水泥化学分析试验原始记录

合集下载

水泥检测原始记录

水泥检测原始记录
编号
氧化镁滴定度T(mg/ml)
V30(mL)
V31(ml)
M18
氧化镁质量分数
ωMgO(%)
平均值(%)
1
2
记录说明
Xcl-=Tcl-(V6-V5)/(m×1000)×100
校核:主检:试验日期:
品种等级
批号
样品数量
检测依据
GB/T176-2008
送样日期
使用设备
坩埚、高温炉、电子天平
设备状态
样品处置要求
保存3个月
环境条件
温度℃湿度%
样品状态特征描述
检测内容
烧失量
编号
试料重m7(g)
烧后重m8(g)
烧失量Wlo1(%)
平均值(%)
灼烧温度:℃
1
灼烧时间:min
2
不溶物
编号
试料重m9(g)
烧后重m10(g)
标准稠度用水量
加水量A(ml)
标准稠度P(%)
计算式:P=A/500×100%
凝结时间
加水时间
时分
初凝到时
时分
终凝到时
时分
凝结时间
初凝:h min
终凝:h min
安定性
雷式法
编号
1#
2#
沸煮前指针尖端距离A
mm
mm
沸煮后指针尖端距离C
mm
mm
增加距离C-A
mm
mm
平均值
饼法
水泥细度
样品质量W(g)
筛余质量Rs(g)
S=Ss√ηs√T(1-εs)√ε3/√η√TS(1-ε)√εS3;
S=Ssρs√T(1-εs)√ε3/ρ√Ts1-ε)√εS3;S=Ssρs√ηs√T(1-εs)√ε3/ρ√η√TS(1-ε)√εS3

水泥检测原始记录

水泥检测原始记录

砌筑水泥保水率检测原始记录
水泥标准稠度用水量、安定性、凝结时间检测原始记录
水泥不溶物检测原始记录
检测:校核:检测日期:
检测地点:本中心建材检测室
密度、比表面积原始记录
检测:校核:检测日期:
水泥强度检测原始记录
检测:校核:日期:
细度检测原始记录(筛析法)
水泥压蒸安定性试验原始记录
检测地点:本中心建材实验室
细度检测原始记录(筛析法)
水泥组分测定原始记录(二)
(矿渣组分含量)
检测地点:本中心建材实验室
硅酸盐水泥、普通硅酸盐水泥组分测定原始记录(一)(水泥中火山灰质混合材料或粉煤灰)
复合硅酸盐水泥组分测定原始记录(一)(水泥中火山灰质混合材料或粉煤灰)
三氧化硫检测原始记录
检测:校核:检测日期:年月日检测地点:本中心建材检测室
复合硅酸盐水泥组分测定原始记录(二)
(矿渣组分含量)
微粉堆积密度原始记录
粗磨粒堆积密度原始记录
抗硫酸盐性原始记录
检测地点:本中心建材实验室。

水泥胶砂干缩试验原始记录
Q-03-YSJL-JC003-21 共页第页
检测:校核:日期:
检测地点:本中心建材实验室。

烧失量检测原始记录
Q-03-YSJL-JC003-022 共页第页
检测:校核:检测日期:年月日检测地点:本中心建材检测室。

水泥化学分析检测报告

水泥化学分析检测报告

水泥化学分析检测报告一、引言水泥是建筑材料中最基础的一种材料,广泛应用于建筑、道路等领域。

然而,水泥的质量对于工程质量和安全具有重要影响。

因此,进行水泥的化学分析检测是非常必要的。

本报告旨在对水泥样品进行详细的化学分析检测,并对结果进行分析和解读。

二、实验方法本实验采用标准GB/T176-2024《水泥化学分析方法》进行检测,主要包括以下步骤:1.水泥样品的准备:按照一定比例将水泥样品粉碎均匀,以获得代表性的样品。

2.水泥成分分析:通过X射线荧光光谱仪进行水泥中主要成分的定量分析,包括SiO2、Al2O3、Fe2O3、CaO、MgO、SO3等成分。

3.水泥活性检测:采用化学分析方法检测水泥的活性指标,包括含水量、界面电位、溶度等。

三、实验结果1.水泥成分分析结果如下表所示:成分,含量(%)------,---------SiO2,22.5Al2O3,5.3Fe2O3,3.8CaO,63.2MgO,1.2SO3,2.02.水泥活性检测结果如下表所示:活性指标,含量(%)----------,---------含水量,1.5界面电位,-0.12溶度,12.5四、结果分析1.从水泥成分分析结果来看,SiO2、Al2O3、Fe2O3、CaO是主要的成分,其中CaO含量达到63.2%,说明该水泥具有较高的钙含量。

这对于保证水泥强度和硬化性能具有重要意义。

另外,SiO2和Al2O3含量也较为适宜,有利于提高水泥的硬化速度和抗压强度。

2.水泥活性检测结果显示,水泥样品的含水量为1.5%,界面电位为-0.12,溶度为12.5、含水量较低表明该水泥的可用性较高,有利于降低水泥浆体的流动性。

而界面电位和溶度都处于正常范围内,说明该水泥在不同环境条件下能够稳定地进行反应,具有较好的活性。

五、结论通过对水泥样品的化学分析检测,可以得出以下结论:1.水泥样品中主要成分SiO2、Al2O3、Fe2O3、CaO、MgO、SO3的含量分别为22.5%、5.3%、3.8%、63.2%、1.2%、2.0%。

水泥检测原始记录

水泥检测原始记录

水泥检测原始记录水泥检测是指对水泥原材料和成品进行各项指标检测的过程。

水泥是建筑材料中的重要组成部分,其质量直接影响着建筑物的稳定性和耐久性。

因此,进行水泥检测是确保建筑质量的重要环节。

以下是水泥检测的一份原始记录。

日期:2024年5月10日地点:XXX建材公司实验室1.检测对象:本次检测的水泥样品品牌42.5号普通硅酸盐水泥,规格为50kg/袋,共计10袋。

2.检测项目及方法:2.1水泥外观检查:使用肉眼观察水泥的颜色、细度、结块情况等。

2.2水泥比重测定:使用比重瓶法,按照GB1346-89《硬质无机非金属材料比重测定方法》进行测定。

2.3水泥比表面积测定:使用比表面积仪,按照GB/T8074-2024《水泥比表面积测定方法》进行测定。

2.4水泥标号测定:使用力学法,按照GB/T176-1996《水泥标号测定方法》进行测定。

2.5水泥初凝时间测定:采用细度法,按照GB/T1346-2001《硬质无机非金属材料比表面积测定方法》进行测定。

2.6水泥强度测定:采用压力法,按照GB176-1996《水泥标号测定方法》进行测定。

3.检测仪器及设备:-比重瓶-比表面积仪-压力机-定时器-筛网等4.检测程序及结果:4.1外观检查:水泥颜色为灰色,无明显杂质,细度良好,无结块。

4.2比重测定:根据GB 1346-89的标准,测定出水泥的比重为3.05g/cm³。

4.3比表面积测定:按照GB/T 8074-2024的标准,测定出水泥的比表面积为350m²/kg。

4.4标号测定:根据GB/T176-1996的标准,通过力学法测定出水泥的标号为42.5 4.5初凝时间测定:按照GB/T1346-2001的标准,测定出水泥的初凝时间为120分钟。

4.6强度测定:根据GB176-1996的标准,分别在7天和28天的龄期下,测定出水泥的强度为48.3MPa和54.6MPa。

5.结论:通过本次水泥检测,结果显示该品牌42.5号水泥外观良好,质量符合标准要求。

水泥化学分析

水泥化学分析

1 适用范围、检测项目、技术标准1.1适用范围本细则适用于测定通用硅酸盐水泥和制备上述水泥的熟料、生料及制定采用本标准的其它水泥和材料。

1.2检测项目(1)烧失量(2)三氧化硫(3)游离氧化钙1.3技术标准(1)GB/T 6682-2008《分析试验室用水和试验方法》(2)GB/T 12573《水泥取样方法》(3)GB/T15000《标准样品工作导则》2 检测仪器及环境条件2.1 仪器设备(1)天平:型号TG328A/200g,量程(0-200)g,精度0.0001g。

(2)瓷坩埚:带盖,容量(20mL~30mL)(3)干燥器:内装变色硅胶(4)干燥箱:可控制温度(105±5)℃、(150±5)℃、(250±5)℃(5)高温炉:可控制温度(700±25)℃、(800±25)℃、(950±25)℃(6)滤纸:快速、中速、慢速三种型号的定量滤纸(7)游离氧化钙测定仪:具有加热、搅拌、计时功能,并配有冷凝管(8)玻璃砂芯漏斗:直径50mm(9)玻璃容量器皿:滴定管、容量瓶、移液管(10)磁力搅拌器:带有塑料的搅拌子,具有调速和加热的功能2.2 试剂(1)酚酞(2)苯甲酸—无水乙醇标准(3)无水乙醇(4)氯化钡溶液(5)蒸馏水(6)乙二醇-乙醇溶液2.3 环境条件(1) 试验室温度应控制在20℃±2℃之间 (2) 电源:380v ;220v3 试样数量、被测参数及允许变化范围按照GB/T 12573方法取样,才用四分法或者缩分器将试样缩分至100g ,经过80um 方孔筛筛析,用磁铁吸取筛余物中金属铁,将筛余物经过研磨后使其全部通过孔径为80um 方孔筛,充分混匀,装入试样瓶中,密封保存,供测定用。

4 检测方法4.1 检验前核对试样和检查所需设备(1) 烧失量的测定:测试前检查天平是否在检定周期内,称量是否正常;干燥器内是否盛变色硅胶,变色硅胶颜色是否为兰色;烘箱是否在检定周期内,温度是否在100℃-105℃中稳定。

水泥化学分析报告

水泥化学分析报告

水泥化学分析报告
1. 引言
本文对水泥的化学成分进行分析,并提供相应的实验数据和结果,旨在了解水泥的组成及其对混凝土性能的影响。

2. 实验方法
2.1 样品准备
选取了一种普通硅酸盐水泥作为实验样品。

2.2 化学成分分析
采用 X 射线荧光光谱仪(XRF)对水泥样品进行化学成分分析。

3. 实验结果
3.1 水泥化学成分
根据分析结果,水泥的主要化学成分如下:
•硅酸盐(SiO2)含量为 XX%
•铝酸盐(Al2O3)含量为 XX%
•铁酸盐(Fe2O3)含量为 XX%
•石膏(CaSO4·2H2O)含量为 XX%
•其他杂质含量不超过 XX%
3.2 化学成分分析结果
根据化学成分分析结果,我们可以得出以下结论:
•SiO2是水泥中主要的硅酸盐成分,其含量对水泥的强度和早期硬化速率具有重要影响。

•Al2O3是水泥中的主要氧化铝成分,它可以提高水泥的耐磨性和耐腐蚀性。

•Fe2O3是水泥中的主要氧化铁成分,它对水泥的颜色和早期硬化速率有一定影响。

•石膏是水泥中的一种辅助矿物掺合料,它可以调节水泥的凝结时间和硬化特性。

4. 结论
根据本次水泥化学分析的结果,我们可以得出以下结论:
•水泥中硅酸盐、铝酸盐和铁酸盐是主要的化学成分,它们对水泥的性能具有重要影响。

•石膏等辅助矿物掺合料可以调节水泥的凝结时间和硬化特性。

•本文提供的化学分析结果可为水泥生产和混凝土设计提供科学依据。

注:本文内容仅限于水泥化学分析报告,不涉及任何人工智能相关内容。

水泥化学分析-二氧化硅的测定.

水泥化学分析-二氧化硅的测定.

二氧化硅的测定(氯化铵重量法)
在上加3滴硫酸(1+4),然后将沉淀连同滤纸一 并移入铂坩埚中,烘干并灰化后放入950~1000℃的 马弗炉内灼烧1h,取出坩埚置于干燥器中冷却至室 温,称量。反复灼烧,直至恒重(m1)。
向坩埚中加数滴水润湿沉淀,加3滴硫酸(1+4) 和10mL氢氟酸,放入通风橱内电热可板上缓慢蒸发 至干,升高温度继续加热至三氧化硫白烟完全逸尽。 将坩埚放入950~1000℃的马弗炉内灼烧30min,取 出坩埚置于干燥器中冷却至室温,称量。反复灼烧, 直至恒重(m2)。
此溶液a供测定三氧化二铁三氧化二铝氧化钙氧化镁二氧化二氧化硅的测定氯化铵重量法在上加3滴硫酸14然后将沉淀连同滤纸一并移入铂坩埚中烘干并灰化后放入9501000的马弗炉内灼烧1h取出坩埚置于干燥器中冷却至室温称量
水泥化学成分全分析
二氧化硅的测定
山西职业技术学院材料系
二氧化硅的测定(氯化铵重量法)

注意事项



(1) 保证测定溶液有足够的酸度,酸度应在[H+]=3mol· L-1 左右,若过低易形成其他盐类的氟化物沉淀而干扰测定; 过高则给沉淀的洗涤和残余酸的中和带来困难。 (2) 应将试验溶液冷却至室温后,再加入固体KCl至饱和, 且加入时一定要不断地搅拌。因HNO3溶样时会放热,使 试验溶液温度升高,若此时加入固体KCl至饱和,待放置 后温度下降,致使KCl结晶析出太多,给过滤、洗涤造成 困难。 (3) 沉淀要放置一定时间(15~20min)。因K2SiF6为细小 晶型沉淀,放置一定时间可 使沉淀晶体长大,便于过滤和 洗涤。 (4) 严格控制沉淀、洗涤、中和残余酸时的温度,尽可能 使温度降低,以免引起K2SiF6沉淀的预先水解。若室温高 于30℃,应将进行沉淀的塑料杯、洗涤液、中和液等放在 冷水中冷却

水泥中化学成分的测定实验报告(数据完整版)

水泥中化学成分的测定实验报告(数据完整版)

12、硫酸铜标准溶液(0.015 mol·L-1):将 1.8726g CuSO4 .5H2O 溶于水中,加入 80mL 冰醋酸,加水稀 释至 500mL ;
13、HAc-NaAc 缓冲溶液(pH=4.3):将 33.7 g 无水醋酸钠溶于水中,加 2~3 滴 1:1
H2SO4,用水稀释至 1L,摇匀; 14、pH=10 的 NH3-NH4Cl 缓冲溶液:67gNH4Cl 溶于适量水后,加入 520mL 浓氨水,
0.00
0.00
EDTA 用量 V/mL
2.51
2.43
2.48
Fe2O3 的含量:(%)
3.07
2.97
3.03
平均值
3.02
平均偏差
0.0367
表 3Al2O3 的含量测定记录及处理
编号
1
2
3
吸取试液量/mL
50.00
50.00
50.00
EDTA 滴定
终点
22.48
22.47
22.51
读数/mL
B 与 50g 已在 105℃烘干的硝酸钾混合研细,保存在磨口瓶中 ;
19、钙指示剂
20、10%酒石酸钾钠:将 10g 酒石酸钾钠溶于 100mL 水中。
四、实验步骤
1、CuSO4 标准液的配置
硫酸铜标准溶液(0.015 mol·L-1):将 1.8726g CuSO4 .5H2O 溶于水中,加入 80mL 冰醋酸,加水稀 释至 500mL ;
算所得为 Ca2+、Mg2+离子的总量,由此减去钙量即为镁量,所用 EDTA 体积为 V2 。
平行做三次。
五、实验结果和讨论
1、计算公式 •
• •

水泥原始记录1

水泥原始记录1
奉化环球建筑材料有限公司试验室 水泥标准稠度用水量、细度、安定性、强度试验原始记录(1)
厂 牌: 取样地点: 品 种: 质保书编号: 强度等级: 编 号: 代表数量: 试验日期:
试验室温度(℃)
湿度(﹪)
代用法 □ 标准法 □ ─
水温(℃)
Kg试样过0.9mm方孔筛余物状况: 项 目 标 用水方法 准 水 泥 (C) (g) 稠 水 (W)(g) 度 试杆距底板高度 (mm) a Mpa

(Rc)(KN)

说 强 度 试 验 按 GB/T17671-1999《水 泥 胶 砂 强 度 检 验 方 法》(I S O 法)执 行
2 明 Rc=Fc/A 其 中A=1600mm
复核:
试验:

试验方法


试验按GB/T1346-2001《水 泥标准稠度用水量、凝结 时间、安定性检验方法》 执行
标 准 稠 度 调 整 用 水 量 P=W/C× 100 用 水 量 (P)(%) 固 定 用 水 量P=33.4-0.185S
试验按GB/T176-1996 《水泥化学分析方法》 执行
烧 水 泥 试样的质量(m1)(g) 失 水泥试样灼烧后的质量(m2)(g) 量 烧失量X(O)
(%) (%) 1# 试 件 2# 试 件 1#(C-A)mm 2#(C-A)mm
论 结
平均值X(O)
安 定 性
试饼法□ 雷氏法□
试块 成型 编号 日期
试验按GB/T1346-2001《水 泥标准稠度用水量、凝结 时间、安定性检验方法》 执行
试压 日期
龄期 (天)

折 最大荷载

压 强 度(Rc) (Mpa) 平均值 (Mpa)

水泥化学分析检测原始记录

水泥化学分析检测原始记录
水泥化学分析检测原始记录
委托单编号:任务单编号:报告编号:
检测依据:试验环境
检测项目
称取试样的质量
滴定时消耗硫氰酸铵标准溶液的体积(ml)—空白滴定时消耗硫氰酸铵标准溶液的体积(ml)
空白滴定时消耗硫氰酸铵标准溶液的体积(ml)
氯离子含量(%)
氯离子
检测项目
吸取氧化钙标准溶液的体积(ml)
滴定时消耗EDTA标准溶液的体积(ml)
EDTA标准溶液的的体积(ml)
EDTA标准溶液对氧化钙的滴定度
EDTA标准溶液对氧化镁的滴定度
氧化镁
检测项目
编号
试样质量(g)
EDTA对氧化钙的滴定度
滴定氧化钙消耗EDTA的体积(ml)
含量(%)
平均值(%)
备注
氧化钙
1
2
检测项目
编号
试样质量(g)
EDTA对氧化钙的滴定度
滴定氧化钙消耗EDTA的体积—滴定氧化钙消耗EDTA的体积(ml)
含量(%)
平均值(%)
备注
氧化镁
日期:年月日

水泥试验原始记录

水泥试验原始记录

试验次数
试 验:
复核:
日期




页,共

JJ0602
水泥比表面积、密度试验原始记录表
试验室名称:江西安源路桥质量检测有限公司 工程部位/用途 试验依据 样品描述 试验条件 主要仪器设备及编号 水泥密度(李氏瓶法)试验 试 验 次 数 水泥质量 m(g) 初始(第一次) 装入水泥后无 无水煤油体积读 水煤油体积读 数V(cm3) 数V(cm3) 水泥所排开无 被测试样的 平均 水槽温度 水煤油的体积 密度 (℃) (g/cm3) V(cm3) (g/cm3) 记录编号: 委托/任务编号 样品编号 样品名称 试验日期
试料层体积测定ຫໍສະໝຸດ 试验室 温度水银密度ρ 未装水泥时充满圆筒的 装水泥时充满圆筒的水银 试料层体积 平均体积 试验次数 3 水银质量(g)P1 质量(g)P2 (cm3) (cm3) 水银(g/cm )
自动比表面积测定仪 标准试样的比表面积 S标= 被测试样的密度ρ g/cm3 标准试样试料层中的空隙率 ε 标= 试样质量 被测试样试料层中的空 W=ρ v(1-ε ) 隙率ε (g) 标准试样的密度 ρ 标= 被测试样的比表面积 (cm2/g) 平均 (cm2/g)

水泥氯离子含量测定方法色谱法原始记录_概述及解释说明

水泥氯离子含量测定方法色谱法原始记录_概述及解释说明

水泥氯离子含量测定方法色谱法原始记录概述及解释说明1. 引言1.1 概述在水泥生产和质量控制过程中,氯离子含量的测定是一项重要的任务。

水泥中的氯离子含量不仅与产品性能相关,还与工程施工和环境保护有关。

因此,开发一种准确、可靠、简便的测定方法对于检测水泥样品中氯离子含量具有重要意义。

1.2 文章结构本文将主要包括引言、正文、结果与讨论、方法改进与优化建议以及结论部分。

引言部分介绍了研究的背景和意义,正文部分详细阐述了色谱法测定水泥中氯离子含量的原理和实验步骤,结果与讨论部分对原始记录进行解读说明,并对实验结果进行分析和对比。

方法改进与优化建议部分则提出了现有方法存在的问题,并给出改进和优化方法,并通过可行性评估和展望对这些方法进行评价。

最后,在结论部分总结了主要观点和结果内容,并提出了进一步深入研究的思考方向。

1.3 目的本文旨在总结并详细描述色谱法测定水泥中氯离子含量的方法和步骤,解读原始记录并分析实验结果,同时针对现有方法存在的问题提出改进和优化建议,并评估这些方法的可行性和展望。

通过本文的撰写和研究成果,旨在提高水泥质量控制工作的准确性、可靠性和效率,为相关领域研究者提供参考和借鉴。

2. 正文:2.1 水泥中氯离子的重要性水泥作为建筑材料的重要组成部分,在建筑工程中扮演着至关重要的角色。

氯离子是水泥生成过程中常见的掺杂物之一,其含量直接影响到水泥的质量和性能。

高含量的氯离子会引发钢筋腐蚀、混凝土裂缝扩展等问题,严重影响结构的稳定性和使用寿命。

因此,准确测定水泥中氯离子的含量对保证工程质量具有重要意义。

2.2 色谱法测定水泥中氯离子含量的原理色谱法是一种常用于分析化学领域的方法,其原理基于物质在流动相(溶液)和固定相(填充柱材料)之间存在差异而实现物质分离纯化。

针对水泥中氯离子含量测定这一问题,可以选择离子色谱法进行分析。

该方法利用固定在色谱柱上交换式树脂填料对样品中氯离子进行捕捉、分离,并通过检测其在色谱柱尾流出液中的浓度变化来间接计算氯离子含量。

水泥检测原始记录(一)

水泥检测原始记录(一)
品种强度等级
出厂日期
样品状态
口无异常口/
标准稠度
用水量
加水量(ml)
杆距底板距离(mm)
下沉深度(mm)
标准稠度用水量(%)
检测环境
检测设备
温度:℃
湿度:%RH
口水泥标准稠度凝结时间测定仪
(编号:)口电子天平(编号:)口玻璃量水器
(编号:)
口水泥净浆搅拌机
(编号:)口雷夹式(编号:)
口雷夹式测定仪
(编号:)
安定性
(标准法)次数Biblioteka A(mm)C(mm)
C-A(mm)
平均值(mm)
温度:℃
湿度:%RH
1
2
胶砂强度(ISO法)
胶砂流动度
水灰比
加水量(ml)
相互垂直扩撒直径(mm)
胶砂流动度
温度:℃
湿度:%RH
1
2
成型
年月日时分
平均值
温度:℃
湿度:%RH
3d
破型
月日
时日
抗折
Mpa
温度:℃
湿度:%RH
抗压
荷载
KN
轻度
Mpa
28d
破型
月日
时日
抗折
Mpa
温度:℃
湿度:%RH
抗压
荷载
KN
强度
Mpa
检测依据
备注
任务单编号:原始记录编号:
实验:审核:检测日期:年月日至年月日
口沸煮箱(编号:)
口水泥胶砂搅拌机
(编号:)
口水泥胶砂振动台
(编号:)
口电动抗折试验机
(编号:)
口数显压力试验机
(编号:)

水泥化学分析实训报告

水泥化学分析实训报告

一、引言水泥作为建筑材料中的重要组成部分,其质量直接影响到混凝土结构的耐久性和安全性。

水泥化学分析是水泥质量控制的关键环节,通过对水泥化学成分的检测,可以了解水泥的性能,指导生产和使用。

本次实训旨在通过水泥化学分析,了解水泥的基本组成,掌握化学分析方法,提高实际操作技能。

二、实训目的1. 熟悉水泥化学分析的基本原理和操作步骤。

2. 掌握常见水泥化学成分的检测方法。

3. 提高对水泥性能的认识,为后续工作打下基础。

三、实训内容1. 水泥样品采集与制备- 采集一定数量的水泥样品,确保样品的代表性。

- 将水泥样品研磨至一定细度,以备后续分析。

2. 化学成分检测- 氧化钙(CaO)的测定:采用滴定法,使用EDTA标准溶液滴定样品中的氧化钙含量。

- 二氧化硅(SiO2)的测定:采用重量法,通过酸溶解样品,过滤、洗涤、干燥,计算二氧化硅含量。

- 三氧化二铝(Al2O3)的测定:采用滴定法,使用EDTA标准溶液滴定样品中的三氧化二铝含量。

- 三氧化二铁(Fe2O3)的测定:采用滴定法,使用EDTA标准溶液滴定样品中的三氧化二铁含量。

- 氧化镁(MgO)的测定:采用重量法,通过酸溶解样品,过滤、洗涤、干燥,计算氧化镁含量。

- 硫酸盐(SO3)的测定:采用滴定法,使用EDTA标准溶液滴定样品中的硫酸盐含量。

- 碱含量(Na2O+K2O)的测定:采用滴定法,使用EDTA标准溶液滴定样品中的碱含量。

3. 结果分析与讨论- 对检测数据进行整理和分析,计算各化学成分的含量。

- 分析各成分含量与水泥性能之间的关系,探讨水泥性能的影响因素。

四、实训结果1. 氧化钙含量:3.5%2. 二氧化硅含量:20.2%3. 三氧化二铝含量:6.8%4. 三氧化二铁含量:2.5%5. 氧化镁含量:1.2%6. 硫酸盐含量:0.5%7. 碱含量:1.0%五、结果分析与讨论1. 氧化钙含量较高,说明水泥中钙质成分较多,有利于提高混凝土的强度和耐久性。

水泥试验原始记录

水泥试验原始记录
生产厂家牌号
出厂合格证编 号
取样地点
依据标准
成型室温 ℃水温 ℃
进(出)厂日期
见证人
工程名称项目
细度
试样重
0.08mm筛余
筛余%
比表面积(kg/m2)
结果
平均
标准稠度测定
调整水量法
固定水量法
凝结时间测定:
加水时间:时分
针距底板0.5-1.0mm时间:时分
针沉入净浆中<1.0mm时间:时分
初凝: 时 分
煮沸后试饼情况:
A(mm):
C(mm):
C-A(mm):
煮沸后平均增加
距离(mm):
结果:
[1:3]ISO胶砂强度实验结果
龄期




抗折强度(MPa)
抗压强度(MPa)
3d
28d
3d
28d
Kn
MPa
Kn
MPa
序号
Kn
MPa
Kn
ห้องสมุดไป่ตู้MPa
1
1
2
2
3
4
3
5
6
平均
平均
备注:
称料 拌合 震实 刮平破型 试压
委托单位委托日期报告编号代表数量t委托编号试验日期水泥品种等级及代号生产厂家牌号出厂合格取样地点依据标准成型室温水温见证人工程名称项目试样重008mm结果平均调整水量法固定水量法凝结时间测定
水泥试验原始记录
报告日期: 年 月 日
委托单位
委托日期
报告编号
代表数量(t)
委托编号
试验日期
水泥品种
等级及代号
终凝: 时 分
试样重:g

水泥检验原始记录

水泥检验原始记录

精选文档水泥检验原始记录工作令号产品名称硅酸盐水泥强度等级试验编号GB/T1345-2005GB/T1346-2011送样日期检验依据GB/T 2419-2005 GB/T17671-1999设备编号GB/T8074-2008检验日期环境条件温度℃湿度 %水湿℃设备使用情况筛孔试样质量 (g)筛余质量 (g)筛余百分数( g )修正系数修正后筛余百筛余平分数( %)均值( %)细 80μ m筛度筛析法45μm筛筛析法比表面积㎡ /kg试样质量(g)加水量 (ml)水泥全部加入水中的时间试杆距底板距离(mm)标准稠度需水量(%)标准稠度用水量安定性1、试饼法试饼经 3h 沸煮后变化情况流动度测测定流动度(㎜)测定结果加水量( ml)定次数水灰比0.50胶砂流动度( mm)第一次第二次初凝到达时间终凝到达时间初凝时间(min)终凝时间(min )凝结时间抗压强度抗折强度月日(3d)月日28d月日( 3d)月日 (28d)荷载( kN)强度( MPa)荷载( kN)强度( MPa)测试值(MPa)测试值(MPa)水泥胶砂强度平均值平均值平均值精选文档审核校核主检水泥物理性试验测试题一,填空题:1.胶凝材料化学组成分()、()无机胶凝材料()、 ()有机胶凝材料()、()、()。

2.测定水泥细度通常采用筛分析法包括:()、()、()。

3.硅酸盐水泥比表面积不小于()。

4.硅酸盐水泥初凝时间不小于()min,终凝时间不大于() min。

5.()、 () 、() 、 () 和()初凝不小于()min ,终凝不大于()min。

6.试验室()筛析试验称取试样()、()筛析试验称取试样()。

7.试验室的温度应保持在(),相对湿度应保持在()以上。

8.养护箱温度应保持在()相对湿度不低于()9.养护池水温度()范围内。

二,简答题:1.水泥的水化过程可分为四个阶段?计算题:复合硅酸盐水泥样品。

已知其强度等级为32.5.其物理性能试验数据如下?1.抗压强度测定:龄期为 3d 抗压强度的荷载分别为?抗压强度的荷载分别为?26.0KN , 25.5KN,25.0 KN,25.6 KN,26.0 KN,27.0 KN,龄期为 28d 抗压强度的荷载分别为?精选文档57.0 KN , 58.1 KN, 57.5 KN, 59.0 KN, 58.2 KN, 57.9 KN2.抗折强度的测定:抗压强度抗折强度日 3d(7d)日 28d 月日日 28d月月3d(7d)月荷载( KN)强度( MPa)荷载( KN)强度( MPa)测试值( MPa)测试值( MPa)水泥胶砂强度平均值平均值平均值计算公式抗压强度: Rc=Fc/A抗折强度:Rf=1.5FfL/b36.5 MPa, 6.6 MPa , 6.4 MPa龄期为3d的胶砂试体抗折强度测试值定分别为?3.5MP a,3.6 MPa, 3.5 MPa龄期为28d的胶砂试体抗折强度测试值定分别为?水泥试验筛修正系数测定表样品名称:水泥细度标准粉样品编号CCC-06-05测定方法80um 方孔筛仪器编号负压筛试验室温度(℃)20试验室湿度(%)51设备使用情况正常试验编号SNCD2009-01测定依据CB1345-2005测定日期2013 年 6 月 10 日1251 1.014实测样实测筛余质量实测筛余品质量(g)百分数 (%)2252 1.024标准筛余量 4.06平均筛余百分数4计算公式C=Fn/Ft修正系数 1.02式中: C—试验筛修正系数 ;Fn—标准样给定的筛余百分数,%;备注F t—标准样在试验筛上的筛余百分数,%;批准:审核:测定人:水泥试验筛修正系数测定表样品名称:水泥细度标准粉样品编号CCC-06-05测定方法80um 方孔筛仪器编号水筛1#试验室温度(℃)20试验室湿度(%)50设备使用情况正常试验编号SNCD2010-01测定依据CB1345-2005测定日期2010 年 4 月 9 日12510.461 1.84实测样实测筛余质量实测筛余品质量(g)百分数 (%)22520.452 1.80标准筛余量 1.77平均筛余百分数 1.82计算公式C=Fn/Ft修正系数0.97式中: C—试验筛修正系数 ;Fn—标准样给定的筛余百分数,%;备注F t—标准样在试验筛上的筛余百分数,%;批准:审核:测定人:水泥试验筛修正系数测定表样品名称:水泥细度标准粉样品编号CCC-06-05测定方法80um 方孔筛仪器编号水筛1#试验室温度(℃)20试验室湿度(%)50设备使用情况正常试验编号SNCD2010-02测定依据CB1345-2005测定日期2010 年 6 月 10 日12510.471 1.9实测样实测筛余质量实测筛余品质量(g)百分数 (%)22520.482 1.92标准筛余量 1.77平均筛余百分数 1.91计算公式C=Fn/Ft修正系数0.93式中: C—试验筛修正系数 ;Fn—标准样给定的筛余百分数,%;备注F t—标准样在试验筛上的筛余百分数,%;批准:审核:测定人:水泥试验筛修正系数测定表样品名称:水泥细度标准粉样品编号CCC-06-05测定方法80um 方孔筛仪器编号水筛1#试验室温度(℃)20试验室湿度(%)50设备使用情况正常试验编号SNCD2011-01测定依据CB1345-2005测定日期2011 年 4 月 7 日1.7212510.431实测样实测筛余质量实测筛余品质量(g)百分数 (%)22520.422 1.68标准筛余量 1.77平均筛余百分数 1.7计算公式C=Fn/Ft修正系数 1.04式中: C—试验筛修正系数 ;Fn—标准样给定的筛余百分数,%;备注F t—标准样在试验筛上的筛余百分数,%;批准:审核:测定人:水泥试验筛修正系数测定表样品名称:水泥细度标准粉样品编号CCC-06-05测定方法80um 方孔筛仪器编号水筛1#试验室温度(℃)20试验室湿度(%)50设备使用情况正常试验编号SNCD2010-04测定依据CB1345-2005测定日期2010 年 10 月 10 日12510.441 1.8实测样实测筛余质量实测筛余品质量(g)百分数 (%)22520.452 1.8标准筛余量 1.77平均筛余百分数 1.8式中: C—试验筛修正系数 ;Fn—标准样给定的筛余百分数,%;备注F t—标准样在试验筛上的筛余百分数,%;批准:审核:测定人:水泥试验筛修正系数测定表样品名称:水泥细度标准粉样品编号CCC-06-05测定方法80um 方孔筛仪器编号水筛1#试验室温度(℃)20试验室湿度(%)50设备使用情况正常试验编号SNCD2010-03测定依据CB1345-2005测定日期2011 年 4 月 7 日1.7212510.431实测样实测筛余质量实测筛余品质量(g)百分数 (%)22520.442 1.76标准筛余量 1.77平均筛余百分数 1.74式中: C—试验筛修正系数 ;Fn—标准样给定的筛余百分数,%;备注F t—标准样在试验筛上的筛余百分数,%;批准:审核:测定人:水泥试验筛修正系数测定表样品名称:水泥细度标准粉样品编号CCC-06-05测定方法80um 方孔筛仪器编号水筛2#试验室温度(℃)21试验室湿度(%)51设备使用情况正常试验编号SNCD2011-02测定依据CB1345-2005测定日期2011 年 6 月 13 日1.2412510.311实测样实测筛余质量实测筛余品质量(g)百分数 (%)22520.322 1.28标准筛余量 1.47平均筛余百分数 1.26计算公式C=Fn/Ft修正系数 1.17式中: C—试验筛修正系数 ;Fn—标准样给定的筛余百分数,%;备注F t—标准样在试验筛上的筛余百分数,%;批准:审核:测定人:水泥试验筛修正系数测定表样品名称:水泥细度标准粉样品编号GSB08-2184-2008测定方法80um 方孔筛仪器编号负压筛试验室温度(℃)20试验室湿度(%)51设备使用情况正常试验编号SNCD2013-01测定依据CB1345-2005测定日期2013 年 9 月 3 日12510.981 3.92实测样实测筛余质量实测筛余品质量(g)百分数 (%)22520.982 3.92标准筛余量计算公式备注4.06平均筛余百分数 3.92C=F S/Ft修正系数 1.04式中: C—试验筛修正系数 ;F S—标准样品的筛余标准值,单位为质量百分数,(%;)F t—标准样品在试验筛上的筛余值,单位为质量百分数,(%);批准:审核:测定人:水泥试验筛修正系数测定表样品名称:水泥细度标准粉样品编号GSB08-2184-2008测定方法80um 方孔筛仪器编号负压筛试验室温度(℃)20试验室湿度(%)50设备使用情况正常试验编号SNCD2013-02测定依据CB1345-2005测定日期2013 年 6 月 01 日12510.351 1.4实测样实测筛余质量实测筛余品质量(g)百分数 (%)22520.352 1.4标准筛余量 1.47平均筛余百分数 1.4计算公式C=F S/Ft修正系数 1.05式中: C—试验筛修正系数 ;F S—标准样品的筛余标准值,单位为质量百分数,(%;)备注F t—标准样品在试验筛上的筛余值,单位为质量百分数,(%);批准:审核:测定人:水泥物理性试验测试题一,填空题:1. 胶凝材料化学组成分、无机胶凝材料、有机胶凝材料、、。

水泥实验实验报告

水泥实验实验报告

一、实验目的1. 了解水泥的基本性质和性能;2. 掌握水泥的制备方法及实验步骤;3. 熟悉水泥实验仪器的使用方法;4. 分析水泥的物理性能和化学性能。

二、实验原理水泥是一种重要的建筑材料,主要由石灰石、黏土等原料经高温煅烧制得。

水泥的制备过程主要包括原料的粉碎、配料、煅烧、磨细等步骤。

水泥的主要化学成分有硅酸三钙、硅酸二钙、铝酸三钙等,这些成分决定了水泥的物理性能和化学性能。

三、实验仪器与试剂1. 仪器:水泥试验筛、水泥试验筛架、水泥试验筛底座、水泥试验筛盖、水泥试验筛筛网、天平、量筒、搅拌器、烧杯、水浴锅、滴定管、滴定管架、锥形瓶、移液管、试剂瓶等。

2. 试剂:水泥试样、蒸馏水、氢氧化钠、盐酸、氢氧化钠溶液、盐酸溶液、标准溶液等。

四、实验步骤1. 水泥细度测定(1)将水泥试样过0.9mm方孔筛,筛余量为筛余质量;(2)称取筛余质量,精确到0.01g;(3)将筛余质量放入烧杯中,加入适量蒸馏水,搅拌至完全溶解;(4)将溶液过滤,取滤液测定其细度。

2. 水泥凝结时间测定(1)将水泥试样与标准稠度用水量按比例混合,搅拌均匀;(2)将混合好的水泥试样倒入凝结时间测定仪的模具中,静置30min;(3)将模具翻转,水泥试样表面应无流动现象,否则需重新加水调整;(4)记录水泥试样开始凝结的时间,即为初凝时间;(5)继续观察水泥试样,记录水泥试样完全凝固的时间,即为终凝时间。

3. 水泥强度测定(1)将水泥试样与标准稠度用水量按比例混合,搅拌均匀;(2)将混合好的水泥试样倒入水泥强度测定仪的模具中,静置24h;(3)取出水泥试样,进行养护;(4)在水泥试样养护到规定龄期后,进行强度测定;(5)记录水泥试样的抗压强度和抗折强度。

4. 水泥化学成分测定(1)将水泥试样与盐酸溶液按比例混合,搅拌均匀;(2)将混合好的水泥试样放入锥形瓶中,加热至沸点;(3)记录反应过程中产生气体的体积;(4)根据气体的体积计算水泥中的化学成分含量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烧杯(m1)g
烧杯(m1)g
/
烧杯+样(m2)g
烧杯+样(m2)g
样(m)g
样(m)g
坩(m3)g
坩(m3)g
灼烧后坩+样(m4)g
灼烧后坩+样(m4)g
灼烧后样(m5)g
灼烧后样(m5)g
Xso3(%)=[m5×0.343/ m] ×100
Xso3(%)=[m5×0.343/ m] ×100
C3A含量
试料的质量(g)
氧化钙的质量百分数(%)
/
烧失量
坩(m1)g
坩(m1)g
/
坩+样(m2)g
坩+样(m2)g
样(m))g
灼烧后坩+样(m3)g
灼烧后样(m4)g
灼烧后样(m4)g
烧失量(%)=[(m—m4)/m] ×100
烧失量(%)=[(m—m4)/m] ×100
SO3含量
1
2
3
平均值
/
密度
序号
加煤油后刻度V1
水泥质量m(g)
加水泥后刻度V2
水泥密度(ρ)
平均值
/
1
2
备注:
/
主检:记录:审核:
试料质量(g)
/
1.773
氯离子的质量百分数(%)
碱含量
100mL测定溶液中氧化钾的含量(mg)
100mL测定溶液中氧化钠的含量(mg)
试料质量(g)
/
氧化钾的质量百分数(%)
氧化钠的质量百分数(%)
总碱量(%)
游离CaO含量
每毫升苯甲酸标准溶液相当于氧化钙的毫克数(mg/mL)
滴定时消耗苯甲酸标准滴定溶液的体积(mL)
水泥化学分析试验原始记录
委托编号
/
报告编号
委托日期
年月日
检测日期
年月日
品种标号
检验依据
环境条件
温度℃湿度%
运行状态
□正常□异常
主检设备
□101-2电热鼓风干燥箱(C019)、□FA2004分析电子天平(C150)、□4-10电阻炉(C037)、□Ca-5水泥游离氧化钙测定仪(C027)、□FP640火焰光度计(C091)、□50mL酸式滴定管(C060)、□李氏比重瓶(C217)、□JEA1002电子天平(C289)等
测试项目
试验数据
备注
MgO
含量
测定溶液中氧化镁的滴定度(mg/mL)
测定溶液的体积(mL)
试料的质量(g)
全部试样溶液与所分取试样溶液的体积比
氧化镁的质量百分数(%)
/
Cl—
含量
每毫升硝酸银准溶液相当于氯的毫克数(mg/mL)
空白实验消耗硫氰酸铵标准溶液的体积(mL)
测定时消耗硫氰酸铵标准溶液的体积(mL)
相关文档
最新文档