【2013备考】各地名校试题解析分类汇编(一)理科数学:2函数2
2013年高考真题解析分类汇编(理科数学)2:函数
2013高考试题解析分类汇编(理数)2:函数一、选择题1 .(2013年高考江西卷(理))函数ln(1-x)的定义域为A.(0,1)B.[0,1)C.(0,1]D.[0,1]B考查函数的定义域。
要使函数有意义,则010x x ≥⎧⎨->⎩,即01x x ≥⎧⎨<⎩,解得01x ≤<,选B.2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A.(),a b 和(),b c 内B.(),a -∞和(),a b 内C.(),b c 和(),c +∞内D.(),a -∞和(),c +∞内A【命题立意】本题考查二次函数的图像与性质以及函数零点的判断。
因为()()()f a a b a c =--,()()()f b b c b a =--,()()()f c c a c b =--,又a b c <<,所以()0,()0,()0f a f b f c ><>,即函数()f x 的两个零点分别在(),a b 和(),b c 内,选A.3 .(2013年高考四川卷(理))设函数()f x =a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A)[1,]e (B)1[,-11]e -, (C)[1,1]e + (D)1[-1,1]e e -+ A曲线y=sinx 上存在点(x 0,y 0)使得f (f (y 0))=y 0,则y 0∈[﹣1,1]考查四个选项,B ,D 两个选项中参数值都可取0,C ,D 两个选项中参数都可取e+1,A ,B ,C ,D 四个选项参数都可取1,由此可先验证参数为0与e+1时是否符合题意,即可得出正确选项 当a=0时,,此是一个增函数,且函数值恒非负,故只研究y 0∈[0,1]时f (f(y 0))=y 0是否成立 由于是一个增函数,可得出f (y 0)≥f (0)=1,而f (1)=>1,故a=0不合题意,由此知B ,D 两个选项不正确 当a=e+1时,此函数是一个增函数,=0,而f (0)没有意义,故a=e+1不合题意,故C ,D 两个选项不正确 综上讨论知,可确定B ,C ,D 三个选项不正确,故A 选项正确4 .(2013年高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A.(,0]-∞B.(,1]-∞C.[2,1]-D.[2,0]- D由题意可作出函数y=|f (x )|的图象,和函数y=ax 的图象,由图象可知:函数y=ax 的图象为过原点的直线,当直线介于l 和x 轴之间符合题意,直线l为曲线的切线,且此时函数y=|f (x )|在第二象限的部分解析式为y=x 2﹣2x , 求其导数可得y ′=2x ﹣2,因为x ≤0,故y ′≤﹣2,故直线l 的斜率为﹣2, 故只需直线y=ax 的斜率a 介于﹣2与0之间即可,即a ∈[﹣2,0]。
【2013备考】各地名校试题解析分类汇编(一)理科数学:2函数3
各地解析分类汇编:函数31【山东省烟台市2013届高三上学期期中考试理】 已知函数()M f x 的定义域为实数集R ,满足()1,0,M x M f x x M∈⎧=⎨∉⎩(M 是R 的非空真子集),在R 上有两个非空真子集,A B ,且A B =∅ ,则()()()()11A B A B f x F x f x f x +=++ 的值域为A .20,3⎛⎤ ⎥⎝⎦ B .{}1 C .12,,123⎧⎫⎨⎬⎩⎭ D .1,13⎡⎤⎢⎥⎣⎦【答案】B【解析】若A x ∈,则1)(,0)(,1)(===x f x f x f B A B A ,1)(=x F ;若B x ∈,则,0)(=x f A 1)(,1)(,1)(===x F x f x f B A B ;若B x A x ∉∉,,则0)(=x f A ,0)(=x f B ,.1)(,0)(==x F x f B A 故选B.2【山东省实验中学2013届高三第二次诊断性测试 理】函数⎪⎪⎩⎪⎪⎨⎧≤≤+-≤<+=210,12161121,1)(3x x x x x x f 和函数)0(16sin )(>+-=a a x a x g π,若存在]1,0[,21∈x x 使得)()(21x g x f =成立,则实数a的取值范围是A.]2321,(B.)2,1[C.]221,(D.]231,(【答案】C【解析】当112x <≤时,3(),1xf x x =+22(23)'()=0(1)x x f x x +>+函数递增,此时1()()(1)2f f x f <≤,即11()122f x <≤,当102x ≤≤时,函数11()612f x x =-+,单调递减,此时10()12f x ≤≤,综上函数10()2f x ≤≤。
当01x ≤≤时,066x ππ≤≤,10sin62x π≤≤,11()12a g x a a -+≤≤-+,即11()12a g x a -+≤≤-+,若存在]1,0[,21∈x x 使得)()(21x g x f =成立,让()g x 的最大值大于等于()f x 的最小值,让()g x 的最小值小于()f x 的最大值,即1102112a a ⎧-+≥⎪⎪⎨⎪-+<⎪⎩,解得212a a ≤⎧⎪⎨>⎪⎩,即122a <≤,选D.3【北京市东城区普通校2013届高三12月联考数学(理)】已知函数)(x f 在),0[+∞上是增函数,()()g x f x =-,若)1()(lg g x g >,则x 的取值范围是A .),10(+∞B .)10,101(C .)10,0(D .),10()101,0(+∞【答案】B【解析】因为()()g x f x =-,所以函数()()g x f x =-为偶函数,因为函数)(x f 在),0[+∞上是增函数,所以当0x ≥时,()()()g x f x f x =-=-,此时为减函数,所以当0x ≤,函数()()g x f x =-单调递增。
【2013备考】各地名校试题解析分类汇编(一)理科数学:10排列、统计与概率
各地解析分类汇编:排列、统计与概率1.【云南省玉溪一中2013届高三上学期期中考试理】某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有( ) A .474种 B .77种 C .462种 D .79种【答案】A【解析】首先求得不受限制时,从9节课中任意安排3节,有39504A =种排法,其中上午连排3节的有33318A =种,下午连排3节的有33212A =种,则这位教师一天的课表的所有排法有504-18-12=474种,故选A .2.【云南省玉溪一中2013届高三上学期期中考试理】341()x x-展开式中常数项为 【答案】4-【解析】展开式的通项为341241441()()(1)k kk k k k k T C x C x x--+=-=-,由1240k -=,得3k =,所以常数项为3344(1)4T C =-=-。
3.【云南省昆明一中2013届高三新课程第一次摸底测试理】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为 。
【答案】30【解析】四名学生两名分到一组有24C 种,3个元素进行全排列有33A 种,甲乙两人分到一个班有33A 种,所以有23343336630C A A -=-=.4.【云南省玉溪一中2013届高三第四次月考理】某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加竞赛,用ξ表示这5人中“三好学生”的人数,则下列概率中等于514757512C +C C C 的是( )A.()1P ξ=B.()1P ξ≤C.()1P ξ≥D.()2P ξ≤【答案】B【解析】()1P ξ==1457512C C C ,57512C (0)C P ξ==,所以514757551212C C C (0)(1)C C P P ξξ=+==+,选B. 5.【云南省玉溪一中2013届高三第四次月考理】在65)1()1(x x -+-的展开式中,含3x 的项的系数是 【答案】-30【解析】5(1)x -的展开式的通项为5(1)k k k C x -,6(1)x -的展开式的通项为6(1)k k kC x -,所以3x 项为333333356(1)(1)30C x C x x -+-=-,所以3x 的系数为30-.6.【云南省昆明一中2013届高三新课程第一次摸底测试理】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是 ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤; ④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于1。
2013年高考真题理科数学解析分类汇编2函数与方程
2013年高考真题理科数学解析分类汇编2 函数与方程一选择题1.四川:14.已知()f x 是定义域为R 的偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是____________. 答案:解析:设x <0 所以−x >0,因为()f x 是定义域为R 的偶函数又当x ≥0时,2()4f x x x =-所以()f x ==(2)5f x +<⟺或解得2.陕西10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有(A) [-x ] = -[x ] (B) [2x ] = 2[x ] (C) [x +y ]≤[x ]+[y ] (D) [x -y ]≤[x ]-[y ]【答案】D 【解析】代值法。
对A, 设x = - 1.8, 则[-x] = 1, -[x] = 2, 所以A 选项为假。
对B, 设x = - 1.4, [2x] = [-2.8] = - 3, 2[x] = - 4, 所以B 选项为假。
对C, 设x = y = 1.8, 对A, [x+y] = [3.6] = 3, [x] + [y] = 2, 所以C 选项为假。
故D 选项为真。
所以选D3.四川7、函数331x x y =-的图象大致是( )答案:D解析:定义域x ≠0 排除A, x <0 331x x y =->0,排除B ,x →∞时331x x y =-→0 排除D 所以C 正确4.江西1函数x 的定义域为A .(0,1) B.[0,1) C.(0,1] D.[0,1]5.[湖南]5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0【答案】 B【解析】 二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为x=2,g(2) = 1; f(2)=2ln2=ln4>1.所以g(2) < f(2), 从图像上可知交点个数为2选B6.[湖南]16.设函数(),0,0.xxxf x a b c c a c b =+->>>>其中(1)记集合{}(,,),,M a b c a b c a =不能构成一个三角形的三条边长,且=b ,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为__]10(,__。
2013年全国高考理科数学试题分类汇编2:函数Word版含答案
2013 年全国高考理科数学试题分类汇编2:函数一、选择题1 .(2 013年高考江西卷(理))函数 y= x ln(1-x) 的定义域为A.(0,1)B.[0,1) C.(0,1] D.[0,1]【答案】 D 2 .( 2 013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若a bc , 则函数f x x a x b x b x c x c x a 的两个零点分别位于区间( )A.a,b 和 b, c 内 B., a 和 a,b 内C. b,c 和 c, 内D. ,a 和 c, 内【答案】 A13 .( 2 013年上海市春季高考数学试卷(含答案 ))函数 f( x) x2的大致图像是 ( )y y y yA x 0Bx 0 x 0xC D【答案】 A 4 .( 2013年高考四川卷(理))设函数 f ( x)e x x a ( aR , e为自然对数的底数 ).若曲线y sin x 上存在( x , y) 使得 f ( f( y ))y,则a的取值范围是 ( ) 000 0(A ) [1,e](B)1 ,(C)[1, e1](D)1[ e,-11] [e -1, e 1]【答案】 A5 .( 2013年高考新课标 1(理))已知函数 f ( x) x22x, x 0, 若|f (x) | ≥ ax ,则 aln( x1),x 0的取值范围是A. ,0]B. ( ,1]C.D. [ 2,0]( [ 2,1] 【答案】 D6 .( 2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))函数f x = log 2 1 1 x 0 的反函数f1x=x第 1 页共 7 页(A) 1 x 0 (B) 1 x 0 (C) 2x 1 x R (D) 2x 1 x 0 2x 1 2x 1【答案】 A7 .( 2 013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))已知 x, y为正实数 , 则A. 2lgxlgy 2lg x2lg y B.2lg( xy)2lgx 2lg yC. 2lgxlgy 2lg x2lg y D.2lg( xy)2lgx 2lg y【答案】 D8 .年普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数f( x)为奇( 2013函数 , 且当 x 0时 , f( x) x21 , 则 f ( 1)x(A)2(B) 0 (C) 1 (D) 2【答案】 A9 .(2 013 年高考陕西卷(理))在如图所示的锐角三角形空地中,欲建一个面积不小于3002m的内接矩形花园 ( 阴影部分 ), 则其边长x( 单位) 的取值范围是mx40m40m(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30]【答案】 C10 .( 2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案))y 3 a a 6 6 a 3 的最大值为( )A.9B.9C. 33 2 2 D.2 【答案】 B 11.( 2 013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数f x 的定义域为1,0, 则函数 f 2 x1 的定义域为(A) 1,1(B) 1, 1(C) -1,0 (D) 1 ,12 2第 2 页共 7 页【答案】 B 12.( 2 013年高考湖南卷(理))函数 f x2ln x 的图像与函数g x x24x 5 的图像的交点个数为A.3B.2C.1D.0 【答案】 B 13.( 2 013x2) 年高考四川卷(理))函数 y 的图象大致是(3x 1【答案】 C14.( 2 013 年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知函数f x x2 2 a 2 x a2 ,g x x2 2 a 2 x a28. 设H1x max f x , g x , H 2x min f x , g x , max p, q表示 p,q 中的较大值 , min p,q 表示 p, q 中的较小值 , 记 H1x 得最小值为 A,H 2x 得最小值为 B ,则A B(A) a22a 16 (B) a22a 16 (C) 16 (D) 16【答案】 B15.( 20 13年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R 的四个函数 y x3 ,y 2x , y x21, y 2sin x 中 , 奇函数的个数是 ( )A . 4 B. 3 C. 2 D. 1【答案】 C16.( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若函数f (x)=x3 +bx+c 有极值点 x1 , x2 , 且 f (x1)=x1 , 则关于 x 的方程 3(f (x1)) 2 +2f(x)+b=0 的不同实根个数是(A)3 (B)4 (C) 5 (D)6【答案】 A17 .( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案))函数第 3 页共 7 页f ( x) 2x | log 0.5x | 1的零点个数为(A) 1 (B) 2 (C)3 (D) 4【答案】 B18.( 2013年高考北京卷(理) ) 函数 f ( x) 的图象向右平移 1 个单位长度 , 所得图象与y=ex关于 y 轴对称 , 则 f( x)=A. e x 1B. e x 1C. e x 1D. e x 1【答案】 D19.( 2013 年上海市春季高考数学试卷(含答案 ))设 f -1( x) 为函数 f ( x) x 的反函数 ,下列结论正确的是( )(A)f 1(2) 2 (B) f 1(2) 4 (C) f 1(4) 2 (D) f 1(4)4【答案】 B20.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) )若函 数 f x =x 2 ax 1 在 1 ,+ 是增函数 , 则 a 的取值范围是x 2(A) [-1,0] (B) [ 1, ) (C) [0,3] (D) [3, ) 【答案】 D 二、填空题21 .( 2013年 上 海 市 春 季 高 考 数 学 试 卷 ( 含 答案 ) ) 函 数 y log 2 x( 2)的 定 义 域是_______________【答案】 ( 2, )22.( 2013 年高考上海卷(理) )方程3x 31 3x1的实数解为 ________1 3 【答案】 x log3 4 .23(.2013 年高考上海卷(理))对区间 I 上有定义的函数g( x) , 记 g (I ){ y | y g( x), x I } ,已知定义域为[0,3]的函数y f ( x) 有反函数y f 1( x) , 且f 1 ([0,1)) [1,2), f 1 ((2,4]) [0,1), 若方程 f( x) x 0有解x0 ,则x0_____第 4 页共 7 页【答案】 x0 2 .24.( 2 013年高考新课标 1(理))若函数 f ( x) = (1 x2 )( x2ax b) 的图像关于直线x2对称 , 则 f ( x) 的最大值是______.【答案】 16.25.( 2 013年上海市春季高考数学试卷(含答案 ))方程 2x8 的解是_________________【答案】 3 26.( 2 013年高考湖南卷(理))设函数f ( x) a x b x c x , 其中 c a 0,c b 0.(1)记集合 M (a,b, c) a,b,c不能构成一个三角形的三条边长,且a=b , 则( a,b, c) M 所对应的 f ( x) 的零点的取值集合为____.(2)若 a,b, c是 ABC的三条边长,则下列结论正确的是 ______.( 写出所有正确结论的序号 )①x ,1 , f x 0;②x R,使 xa x ,b x , c x不能构成一个三角形的三条边长;③若 ABC为钝角三角形,则x 1,2 , 使 f x 0.【答案】 (1) (0,1](2) ①②③27.( 2 013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯 WORD版含附加题))已知 f ( x) 是定义在 R 上的奇函数 . 当x 0 时 , f ( x) x24x , 则不等式 f (x)x的解集用区间表示为 ___________. 【答案】5,0 5,28.( 2 013年高考上海卷(理))设 a为实常数 , yf ( x) 是定义在 R 上的奇函数 , 当 x 0时, f ( x)a27 , 若 f ( x) a 1对一切x0 成立 , 则 a 的取值范围为________9xx【答案】 a 8 . 7三、解答题29.( 2 013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数第 5 页共 7 页f ( x) ax (1 a2 ) x2 , 其中 a 0 , 区间 I | x f (x)>0( Ⅰ) 求的长度 ( 注 : 区间 ( , ) 的长度定义为 ); ( Ⅱ) 给定常数 k (0,1) , 当时 , 求 l 长度的最小值 .【答案】解 : ( Ⅰ) f( x) x[ a (1 a 2 )x]( Ⅱ) 由( Ⅰ) 知 ,a 1 l2 11 aaa已知 k(0,1),0 1 - k a 1 k.令11 kg(a) a 1在 a 1 k时取最大值a0 x (0,a) . 所以区间长度为aa2.1 1 a2 1 - kk 20 11 - k恒成立 .1 k这时 l1 k 1 k(1 k )2 1 (1 k ) 211k所以当a1 k时, l取最小值1 (1 k )2 .30.( 2013 年上海市春季高考数学试卷 (含答案 ))本题共有 3 个小题 ,第 1 小题满分 5 分, 第 2 小题满分 7 分 , 第 3 小题满分 6 分 .已知真命题 : “函数y f ( x) 的图像关于点P(a、b) 成中心对称图形”的充要条件为“函数y f ( x a) b 是奇函数” .(1 ) 将函数g( x) x33x2的图像向左平移1 个单位 , 再向上平移2 个单位 , 求此时图像对应的函数解析式 , 并利用题设中的真命题求函数g (x) 图像对称中心的坐标 ;(2 ) 求函数h( x) log 22x图像对称中心的坐标 ;4 x(3)已知命题 : “函数y f ( x) 的图像关于某直线成轴对称图像”的充要条件为“存在实数 a 和 b, 使得函数 y f (x a) b 是偶函数” . 判断该命题的真假. 如果是真命题 ,请给予证明 ; 如果是假命题 , 请说明理由 , 并类比题设的真命题对它进行修改, 使之成为真命题( 不必证明 ).【答案】(1) 平移后图像对应的函数解析式为y (x 1)33(x 1)2 2 , 整理得 y x3 3x ,第 6 页共 7 页由于函数yx 3 3x 是奇函数 , 由题设真命题知 , 函数 g( x) 图像对称中心的坐标是(1, 2) . (2) 设 h( x) log 2 2x 的对称中心为 P(a ,b) , 由题设知函数 h(x a) b 是奇函数 .4 x设 f (x) h( x a) b, 2( x a) 2x 2a 则 f ( x) log 2 ( x a) b , 即 f (x) log 2 a b . 4 4 x 由不等式 2x 2a 0 的解集关于原点对称, 得 a 2 . 4 a x此时 f (x) lo g 2( x 2) , , . 2 x b x ( 2 2) 2 任取 x ( 2,2) , 由 f ( x) f (x) 0 , 得 b 1,所以函数 h(x)log 2 2x 图像对称中心的坐标是 (2,1) . 4 x (3) 此命题是假命题 .举反例说明 : 函数 f ( x) x 的图像关于直线 y x 成轴对称图像 , 但是对任意实数 a 和 b ,函数 y f (x a) b , 即 y x a b 总不是偶函数 .修改后的真命题 :“函数 y f ( x) 的图像关于直线 x a 成轴对称图像”的充要条件是“函数 y f ( x a)是偶函数” .第 7 页共 7 页。
2013年高考真题理科数学分类汇编(解析版):函数及答案
2013年高考真题理科数学分类汇编(解析版)函 数1、(2013年高考(安徽卷))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知,过原点的直线与曲线相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B 2、(2013年高考(北京卷))函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --3、(2013年高考(广东卷))定义域为R 的四个函数3y x =,2xy =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4、(2013年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<,则112x -<<-。
故选B5、(2013年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-, 因此,故选A6、(2013年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7、(2013年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .0【答案】B【解析】画出两个函数的图象,可得交点数。
无锡新领航教育特供:【2013备考】高考数学各地名校试题解析分类汇编(一)2 函数1 理
小升初 中高考 高二会考 艺考生文化课 一对一辅导QQ:157171090- 1 - 无锡新领航教育特供:各地解析分类汇编:函数11【山东省烟台市2013届高三上学期期中考试理】已知()()()2,l o g 0,1x a f x a g x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是【答案】B【解析】由()()440f g ⋅-<知04log ,04log 2<∴<⋅a a a )(.10x f a ∴<<∴为减函数,因此可排除A 、C ,而)(x g 在0>x 时也为减函数,故选B.2【山东省烟台市2013届高三上学期期中考试理】设5.205.2)21(,5.2,2===c b a ,则c b a ,,的大小关系是 A.b c a >> B. b a c >> C. c a b >> D. c b a >>【答案】D【解析】,10,1,1<<=>c b a 所以c b a >>.故选D.3.【山东省烟台市2013届高三上学期期中考试理】已知函数()f x 是R 上的偶函数,若对于0≥x ,都有)()2(x f x f =+,且当)2,0[∈x 时,)1(l o g)(2+=x x f ,则)2012()2011(f f +-的值为 A .2- B .1- C .1 D .2【答案】C【解析】由函数()f x 是R 上的偶函数及0x ≥时(2()f x f x +=)得 .11log 2log )0()1()0()2011()2012()2011(22=+=+=+=+-f f f f f f 故选C.4.【山东省潍坊市四县一区2013届高三11月联考(理)】设3.0log ,9.0,5.054121===c b a ,。
2013年全国各地高考数学试题汇编理科数学(新课标II卷)解析版(1)
2012年全国各地高考数学试题汇编汇总(新课标Ⅱ卷)数学(理科)注意事项:1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x-1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=( )(A){0,1,2} (B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z=( )(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3= a2 +10a1,a5 = 9,则a1=( )(A)13(B)13-(C)19(D)19-(4)已知m,n 为异面直线,m ⊥平面α,n ⊥平面β。
直线l 满足l ⊥m ,l ⊥n ,,l l αβ⊄⊄,则()(A)α∥β且l ∥α(B)α⊥β且l ⊥β(C)α与β相交,且交线垂直于l(D)α与β相交,且交线平行于l(5)已知(1+ɑx )(1+x )5的展开式中x 2的系数为5,则ɑ=( ) (A)-4(B)-3(C)-2(D)-1(6)执行右面的程序框图,如果输入的N =10,那么输出的S =(A)11112310++++ (B)11112!3!10!++++(C)11112311++++ (D)11112!3!11!++++(7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为(A) (B) (C) (D)(A)c>b>a (B)b>c>a (C)a>c>b (D)a>b>c(9)已知a >0,x,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z =2x+y 的最小值为1,则a =(A) 14 (B) 12(C)1(D)2(10)已知函数f(x)=x 3+ax 2+bx+c ,下列结论中错误的是 (A)∃x α∈R,f(x α)=0(B)函数y =f(x)的图像是中心对称图形(C)若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D)若x 0是f(x)的极值点,则()0'0f x =(11)设抛物线y 2=3px(p>0)的焦点为F,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为(A)y 2=4x 或y 2=8x (B)y 2=2x 或y 2=8x(C)y 2=4x 或y 2=16x (D)y 2=2x 或y 2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y =ax+b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是(A)(0,1)(B)112⎛⎫ ⎪ ⎪⎝⎭( C) 113⎛⎤ ⎥ ⎦⎝(D) 11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
无锡新领航教育特供:【2013备考】高考数学各地名校试题解析分类汇编(一)12 选考 文
小升初 中高考 高二会考 艺考生文化课 一对一辅导 /wxxlhjy QQ:157171090- 1 - 无锡新领航教育特供:各地解析分类汇编:选考部分1.【山东省实验中学2013届高三第一次诊断性测试 文】不等式|52|9x -<的解集是A .(一∞,-2)U(7,+co)B .[-2,7]C . (2,7)-D . [-7,2]【答案】C【解析】由|52|9x -<得9259x -<-<,即4214x -<<,所以27x -<<,选C.2.【天津市天津一中2013届高三上学期一月考 文】如右图,AB 是半圆的直径,点C 在半圆上,CD AB ⊥,垂足为D ,且5AD DB =,设COD θ∠=,则tan θ= .【答案】2【解析】设圆的半径为R ,因为5AD DB =,所以2AD DB R +=,即62DB R =,所以13DB R =,23OD R =,53AD R =,由相交弦定理可得2259CD AD BD R == ,所以3C D R =,所以3tan 223R CD OD R θ===. 3.【山东省实验中学2013届高三第二次诊断性测试数学文】已知函数a a x x f +-=|2|)(.若不等式6)(≤x f 的解集为{}32|≤≤-x x ,则实数a 的值为 .【答案】1a =【解析】因为不等式6)(≤x f 的解集为{}32|≤≤-x x ,即2,3-是方程()6f x =的两个根,即66,46a a a a -+=++=,所以66,46a a a a -=-+=-,即64a a -=+,解得1a =。
4.【山东省聊城市东阿一中2013届高三上学期期初考试 】如右图,AB 是⊙O 的直径,P 是。
【2013备考】各地名校试题解析分类汇编(一)理科数学:5三角1
各地解析分类汇编:三角函数11.【山东省潍坊市四县一区2013届高三11月联考(理)】将函数x y 2sin =的图象向右平移4π个单位,再向上平移1个单位,所得函数图象对应的解析式为 A.1)42sin(+-=πx y B.x y 2cos 2=C.x y 2sin 2=D.x y 2cos -= 【答案】C【解析】函数x y 2sin =的图象向右平移4π个单位得到sin 2()sin(2)cos 242y x x xππ=-=-=-,再向上平移1个单位,所得函数图象对应的解析式为22cos21(12sin )12sin y x x x =-+=--+=,选C. 2.【山东省潍坊市四县一区2013届高三11月联考(理)】在ABC ∆中,角A ,B ,C 所对边分别为a,b,c ,且4524==B c ,,面积2=S ,则b 等于A.2113B.5C.41D.25 【答案】B【解析】因为4524==B c ,,又面积11sin 222S ac B =⨯=⨯=,解得1a =,由余弦定理知2222cos b a c ac B =+-,所以21322252b =+-⨯=,所以5b =,选B. 3.【山东省烟台市2013届高三上学期期中考试理】函数)2||,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图象如图示,则将()y f x =的图象向右平移6π个单位后,得到的图象解析式为A .x y 2sin = B. x y 2cos = C. )322sin(π+=x y D. )62sin(π-=x y 【答案】D【解析】由图象知A=1,T=,262,2,234)61211(πφπωωππππ=+⨯=∴==⨯- 6πφ=∴),62sin()(π+=∴x x f 将)(x f 的图象平移6π个单位后的解析式为 )..62sin(]6)6(2sin[πππ-=+-=x x y 故选D.4.【山东省烟台市2013届高三上学期期中考试理】已知25242sin -=α,⎪⎭⎫ ⎝⎛-∈04,πα,则ααcos sin +等于 A .51-B .51C .57- D .57【答案】B 【解析】由⎪⎭⎫⎝⎛-∈04,πα知|,cos ||sin |0cos ,0sin αααα<><,ααcos sin +∴ .512sin 1=+=x 故选B.5.【山东省泰安市2013届高三上学期期中考试数学理】sin 585︒的值为B.D. 【答案】B【解析】sin 585sin 225sin(18045)sin 452==+=-=-,选B. 6.【山东省实验中学2013届高三第三次诊断性测试理】若3)4tan(=-απ,则αcot 等于( )A.2B.21- C.21D.-2【答案】D【解析】由3)4tan(=-απ得,t a n t a n ()13144tan tan[()]441321tan()4ππαππααπα---=--===-++-,所以1c o t 2t a n αα==-选D.7.【山东省实验中学2013届高三第一次诊断性测试理】在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且222222c a b ab =++,则△ABC 是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】A【解析】由222222c a b ab =++得,22212a b c ab +-=-,所以222112cos 0224aba b c C ab ab -+-===-<,所以090180C << ,即三角形为钝角三角形,选A.8.【山东省泰安市2013届高三上学期期中考试数学理】如图,设A 、B 两点在河的两岸,一测量者在A 的同侧河岸边选定一点C ,测出AC 的距离为50m ,045,105ACB CAB ∠=∠= ,则A 、B 两点的距离为A.B.C.D.2【答案】B【解析】因为045,105ACB CAB ∠=∠= ,所以30ABC ∠=,所以根据正弦定理可知,sin sin AC AB ABC ACB =,即50sin 30sin 45AB=,解得AB =,选B..9【山东省泰安市2013届高三上学期期中考试数学理】已知()sin cos 0,αααπ-=∈,则tan α等于A.1-B. D.1【答案】A【解析】由sin cos αα-=得,所以cos 122αα-=,即s i n()14πα-=,所以2,42x k k Z πππ-=+∈,所以32,4x k k Z ππ=+∈,所以33tan tan(2)tan 144k ππαπ=+==-,选A. 10.【山东省泰安市2013届高三上学期期中考试数学理】函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期是π,若其图像向右平移3π个单位后得到的函数为奇函数,则函数()f x 的图像 A.关于点,012π⎛⎫⎪⎝⎭对称B.关于直线12x π=对称C.关于点5,012π⎛⎫⎪⎝⎭对称D.关于直线512x π=对称 【答案】D【解析】函数的最小周期是π,所以2T ππω==,所以2ω=,所以函数()sin(2)f x x ϕ=+,向右平移3π得到函数2()sin[2()]sin(2)33f x x x ππϕϕ=-+=+-,此时函数为奇函数,所以有2,3k k Z πϕπ-=∈,所以23k πϕπ=+,因为2πϕ<,所以当1k =-时,233k ππϕπ=+=-,所以()sin(2)3f x x π=-.由2232x k πππ-=+,得对称轴为512x k ππ=+,当0k =时,对称轴为512x π=,选D.11.【山东省实验中学2013届高三第一次诊断性测试理】若,(,),tan cot ,2παβπαβ∈<且那么必有A .2παβ+<B .32αβπ+<C .αβ>D .αβ<【答案】B【解析】因为3c o t =t a n =t a n =t a n 222πππββπββ-+--()()(),因为2πβπ<<,所以2πβπ->->-,322ππβπ<-<,而函数tan y x =在(,)2x ππ∈上单调递增,所以由tan cot αβ<,即3tan tan 2παβ<-()可得32παβ<-,即32παβ+<,选B.12.【山东省师大附中2013届高三上学期期中考试数学理】函数()212sin ,46f x x f ππ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭则A. B.12-C.12【答案】A【解析】()212sin ()cos 2()cos(2)sin 2442f x x x x x πππ=-+=+=+=-,所以()sin 63f ππ=-=选A.13.【山东省师大附中2013届高三上学期期中考试数学理】函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是 A.最小正周期为π的奇函数 B.最小正周期为π的偶函数 C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数 【答案】A【解析】22cos ()1cos 2()cos(2)sin 2442y x x x x πππ=--=-=-=,周期为π的奇函数,选A. 14【山东省师大附中2013届高三上学期期中考试数学理】设()sin 26f x x π⎛⎫=+ ⎪⎝⎭,则()f x 的图像的一条对称轴的方程是 A.9x π=B.6x π=C.3x π=D.2x π=【答案】B 【解析】由262x k πππ+=+得,,62k x k Z ππ=+∈,所以当0k =时,对称轴为6x π=,选B. 15【山东省师大附中2013届高三上学期期中考试数学理】把函数()sin y x x R =∈的图象上所有的点向左平移6π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为 A.sin 2,3y x x R π⎛⎫=-∈ ⎪⎝⎭B.sin 2,3y x x R π⎛⎫=+∈ ⎪⎝⎭C.1sin ,26y x x R π⎛⎫=+∈⎪⎝⎭D.1sin ,26y x x R π⎛⎫=-∈⎪⎝⎭【答案】C【解析】函数()sin y x x R =∈的图象上所有的点向左平移6π个单位长度,得到sin()6y x π=+,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为1sin()26y x π=+,选C.16【山东省师大附中2013届高三上学期期中考试数学理】为了得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像A.向左平移512π个长度单位B.向右平移512π个长度单位 C.向左平移56π个长度单位D.向右平移56π个长度单位【答案】A【解析】因为sin 2cos(2)cos(2)22y x x x ππ==-=- 55cos[(2)]cos[2()]63123x x ππππ=-+=-+,所以为了得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象向左平移512π个单位,选B. 17【山东省师大附中2013届高三上学期期中考试数学理】已知函数()()sin 2f x x ϕ=+,其中02ϕπ<<,若()6f x f π⎛⎫≤∈ ⎪⎝⎭对x R 恒成立,且()2f f ππ⎛⎫> ⎪⎝⎭,则ϕ等于 A.6πB.56π C.76πD.116π【答案】C【解析】由()6f x f π⎛⎫≤⎪⎝⎭可知6π是函数()f x 的对称轴,所以又2+=+62k ππϕπ⨯,所以=+6k πϕπ,由()2f f ππ⎛⎫>⎪⎝⎭,得()()sin sin 2πϕπϕ+>+,即sin sin ϕϕ->,所以sin 0ϕ<,又02ϕπ<<,,所以2πϕπ<<,所以当1k =时,7=6πϕ,选C. 18【山东省师大附中2013届高三12月第三次模拟检测理】函数()sin ()f x x x x =+∈R ( ) A.是偶函数,且在(,+)-∞∞上是减函数 B.是偶函数,且在(,+)-∞∞上是增函数 C.是奇函数,且在(,+)-∞∞上是减函数 D.是奇函数,且在(,+)-∞∞上是增函数 【答案】D【解析】因为()sin ()f x x x f x -=--=-,所以函数为奇函数。
2013全国各地高考理科数学试题及详解汇编(一)
2013全国各地高考数学试题及详解汇编(理科●一)目录1.新课标卷1 (2)2.新课标Ⅱ卷 (10)3. 大纲卷 (21)4.北京卷 (27)5.山东卷 (37)6.陕西卷 (41)7.湖北卷 (49)8.天津卷 (61)9.重庆卷 (71)2013年高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B. 2、若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( )A 、-4 (B )-45 (C )4 (D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【解析】由题知z =|43|34i i +-=4)(34)(34)i i i +-+=3455i +,故z 的虚部为45,故选D.3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b-=(0,0a b >>C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =±【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C .5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈, ∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3【命题意图】本题主要考查球的截面圆性质、球的体积公式,是容易题. 【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=500π33cm ,故选A. 7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( ) A 、3 B 、4 C 、5 D 、6【命题意图】本题主要考查等差数列的前n 项和公式及通项公式,考查方程思想,是容易题.【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.8、某几何体的三视图如图所示,则该几何体的体积为 A .168π+ B .88π+ C .1616π+ D .816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9、设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( )A 、5B 、6C 、7D 、8【命题意图】本题主要考查二项式系数最大值及组合数公式,考查方程思想,是容易题. 【解析】由题知a =2mm C ,b =121m m C ++,∴132mm C =7121m m C ++,即13(2)!!!m m m ⨯ =7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。
2013年理科全国各省市高考真题——函数(解答题带答案)
2013年全国各省市理科数学—函数1、2013大纲理T22.(本小题满分12分) 已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若0x ≥时,()0f x ≤,求λ的最小值;(II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:2、2013新课标I 理T21.(本小题满分12分)已知函数b ax x x f ++=2)(,)()(d cx e x g x+=若曲线)(x f y =和曲线)(x g y =都过点)2,0(P ,且在点P 处有相同的切线24+=x y . (Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,)()(x kg x f ≤,求k 的取值范围.3、2013新课标Ⅱ理T21.(本小题满分12分) 已知函数)ln()(m x e x f x +-=。
(Ⅰ)设0=x 是)(x f 的极值点,求m 并讨论)(x f 的单调性; (Ⅱ)当2≤m 时,证明)(x f >0。
4、2013辽宁理T21.(本小题满分12分)已知函数()()()[]321,12cos .0,12e xx f x x g x ax x x x -=+=+++∈当时,(I )求证:()11-;1x f x x≤≤+ (II )若()()f x g x ≥恒成立,a 求实数的取值范围.5、2013山东理T21.(本小题满分13分)(1)求()f x 的单调区间,最大值;(2)讨论关于x 的方程|ln |()x f x =根的个数.6、2013山东理T22.(本小题满分13分)(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m ,0),求m 的取值范围;7、2013北京理T18. (本小题共13分)设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方8、2013重庆理T17.设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6。
2013年高考真题理数分类解析2-函数与方程
2013年高考真题理科数学解析分类汇编2 函数与方程一选择题1.四川:14.已知()f x 是定义域为R 的偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是____________. 答案:解析:设x <0 所以−x >0,因为()f x 是定义域为R 的偶函数又当x ≥0时,2()4f x x x =-所以()f x ==(2)5f x +<⟺或解得2.陕西10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有(A) [-x ] = -[x ] (B) [2x ] = 2[x ] (C) [x +y ]≤[x ]+[y ] (D) [x -y ]≤[x ]-[y ]【答案】D 【解析】代值法。
对A, 设x = - 1.8, 则[-x] = 1, -[x] = 2, 所以A 选项为假。
对B, 设x = - 1.4, [2x] = [-2.8] = - 3, 2[x] = - 4, 所以B 选项为假。
对C, 设x = y = 1.8, 对A, [x+y] = [3.6] = 3, [x] + [y] = 2, 所以C 选项为假。
故D 选项为真。
所以选D3.四川7、函数331x x y =-的图象大致是( )答案:D解析:定义域x ≠0 排除A, x <0 331x x y =->0,排除B ,x →∞时331x x y =-→0 排除D 所以C 正确4.江西1函数的定义域为A .(0,1)B.[0,1)C.(0,1]D.[0,1]5.[湖南]5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0【答案】 B【解析】 二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为x=2,g(2) = 1; f(2) =2ln2=ln4>1.所以g(2) < f(2), 从图像上可知交点个数为2选B6.[湖南]16.设函数(),0,0.xxxf x a b c c a c b =+->>>>其中(1)记集合{}(,,),,M a b c a b c a =不能构成一个三角形的三条边长,且=b ,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为__]10(,__。
无锡新领航教育特供:【2013备考】高考数学各地名校试题解析分类汇编(一)2 函数1 文
小升初 中高考 高二会考 艺考生文化课 一对一辅导 /wxxlhjy QQ:157171090
- 1 - 无锡新领航教育特供:
各地解析分类汇编:函数(1)
1.【山东省实验中学2013届高三第三次诊断性测试文】下列函数中,在其定义域中,既是奇函数又是减函数的是( ) A.x x f 1)(= B.x x f -=)( C.x x x f 22)(-=- D.x x f tan )(-= 【答案】C 【解析】x
x f 1)(=在定义域上是奇函数,但不单调。
x x f -=)(为非奇非偶函数。
x x f tan )(-=在定义域上是奇函数,但不单调。
所以选C.
2.【山东省实验中学2013届高三第三次诊断性测试文】函数x x x f ln )1()(+=的零点有( )
A.0个
B.1个
C.2个
D.3个
【答案】B
【解析】由()(1)ln 0f x x x =+=得1ln 1x x =+,做出函数1ln ,1y x y x ==+
的图象,如图
由图象中可知交点个数为1个,即函数的零点个数为1个,选B.
3 【山东省实验中学2013届高三第二次诊断性测试数学文】已知幂函数)(x f 的图像经过(9,
3),则)1()2(f f -= A.3 B.21- C.12- D.1
【答案】C
【解析】设幂函数为()=f x x α,则(9)=9=3f α,
即23=3α,所以12=1=2
αα,,
即1
2()=f x x
(2)1f f -,选C. 4 【山东省实验中学2013届高三第二次诊断性测试数学文】若02log 2log <<b a ,则。
2013全国各地高考理科数学试题及详解汇编(二).pptx
1
1
11
中点.
(Ⅰ)在平面 ABC 内,试作出过点 P 与平面 A1BC 平行的直线l ,说明理由,并证明直线l
平面 ADD1A1;
(Ⅱ)设(Ⅰ)中的直线l 交 AB 于点 M ,交 AC 于点 N ,求二面角 A A1M N 的余弦值
.
C
D
AP
B
C1
D1
A1
B1
20.(本小题满分 13 分)
D. 2
4.(5分)高三某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选 出三人分别担任书记、组织委员和宣传委员,并且要求乙是上届组织委员不能连任原职,则
换届后不同的任职结果有( )
A.16 种
B.18 种
C.20 种
D.22 种
5.(5分)若在区域
为( )
A.
B.
内任取一点 P,则点 P 恰好在单位圆x2+y2=1 内的概率
C.
D.
6.(5分)设直线 l 的方程为:x+ysinθ﹣2013=0(θ∈R),则直线 l 的倾斜角 α 的范围是( )
A. [0,π)
B.
C.
D.
7.(5 分)下列命题正确的有 ①用相关指数R2 来刻画回归效果越小,说明模型的拟合效果越好; ②命题 p:“∃x0∈R,x02﹣x0﹣1>0”的否定¬p:“∀x∈R,x ﹣2 x﹣1≤0”;
①若 A, B,C 三个点共线, C 在线段上,则 C 是 A, B,C 的中位点;
②直角三角形斜边的点是该直角三角形三个顶点的中位点;
③若四个点 A, B,C, D 共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.
【2013备考】各地名校试题解析分类汇编(一)理科数学:2函数2
各地解析分类汇编:函数21【云南省玉溪一中2013届高三第四考次月理】函数1()0x f x x ⎧=⎨⎩,为有理数,为无理数 , 则下列结论错误的是 ( )A . ()f x 是偶函数B .方程(())f f x x =的解为1x =C . ()f x 是周期函数D .方程(())()f f x f x =的解为1x =【答案】D【解析】则当x 为有有理数时,x -,x T +也为有理数,则()=()f x f x -,()=()f x T f x +;则当x 为有无理数时,x -,x T +也为无理数,则()=()f x T f x +,所以函数()f x 为偶函数且为周期函数,所以A,C 正确.当x 为有有理数时, (())(1)f f x f x ==,即1x =,所以方程(())f f x x =的解为1x =,C 正确.方程(())()f f x f x =可等价变形为()=1f x ,此时与方程()=1f x 的解为x 为有理数,故D 错误,故选D2【云南省玉溪一中2013届高三上学期期中考试理】已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )【答案】B【解析】因为函数为增函数,所以1a >,又函数(||1)f x +为偶函数。
当0x >时,(||1)(1)l o g (a f x f x x +=+=+,当0x <时,(||1)(1)log (1)a f x f x x +=-+=-+,选B. 3【云南师大附中2013届高三高考适应性月考卷(三)理科】下列函数中既不是奇函数也不是偶函数的是 ( )A.||2x y =B.1(y g x =C.22x x y -=+D.111y gx =+ 【答案】D【解析】根据奇偶性定义知,A 、C 为偶函数,B 为奇函数,D 定义域为{|1}x x >-不关于原点对称,故选D.4【云南省玉溪一中2013届高三第三次月考 理】若)(x f 是偶函数,且当0)1(,1)(,),0[<--=+∞∈x f x x f x 则时的解集是( )A .(-1,0)B .(-∞,0) (1,2)C .(1,2)D .(0,2)【答案】D【解析】 根据函数的性质做出函数()f x 的图象如图.把函数()f x 向右平移1个单位,得到函数(1)f x -,如图,则不等式(1)0f x -<的解集为(0,2),选D.5【云南省玉溪一中2013届高三第三次月考 理】已知在函数||y x =([1,1]x ∈-)的图象上有一点(,||)P t t ,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )【答案】B【解析】由题意知,当10t -<<时,面积原来越大,但增长的速度越来越慢.当0t >时,S 的增长会越来越快,故函数S 图象在y 轴的右侧的切线斜率会逐渐增大,选B .6【云南省玉溪一中2013届高三第三次月考 理】定义在R 上的函数()f x 满足()(),(2)(f x f x f xf x -=--=+且(1,0)x ∈-时,1()2,5x f x =+则2(log 20)f =( )A .1B .45C .1-D .45-【答案】C【解析】由()(),(2)(2),f x f x f x f x -=--=+可知函数为奇函数,且(4)()f x f x +=,所以函数的周期为4,24log 205<<,20log 2041<-<,即225log 204log 4-=,所以22222554(log 20)(log 204)(log )(log )(log )445f f f f f =-==--=-,因为241log 05-<<,所以24log 524141(log )215555f =+=+=,所以2224(log 20)(log 204)(log )15f f f =-=-=-,选C.7【云南省昆明一中2013届高三新课程第一次摸底测试理】函数()2x f x e x =+-的零点所在的区间是A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】A 【解析】函数()2xf x e x =+-,在定义域上单调递增,(0)120f =-<,(1)10f e =->,13()022f ==>,由跟的存在定理可知函数的零点在区间1(0,)2上选A.8【云南省昆明一中2013届高三新课程第一次摸底测试理】已知偶函数(),(2)(),[1,0]f x x R f x f x x ∀∈-=-∈-对都有且当时 ()2,(2013)x f x f =则=A .1B .—1C .12D .12-【答案】C【解析】由(2)(f xf x -=-得(4)()f x f x -=,所以函数的周期是4,所以11(2013)(45031)(1)(1)22f f f f -=⨯+==-==,选C. 9【天津市耀华中学2013届高三第一次月考理科】已知函数2()=f x x cos x -,则(0.6),(0),(-0.5)f f f 的大小关系是A 、(0)<(0.6)<(-0.5)f f fB 、(0)<(-0.5)<(0.6)f f fC 、(0.6)<(-0.5)<(0)f f fD 、(-0.5)<(0)<(0.6)f f f 【答案】B【解析】因为函数2()=f x x cos x -为偶函数,所以(0.5)(0.5)f f -=,()=2f 'x x sin x +,当02x π<<时,()=20f 'x x sin x +>,所以函数在02x π<<递增,所以有(0)<(0.5)<f f f ,即(0)<(0.5)<f f f -,选B.10【天津市耀华中学2013届高三第一次月考理科】在下列区间中,函数()=+43x f x e x -的零点所在的区间为 A 、(1-4,0) B 、(0,14) C 、(14,12) D 、(12,34)【答案】C 【解析】1114441()=2=1604f e e --<,121()=102f e ->,所以函数的零点在11(,)42,选C. 11【天津市新华中学2013届高三上学期第一次月考数学(理)】 已知函数()()2531m f x m m x --=--是幂函数且是()0,+∞上的增函数,则m 的值为A. 2B. -1C. -1或2D. 0【答案】B【解析】因为函数为幂函数,所以211m m --=,即220m m --=,解得2m =或1m =-.因为幂函数在(0,)+∞,所以530m -->,即35m <-,所以1m =-.选B. 12【天津市新华中学2013届高三上学期第一次月考数学(理)】 已知定义在区间[0,2]上的函数=()y f x 的图象如图所示,则=(2-)y f x 的图象为【答案】A【解析】当0x =时,(20)(2)1y f f =-==,排除B,C,D,选A.13【天津市新华中学2013届高三上学期第一次月考数学(理)】给定函数①12=y x -,②23+3=2xx y -,③12=log |1-|y x ,④=sin2xy π,其中在(0,1)上单调递减的个数为A. 0B. 1 个C. 2 个D. 3个【答案】C【解析】①为幂函数,102-<,所以在(0,1)上递减.②223333()24x x x -+=-+,在(0,1)上递减,所以函数23+3=2xx y -在(0,1),递减.③1122log 1log 1y x x =-=-,在(0,1)递增.④sin2y x π=的周期,4T =,在(0,1)上单调递增,所以满足条件的有2个,选C.14【天津市新华中学2013届高三上学期第一次月考数学(理)】设3=2a log ,=2b ln ,12=5c -,则A. <<a b cB. <<b c aC. <<c a bD. <<c b a【答案】C【解析】321log 2log 3=,21ln 2log e =,125-=。
【2013备考】各地名校试题解析分类汇编(一)理科数学:1集合
各地解析分类汇编:集合与简易逻辑1【云南省玉溪一中2013届高三第四次月考理】已知:p “,,a b c 成等比数列”,:q “ac b =”,那么p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D . 既不充分又非必要条件【答案】D【解析】,,a b c 成等比数列,则有2b ac =,所以b =所以p 成立是q 成立不充分条件.当==0a b c =时,有ac b =成立,但此时,,a b c 不成等比数列,所以p 成立是q 成立既不充分又非必要条件,选D.2【云南省玉溪一中2013届高三上学期期中考试理】设全集{}1,2,3,4,5U =,集合{}2,3,4A =,{}2,5B =,则()U B C A =( )A.{}5B. {}125, ,C. {}12345, , , ,D.∅【答案】B【解析】{1,5}U C A =,所以()={1,5}{2,5}={1,2,5}U B C A ,选B.【解析】当k =0时,x =1;当k =1时,x =2;当k =5时,x =4;当k =8时,x =5,故选B. 4【云南师大附中2013届高三高考适应性月考卷(三)理科】已知条件2:340p x x --≤;条件22:690q x x m -+-≤ 若p是q的充分不必要条件,则m的取值范围是( )A.[]1,1- B.[]4,4- C.(][),44,-∞-+∞D.(][),11,-∞-+∞【答案】C【解析】14p x -:≤≤,记33(0)33(0)q m x m m m x m m -++-:≤≤>或≤≤<,依题意,03134m m m ⎧⎪--⎨⎪+⎩>, ≤,≥或03134m m m ⎧⎪+-⎨⎪-⎩<, ≤,≥,解得44m m -≤或≥.选C.5【云南省玉溪一中2013届高三第三次月考 理】下列命题中正确的是( )A.命题“x R ∀∈,2x x -0≤”的否定是“2,0x R x x ∃∈-≥”B.命题“p q ∧为真”是命题“p q ∨为真”的必要不充分条件C.若“22am bm ≤,则a b ≤”的否命题为真 D.若实数,[1,1]x y ∈-,则满足221x y +≥的概率为4π. 【答案】C【解析】A 中命题的否定式2,0x R x x ∃∈->,所以错误.p q ∧为真,则,p q 同时为真,若p q ∨为真,则,p q 至少有一个为真,所以是充分不必要条件,所以B 错误.C 的否命题为“若22am bm >,则a b >”,若22am bm >,则有0,m a b ≠>所以成立,选C.6【天津市耀华中学2013届高三第一次月考理科】下列命题中是假命题的是 A 、(0,),>2x x sin x π∀∈ B 、000,+=2x R sin x cos x ∃∈C 、 ,3>0xx R ∀∈ D 、00,=0x R lg x ∃∈ 【答案】B【解析】因为000+4sin x cos x x π+≤(),所以B 错误,选B.7【天津市耀华中学2013届高三第一次月考理科】设a ,b ∈R ,那么“>1ab”是“>>0a b ”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 【答案】B【解析】由>1ab 得,10a a b b b --=>,即()0b a b ->,得0b a b >⎧⎨>⎩或0b a b <⎧⎨<⎩,即0a b >>或0a b <<,所以“>1ab ”是“>>0a b ”的必要不充分条件,选B.8【山东省烟台市莱州一中2013届高三10月月考(理)】集合{x x y R y A ,lg =∈=>}{}2,1,1,2,1--=B 则下列结论正确的是A.{}1,2--=⋂B AB.()()0,∞-=⋃B A C RC.()+∞=⋃,0B AD.(){}1,2--=⋂B A C R【答案】D【解析】{0}A y y =>,所以={0}R C A y y ≤,所以(){}1,2--=⋂B A C R ,选D. 9【天津市天津一中2013届高三上学期一月考 理】有关下列命题的说法正确的是A.命题“若x 2=1,则x=1”的否命题为:若“x 2=1则x ≠1” B.“1x =-”是“2560x x --=”的必要不充分条件C.命题“∃x ∈R,使得x 2+x+1<0”的否定是:“∀x ∈R,均有x 2+x+1<0” D.命题“若x=y,则sinx=siny ”的逆否命题为真命题 【答案】D【解析】若x 2=1,则x=1”的否命题为21x ≠,则1x ≠,即A 错误。
高考数学各地名校试题解析分类汇编(一)2 函数1 文
各地解析分类汇编:函数(1)1.【山东省实验中学2013届高三第三次诊断性测试文】下列函数中,在其定义域中,既是奇函数又是减函数的是( ) A.xx f 1)(= B.x x f -=)( C.xxx f 22)(-=- D.x x f tan )(-=【答案】C 【解析】x x f 1)(=在定义域上是奇函数,但不单调。
x x f -=)(为非奇非偶函数。
x x f tan )(-=在定义域上是奇函数,但不单调。
所以选C.2.【山东省实验中学2013届高三第三次诊断性测试文】函数x x x f ln )1()(+=的零点有( )A.0个B.1个C.2个D.3个 【答案】B【解析】由()(1)ln 0f x x x =+=得1ln 1x x =+,做出函数1ln ,1y x y x ==+的图象,如图由图象中可知交点个数为1个,即函数的零点个数为1个,选B.3 【山东省实验中学2013届高三第二次诊断性测试数学文】已知幂函数)(x f 的图像经过(9,3),则)1()2(f f -= A.3 B.21- C.12- D.1【答案】C【解析】设幂函数为()=f x x α,则(9)=9=3f α,即23=3α,所以12=1=2αα,,即12()=f x x (2)1f f -,选C.4 【山东省实验中学2013届高三第二次诊断性测试数学文】若02log2log <<ba,则A.10<<<b aB.10<<<a bC.1>>b aD.1>>a b 【答案】B【解析】由02l o g 2l o g <<b a 得22110log log ab<<,即22log log 0b a <<,所以10<<<a b ,选B.5 【山东省实验中学2013届高三第二次诊断性测试数学文】函数xx y ||lg =的图象大致是【答案】D【解析】函数lg ||()=x y f x x=为奇函数,所以图象关于原点对称,排除A,B.当=1x 时,l g ||(1)=0x f x=,排除C,选D.6 【山东省实验中学2013届高三第二次诊断性测试数学文】设]2,[,),()()(ππ--∈-+=R x x f x f x F 为函数)(x F 的单调递增区间,将)(x F 图像向右平移π个单位得到一个新的)(x G 的单调减区间的是A ⎥⎦⎤⎢⎣⎡-02,π B.⎥⎦⎤⎢⎣⎡02,π C.⎥⎦⎤⎢⎣⎡23ππ, D.⎥⎦⎤⎢⎣⎡ππ223, 【答案】D 【解析】因为函数()()(),F x f x f x x R=+-∈为偶函数,在当[]2x ππ∈,为减函数,)(x F 图像向右平移π个单位,此时单调减区间为⎥⎦⎤⎢⎣⎡ππ223,,选D.6 【山东省实验中学2013届高三第二次诊断性测试数学文】已知)2()(),1()1(+-=-=+x f x f x f x f ,方程0)(=x f 在[0,1]内有且只有一个根21=x ,则0)(=x f 在区间[]2013,0内根的个数为A.2011B.1006C.2013D.1007 【答案】C【解析】由(1)(1)f x f x +=-,可知(2)()f x f x +=,所以函数()f x 的周期是2,由()(2)f x f x =-+可知函数()f x 关于直线1x =对称,因为函数0)(=x f 在[0,1]内有且只有一个根21=x ,所以函数0)(=x f 在区间[]2013,0内根的个数为2013个,选C.7.【山东省实验中学2013届高三第三次诊断性测试文】定义方程)(')(x f x f =的实数根0x 叫做函数)(x f 的“新驻点”,若函数3(),()ln(1),()1g x x h x x x x φ==+=-的“新驻点”分别为γβα,,,则γβα,,的大小关系为A.βαγ>>B.γαβ>>C.γβα>>D.αγβ>> 【答案】A【解析】'()1g x =,所以由()'()g g αα=得1α=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2013备考】各地名校试题解析分类汇编(一)理科数学:2函数2各地解析分类汇编:函数21【云南省玉溪一中2013届高三第四考次月理】函数1()0x f x x ⎧=⎨⎩,为有理数,为无理数, 则下列结论错误的是 ( )A . ()f x 是偶函数B .方程(())f f x x=的解为1x = C . ()f x 是周期函数 D .方程(())()f f x f x =的解为1x =【答案】D【解析】则当x 为有有理数时,x -,x T +也为有理数,则()=()f x f x -,()=()f x T f x +;则当x 为有无理数时,x -,x T +也为无理数,则()=()f x T f x +,所以函数()f x 为偶函数且为周期函数,所以A,C 正确.当x 为有有理数时, (())(1)f f x f x ==,即1x=,所以方程(())f f x x =的解为1x =,C 正确.方程(())()f f x f x =可等价变形为()=1f x ,此时与方程()=1f x 的解为x 为有理数,故D 错误,故选D2【云南省玉溪一中2013届高三上学期期中考试理】已知对数函数()log af x x =是增函数,则函数(||1)f x +的图象大致是( )【答案】B【解析】因为函数为增函数,所以1a >,又函数(||1)f x +为偶函数。
当0x >时,(||1)(1)log (1)af x f x x +=+=+,当0x <时,(||1)(1)log (1)a f x f x x +=-+=-+,选B.3【云南师大附中2013届高三高考适应性月考卷(三)理科】下列函数中既不是奇函数也不是偶函数的是 ( ) A.||2x y =B.21(1)y g x x =+C.22x xy -=+ D.111y gx =+【答案】D【解析】根据奇偶性定义知,A 、C 为偶函数,B 为奇函数,D 定义域为{|1}x x >-不关于原点对称,故选D.4【云南省玉溪一中2013届高三第三次月考 理】若)(x f 是偶函数,且当0)1(,1)(,),0[<--=+∞∈x f x x f x 则时的解集是( )A .(-1,0)B .(-∞,0)(1,2)C .(1,2)D .(0,2)【答案】D【解析】根据函数的性质做出函数()f x的图象如图.把函数()f x-,f x向右平移1个单位,得到函数(1)如图,则不等式(1)0f x-<的解集为(0,2),选D.5【云南省玉溪一中2013届高三第三次月考理】已知在函数||=([1,1]y xP t t,x∈-)的图象上有一点(,||)该函数的图象与x轴、直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图可表示为()【答案】B【解析】由题意知,当10-<<时,面积原来越大,t但增长的速度越来越慢.当0t>时,S的增长会越来越快,故函数S图象在y轴的右侧的切线斜率会逐渐增大,选B .6【云南省玉溪一中2013届高三第三次月考 理】定义在R 上的函数()f x 满足()(),(2)(2),f x f x f x f x -=--=+且(1,0)x ∈-时,1()2,5xf x =+则2(log20)f =( )A .1B .45C .1-D .45-【答案】C【解析】由()(),(2)(2),f x f x f x f x -=--=+可知函数为奇函数,且(4)()f x f x +=,所以函数的周期为4,24log205<<,20log 2041<-<,即225log 204log 4-=,所以22222554(log 20)(log 204)(log )(log )(log )445f f f f f =-==--=-,因为241log 05-<<,所以24log 524141(log )215555f =+=+=,所以2224(log 20)(log 204)(log )15f f f =-=-=-,选C.7【云南省昆明一中2013届高三新课程第一次摸底测试理】函数()2xf x e x =+-的零点所在的区间是 A .1(0,)2 B .1(,1)2C .(1,2)D .(2,3)【答案】A 【解析】函数()2xf x ex =+-,在定义域上单调递增,(0)120f =-<,(1)10f e =->,13()022f ==>,由跟的存在定理可知函数的零点在区间1(0,)2上选A.8【云南省昆明一中2013届高三新课程第一次摸底测试理】已知偶函数(),(2)(),[1,0]f x x R f x f x x ∀∈-=-∈-对都有且当时()2,(2013)x f x f =则= A .1 B .—1C .12D .12- 【答案】C【解析】由(2)()f x f x -=-得(4)()f x f x -=,所以函数的周期是4,所以11(2013)(45031)(1)(1)22f f f f -=⨯+==-==,选C.9【天津市耀华中学2013届高三第一次月考理科】已知函数2()=f x xcos x-,则(0.6),(0),(-0.5)f f f 的大小关系是A 、(0)<(0.6)<(-0.5)f f fB 、(0)<(-0.5)<(0.6)f f fC 、(0.6)<(-0.5)<(0)f f fD 、(-0.5)<(0)<(0.6)f f f 【答案】B【解析】因为函数2()=f x x cos x-为偶函数,所以(0.5)(0.5)f f -=,()=2f 'x x sin x +,当02x π<<时,()=20f 'x x sin x +>,所以函数在02x π<<递增,所以有(0)<(0.5)<(0.6)f f f ,即(0)<(0.5)<(0.6)f f f -,选B.10【天津市耀华中学2013届高三第一次月考理科】在下列区间中,函数()=+43xf x e x -的零点所在的区间为A 、(1-4,0)B 、(0,14)C 、(14,12)D 、(12,34)【答案】C 【解析】1114441()=2=1604f e e --<,121()=1=102f e e -->,所以函数的零点在11(,)42,选C.11【天津市新华中学2013届高三上学期第一次月考数学(理)】 已知函数()()2531m f x mm x --=--是幂函数且是()0,+∞上的增函数,则m 的值为 A. 2 B. -1 C. -1或2 D. 0 【答案】B【解析】因为函数为幂函数,所以211mm --=,即220m m --=,解得2m =或1m =-.因为幂函数在(0,)+∞,所以530m -->,即35m <-,所以1m =-.选B.12【天津市新华中学2013届高三上学期第一次月考数学(理)】 已知定义在区间[0,2]上的函数=()y f x 的图象如图所示,则=(2-)y f x 的图象为【答案】A【解析】当0x =时,(20)(2)1y f f =-==,排除B,C,D,选A.13【天津市新华中学2013届高三上学期第一次月考数学(理)】给定函数①12=y x -,②23+3=2x x y -,③12=log |1-|y x ,④=sin 2x y π,其中在(0,1)上单调递减的个数为A. 0B. 1 个 C . 2 个 D . 3个 【答案】C【解析】①为幂函数,102-<,所以在(0,1)上递减.②223333()24xx x -+=-+,在(0,1)上递减,所以函数23+3=2xx y -在(0,1),递减.③1122log1log 1y x x =-=-,在(0,1)递增.④sin 2y x π=的周期,4T =,在(0,1)上单调递增,所以满足条件的有2个,选C.14【天津市新华中学2013届高三上学期第一次月考数学(理)】设3=2a log ,=2b ln ,12=5c -,则A. <<a b cB. <<b c aC. <<c a bD. <<c b a 【答案】C 【解析】321log 2log 3=,21ln 2log e=,125-=。
因为222log 3log 0e >>>>,所以22110log 3log e<<<,即c a b <<。
选C.15【天津市新华中学2013届高三上学期第一次月考数学(理)】函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则A. ()f x 是偶函数B. ()f x 是奇函数C. ()(2)f x f x =+D. (3)f x +是奇函数【答案】D 【解析】函数(1)f x +,(1)f x -都为奇函数,所以(1)(1)f x f x -+=-+,(1)(1)f x f x -=---,所以 函数()f x 关于点(1,0),(1,0)-对称,所以函数的周期4T =,所以(14)(14)f x f x -+=---+,即(3)(3)f x f x +=--+,所以函数(3)f x +为奇函数,选D.16【天津市新华中学2013届高三上学期第一次月考数学(理)】设函数1(1)|-1|)=1(=1)x x f x x ⎧≠⎪⎨⎪⎩(,若关于x 的方程2[()]+()+c=0f x bf x 有三个不同的实数根123,,x x x ,则222123++x x x 等于A. 13B. 5C. 223c +2c D.222b +2b【答案】B 【解析】做出函数()f x 的图象如图,要使方程2[()]+()+c=0f x bf x 有三个不同的实数根,结合图象可知,()1f x =,所以三个不同的实数解为0,1,2,所以2221235x x x ++=,选B.17【天津市新华中学2012届高三上学期第二次月考理】函数ln cos y x =⎪⎭⎫⎝⎛<<-22ππx 的图象是【答案】A【解析】函数为偶函数,图象关于y 轴对称,所以排除B,D.又0cos 1x <<,所以ln cos 0y x =<,排除C ,选A.18【天津市新华中学2012届高三上学期第二次月考理】设5log 4a =, 25(log3)b =,4log 5c =,则A. a<c<bB. b<c<aC. a<b<cD. b a c << 【答案】D 【解析】因为4log51>,50log41<<,50log31<<,因为50log 31<<,所以2555(log3)log 3log 4<<,所以b a c <<,选D.19【天津市新华中学2012届高三上学期第二次月考理】 偶函数f (x )满足(1)(1)f x f x +=-,且在x ∈[0,1]时,f (x )=x 2,则关于x 的方程f (x )=x⎪⎭⎫ ⎝⎛101在10[0,]3上根的个数是 A. 1个 B. 2个 C. 3个 D. 5个 【答案】C【解析】由(1)(1)f x f x +=-得(2)()f x f x +=所以函数的周期又函数为偶函数,所以(1)(1)(1)f x f x f x +=-=-,所以函数关于1x =对称,,在同一坐标系下做出函数()f x 和1()10xy =的图象,如图,由图象可知在区间10[0,]3上,方程根的个数为3个,选C. 20.【天津市天津一中2013届高三上学期一月考 理】定义在R 上的偶函数f(x),当x ∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)【答案】A【解析】因为函数是偶函数,所以(2)(2),(3)(3)f f f f -=-=,又函数在[0,)+∞上是增函数,所以由(2)(3)()f f f π<<,即(2)(3)()f f f π-<-<,选A. 21【天津市天津一中2013届高三上学期一月考 理】,,x y z 均为正实数,且22log xx=-,22log yy-=-,22log zz-=,则A. x y z <<B.z x y <<C.z y x<<D.y x z <<【答案】A【解析】因为,,x y z 均为正实数,所以22log 1xx =->,即2log 1x <-,所以102x <<。