该玩具的销售价格为32元.一十一.配方法的应用(共4小题)25.设M=2a2﹣5a+1,N=3a2﹣7,其中a为实数,则M与N的大小关系是()A.M>N B.M≥N C.M≤N D.不能确定【答案】D【解答】解:M﹣N=2a2﹣5a+1﹣(3a2﹣7)=﹣a2﹣5a+8=﹣(a+)2+.∵a的取值范围不确定,∴无法判定M﹣N的符号,即无法判定M与N的大小.故选:D.26.利用完全平方公式(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2的特点可以解决很多数学问题.下面给出两个例子:例1.分解因式:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)例2.求代数式2x2﹣4x﹣6的最小值:2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2[(x﹣1)2﹣1]﹣6=2(x﹣1)2﹣8又∵2(x﹣1)2≥0∴当x=1时,代数式2x2﹣4x﹣6有最小值,最小值是﹣8.仔细阅读上面例题,模仿解决下列问题:(1)分解因式:m2﹣6m﹣7;(2)当x、y为何值时,多项式2x2+y2﹣8x+6y+20有最小值?并求出这个最小值;(3)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2=8a+6b﹣25,求△ABC周长的最大值.【答案】(1)(m+1)(m﹣7);(2)当x=2,y=﹣3时,2x2+y2﹣8x+6y+20有最小值,最小值是3;(3)△ABC周长的最大值为13.【解答】解:(1)m2﹣6m﹣7=m2﹣6m+9﹣9﹣7=(m﹣3)2﹣16=(m﹣3+4)(m﹣3﹣4)=(m+1)(m﹣7);(2)2x2+y2﹣8x+6y+20=(2x2﹣8x)+y2+6y+9+11=2(x2﹣4x+4﹣4)+y2+6y+9+11=2(x﹣2)2﹣8+(y+3)2+11=2(x﹣2)2+(y+3)2+3,∵2(x﹣2)2≥0,(y+3)2≥0,∴当x=2,y=﹣3时,2x2+y2﹣8x+6y+20有最小值,最小值是3;(3)∵a2+b2=8a+6b﹣25,∴a2﹣8a+16+b2﹣6b+9=0,∴(a﹣4)2+(b﹣3)2=0,∴a﹣4=0,b﹣3=0,∴a=4,b=3,∵4﹣3<c<4+3,∴1<c<7,∵c为正整数,∴c最大取6,∴△ABC周长的最大值=3+4+6=13,∴△ABC周长的最大值为13.27.把代数式通过配方等手段得到完全平方式,再运用完全平方式的非负性这一性质解决问题,这种解题方法叫做配方法.配方法在代数式求值,解方程,最值问题等都有广泛的应用.如利用配方法求最小值,求a2+6a+8的最小值.解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1,因为不论a取何值,(a+3)2总是非负数,即(a+3)2≥0.所以(a+3)2﹣1≥﹣1,所以当a=﹣3时,a2+6a+8有最小值﹣1.根据上述材料,解答下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a2+14a+49;(2)将x2﹣10x+27变形为(x﹣m)2+n的形式,并求出x2﹣10x+27的最小值;(3)若代数式N=﹣a2+8a+1,试求N的最大值;【答案】(1)49;(2)2;(3)17.【解答】解:(1)依据完全平方公式:a2+2ab+b2=(a+b)2,∴a2+14a+49是完全平方式.故答案为:49.(2)x2﹣10x+27=x2﹣10x+25+2=(x﹣5)2+2.∵(x﹣5)2≥0,∴(x﹣5)2+2≥2.∴x2﹣10x+27的最小值是2.(3)∵N=﹣a2+8a+1=﹣(a2﹣8a)+1=﹣(a2﹣8a+16﹣16)+1=﹣(a﹣4)2+17,又(a﹣4)2≥0,∴﹣(a﹣4)2≤0.∴﹣(a﹣4)2+17≤17.∴﹣a2+8a+1的最大值是17.28.阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n 的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2﹣12x+37的最小值;解:x2﹣12x+37=x2﹣2x•6+62﹣62+37=(x﹣6)2+1;因为不论x取何值,(x﹣6)总是非负数,即(x﹣6)2≥0;所以(x﹣6)2+1≥1;所以当x=6时,x2﹣12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2﹣8x+18=x2﹣8x+16+2=(x﹣4)2+2;(2)将x2+16x﹣5变形为(x+m)2+n的形式,并求出x2+16x﹣5最小值;(3)如图所示的第一个长方形边长分别是2a+5、3a+2,面积为S1;如图所示的第二个长方形边长分别是5a、a+5,面积为S2,试比较S1与S2的大小,并说明理由.【答案】(1)2;4;(2)﹣69;(3)S1>S2;理由略.【解答】解:(1)由题意得,x2﹣8x+18=x2﹣8x+16+2=(x﹣4)2+2.故答案为:2;4.(2)由题意得,x2+16x﹣5=x2+16x+64﹣69=(x+8)2﹣69.∵(x+8)2≥0,∴(x+8)2﹣69≥﹣69.∴x2+16x﹣5≥﹣69.∴x2+16x﹣5的最小值为﹣69.(3)由题意得,S1=(2a+5)(3a+2)=6a2+4a+15a+10=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1﹣S2=6a2+19a+10﹣5a2﹣25a=a2﹣6a+10=a2﹣6a+9+1=(a﹣3)2+1.∵(a﹣3)2≥0,∴(a﹣3)2+1≥1>0.∴S1﹣S2>0.∴S1>S2.。
一元二次方程易错易混集训作业
一元二次方程易错易混集训作业pptxx年xx月xx日CATALOGUE目录•一元二次方程解题步骤与技巧•练习题与解析•易错易混知识点拨•常见错误类型及分析•解题思维训练•作业练习与答案解析01一元二次方程解题步骤与技巧公式及求解方法一元二次方程的标准形式ax²+bx+c=0(a≠0)公式x=-b±√(b²-4ac) /2a求根公式x=(-b±√(b²-4ac)) /2a解题步骤与技巧•步骤•整理方程,使其成为标准形式•确定a、b、c的值•利用求根公式求解•技巧•对于复杂的一元二次方程,可以采用因式分解、配方等方法简化计算•对于两个相等的实数根,要特别注意不要漏掉其中一个注意事项运算过程中要注意符号和取舍注意事项注意方程的限制条件在使用公式时要注意使用的前提条件02练习题与解析总结词:巩固理解详细描述:概念题主要是为了帮助学生巩固和理解一元二次方程的基本概念和性质,包括方程的解法、判别式、根与系数的关系等。
举例:以下是一些典型的概念题题目,帮助学生理解一元二次方程的基本概念1. 一种植物的叶片面积y与时间x的二次函数关系为y=x^2,若某植物的叶片面积y为10cm^2,求该植物从多少时间开始叶片面积小于10cm^2。
2. 如果一个数的平方根是它的相反数,那么这个数是多少?010*******2. 解方程:x^2-4=01. 解方程:3x^2-6x+1=0举例:以下是一些典型的计算题题目,帮助学生提升解一元二次方程的技能总结词:技能提升详细描述:计算题主要是为了帮助学生提升解一元二次方程的速度和准确性,题目通常比较简单。
总结词:拓展延伸详细描述:应用题主要是为了帮助学生将一元二次方程的知识应用到实际问题中,同时也可以培养学生的数学建模能力和解决问题的能力。
举例:以下是一些典型的应用题题目,帮助学生将一元二次方程应用到实际问题中1. 一个矩形花园的面积是48平方米,如果它的长度比宽度长2米,求花园的长和宽。
中考一元二次方程组易错题50题含答案解析
中考一元二次方程组易错题50题含答案解析一、单选题1.方程2560x x --=的两根之和为( ) A .6-B .5C .5-D .12.已知2是关于x 的方程230x mx m +-=的一个根,则这个方程的另一个根为( ) A .6-B .6C .3-D .33.以﹣2和3为两根的一元二次方程是( ) A .x 2+x ﹣6=0 B .x 2﹣x ﹣6=0 C .x 2+6x ﹣1=0D .x 2﹣6x+1=04.关于x 的一元二次方程2(2)10a x x -+-=,则a 的条件是( ) A .4a ≠B .3a ≠C .2a ≠D .1a ≠5.下列一元二次方程中,没有实数根的是( ) A .2210x x -+= B .2210x x -+= C .2210x x --=D .220x x -=6.下列方程中,属于一元二次方程是 ( ) A .2x 2﹣y ﹣1=0B .x 2=1C .x 2﹣x (x+7)=0D .211x = 7.一元二次方程220x px +-=的一个根为2,则p 的值以及另一个根为( ) A .1,-1B .1,1C .-1,-1D .-1,18.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是248cm ,则原来的正方形铁皮的面积是( ) A .28cmB .29cmC .264cmD .268cm9.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +m )(x +n ) =x 2-5x +4,则m +n 的值为( )A .-5B .5C .-4D .410.关于x 的一元二次方程x 2+mx+m 2﹣7=0的一个根是﹣2,则m 的值可以是( )A .﹣1B .3C .﹣1或3D .﹣3或111.下列各式中是一元二次方程的是( ) A .x 2+1=1xB .x (x+1)=x 2﹣3C .2x 2+3x ﹣1D .﹣x 2+3x ﹣1=12.若方程()23630m x x --+=有解,则m 的取值范围是( )A .6m <B .6m ≤C .6m ≤且3m ≠D .6m <且3m ≠13.某商品原价300元,连续两次降价a%后售价为260元,下面所列方程正确的是( )A .300(1+a%)2=260B .300(1﹣a 2%)=260C .300(1﹣2a%)=260D .300(1﹣a%)2=26014.方程x 2+x ﹣6=0的两个根为( ) A .x 1=﹣3,x 2=﹣2 B .x 1=﹣3,x 2=2 C .x 1=﹣2,x 2=3D .x 1=2,x 2=3 15.下列方程中是一元二次方程的是( )①ax 2+bx +c =0;①231223x x --=;①(x ﹣2)(2x ﹣1)=0;①2120x x --=;①21y =;①x 2=8.A .①①①①B .①C .①①①①①①D .①①①16.若关于x 的一元二次方程2(2)40x a x --+=有两个相等的实数根,则实数a 的值为( ) A .2B .-2C .-2或6D .-6或217.下列方程中是一元二次方程的有( )①2320ax x -+= ①(1)(1)y y x x -=+ ① 2244x x = ①22226x y y x -+=+A .①①B .①①C .①D .①①①18.若关于x 的一元二次方程x 2﹣4x+c=0有两个相等的实数根,则常数c 的值为( ) A .±4B .4C .±16D .1619.已知方程22610x x +-=的两个实数根为12,x x ,则1211+x x 的值为( ) A .-3B .3C .6D .-6二、填空题20.已知x =1是一元二次方程x 2﹣mx+1=0的一个解,则m 的值是_____. 21.方程22021x x =的解是 _____.22.已知m 是一元二次方程2250x x --=的一个根,则223-+=m m _________; 23.一元二次方程210x 的解__________.24.2017年生产1吨某种商品的成本是3000元,由于原料价格上涨,两年后,2019年生产1吨该商品的成本是5000元,求该种商品成本的年平均增长率.设年平均增长率为x ,则所列的方程应为_______(不增加其它未知数). 25.请写出一个以1、2为根的一元二次方程________26-3为根,且二次项系数为1的一元二次方程为_______. 27.一元二次方程223x +=中,=a _______,b =________,c =________. 28.若m 是方程2310x x -+=的一个根,则2262021m m -+的值为_____.29.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有_____人.30.方程22430x x +-=和2230x x -+=的所有的根的和等于____.31.若1x ,2x 是方程2x x 20160--=的两个实数根,则312x 2017x 2016+-=______. 32.在等腰ABC 中,顶角36A =︒,点D 在一腰AC 上,连接BD ,线段BD 与底边BC 的长相等.若6BC =.则AD =________;若6AB =,则AD =________.33.如果关于x 的方程x 2-5x + a = 0有两个相等的实数根,那么a=_____. 34.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为x 1,x 2,那么2017120182x x 的值为________________. 35.已知等腰三角形的每条边长都是一元二次方程27100x x -+=的根,则这个三角形的周长为_______________;36.下面这首诗生动的刻画出了周瑜的一生: 大江东去浪淘尽,千古风流数人物; 而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符.(注:而立之年表示人到了30岁) 聪明的同学,你一定能算得出周瑜去世时的年龄是__________岁. 37.已知一元二次方程22510x x --=的两根为1x ,2x ,则12x x +=___38.已知关于x 的方程mx 2+2x +5m =0有两个不相等的实数根12,x x ,且122x x <<,则实数m 的取值范围为________.39.如果a 、b 、c 为互不相等的实数,且满足关系式b 2+c 2=2a 2+16a+14与bc =a 2﹣4a ﹣5,那么a 的取值范围是_____.三、解答题40.随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,某省2018年公共充电桩的数量为2万个,2020年公共充电桩的数量为2.88万个.(1)求2018年至2020年该省公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计2021年该省将新增多少万个公共充电桩?41.解下列方程:2104x --=. 42.据统计,某市2018年某种品牌汽车的年产量为64万辆,到2020年,该品牌汽车的年产量达到100万辆.若该品牌汽车年产量的年平均增长率从2018年开始五年内保持不变.(1)求年平均增长率;(2)求该品牌汽车2021年的年产量为多少万辆?43.如图,利用一面墙(墙长20米),用总长度43米的篱笆(图中实线部分)围成一个矩形鸡舍ABCD ,且中间共留两个1米的小门,设篱笆BC 长为x 米.(1)AB=________米(用含x 的代数式表示);(2)若矩形鸡舍ABCD 面积为150平方米,求篱笆BC 的长;(3)矩形鸡舍ABCD 面积是否有可能达到210平方米?若有可能,求出相应x 的值;若不可能,则说明理由. 44.解分式方程21211x x x -=++ 45.关于x 的一元二次方程2220x x m ++=有两个不相等的实数根. (1)求m 的取值范围;(2)若1x ,2x 是一元二次方程2220x x m ++=的两个根,且22128x x +=,求m 的值.46.材料阅读:材料1:符号“1212a ab b ”称为二阶行列式,规定它的运算法则为12122112a a a b a b b b =-.如525(4)2(3)1434=⨯--⨯-=---.材料2:我们已经学习过求解一元一次方程、二元一次方程组、分式方程等方程的解法,虽然各类方程的解法不尽相同,但是蕴含了相同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,还可以解一些新的方程.例如,求解部分一元二次方程20(0)ax bx c a ++=≠时,我们可以利用因式分解把它转化为一元一次方程来求解.如解方程:2320x x ++=.①232(1)(2)x x x x ++=++①(1)(2)0x x ++=.故10x +=或20x +=.因此原方程的解是11x =-,22x =-.根据材料回答以下问题: (1)二阶行列式3642=___________;二阶行列式3321x x =中x 的值为__________. (2)求解241214x x x -=+中x 的值.(3)结合材料,若31x x m x-=,618x n -=,且0m n -<,求x 的取值范围.47.某地特产槟榔芋深受欢迎,某商场以7元/千克收购了3 000千克优质槟榔芋,若现在马上出售,每千克可获得利润3元.根据市场调查发现,近段时间内槟榔芋的售价每天上涨0.2元/千克,为了获得更大利润,商家决定先贮藏一段时间后再出售.根据以往经验,这批槟榔芋的贮藏时间不宜超过100天,在贮藏过程中平均每天损耗约10千克.(1)若商家将这批槟榔芋贮藏x 天后一次性出售,请完成下列表格:(2)将这批槟榔芋贮藏多少天后一次性出售最终可获得总利润29 000元? 48.综合与探究如图,抛物线2y ax x c =++与x 轴交于A ,()4,0B 两点(点A 在点B 的左侧).与y 轴交于点()0,4C ,直线BC 经过B ,C 两点,点Р是第一象限内抛物线上的一个动点,连接PB ,PC .(1)求抛物线的函数表达式;(2)设点P 的横坐标为n ,四边形OBPC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)在(2)的条件下,当S 取最大值时,在PC 的垂直平分线上是否存在一点M ,使BPM △是等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.49.已知:如图,△ABC 是边长为4cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm /s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间t (s ),解答下列各问题: (1)求ABC ∆的面积;(2)当t 为何值是,△PBQ 是直角三角形?(3)探究:是否存在某一时刻t ,使四边形APQC 的面积是ABC ∆面积的八分之五?如果存在,求出t 的值;不存在请说明理由.参考答案:1.B【分析】根据一元二次方程根与系数的关系求解. 【详解】解:由一元二次方程根与系数的关系可得: 一元二次方程的两根之和为:551--=, 故选B .【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程根与系数的关系是解题关键. 2.A【分析】把2x =代入方程230x mx m +-=中,得出22230m m +-=,解得4m =,再解一元二次方程即可.【详解】解:把2x =代入方程230x mx m +-=中, 得出:22230m m +-=, 解得:4m =,①关于x 的方程为:24120x x +-=, ①12x =,26x =-,①这个方程的另一个根为6-, 故选:A .【点睛】此题考查了一元二次方程的解,因式分解法解一元二次方程,得出该方程是解题的关键. 3.B【分析】由一元二次方程根与系数关系,设该方程一般形式中a=1,1x +2x =1=-b;1x 2x = -6 = c,即可得出答案.【详解】解:将1x =2, 2x =-3代入公式,可得到x 2-(2-3)x+2⨯(-3)=0,即x 2﹣x ﹣6=0, 所以B 选项是正确的.【点睛】本题考查了根与系数的关系.解题时熟记一元二次方程的根与系数的关系: 1x +2x =ba-,1x 2x =c a.4.C【分析】根据一元二次方程的定义求解即可.【详解】解:①2(2)10a x x -+-=是关于x 的一元二次方程, ①20a -≠, 即2a ≠, 故选:C .【点睛】本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,象这样的方程叫做一元二次方程. 5.A【分析】根据一元二次方程根的判别式24b ac ∆=- 逐个求解即可.【详解】A 、224(1)42170b ac ∆=-=--⨯⨯=-<,没有实数根,故A 正确; B 、224(2)4110b ac ∆=-=--⨯⨯=,有两个相等的实数根,故B 不正确;C 、224(1)42(1)90b ac ∆=-=--⨯⨯-=>,有两个不相等的实数根,故C 不正确;D 、224(2)41040b ac ∆=-=--⨯⨯=>,有两个不相等的实数根,故D 不正确. 故选:A .【点睛】本题主要考查了一元二次方程根的判别式24b ac ∆=-,解题的关键是熟练运用一元二次方程根的判别式判断一元二次方程根的情况. 6.B【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、含有2个未知数,故选项错误;B 、含有1个未知数,并且未知数的最高次数是2,是一元二次方程,故选项正确;C 、化简后未知数的最高次数是1,故选项错误;D 、是分式方程,故选项错误. 故选B .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.7.C【分析】先设方程的另一个根为t ,再由根与系数的关系得出关于t 、p 的方程组,求解即可得到答案.【详解】设方程的另一个根为t ,由题意得 222t p t +=-⎧⎨=-⎩ 解得11t p =-⎧⎨=-⎩ ∴ p 的值以及另一个根分别为-1,1.故选:C .【点睛】本题考查了一元二次方程根与系数的关系,即设一元二次方程20(0)ax bx c a ++=≠ 的两个实数根为12,x x ,则1212·b x x ac x x a ⎧+=-⎪⎪⎨⎪=⎪⎩,熟练掌握知识点是解题的关键. 8.C【分析】设原来的正方形铁皮的边长为cm x ,则截去2cm 宽的一条长方形的长为()2cm x -,根据长方形面积公式列方程求出正方形的边长,再用正方形面积公式求解.【详解】解:原来的正方形铁皮的边长为cm x ,则截去2cm 宽的一条长方形的长为()2cm x -,根据题意,得()2=48x x -,解得:18x =,26x =-(不符合题意,舍去),①原来的正方形铁皮的面积()222864cm x ===,故选:C .【点睛】本题考查一元二次方程的应用,理解题意,设恰当未知数,找等量关系,列出方程是解是的关键. 9.A【分析】从题例两个多项式相乘的运算过程中发现规律,利用规律求出m 、n 的值再求和.【详解】解:根据题意得,m+n=-5,mn =4故选:A.【点睛】本题考查多项式乘以多项式,理解例题中的运算过程并发现规律是解题关键.10.C【分析】先把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,然后解关于m的方程即可.【详解】解:把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,解得m=﹣1或3.故选:C.【点睛】本题主要考查一元一次方程的解及根与系数的关系,解题关键是熟练掌握计算法则.11.D【详解】只含有一个未知数并且未知数的最高次数是2的整式方程为一元二次方程,根据这一定义可以对各选项作出相应的判断.A选项:该方程中含有1x,不是整式方程,故A选项不符合题意.B选项:该方程整理后为x=-3. 整理后的方程为一元一次方程,故B选项不符合题意.C选项:因为本选项的式子不是等式,所以该式子不是方程. 故C选项不符合题意.D选项:在该方程中,等号两侧均为整式,只有x一个未知数且x的最高次数为2,符合一元二次方程的定义,故D选项符合题意.故本题应选D.点睛:本题考查了一元二次方程的相关概念. 在判断一个方程是否是一元二次方程的时候,首先应该判断该方程是否是整式方程,如果不是整式方程,则一定不是一元二次方程. 如果原方程是整式方程,则应对原方程进行必要的整理,利用整理后的方程进行判断. 另外,方程是含有未知数的等式. 不是等式的式子一定不是方程,也不可能是一元二次方程.12.B【分析】直接分方程为一次方程和二次方程时分别讨论即可.【详解】当方程为一次方程时,30m-=,解得3m=,当方程为二次方程时,此时30m -≠,即3m =,①方程()23630m x x --+=有解,①()264330m ∆=--⨯≥,解得6m ≤,①6m ≤且3m =,综上所述,m 的取值范围是6m ≤,故选B .【点睛】本题考查了根的判别式,解题时注意不要忘记方程为一次方程的情况. 13.D【分析】根据降价后的价格=原价(1﹣降低的百分率),本题可先表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【详解】解:当商品第一次降价a%时,其售价为300(1﹣a%),当商品第二次降价a%后,其售价为300(1﹣a%)2.故所列方程为:300(1﹣a%)2=260,故选:D .【点睛】本题主要考查一元二次方程的应用,找出合适的等量关系是解题的关键. 14.B【分析】利用因式解法即可求解.【详解】原方程因式分解得:()()320x x +-=,①1232x x =-=,.故选:B .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握一元二次方程的解法是解题的关键.15.D【分析】分析:根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.【详解】解:①当a =0时,ax 2+bx +c =0不是一元二次方程; ①231223x x --=是一元二次方程;①(x ﹣2)(2x ﹣1)=0是一元二次方程; ①2120x x--=是分式方程;①21y =不是一元二次方程;①x 2=8是一元二次方程.①是一元二次方程的是①①①.故选:D .【点睛】本题考查了一元二次方程的定义,解题时,要注意两个方面:1、一元二次方程包括三点:①是整式方程,①只含有一个未知数,①所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax 2+bx +c =0(a ≠0).16.C【分析】根据一元二次方程有两个相等的实数根,得到根的判别式等于0,求出a 的值即可. 【详解】关于x 的一元二次方程2(2)40x a x --+=有两个相等的实数根,∴∆2(2)160a =--=,即2(2)16a -=,开方得:24a -=或24a ,解得:6a =或2-.故选:C .【点睛】此题考查了根的判别式,熟练掌握一元二次方程根的判别式的意义是解本题的关键.17.C【分析】根据一元二次方程满足的条件:一个未知数、未知数的最高次数为2、二次项系数不为0、整式方程对每小题分析判断即可求解.【详解】①、当a≠0时是一元二次方程,当a=0时是一元一次方程,不符合题意; ①、有两个未知数,不是一元二次方程,不符合题意;①、是分式方程,不是整式方程,不符合题意①、整理方程为:2260y y -=+,是一元二次方程,符合题意,只有①是一元二次方程,故选:C .【点睛】本题考查了一元二次方程的概念,熟知一元二次方程满足的条件是解答的关键,对于一般式20(0)ax bx c a ++=≠,特别要注意a≠0这一条件,这是做题过程中容易忽视的知识点.18.B【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】①方程x 2-4x+c=0有两个相等的实数根,①①=(-4)2-4×1×c=16-4c=0,解得:c=4.故选B .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.19.C【分析】根据一元二次方程根与系数关系得出123x x +=-,1212x x =-,将1211+x x 通分,代入数值即可求解.【详解】①方程2610x x +-=的两个实数根为12,x x ,①123x x +=-,1212x x =-,①121212113612x x x x x x +-+===-, 故选:C .【点睛】本题考查了一元二次方程根与系数关系、分式的化简求值,熟练掌握根与系数关系是解答的关键.20.2【分析】把x =1代入一元二次方程x 2﹣mx+1=0,可得110,m -+=再解方程可得答案.【详解】解: x =1是一元二次方程x 2﹣mx+1=0的一个解,110,m ∴-+=2.m ∴=故答案为:2.【点睛】本题考查的是一元二次方程的解,掌握方程的解的含义是解题的关键. 21.1202021x x ==,【分析】根据因式分解法解该一元二次方程即可.【详解】解:22021x x =220210x x -=(20021)x x -=①0x =或20210x -=①1202021x x ==,故答案为:1202021x x ==,.【点睛】本题考查解一元二次方程,掌握因式分解法解一元二次方程的步骤是解题关键. 22.8【分析】把x m =代入原方程可得:225,m m -= 从而可得答案. 【详解】解: m 是一元二次方程2250x x --=的一个根,2250,m m ∴--=225,m m ∴-=2238.m m ∴-+=故答案为:8.【点睛】本题考查的是一元二次方程的解的含义,求代数式的值,掌握方程的解使方程的左右两边相等是解题的关键.23.1x =±【分析】利用直接开平方法求解可得.【详解】解:①x 2-1=0,①x 2=1,则x=±1.故答案为x=±1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.()2300015000x +=.【分析】设这种商品的年平均增长率为x ,根据题意列方程即可.【详解】解:设这种商品的年平均增长率为x ,由题意得:()2300015000x +=,故答案为:()2300015000x +=.【点睛】本题考查增长率问题,解题的关键是明确题意,根据等量关系列出方程. 25.2320x x --=【详解】试题分析:以1、2为根的一元二次方程是(1)(2)0x x --=,即2320x x --=. 考点:一元二次方程的解26.(230x x +--3的和与积,然后根据根与系数的关系求出满足条件的一元二次方程.【详解】解:①33,3--①以-31的一元二次方程为(230x x +-.故答案为:(230x x +-.【点睛】本题考查了一元二次方程根与系数的关系,熟记两根之和与两根之积是解题的关键.27. 2 -3【分析】先移项把一元二次方程化为一般形式,然后进行求解即可【详解】解:①223x +=,①2230x -=,①2a =,b =3c =-,故答案为:23-.【点睛】本题主要考查了一元二次方程的一般形式,解题的关键在于能够熟练掌握一元二次方程的一般形式为()200ax bx c a ++=≠.【分析】由已知可得2310m m -+=,即有231m m -=-,整体代入易求得2262021m m -+的值.【详解】①m 是方程2310x x -+=的一个根,①2310m m -+=,即231m m -=-,①222620212(3)20212(1)20212019m m m m -+=-+=⨯-+=,故答案为:2019.【点睛】本题考查了一元二次方程的解,求代数式的值,用整体思想求值更简便. 29.10【分析】设该群一共有x 人,则每人收到(x ﹣1)个红包,根据群内所有人共收到90个红包,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该群一共有x 人,则每人收到(x ﹣1)个红包,依题意,得:x (x ﹣1)=90,解得:x 1=10,x 2=﹣9(舍去).故答案为10.【点睛】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.30.-2.【分析】先利用根的判别式求出根的情况,再利用两根和的公式计算即可得到答案.【详解】在方程22430x x +-=中2442(3)400∆=-⨯⨯-=>,①方程22430x x +-=有两个不相等的实数根;在方程2230x x -+=中2(2)41380∆=--⨯⨯=-<,①方程2230x x -+=没有实数根.设方程22430x x +-=的两个实数根分别为m 、n ,则有422m n +=-=-. 故答案为:-2【点睛】此题考查一元二次方程根的判别式公式,根与系数的关系公式,正确掌握计算公式是解题的关键.【分析】先根据一元二次方程的解的定义得到x12=x1+2016,再计算x13=x12+2016x1=2017x1+2016,则原式可化简为2017(x1+x2),然后利用根与系数的关系求解.【详解】①x1是方程x2-x-2016=0的两实数根,①x12=x1+2016,①x13=x12+2016x1=x1+2016+2016x1=2017x1+2016,①原式=2017x1+2016+2017x2-2016=2017(x1+x2),①x1,x2是方程x2-x-2016=0的两实数根,①x1+x2=1,①原式=2017.故答案为2017.【点睛】本题主要考查了根与系数的关系,根据已知将原式化简,利用根与系数的关系是解答此题的关键.32.63-+【分析】根据等边对等角和外角的性质证明①ABD=①A,得到AD=BD=BC=6;设AD=x,再证明①ABC①①BDC,得到AB BCBD DC=,解之即可.【详解】解:①①A=36°,AB=AC,①①ABC=①C=(180°-36°)÷2=72°,①BD=BC,①①BDC=①C=72°,①①BDC=①A+①ABD,①①ABD=72°-36°=36°,①①ABD=①A,①AD=BD,①BD=BC=6,①AD=6;若AB=AC=6,设AD=x,则BD=BC=x,①①BDC =①ABC =72°,①C =①C ,①①ABC ①①BDC , ①AB BC BD DC=,即66x x x =-,解得:x =3-+或3--(负值舍去),经检验:x =3-+①AD =3-+,故答案为:6,3-+【点睛】本题考查了等腰三角形的判定和性质,相似三角形的判定和性质,外角的性质,解分式方程和一元二次方程,解题的关键是灵活运用等边对等角,从而证明三角形相似. 33.254【分析】若一元二次方程有两个相等的实数根,则方程的根的判别式等于0,由此可列出关于a 的等式,求出a 的值.【详解】①关于x 的方程x 2-5x+a=0有两个相等的实数根,①①=25-4a=0,即a=254. 故答案为:254. 【点睛】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.34.23- 【分析】由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k 的不等式,利用非负数的性质得到k 的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.【详解】①方程x 2+kx+239342k k -+=0有两个实数根, ①b 2-4ac=k 2-4(34k 2-3k+92)=-2k 2+12k-18=-2(k-3)2≥0, ①k=3, 代入方程得:x 2+3x+94=(x+32)2=0, 解得:x 1=x 2=-32, 则2017120182x x =-23. 故答案为-23.【点睛】此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k 的值是本题的突破点.35.6或12或15【分析】先利用因式分解的方法解方程得到x 1=2,x 2=5,根据题意讨论:当腰为2,底边为5时;当腰为5,底边为2时,然后分别计算出等腰三角形的周长.【详解】①x 2-7x +10=0,①(x -2)(x -5)=0,①x -2=0或x -5=0,①x 1=2,x 2=5,当腰为2,底边为5时,2+2=4<5,不能构成三角形;当腰为5,底边为2时,等腰三角形的周长为2+5+5=12;当腰为2,底边为2时,等腰三角形的周长为2+2+2=6,当腰为5,底边为5时,等腰三角形的周长为5+5+5=15.故答案为6或12或15.【点睛】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.36.36【分析】这是一道数字问题的应用题,等量关系隐于诗词中,及周瑜去世时年龄为两位数,十位数字比个位数字小3,个位数字的平方等于这两个数,于是可以设个位数字为x ,列出一元二次方程求解.【详解】设周瑜去世时的年龄的个位数字为x ,则十位数字为x -3,由题意,得 x 2=10(x -3)+x ,即x 2-11x +30=0,解得x 1=5,x 2=6,当x =5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x =6时,周瑜的年龄36岁,符合题意,故答案为36.【点睛】本题考查了一元二次方程的应用,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.37.52【详解】根据韦达定理,可得,12x x +=5238.−49<m <0 【分析】根据关于x 的方程mx 2+2x +5m =0有两个不相等的实数根x 1,x 2,可以得到m 的取值范围,再根据x 1<2<x 2和一元二次方程和二次函数的关系,可以利用分类讨论的方法求出m 的取值范围,本题得以解决.【详解】解:①关于x 的方程mx 2+2x +5m =0有两个不相等的实数根x 1,x 2,①2024?50m m m ≠⎧⎨-⎩>,解得,m <0或0<m ①x 1<2<x 2,①当m <0时,m ×22+2×2+5m >0, 解得−49<m <0;当0<m m ×22+2×2+5m <0, 解得m 无解;故答案为:−49<m <0. 【点睛】本题考查抛物线与x 轴的交点、根的判别式、一元二次方程与二次函数的关系,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.39.a >﹣1且a≠﹣56且a≠﹣78 【详解】试题解析:222221614,45b c a a bc a a +=++=--,22222()216142(45)4844(1)b c a a a a a a a ∴+=+++--=++=+,即有2(1).b c a +=±+又245bc a a =--,所以b ,c 可作为一元二次方程222(1)450x a x a a ±++--=①的两个不相等实数根,故224(1)4(45)24240a a a a =+---=+>,解得a >−1.若当a =b 时,那么a 也是方程①的解,222(1)450a a a a a ∴±++--=,即24250a a --=或650a --=,解得,a =或5.6a =- 当a =b =c 时,16140450a a +=--=,, 解得75,84a a =-=- (舍去),所以a 的取值范围为1a >-且56a ≠-且a ≠7.8a ≠-故答案为1a >-且56a ≠- 且a ≠7.8a ≠- 40.(1)2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)预计2021年该省将新增0.576万个公共充电桩.【分析】(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x ,根据该省2018年及2020年公共充电桩,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据该省2021年公共充电桩数量=该省2020年公共充电桩数量×增长率,即可求出结论.【详解】解:(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x , 依题意得:2(1+x )2=2.88,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)2.88×20%=0.576(万个).答:预计2021年该省将新增0.576万个公共充电桩.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.41.11x =,21x =- 【分析】利用公式法解一元二次方程,注意解题规范.【详解】解:1a =,b =14c =-. (221Δ441404b ac ⎛⎫=-=-⨯⨯-=> ⎪⎝⎭, 方程有两个不相等的实数根,(21x -===⨯即11x =+,21x =. 【点睛】本题考查公式法解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.42.(1)25%;(2)125万辆.【分析】(1)设年平均增长率为x ,根据“该品牌汽车2018年和2020年的产量”列出关于x 的一元二次方程,最后求解即可;(2)根据“该品牌汽车2021年的年产量=2020年的年产量×(1+增长率)”计算即可.【详解】解:(1)设年平均增长率为x ,依题意,得:64(1+x )2=100,解得:x 1=0.25=25%,x 2=﹣2.25(不合题意,舍去).答:年平均增长率为25%;(2)100×(1+25%)=125(万辆).答:该品牌汽车2021年的年产量为125万辆.【点睛】本题主要考查了一元二次方程的应用,审清题意、找准等量关系、列出关于x的一元二次方程成为解答本题的关键.43.(1)(45−3x)(2)篱笆BC的长为10米(3)不可能,理由见解析【分析】(1)设篱笆BC长为x米,根据篱笆的全长结合中间共留2个1米的小门,即可用含x的代数式表示出AB的长;(2)根据矩形鸡舍ABCD面积为150平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(3)根据矩形鸡舍ABCD面积为210平方米,即可得出关于x的一元二次方程,由根的判别式Δ=-55<0,可得出该方程没有实数根,进而可得出矩形鸡舍ABCD面积不可能达到210平方米.【详解】(1)解:设篱笆BC长为x米,①篱笆的全长为43米,且中间共留两个1米的小门,①AB=43+2−3x=45−3x(米).故答案为:(45−3x).(2)解:依题意,得:(45−3x)x=150,整理,得:x2−15x+50=0,解得:x1=5,x2=10.当x=5时,AB=45−3x=30>20,不合题意,舍去;当x=10时,AB=45−3x=15,符合题意.答:篱笆BC的长为10米.(3)解:不可能,理由如下:依题意,得:(45−3x)x=210,整理得:x2−15x+70=0,①Δ=(−15)2−4×1×70=−55<0,①方程没有实数根,。
北京庞各庄中学数学一元二次方程易错题(Word版 含答案)
北京庞各庄中学数学一元二次方程易错题(Word版含答案)一、初三数学一元二次方程易错题压轴题(难)1.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x+≥2=4,∴当x=时,2(x+)有最小值8.即x=2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当,即x =90时,“=”成立,所以,当x =90时,函数取得最小值9, 此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L . 【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.2.如图,直角坐标系xOy 中,一次函数y kx b =+的图象1l 分别与x 轴,y 轴交于A ,B 两点,点A 坐标为()9,0,正比例函数12y x =的图象2l 与1l 交于点(),3C m ,点(),0N n 在x 轴上一个动点,过点N 作x 轴的垂线与直线1l 和2l 分别交于P 、Q 两点.(1)求m 的值及直线1l 所对应的一次函数表达式; (2)当03PQ <时,求n 的取值范围; (3)求出当n 为何值时,PQC ∆面积为12?【答案】(1)6m =;9y x =-+;(2)46n <或68n <;(3)2n =或10. 【解析】 【分析】(1)直接将点C 代入正比例函数,可求得m 的值,然后将点C 和点A 代入一次函数,可求得一次函数解析式;(2)用含n 的式子表示出PQ 的长,然后解不等式即可;(3)用含有n 的式子表示出△PQC 的底边长和高的长,然后求解算式即可得. 【详解】(1)将点C(m ,3)代入正比例函数12y x =得: 3=1m 2,解得:m=6则点C(6,3) ∵A(9,0)将点A ,C 代入一次函数y kx b =+得:0936k bk b =+⎧⎨=+⎩解得:k=-1,b=9∴一次函数解析式为:y=-x+9 (2)∵N(n ,0) ∴P(n ,9-n),Q(n ,12n ) ∴PQ=192n n --∵要使03PQ < ∴0<1932n n --≤ 解得:46n <或68n <(3)在△PQC 中,以PQ 的长为底,则点C 到PQ 的距离为高,设为h第(2)已知:PQ=139922n n n --=- 由图形可知,h=6n - ∵△PQC 的面积为12∴12=136922nn -- 情况一:当n <6是,则原式化简为:12=()136922n n ⎛⎫--⎪⎝⎭ 解得:n=2或n=10(舍)情况二:当n ≥6时,则原式化简为:12=()136922n n ⎛⎫-- ⎪⎝⎭解得:n=2(舍)或n=10 综上得:n=2或n=10. 【点睛】本题考查一次函数的综合,用到了解一元二次方程,求三角形面积等知识点,解题关键是用含n 的算式表示出PQ 的长度,注意需要添加绝对值符号.3.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.4.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价? 【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件 【解析】 【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= , 解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=, 解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件. 【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.5.如图,∠ AOB =90°,且点A ,B 分别在反比例函数1k y x =(x <0),2ky x=(x >0)的图象上,且k 1,k 2分别是方程x 2-x -6=0的两根. (1)求k 1,k 2的值;(2)连接AB ,求tan ∠ OBA 的值.【答案】(1)k 1=-2,k 2=3. (2)tan∠OBA =63. 【解析】解:(1)∵k 1,k 2分别是方程x 2-x -6=0的两根,∴解方程x 2-x -6=0,得x 1=3,x 2=-2.结合图像可知:k 1<0,k 2>0,∴k 1=-2,k 2=3.(2)如图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥y 轴于点D .[来源:学&科&网Z&X&X&K]由(1)知,点A,B分别在反比例函数2yx=-(x<0),3yx=(x>0)的图象上,∴S△ACO=12×2-=1 ,S△ODB=12×3=32.∵∠ AOB=90°,∴∠ AOC+∠ BOD=90°,∵∠ AOC+∠ OAC=90°,∴∠ OAC=∠ BOD.又∵∠ACO=∠ODB=90°,∴△ACO∽△ODB.∴SSACOODB∆∆=2OAOB⎛⎫⎪⎝⎭=23,∴OAOB6OAOB6∴在Rt△AOB中,tan∠OBA=OAOB=63.6.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.7.如图,已知AB 是⊙O 的弦,半径OA=2,OA 和AB 的长度是关于x 的一元二次方程x 2﹣4x+a=0的两个实数根. (1)求弦AB 的长度; (2)计算S △AOB ;(3)⊙O 上一动点P 从A 点出发,沿逆时针方向运动一周,当S △POA =S △AOB 时,求P 点所经过的弧长(不考虑点P 与点B 重合的情形).【答案】(1)AB=2;(2)S △AOB 33)当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π. 【解析】试题分析:(1)OA 和AB 的长度是一元二次方程的根,所以利用一元二次方程的根与系数的关系即可求出AB 的长度;(2)作出△AOB 的高OC ,然后求出OC 的长度即可求出面积; (3)由题意知:两三角形有公共的底边,要面积相等,即高要相等. 试题解析:(1)由题意知:OA 和AB 的长度是x 2﹣4x+a=0的两个实数根, ∴OA+AB=﹣41-=4, ∵OA=2, ∴AB=2;(2)过点C 作OC⊥AB 于点C ,∵OA=AB=OB=2,∴△AOB 是等边三角形,∴AC=12AB=1, 在Rt△ACO 中,由勾股定理可得:3△AOB =12AB ﹒OC=1233; (3)延长AO 交⊙O 于点D ,由于△AOB 与△POA 有公共边OA , 当S △POA =S △AOB 时,∴△AOB 与△POA 高相等,由(2)可知:等边△AOB 3P 到直线OA 3,这样点共有3个 ①过点B 作BP 1∥OA 交⊙O 于点P 1,∴∠BOP 1=60°, ∴此时点P 经过的弧长为:1202180π⨯=43π,②作点P 2,使得P 1与P 2关于直线OA 对称,∴∠P 2OD=60°, ∴此时点P 经过的弧长为:2402180π⨯=83π, ③作点P 3,使得B 与P 3关于直线OA 对称,∴∠P 3OP 2=60°, ∴此时P 经过的弧长为:3002180π⨯ =103π, 综上所述:当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π.【点睛】本题主要考查了一元二次方程与圆的综合知识.涉及等边三角形性质,圆的对称性等知识,能综合运用所学知识,选择恰当的方法进行解题是关键.8.如图,平面直角坐标系中,直线l 分别交x 轴、y 轴于A 、B 两点(OA <OB )且OA 、OB 的长分别是一元二次方程()2x 31x 30-++=的两个根,点C 在x 轴负半轴上,且AB :AC=1:2(1)求A 、C 两点的坐标;(2)若点M 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连接AM ,设△ABM 的面积为S ,点M 的运动时间为t ,写出S 关于t 的函数关系式,并写出自变量的取值范围; (3)点P 是y 轴上的点,在坐标平面内是否存在点Q ,使以 A 、B 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由. 【答案】解:(1)解)2x 31x 30-+=得(x 3x ﹣1)=0,解得x 13,x 2=1。
第二十一章 一元二次方程 易错必考68题(10个考点)专练(解析版)
第二十一章 一元二次方程 易错必考68题(10个考点)专练易错必考题一、一元二次方程的一般形式1.(2023·全国·九年级专题练习)若关于x 的一元二次方程2(3)430m x x mx m +-+++=的常数项是6,则一次项是()A .x-B .1-C .x D .1【答案】A 【分析】根据一元二次方程定义可得36m +=,30m +¹,可得m 的值,再代入原方程,由此即可得结果.【详解】解:∵关于x 的一元二次方程2(3)430m x x mx m +-+++=的常数项是6,∴36m +=,30m +¹,解得:3m =,把3m =代入原方程可得2660x x -+=,∴一次项是x -,故选:A .【点睛】本题考查了一元二次方程的一般形式,解题的关键是熟练掌握一元二次方程的一般形式:一元二次方程的一般形式是20(0)ax bx c a ++=¹,其中,2ax 是二次项,bx 是一次项,c 是常数项.2.(2023春·八年级课时练习)将一元二次方程()11x x -=-化成()200ax bx c a ++=>的形式则a b c ++=.【答案】1【分析】直接利用一元二次方程的一般形式分析得出答案.【详解】解:将一元二次方程()11x x -=-化成一般形式20(0)ax bx c a ++=>之后,变为210x x -+=,故1,1,1a b c ==-=,1111a b c \++=-+=,故答案为:1.【点睛】此题主要考查了一元二次方程的一般形式,正确把握定义是解题关键.3.(2023·江苏·九年级假期作业)已知关于y 的一元二次方程()()223811my m my y y +-=-+,求出它各项的系数,并指出参数m 的取值范围.【答案】二次项系数是:28m -,一次项系数是:()31m --,常数项是:31m -;参数m 的取值范围是22m ¹±【分析】先将原方程化为一般式,再回答各项系数,根据“二次项系数不为零”可以求m 的取值范围.【详解】解:将原方程整理为一般形式,得:()()22383110m y m y m ---+-=,由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件280m -¹,即22m ¹±.可知它的各项系数分别是二次项系数是:28m -,一次项系数是:()31m --,常数项是:31m -.参数m 的取值范围是22m ¹±.【点睛】本题考查一元二次方程的一般式和系数、二次项系数不为零,掌握化一般式的方法是解题的关键.注意:在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题.易错必考题二、一元二次方程的解4.(2023春·吉林长春·八年级校考期末)如果关于x 的一元二次方程220ax bx ++=的一个解是1x =,则代数式2023a b --的值为( )A .2021-B .2021C .2025-D .2025【答案】D【分析】根据一元二次方程220ax bx ++=的一个解是1x =,得到20a b ++=即2a b +=-,代入计算即可.【详解】∵一元二次方程220ax bx ++=的一个解是1x =,∴20a b ++=,∴2a b +=-,∴2023202322025a b --=+=,故选D .【点睛】本题考查了一元二次方程的根,熟练掌握定义是解题的关键.5.(2023春·福建厦门·八年级厦门外国语学校校考期末)两个关于x 的一元二次方程20ax bx c ++=和20cx bx a ++=,其中a ,b ,c 是常数,且0a c +=,如果2x =是方程20ax bx c ++=的一个根,那么下列各数中,一定是方程20cx bx a ++=的根的是( )A .2B .2-C .1±D .1【答案】B【分析】利用方程根的定义去验证判断即可.【详解】∵0a ¹,0c ¹,0a c +=,∴a c=-∴1c a =-,∴20b c x x a a++=,210c b x x a a ++=,∴210b x x a +-=,210b x x a--=,∵2x =是方程20ax bx c ++=的一个根,∴2x =是方程210b x x a+-=的一个根,即32b a =-,∴2231102b x x x x a --=+-=,∴2x =-是方程210b x x a --=的一个根,即2x =-时方程20cx bx a ++=的一个根.故选:B .【点睛】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,正确理解定义是解题的关键.6.(2023春·浙江金华·八年级统考期末)已知m 为方程2320230x x +-=的根,那么32220262023m m m +--的值为 .【答案】4046-【分析】先根据一元二次方程解的定义得到232023m m =-+,再用m 表示3m 得到()2220262023m m m +--,然后利用整体代入的方法计算.【详解】解:∵m 为方程2320230x x +-=的一个根,∴2320230m m +-=,∴232023m m =-+,∴()322220262023220262023m m m m m m +--=+--()()32023220262023m m m =-++--23620232023220262023m m m m =--++´--()33202392023m m =--+-+93202392023m m =-´-+4046=-,故答案为:4046-.【点睛】本题考查了一元二次方程的解,掌握整体代入的方法是解题关键.7.(2023春·浙江温州·八年级校考期中)已知a ,b ,c 是非零实数,关于x 的一元二次方程204c ax bx ++=,204b cx ax ++=,204a bx cx ++=,有公共解,则代数式2c a b ab b a--的值为 .【答案】2或1-【分析】设公共解为t ,根据一元二次方程根的定义得到204c at bt ++=,204b ct at ++=,204a bt ct ++=,三式相加可得:0abc ++=或12t =-,分别代入所求式可解答.【详解】解:设公共解为t ,则204c at bt ++=,204b ct at ++=,204a bt ct ++=,三式相加得()()204abc a b c t a b c t ++++++++=,即()2104a b c t t æö++++=ç÷èø,因为2211()042t t t ++=+³,所以0a b c ++=或12t =-,当0a b c ++=时,c a b =--,\原式222c a b ab--= 22222a ab b a b ab++--= 2=;当12t =-时,110424c a b -+=,110424b c a -+=,22c b a a b \=-=-,a b \=,\原式222244b ab a a b ab-+--=234b ab ab-= 22b b-= 1=-,综上,代数式2c a b ab b a--的值为2或1-.故答案为:2或1-.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,理解方程解的定义是解题的关键.8.(2023秋·江苏·九年级专题练习)已知x 是一元二次方程2810x x --=的实数根,求代数式24737123x x x x x +æö¸+-ç÷-+-èø的值.【答案】117【分析】利用一元二次方程的解可得出281x x -=,将其代入24737123x x x x x +æö¸+-ç÷-+-èø的化简结果中即可求出答案.【详解】解:∵x 是一元二次方程2810x x --=的实数根,∴281x x -=.24737123x x x x x +æö¸+-ç÷-+-èø()()247137233x x x x x x +=+---+-¸()()2497343x x x x x +--=¸---()()2416343x x x x x +-=¸---()()()()444343x x x x x x +-+=¸---()()()()433444x x x x x x +-=×--+-()()144x x =--21816x x =-+1116=+17∴代数式24737123x x x x x +æö¸+-ç÷-+-èø的值为117.【点睛】本题考查了一元二次方程的解、分式的化简等知识,熟练掌握一元二次方程的解的定义和分式的运算法则是解题的关键.9.(2023春·湖南长沙·八年级统考期末)请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x =,所以2y x =,把2y x =代入已知方程,得21022y y æö+-=ç÷èø;化简,得2240y y +-=;故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”;请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程2320x x +-=,求一个一元二次方程,使它的根分别为已知方程根的相反数;(2)已知关于x 的一元二次方程()200ax bx c a -+=¹有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【答案】(1)2320y y --=(2)()200cy by a c -+=¹【分析】(1)设所求方程的根为y ,则y x =-,将x y =-代入已知方程2320x x +-=,化简即可得到答案;(2)设所求方程的根为y ,则1y x=,将其代入已知方程,然后化为一般形式即可得到答案.【详解】(1)解:设所求方程的根为y ,则y x =-,x y \=-,把x y =-代入已知方程2320x x +-=,得()()2320y y -+´--=,化简得,2320y y --=,\这个一元二次方程为:2320y y --=;(2)解:设所求方程的根为y ,则1y x=,y 把1x y=代入已知方程()200ax bx c a -+=¹,得2110a b c y y æö-×+=ç÷èø,去分母得,20a by cy -+=,若0c =,则20ax bx -=,于是方程()200ax bx c a -+=¹有一根为0,不符合题意,0c \¹,\所求方程为:()200cy by a c -+=¹.【点睛】本题考查了一元二次方程的解,解答该题的关键是弄清楚“换根法”的具体解题方法.易错必考题三、换元法解一元二次方程10.(2023秋·全国·九年级专题练习)若整数x ,y 使()()22221212x y x y +---=-成立,则满足条件的x ,y 的值有( )A .4对B .6对C .8对D .无数对【答案】C【分析】先化简()()22221212x y x y +---=-可得()()22221212x y x y éùéù+--+=-ëûëû,设22x y a +=,则()()1212a a --=-;然后求得a 的值,最后列举出符合题意的x ,y 的整数值即可解答.【详解】解:由()()22221212x y x y éùéù+--+=-ëûëû,设22x y a +=,则()()1212a a --=-,∴23100a a --=,即()()520a a -+=,解得:5a =或2a =-(舍弃),∴225x y +=.∴满足条件的x ,y 的整数值有:12x y =ìí=î,12x y =-ìí=î,12x y =ìí=-î,12x y =-ìí=-î,21x y =ìí=î,21x y =ìí=-î,21x y =-ìí=î,21x y =-ìí=-î,共8对.故选C .【点睛】本题主要考查了解一元二次方程、二元一次方程的解等知识点,掌握二元一次方程的解是解答本题的关键.11.(2023春·全国·八年级专题练习)用换元法解方程()()22212x x x x +++=时,如果设2x x y +=,那么原方程可变形为( )A .2120y y ++=B .2120y y --=C .2120y y -+=D .2120y y +-=【答案】D【分析】将原方程中的2x x +换成y ,再移项即可.【详解】解:根据题意,得212y y +=,即2120y y +-=;故选:D .【点睛】本题考查换元法解一元二次方程,换元法就是把某个式子看成一个整体,用一个字母去代替它,实行等量代换.12.(2023秋·全国·九年级专题练习)如果关于x 的方程20ax bx c ++=的解是11x =,23x =,那么关于y 的方程()21a y by c b -++=的解是 .【答案】12y =,24y =,【分析】根据关于x 的方程20ax bx c ++=的解是11x =,23x =,令关于y 的方程()()2110a y b y c -+-+=中1x y =-,即可得到112211y x y x -=ìí-=î,解这个方程组即可得到答案.【详解】解:∵()21a y by c b -++=,∴()()2110a y b y c -+-+=,Q 关于x 的方程20ax bx c ++=的解是11x =,23x =,令1x y =-,∴112211y x y x -=ìí-=î,∴1111y x -==或2213y x -==,解得12y =,24y =,故答案为:12y =,24y =.【点睛】本题考查换元法及一元二次方程解的定义,令关于y 的方程()()2110a y b y c -+-+=中1y x -=是解决问题的关键.13.(2023秋·全国·九年级专题练习)已知方程210210x x -+=的根为13x =,27x =,则方程2(21)10(21)210x x ---+=的根是.【答案】12x =,24x =【分析】设21x t -=,可得210210t t -+=,根据210210x x -+=的根为13x =,27x =,可得213x -=或217x -=,即可得到答案;【详解】解:设21x t -=,可得210210t t -+=,∵210210x x -+=的根为13x =,27x =,∴213x -=或217x -=,解得:12x =,24x =,故答案为12x =,24x =;【点睛】本题考查换元法求方程的解,解题的关键是设21x t -=,得到210210t t -+=,结合方程210210x x -+=的根为13x =,27x =.14.(2022秋·全国·九年级专题练习)阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x =,所以2y x =,把2y x =,代入已知方程,得21022y y æö+-=ç÷èø.化简,得2240y y +-=,故所求方程为2240y y +-=这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程2210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为 ;(2)已知关于x 的一元二次方程()200ax bx c a ++=¹有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【答案】(1)2210y y --=(2)20a by cy ++=()0c ¹【分析】(1)设所求方程的根为y ,则y x =-,所以x y =-,代入原方程即可得;(2)设所求方程的根为y ,则1y x =()0x ¹,于是1x y =()0y ¹,代入方程20ax bx c ++=整理即可得.【详解】(1)解:设所求方程的根为y ,则y x =-,所以x y =-,把x y =-代入方程2210x x +-=,得:2210y y --=,故答案为:2210y y --=;(2)解:设所求方程的根为y ,则1y x =()0x ¹,于是1x y=()0y ¹,把1x y =代入方程()200ax bx c a ++=¹,得2110a b c y y æöæö++=ç÷ç÷èøèø,去分母,得20a by cy ++=,若0c =,有20ax bx +=,于是,方程20ax bx c ++=有一个根为0,不合题意,∴0c ¹,故所求方程为20a by cy ++=()0c ¹.【点睛】本题主要考查一元二次方程的解,解题的关键是理解方程的解的定义和解题的方法.15.(2023秋·全国·九年级专题练习)阅读材料:为了解方程()22215140x x ---+=(),我们可以将21x -看作一个整体,设21x y -=,那么原方程可化为2540y y -+=①,解得121,4y y ==.当1y =,时,211x -=,∴22x =.∴2x =±;当4y =时,214x -=,∴25x =.∴5x =±.故原方程的解为12x =, 22x =-,35x =,45x =-.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了降次的目的,体现了 的数学思想;(2)请利用以上知识解方程:()()222540x x x x +-++=;(3)请利用以上知识解方程:42340x x --=.【答案】(1)换元;转化(2)123411711715152222,,,x x x x -+---+--====(3)122,2x x ==-【分析】(1)利用换元法达到了降次的目的,体现了转化的数学思想;(2)利用换元法解方程即可;(3)利用换元法解方程即可.【详解】(1)解:利用了换元法,体现了转化思想;故答案为:换元,转化;(2)设2x x y +=,原方程可变为2540y y -+=,则()()410y y --=,∴40y -=或10y -=,∴124,1y y ==,当4y =时,24x x +=,解得1172x -±=,当1y =时,21x x +=,解得152x -±=,∴原方程的解为123411711715152222,,,x x x x -+---+--====;(3)设2y x =,原方程可变为2340y y --=,解得124,1y y ==-,∵20x ³,∴24x =,解得122,2x x ==-.【点睛】本题考查解一元二次方程.解题的关键是理解并掌握换元法解方程.易错必考题四、配方法的应用16.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为( )A .10-B .10C .3-D .9【答案】B【分析】利用配方法将方程2610x x --=配成2()x m n -=,然后求出n 的值即可.【详解】∵2610x x --=,∴261x x -=,∴26919x x -+=+,即2(3)10x -=, 10n \=.故选:B .【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.17.(2023秋·全国·九年级专题练习)关于x 的一元二次方程新定义:若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=就是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与2(2)(4)80a x b x ++-+=是“同族二次方程”.那么代数式22015ax bx -++取的最大值是( )A .2020B .2021C .2022D .2023【答案】A【分析】利用“同族二次方程”定义列出关系式,再利用多项式相等的条件列出关于a 与b 的方程组,求出方程组的解得到a 与b 的值,进而利用非负数的性质确定出代数式的最大值即可.【详解】解:∵22(3)40x -+=与23(3)40x -+=就是“同族二次方程”,∴22(2)(4)8(2)(1)1a x b x a x ++-+=+-+,即22(2)(4)8(2)2(2)3a x b x a x a x a ++-+=+-+++,∴2(2)438a b a -+=-ìí+=î解得510a b =ìí=-î∴22015ax bx -++=25105201x x -+-=25(1)2020x -++,则代数式22015ax bx -++能取的最大值是2020.故选:A .【点睛】此题考查了配方法的应用,非负数的性质,以及一元二次方程的定义,弄清题中的新定义是解本题的关键.18.(2023秋·江苏·九年级专题练习)实数x 和y 满足2212521640x xy y y -+++=,则22x y -= .【答案】384【分析】将已知等式左边第三项拆项后,重新结合利用完全平方公式变形后,利用两非负数之和为0,得到两非负数分别为0,求出x 与y 的值,代入所求式子中计算,即可求出值.【详解】解:∵()()()()222222212521641236161646420x xy y y x xy y y y x y y -+++=+++-+++-==,∴60x y +=且420y -=,解得:12y =,3x =-,则22139844x y ==--,故答案为:384.【点睛】此题考查了完全平方公式的应用,熟练掌握完全平方公式是解本题的关键.19.(2023秋·全国·九年级专题练习)设m 为整数,且420m <<,方程222(23)41480x m x m m --+-+=有两个不相等的整数根,则m 的值是 .【答案】12【分析】将方程化为2(23)21x m m -+=+,根据m 为整数,且方程有两个不相等的整数根即可求解.【详解】解:222(23)(23)21x m x m m --+-=+,\[]2(23)21x m m --=+,\2(23)21x m m -+=+,Q 420m <<,92141m \<+<,\2(23)21x m m -+=±+,Q m 为整数,且方程有两个不相等的整数根,\当2125m +=时,符合题意,解得:12m =;故答案:12.【点睛】本题考查了一元二次方程的配方法,求参数的整数问题,掌握方法是解题的关键.20.(2023春·安徽池州·八年级统考期中)【阅读材料】把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、最值问题中都有着广泛的应用.例如:①用配方法因式分解:268a a ++. ②求2611x x ++的最小值.解:原式2691a a =++- 解:原式2692x x =+++2(3)1a =+- 2(3)2x =++.()()3131a a =+-++ 2(3)0x +³Q ,()()24a a =++ 2(3)22x \++³,即2611x ++的最小值为2.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:24a a ++_______________.(2)因式分解:21232a a -+.(3)求2443x x ++的最小值.【答案】(1)4(2)(4)(8)a a --(3)2【分析】(1)根据常数项等于一次项系数的一半的平方进行配方即可;(2)将32化成364-,前三项配成完全平方式,再利用平方差公式进行因式分解即可;(3)将式子进行配方,再利用平方的非负性即可求解.【详解】(1)解:∵()22442a a a ++=+,故答案为:4;(2)解:21232a a -+【答案】(1)8;(2)见解析;(3)252【分析】(1)利用配方法把22410x x ++变形为22(1)8x ++,然后根据非负数的性质可确定代数式的最小值;(2)利用配方法得到22172()24x x x ++=++,则可判断220x x ++>,然后根据二次根式有意义的条件可判断无论x 取何实数,二次根式22x x ++都有意义;(3)利用三角形面积公式得到四边形ABCD 的面积12AC BD =××,由于10BD AC =-,则四边形ABCD 的面积()1102AC AC =××-,利用配方法得到四边形ABCD 的面积2125(5)22AC =--+,然后根据非负数的性质解决问题.【详解】解:(1)()2224102210x x x x ++=++()2221110x x =++-+ 22(1)8x =++,Q 无论x 取何实数,都有22(1)0x +³,2(1)88x \++³,即223x x ++的最小值为8;故答案为:8;(2)22172()24x x x ++=++,21()02x +³Q ,220x x \++>,\无论x 取何实数,二次根式22x x ++都有意义;(3)AC BD ^Q ,\四边形ABCD 的面积12AC BD =××,10AC BD +=Q ,10BD AC \=-,\四边形ABCD 的面积()1102AC AC =××- 2152AC AC =-+ 2125(5)22AC =--+21(5)02AC --£Q ,\当5AC =,四边形ABCD 的面积最大,最大值为252.【点睛】本题考查了配方法的应用:利用配方法把二次式变形为一个完全平方式和常数的和,然后利用非负数的性质确定代数式的最值.易错必考题五、一元二次方程中的因式分解22.(2022秋·上海普陀·八年级校考阶段练习)若关于x 的一元二次方程()221340a x x a a -+++-=的一个根是0,则a 的值是( )A .4a =-或1B .4a =-C .1a =D .0a =【答案】B【分析】根据一元二次方程的解的定义,把0x =代入()221340a x x a a -+++-=得2340a a +-=,再解关于a 的方程,然后利用一元二次方程的定义确定a 的值.【详解】解:把0x =代入()221340a x x a a -+++-=,得2340a a +-=,解得1a =或4a =-,而10a -¹,所以a 的值为4-.故选:B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.23.(2023秋·全国·九年级专题练习)对于两个不相等的实数a ,b ,我们规定符号{}max ,a b 表示a ,b 中的较大值,如:{}max 3,55=,因此,{}max 3,53--=-;按照这个规定,若{}2max ,35x x x x -=--,则x 的值是( )A .5B .5或16-C .1-或16-D .5或16+【答案】B【分析】根据题意进行分类讨论,当0x >时,可得2450x x --=,求出x 的值即可;当0x <时,可得2250x x --=求出x 的值即可.【详解】解:当0x >时,则0x x >>-,∴{}2max ,35x x x x x -==--,即2450x x --=,解得:125,1x x ==-(不符合题意,舍去),当0x <时,则0x x ->>,∴{}2max ,35x x x x x -=-=--,即2250x x --=,解得:116x =+(不符合题意,舍去),216x =-,综上:x 的值是5或16-,故选:B .【点睛】本题主要考查了新定义下的运算和解一元二次方程,解题的关键是正确理解题目所给新定义的运算法则,熟练掌握解一元二次方程的方法和步骤.24.(2022秋·全国·九年级专题练习)阅读下列解方程()2923x x -=-的过程,并解决相关问题.解:将方程左边分解因式,得()()()3323x x x +-=-,…第一步方程两边都除以()3x -,得32x +=,…第二步解得=1x -…第三步①第一步方程左边分解因式的方法是 ,解方程的过程从第 步开始出现错误,错误的原因是 ;②请直接写出方程的根为.【答案】 公式法 二 3x -可能为0 13x =,21x =-【分析】①根据公式法因式分解、等式的基本性质判断即可;②利用因式分解法求解即可.【详解】解:①第一步方程左边分解因式的方法是公式法,解方程的过程从第二步开始出现错误,错误的原因是:3x -可能为0,故答案为:公式法,二,3x -可能为0;②∵()2923x x -=-,∴()()()3323x x x +-=-,∴()()()33230x x x +---=,则()()310x x -+=,∴30x -=或10x +=,解得13x =,21x =-,故答案为:13x =,21x =-.【点睛】本题考查因式分解,解一元二次方程.运用平方差公式进行因式分解是解题的关键.25.(2023秋·江苏·九年级专题练习)已知:0a ¹且0b ¹,221003a b ab +-=,那么a b a b +-的值等于 .【答案】2-或2【分析】先把已知条件化为2231030a ab b -+=,再利用因式分解法得到30a b -=或30a b -=,然后把3b a =或3a b =分别代入a b a b+-中计算即可.【详解】解:∵221003a b ab +-=,即2231030a ab b -+=,∴(3)(3)0a b a b --=,∴30a b -=或30a b -=,当30a b -=时,即33,23a b a a b a a b a a ++===---;当30a b -=时,即33,23a b b b a b b b a b ++=-==-,∴a b a b+-的值等于2-或2.故答案为:2-或2.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).26.(2022春·湖南长沙·九年级统考期末)已知关于x 的一元二次方程2430x x k -+=有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程2(2)30m x x m -++-=与方程2430x x k -+=有一个相同的根,求此时m 的值.【答案】(1)43k £(2)95m =【分析】(1)一元二次方程有实数根,则0D ³,由此即可求解;(2)根据(1)中k 的取值范围求出k 的值,由此可求出方程2430x x k -+=的解,把x 的值代入一元二次方程2(2)30m x x m -++-=即可求解.【详解】(1)解:根据题意得:2(4)430k D =--´³,解得43k £,∴k 的取值范围43k £.(2)解:由(1)可知,43k £,∴k 的最大整数是1,∴方程2430x x k -+=可化为2430x x -+=,解得121,3x x ==,∵一元二次方程2(2)30m x x m -++-=与方程2430x x k -+=有一个相同的根,∴当1x =时,2130m m -++-=,解得2m =;当3x =时,(2)9330m m -´++-=,解得95m =,又20m -¹,∴95m =.【点睛】本题主要考查一元二次方程的知识,掌握一元一次方程的定义,有实根的计算方法,解一元二次方程的方法的知识是解题的关键.27.(2023春·江苏扬州·八年级统考期末)已知关于x 的一元二次方程22(21)0x m x m m -+++=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为1x ,()212x x x >,且213x x +为整数,求整数m 所有可能的值.【答案】(1)见解析(2)4-或2-或0或2【分析】(1)根据方程的系数结合根的判别式,可得出10D =>,进而可证出方程有两个不相等的实数根;(2)解方程求出方程的两根为m ,1m +,得出11343111x m x m m ++==+++,然后利用有理数的整除性确定m 的整数值.【详解】(1)解:证明:Q 22[(21)]4()10m m m D =-+-´+=>,\无论k 取何值,方程都有两个不相等的实数根;(2)22(21)0x m x m m -+++=Q ,即()[(1)]0x m x m --+=,解得:x m =或1x m =+.\一元二次方程22(21)0x m x m m -+++=的两根为m ,1m +,12x x >Q ,11x m \=+,\11343111x m x m m ++==+++,如果311m ++为整数,则4m =-或2-或0或2,\整数m 的所有可能的值为4-或2-或0或2.【点睛】本题考查了根的判别式、解一元二次方程,解题的关键是:(1)牢记“当△0>时,方程有两个不相等的实数根”;(2)利用解方程求出m 的整数值.易错必考题六、根据一元二次方程根的情况求参数28.(2023春·内蒙古巴彦淖尔·九年级校考期中)若关于x 的一元二次方程2160x mx ++=有两个不相等的实数根,则实数m 的值可以是( )A .8B .8-C .4D .10【答案】D【分析】根据一元二次方程有两个相等的实数根,运用根的判别式进行解答即可.【详解】解:∵关于x 的一元二次方程2160x bx ++=,有两个不相等的实数根,∴22441160b ac m D =-=-´´>,∴264m >,∴8b >或8b <-,故选:D .【点睛】本题考查了一元二次方程根的判别式,熟知关于x 的一元二次方程20(0)ax bx c a ++=¹,若240b ac D =->,则原方程有两个不相等的实数根;若240b ac D =-=,则原方程有两个相等的实数根;若240b ac D =-<,则原方程没有实数根.29.(2023春·山东泰安·八年级统考期末)若关于x 的一元二次方程()22230k x x -++=有两个不相等的实数根,则k 的取值范围( )A .73k £B .73k >C .73k <且2k ¹D .73k £且2k ¹【答案】C【分析】根据一元二次方程的定义和根的判别式的意义得到 20k -¹且224(2)30,k D =--´>然后解两个不等式得到它们的公共部分即可;【详解】解:根据题意得 20k -¹ 且()2Δ24230k =--´>,解得 73k < 且 2k ¹,故选:C .【点睛】本题考查了根的判别式和一元二次方程的定义,能根据题意得出关于k 的不等式是解此题 的关键30.(2023·辽宁阜新·校联考一模)若关于x 的方程29304kx x --=有实数根,则实数k 的取值范围是( ).A .0k ¹B .1k ³-且0k ¹C .1k ³-D .1k >-且0k ¹【答案】C【分析】根据一元二次方程根的判别式即可求出答案.【详解】解:由题意可知:当0k ¹时,990k D =+³,∴1k ³-,当0k =时,原方程是一元一次方程,有实数根,∴1k ³-故选:B .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ¹,,,为常数)的根的判别式24b ac D =-,理解根的判别式对应的根的三种情况是解题的关键.当0D >时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.31.(2023春·广东广州·九年级统考开学考试)已知关于x 的一元二次方程()()212204a x a x a --++=没有实数根,且a 满足25113a a -<ìí-£î,则a 的取值范围是( )A .2a £-B .23a<-C .223a<-£-D .233<a<-且2a ¹【答案】C【分析】由所给方程是一元二次方程可知20a -¹,由方程没有实数根可知Δ0<,再解不等组,找出交集即可.【详解】解:Q 关于x 的一元二次方程()()212204a x a x a --++=没有实数根,\()()212426404a a a a D =+--´=+<,20a -¹,\23a <-,2a ¹,Q a 满足25113a a -<ìí-£î,由251a -<得3a <,由13a -£得2a ³-,\23a -£<,\223a<-£-,故选C .【点睛】本题考查一元二次方程的根的判别式、解不等式组,解题的关键是掌握一元二次方程的根的判别式,即Δ0<时,方程没有实数根;Δ0=时,方程有两个相等的实数根;0D >时,方程有两个不等的实数根.32.(2023秋·黑龙江哈尔滨·九年级哈尔滨市第四十七中学校考开学考试)已知关于y 的一元二次方程2230ky y -+=有实根,则k 的取值范围是 .【答案】13k £且0k ¹.【分析】根据一元二次方程的定义和根的判别式的意义得到0k ¹且△22120k =->,然后求出两不等式的公共部分即可.【详解】解:当0k ¹时,方程是一元二次方程,则△2(2)120k =--³有实数根,解得13k £且0k ¹.故答案为13k £且0k ¹.【点睛】本题主要考查了一元二次方程的定义和根与△=-24b ac 有如下关系:当△0>时,方程有两个不相等的实数根;当△0=时,方程有两个相等的实数根;当△0<时,方程无实数根.33.(2023春·浙江杭州·八年级校联考阶段练习)已知关于x 的一元一次方程360x -=与一元二次方程20x bx c ++=有一个公共解,若关于x 的一元二次方程2(36)0x bx c x ++--=有两个相等的实数解,则b c +的值为.【答案】3-【分析】先解方程360x -=得2x =,再把2x =代入方程20x bx c ++=得420b c ++=,接着根据方程有两个相等的实数解,得到2(3)4(6)0b c D =--+=,然后通过解方程组求出b 、c ,从而得到b c +的值.【详解】解:解方程360x -=得2x =,Q 关于x 的一元一次方程360x -=与一元二次方程20x bx c ++=有一个公共解,2x \=为方程20x bx c ++=的解,420b c \++=,Q 关于x 的一元二次方程2(36)0x bx c x ++--=有两个相等的实数解,\2(3)4(6)0b c D =--+=,把24c b =--代入得2(3)4(246)0b b ----+=,解得121b b ==-,当1b =-时,242c =-=-,123b c \+=--=-.故答案为:3-.【点睛】本题主要考查了一元二次方程的解与根的判别式关系:一元二次方程20(0)ax bx c a ++=¹的根与24b ac D =-有如下关系:当0D >时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.34.(2023春·山东泰安·八年级校考阶段练习)已知关于x 的一元二次方程()21210a x x --+=有两个不相等的实数根,则a 的取值范围是 .【答案】2a <且1a ¹【分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】解:Q 关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,\210Δ(2)4(1)0a a -¹ìí=--->î,解得:2a <且1a ¹.故答案为:2a <且1a ¹.【点睛】本题考查一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键.35.(2023·辽宁抚顺·统考三模)若关于x 的方程2210kx x -+=有两个不相等的实数根,则k 的最大整数值是 .【答案】1-【分析】根据方程2210kx x -+=有两个不相等的实数根,得到()20,240k k ¹-->,确定符合题意的整数解即可.【详解】∵x 的方程2210kx x -+=有两个不相等的实数根,∴()20,240k k ¹-->,∴0,1k k ¹<,∵k 是整数,∴k 的最大整数值是1-,故答案为:1-.【点睛】本题考查了一元二次方程根的判别式,方程满足的条件,解不等式,熟练掌握根的判别式是解题的关键.36.(2022秋·上海普陀·八年级校考阶段练习)已知关于x 的方程24m x mx x m -=-.(1)有两个不相等的实数根,求m 的取值范围;(2)有两个相等的实数根,求m 的值,并求出此时方程的根;(3)有实根,求m 的最小整数值.【答案】(1)12m >-且0m ¹(2)12m =-,122x x ==-(3)0【分析】(1)分两种情况讨论:当0m =时,24m x mx x m -=-变成0x =;当0m ¹时,24m x mx x m -=-是一元二次方程,根据方程根的情况可得2Δ40b ac =->,求解即可;(2)当0m =时,24m x mx x m -=-变成0x =;当0m ¹时,24m x mx x m -=-是一元二次方程,根据方程根的情况可得2Δ40b ac =-=,求解即可;(3)当0m =时,24m x mx x m -=-变成0x =;当0m ¹时,24m x mx x m -=-是一元二次方程,根据方程根的情况可得2Δ40b ac =-³,求解即可.【详解】(1)解:24m x mx x m -=-,移项合并同类项得:2(1)04m x m x m -++=,当0m ¹时,24m x mx x m -=-是一元二次方程,由题意得:()22Δ41404m b ac m m éù=-=-+-´´>ëû,解得:12m >-;当0m =时,24m x mx x m -=-变成0x =,只有一个实数根,不符合题意;∴m 的取值范围是12m >-且0m ¹;(2)解:当0m =时,24m x mx x m -=-变成0x =,只有一个实数根,不符合题意;当0m ¹时,24m x mx x m -=-是一元二次方程,由题意得:()22Δ41404m b ac m m éù=-=-+-´´=ëû,解得:12m =-,把12m =-代入24m x mx x m -=-得:21110822x x ---=,整理得:2440x x ++=,解得:122x x ==-;(3)解:当0m =时,24m x mx x m -=-变成0x =,有一个实数根,符合题意,当0m ¹时,24m x mx x m -=-是一元二次方程,由题意得:()22Δ41404m b ac m m éù=-=-+-´´³ëû,解得:12m ³-,∴m 的最小整数值是0;【点睛】本题考查一元二次方程根的判别式,掌握24Δb ac =-与一元二次方程根的情况是解题的关键.37.(2023春·山东烟台·八年级统考期中)关于x 的一元二次方程2310kx x -+=有两个不相等的实数根.(1)求k 的取值范围.(2)是否存在k 的值,使k 为非负整数,且方程的两根均为有理数?若存在,请求出满足条件的k 的值;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=
2.关于x的方程(m2-m-2)x2+mx+1=0是一元二次方程的条件是
3.若方程(m-1)x2+ m x=1是关于x的一元二次方程,则m的取值范围是
4.若关于x的方程x2-k|x|+4=0有四个不同的解,则k的取值范围是
5.已知关于x的方程x2-2ax+a2-2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是
6.如果方程x2-2x+m=0的两实根为a,b,且a,b,1可以作为一个三角形的三边之长,则实数m的取值范围是
7.方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为______
8.关于x的一元二次方程k x2-x+1=0有两个不相等的实数根,则k的取值范围是______
【易错警示】记错根与系数的关系,
x 1+x 2=-b a ,x 1·x 2=c a . 2.方程x 2-2x -1=0的两个实数根分别为x 1、x 2,则(x 1-1)(x 2-1)=________. 【易错警示】漏掉m -1≠0的条件.
1.已知关于x 的一元二次方程(m -1)x 2+x +1=0有实数根,则m 的取值范围是________.。