第六章铁电性能和压电性能_材料物理(1)
压电、热释电与铁电材料
关于BaTiO3铁电性的起因人们曾提出过多种 微观模型。其中比较突出的有: 钛离子多个平衡位置的自发极化理论,认 为BaTiO3在其顺电相结构中钛离子具有多 个平衡位置,在温度低于居里点时,钛离 子占据某个平衡位置几率大得多,因而出 现自发极化;
钛--氧离子之间的强耦合理论,认为自发 极化的产生是由于钛--氧离子之间存在着 很强的相互作用场所致; 此外换有氧离子位移的自发极化理论;振 动电子理论;价键性质转变理论(认为共 价性增强,离子性减弱)等。 这些理论各有其不足和成功之处,本节不 在一一介绍。
下图是180畴壁和90畴壁
钛酸钡畴结构
反铁电体
反铁电体是这样一些晶体,晶体结构与同 型铁电体相近,但相邻离子沿反平行方向 产生自发极化,净自发极化强度为零,不 存在类似于铁电中的电滞回线。介电常数 (或极化率)与温度的关系为:在相变温 度以下,介电常数很小,一般数量级为10102;在相变温度时,介电常数出现峰值, 一般数量级为几千。在相变温度以上,介 电常数与温度的关系遵从居里-外斯定律。
主要特征 电滞回线hysteresis loop 居里温度Curie temperature c 介电反常Dielectric anomalous
电滞回线 hysteresis loop
自发极化Ps 剩余极化Pr 矫顽电场Ec
静态畴结构及其形成原因
铁电晶体在没有外电场和外力作用下从 顺电相过渡到铁电相时,将出现至少两 个等价的自发极化方向,以便使晶体的 总自由能最小。因此,晶体在铁电相通 常是由自发极化方向不同的一个一个小 区域组成。每一个极化方向相同的小区 域称为铁电畴,分离电畴的边界称为畴 壁。Domain wall
BaTiO3铁电相变的微观理论首先是从离子位 移模型出发而发展起来的。对BaTiO3晶体的 x射线衍射和中子衍射实验表明,当BaTiO3 的结构从立方相转变到四方相时,Ti、O等 离子都产生偏离原来平衡位置的位移。
材料的压电性能和铁电性能比较
K2
通过逆压电效应得 转的 换机 所械压电效应转得换的所电能 转换时输入的总机械能
压电陶瓷振子(具有一定形状、大小和被覆工作电极的压电陶瓷 体)的机械能与其形状和振动模式有关,不同的振动模式将有相 应的机电耦合系数。
如对薄圆片径向伸缩模式的耦合系数为Kp(平面耦合系数); 薄形长片长度伸缩模式的耦合系数为K31(横向耦合系数); 圆柱体轴向伸缩模式的耦合系数为K33(纵向耦合系数)等。
3高灵敏度、高可靠性的传感器 压电力敏、声敏、热敏、光敏、湿敏和气敏等传感器
材料的压电性能和铁电性能比较
第二节 热释电与铁电性能
一 自发极化及其微观机制 1自发极化 极化状态是在外电场为零时自发产生的 晶胞中正负电荷中心不重合,晶胞的固有偶极矩会沿 同一方向排列整齐,使晶体处于高度极化状态 具有自发极化的晶体必然是个带电体,其电场强度取 决于自发极化强度 2局部电场形成的基本原理 偶极子起源于电荷为q的一种A离子在晶格中的位移, 则极化起因于晶格中所有的A离子作相同的位移,对于 任何一个单个的A离子,即使无外场作用,也有来自周 围极化P所产生的局部电场 3热释电效应和压电效应 束缚在表面的自由电荷层有一部分可恢复自由释放出 来,使晶体呈现出带电状态或在闭合电路中产生电流
材料的压电性能和铁电性能比较
4、频率常数N
对某一压电振子,其谐振频率和振子振动方向长度的 乘积为一个常数,即频率常数。
其中:
N=fr×l
fr为压电振子的谐振频率;
l为压电振子振动方向的长度。
薄圆片径向振动
Np=fr×D
薄板厚度伸缩振动 Nt=fr×t
细长棒K33振动
N33=fr×l
薄板切变K15振动
2 介质损耗 表征介电发热导致的能量损耗 3 弹性系数 压电体是一个弹性体,服从虎克定律 4 压电常数 机械能转变为电能或电能转变为机械能的转换系数 5 机械品质因数 表征谐振时因克服内摩擦而消耗的能量 6 机电耦合系数 表征机械能与电能相互转换能力
材料物理性能名词解释
铁电性:电偶极子由于它们的相互作用而产生的自发平行排列的现象。
屈服极限:中档应力足够大,材料开始发生塑性变形,产生塑性变形的最小应力。
延展性:指材料受塑性形变而不破坏的能力。
构建的受力模型:拉伸、压缩、剪切、扭转、弯曲塑性形变:指外力移去后不能恢复的形变。
热膨胀:物体的体积或长度随着温度的升高而增加的现象称为热膨胀,本质是点阵结构中质点的平均距离随温度升高而增大。
色散:材料的折射率随入射光频率的减小而减小的性质。
抗热震性:是指材料承受温度的剧烈变化而抵抗破坏的能力。
蠕变:对材料施加恒定应力时。
应变随时间的增加而增加,这种现象叫蠕变。
此时弹性模量也将随时间的增加而减少。
弛豫:对材料施加恒定应变,应力随时间减少的现象,此时弹性模量也随时间而降低。
滞弹性:对于理想弹性固体,作用应力会立即引起弹性形变,一旦应力消除,应变也随之消除。
对于实际固体,这种应变的产生和消除需要一定的时间,这种性质叫滞弹性。
粘弹性:有些材料在比较小的应力作用下可以同时表现出弹性和粘性。
虎克定律:材料在正常温度下,当应力不大时其变形是单纯的弹性变形,应力与应变的关系由实验建立。
晶格滑移:晶体受力时,晶体的一部分相对于另一部分发生平移滑动。
应力:单位面积上所受的内力。
形变:材料在外力作用下,发生形状和大小的变化。
应变:物质内部各质点之间的相对位移。
本征电导:由晶体点阵的基本离子运动引起。
离子自身随热运动离开晶格形成热缺陷,缺陷本身是带电的,可作为离子电导截流子,又叫固有离子电导,在高温下显著。
杂质电导:由固定较弱的离子的运动造成,主要是杂质离子。
在低温下显著。
杂质电导率要比本征电导率大得多。
离子晶体的电导主要为杂质电导。
热电效应:自发极化电矩吸附异性电荷,异性电荷屏蔽自发极化电场而自发极化对温度影响当温度变化时释放出电荷。
极化:在外电场作用下,介质内质点政府电荷重心的分离,并转变为偶极子,即电介质在电场作用下产生感应电荷的现象.自发极化:这种极化状态并非由外加电场所引起而是由晶体内部结构特点所引起。
铁电性(材料物理性能)
BaTiO3单晶电畴结构的差异,导致两
者之间在铁电性质方面的微小差别。
2211
第二十一页,共24页。
3)电滞回线的意义
A.判定铁电体的依据
铁电材料在外加交变电场作用下都能形成电滞回线,不同材料和不同工艺条件对 电滞回线的形状都有很大的影响。
B.由于有剩余极化强度,因而铁电体可用来作信息存储、图象显示。
AO
铁电体微观结构的特点决定了它有许多特殊
E
的宏观性质,从而区别于普通电介质。
铁电电滞回线(Ps为自发极化强度,Ec为矫顽力)
1144
第十四页,共24页。
A.施加电场
➢沿电场方向的电畴扩展,变大;而
P
Ps B
C
与电场反平行方向的电畴则变小。极 化强度随外电场增加而增加,如图中
oA段曲线。
Pr Ps Pr
压峰效应
如在BaTiO3中加入Bi2/3SnO3 ,其居里点几乎完 全消失,显示出直线性的温度特性可认为其机理是 加入非铁电体后,破坏了原来的内电场,使自发极 化减弱,即铁电性减小。
压峰的目的 为了降低居里点处的介电常数的蜂值,即降低ε-T非线性,也使工
作状态相应于ε-T平缓区。
2244
第二十四页,共24页。
顺电性晶体与铁电性晶体的转变温度称为铁电居里点t时铁电相转变为顺电相电滞回线消失这时p与e一般有线性关系p二铁电体的居里外斯定律居里点附近居里外斯定律为忽略12指铁电体的微观结构性质以及因此而可能显示出来的宏观性质指铁电体的微观结构性质以及因此而可能显示出来的宏观性质电滞回线电畴结构自发极化以及相应的晶胞形变自发应变居里点居里外斯定律等
+
4.2 材料的压电性与铁电性能
材料的压电性能与铁电性能
石英晶体的上述特性与其内部分子结构有关。下图是一个单 元组体中构成石英晶体的硅离子和氧离子,在垂直于 z 轴的xy平 面上的投影,等效为一个正六边形排列。 图中“ +” 代表硅离子 Si4+, “-”代表氧离子O2-。
x + - y + o P 1 - + y x F x x A ++ ++ F y y + - P 1- P 2 P 3 C + o + - B -- -- F y A - - - -- - - + P 1 o - - P 3 +
方硼石(boracite) 异极矿(calamine)
非晶方性结构 (anisotropic)
黄晶(topaz)
若歇尔盐(Rochellesalt)
晶方性(isotropic)结构是 不会产生压电性的
材料的压电性能与铁电性能
压电效应的应用
在居里兄弟发现“压电效应”后的三分之一个世纪中,压电效应在应用 上几乎没有受到任何重视;
具有压电效应的材料称为压电材料,压电材料能实现机—电
能量的相互转换。
机械量
压电元件
电量
材料的压电性能与铁电性能
压电效应的发展历程
压电效应(Piezoelectric effect)是J. Curie和P. Curie兄弟于 1880年在α石英晶体上首先发现的。
研究对称晶体与压电现象的关系
发现:在某一类晶体中施加压力会产生电性 系统研究了施压方向和电场强度之间的关系
-------
由电导过程引起 ② 另一种为无功部分(或异相)IR:
由介质弛豫过程引起
+ + + + + + +
介质损耗即为上述的异相分量 与同相分量的比值
(完整PPT)第六章铁电性能和压电性能_材料物理(1)
含氢键的晶体(KDP、RS)和双氧化物晶体(BT、PT、LN) 按极化轴数目分类:
单轴铁电体(RS、KDP、LN)和多轴铁电体(BT) 按原型相有无对称中心分类:
压电性铁电体(KDP、RS)和非压电性铁电体(BT) 按铁电相变时原子运动特点分类:
有序-无序型相变的(RS)和位移型相变的(BT、PT、LN) 按居里-外斯常数C的大小分类:
二、BaTiO3自发极化的微观机理 1. BaTiO3的晶体结构
有氧八面体 骨 架 的 ABO3 晶格
BaTiO3的晶体结构
钙钛矿结构
2. BaTiO3的相变
顺电态
Tc 居里温度
铁电态
120°C
5°C
-80°C
立方晶系 四方晶系 斜方晶系
菱形结构
无自发极化 自发极化沿c轴 自发极化沿 自发极化沿
Ps-饱和极化强度 Pr-剩余极化强度(remanent
polarization) Ec-矫顽场强(corcive field)
~2KV/cm -~120KV/cm
按照Ec大小可将铁电体分为: 软铁电体-小Ec 硬铁电体-大Ec
电滞回线是铁电体的重要物理特征之一,也是判别铁电性的 一个重要判据。
3. 铁电体的分类
如: 在钙钛矿结构中,自发极 化起因于[BO6]中中心离子的 位移
[BO6]氧八面体
2. 铁电体的概念
铁电体是在一定温度范围内具有自发极化(必要条件) ,并且极化方向可随外加电场做可逆转动的晶体。
铁电体一定是极性晶体,但自发极化转动的晶体仅发生在某些特殊结 构晶体当中,在自发极化转向时,结构不发生大的畸变。
质
加电场E 成正比。
第六章铁电性能和压电性能_材料物理(2)
6
莫索蒂方程: 二、克劳修斯-莫索蒂方程:介电常数和极化率的关系 克劳修斯 莫索蒂方程 1.宏观电场E .宏观电场 由右图可看出, 由右图可看出,在介质 电容器中,总电荷Q0中只有 电容器中,总电荷 一部分是自由电荷, 一部分是自由电荷,它建立 一个指向外部的电场和电压。 一个指向外部的电场和电压。 其余是束缚电荷, 其余是束缚电荷,它们的外 电场都被电介质的极化所抵 消。 所以极化强度P造成的 所以极化强度 造成的 电场可以认为是表面束缚电 荷引起的。 荷引起的。
第六章 材料的介电性能
几个基本概念
1.电介质:指在电场作用下, 电介质:指在电场作用下, 电介质 能建立极化的一切物质。 能建立极化的一切物质。 2.感应电荷:当在一个真空平 感应电荷: 感应电荷 行板电容器的电极板间嵌入 一块电介质时, 一块电介质时,如果在电极 之间施加外电场,则可发现 之间施加外电场, 在介质表面上感应出了电荷, 在介质表面上感应出了电荷, 即正极板附近的介质表面上 感应出了负电荷, 感应出了负电荷,负极板附 近的介质表面上感应出正电 荷,这种表面电荷称为感应 电荷,也称束缚电荷。 电荷,也称束缚电荷。
εr =
C 1 Cd = × C0 ε 0 A
3
εr反映了电介质极化的能力。 反映了电介质极化的能力。
第一节 介质的极化
一、极化及极化参数 介质最重要的性质是在外电场作用下能够极化。 介质最重要的性质是在外电场作用下能够极化。 1.极化 介质内质点(原子、分子、离子)正负电荷重心的 极化:介质内质点 极化 介质内质点(原子、分子、离子) 分 从而转变成偶极子的过程。 离,从而转变成偶极子的过程。 2.电偶极距(偶极距):设正电荷与负 电偶极距( 电偶极距 偶极距) 设正电荷与负 电荷的位移矢量为l, 电荷的位移矢量为 ,则定义偶极子的 电偶极距为 μ=ql 规定其方向从负电荷指向正电荷, 规定其方向从负电荷指向正电荷,即电 偶极矩的方向与外电场E的方向一致 的方向一致。 偶极矩的方向与外电场 的方向一致。 如果介质中含有极性分子, 如果介质中含有极性分子,则这些 极性分子都可看作偶极子。 极性分子都可看作偶极子。
材料性能学名词解释
材料性能学名词解释第⼀章(单向静载下⼒学性能)弹性变形:材料受载后产⽣变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。
塑性变形:微观结构的相邻部分产⽣永久性位移,并不引起材料破裂的现象弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应⼒。
弹性⽐功:弹性变形过程中吸收变形功的能⼒。
包申格效应:材料预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余应⼒(弹性极限或屈服强度)增加;反向加载,规定残余应⼒降低的现象。
弹性模量:⼯程上被称为材料的刚度,表征材料对弹性变形的抗⼒。
实质是产⽣100%弹性变形所需的应⼒。
滞弹性:快速加载或卸载后,材料随时间的延长⽽产⽣的附加弹性应变的性能。
内耗:加载时材料吸收的变形功⼤于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。
韧性:材料断裂前吸收塑性变形功和断裂功的能⼒。
超塑性:在⼀定条件下,呈现⾮常⼤的伸长率(约1000%)⽽不发⽣缩颈和断裂的现象。
韧窝:微孔聚集形断裂后的微观断⼝。
第⼆章(其他静载下⼒学性能)应⼒状态软性系数:不同加载条件下材料中最⼤切应⼒与正应⼒的⽐值。
剪切弹性模量:材料在扭转过程中,扭矩与切应变的⽐值。
缺⼝敏感度:常⽤试样的抗拉强度与缺⼝试样的抗拉强度的⽐值。
NSR硬度:表征材料软硬程度的⼀种性能。
⼀般认为⼀定体积内材料表⾯抵抗变形或破裂的能⼒。
抗弯强度:指材料抵抗弯曲不断裂的能⼒,主要⽤于考察陶瓷等脆性材料的强度。
第三章(冲击韧性低温脆性)冲击韧度:⼀次冲断时,冲击功与缺⼝处截⾯积的⽐值。
冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。
低温脆性:当试验温度低于某⼀温度时,材料由韧性状态转变为脆性状态。
韧脆转变温度:材料在某⼀温度t下由韧变脆,冲击功明显下降。
该温度即韧脆转变温度。
迟屈服:⽤⾼于材料屈服极限的载荷以⾼加载速度作⽤于体⼼⽴⽅结构材料时,瞬间并不屈服,需在该应⼒下保持⼀段时间后才屈服的现象。
铁电性(材料物理性能)
• •
Ti4+
O-
•° • •• • • ° • • •° • • •
7
°
•
•
例2:具有极性轴或结构本身具有自发极化的结构 + + + + + 正 电 荷 层 与 负 电 荷 层 交 替 排 列
固 有 偶 极 子
+ +
+
+ -
+
+ -
+
+
纤锌矿(ZnS)结构在(010)上投影
一、铁电体
是一类特殊的电介质材料,在一定温度范围内含有能自发极化,并且 发极化方向可随外电场作可逆转动的晶体。
1、铁电体的特点
1)铁电体是非线性介质 即极化强度和外施电压的关系是非线性的。
P 0 E
备注:线性介质
没有外加电场时,介质的极化强度等于零。 有外电场时,介质的极化强度与宏观电场E 成正比。
1
2)铁电体是极性晶体
即其极化状态并非由外电场所引起,而是由晶体内部结构特点所 引起,晶体中每个晶胞内存在固有电偶极矩。
注意:铁电晶体一定是极性晶体,但并非所有的极性晶体都是铁电体
2
3)铁电体的极化是自发极化
A.按相转变的自发极化机构铁电体分两类 :
第一类是位移型,其自发极化同一类离 子的亚点阵相对于另一类亚点阵的整体 位移相联系。 位移型铁电体的结构大多同钙钛矿结构 及钛铁矿结构紧密相关。钛酸钡是典型 的钙钛矿型的铁电体。 Ba2+ Ti4+ O-
• •
•
•
°
°
•
•
O-
第六章 铁电物理与性能学
铁电相变
位移型相变铁电体
(不涉及化学键的破坏,新相和旧相之间存 在明显的晶体学位相关系)
以BaTiO3为例
钛酸钡不同温度下的晶胞结构变化示意图
位移型相变铁电体
以典型铁电材料——钛酸钡BaTiO3晶体为例,介绍其自发极化的微观模型
BaTiO3晶体从非 铁电性到铁电性的 过渡总是伴随着晶 体立方→四方的改 变,因此提出了一 种离子位移理论, 认为自发极化主要 是晶体中某些离子 偏离了平衡位置, 使得单位晶胞中出 现了电偶极矩造成 的
第六章 铁电物理与性能
Ferroelectrics
基本定义
具有自发极化强度,自发极化强度能 在外加电场下反转 或:具有电滞回线和具有电畴的特 点的材料为铁电体
Note:
铁电体与铁磁体在其它许多性质上也具有相 应的平行类似性,“铁电体”之名即由此而 来,其实它的性质与“铁”毫无关系。在欧 洲(如法国、德国)常称“铁电体”为“薛 格涅特电性”(Seignett-electricity)或 “罗息尔电性”(Rochell-electricity)。 因为历史上铁电现象是首先于1920年在罗息 盐中发现的,而罗息盐是在1665年被法国药 剂师薛格涅特在罗息这个地方第一次制备出 来。
(3)压电聚合物
聚二氟乙烯(PVF2 )是目前发现的压电效应较强的聚合物 薄膜,这种合成高分子薄膜就其对称性来看,不存在压电效应, 但是它们具有“平面锯齿”结构,存在抵消不了的偶极子。经延 展和拉伸后可以使分子链轴成规则排列,并在与分子轴垂直方向 上产生自发极化偶极子。当在膜厚方向加直流高压电场极化后, 就可以成为具有压电性能的高分子薄膜。这种薄膜有可挠性,并 容易制成大面积压电元件。这种元件耐冲击、不易破碎、稳定性 好、频带宽。为提高其压电性能还可以掺入压电陶瓷粉末,制成 混合复合材料(PVF2—PZT)。
材料物理性能基础知识点
材料物理性能基础知识点<<材料物理性能>>基础知识点一,基本概念:1.摩尔热容: 使1摩尔物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为摩尔热容。
它反映材料从周围环境吸收热量的能力。
2.比热容:质量为1kg的物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为比热容。
它反映材料从周围环境吸收热量的能力。
3.比容:单位质量(即1kg物质)的体积,即密度的倒数(m3/kg)。
4.格波:由于晶体中的原子间存在着很强的相互作用,因此晶格中一个质点的微振动会引起临近质点随之振动。
因相邻质点间的振动存在着一定的位相差,故晶格振动会在晶体中以弹性波的形式传播,而形成“格波”。
5.声子(Phonon): 声子是晶体中晶格集体激发的准粒子,就是晶格振动中的简谐振子的能量量子。
6.德拜特征温度: 德拜模型认为:晶体对热容的贡献主要是低频弹性波的振动,声频支的频率具有0~ωmax分布,其中,最大频率所对应的温度即为德拜温度θD,即θD=ћωmax/k。
7.示差热分析法(Differential Thermal Analysis, DTA ): 是在测定热分析曲线(即加热温度T与加热时间t的关系曲线)的同时,利用示差热电偶测定加热(或冷却)过程中待测试样和标准试样的温度差随温度或时间变化的关系曲线ΔT~T(t),从而对材料组织结构进行分析的一种技术。
8.示差扫描量热法(Differential Scanning Calorimetry, DSC): 用示差方法测量加热或冷却过程中,将试样和标准样的温度差保持为零时,所需要补充的热量与温度或时间的关系。
9.热稳定性(抗热振性):材料承受温度的急剧变化(热冲击)而不致破坏的能力。
10.塞贝克效应:当两种不同的导体组成一个闭合回路时,若在两接头处存在温度差则回路中将有电势及电流产生,这种现象称为塞贝克效应。
11.玻尔帖效应:当有电流通过两个不同导体组成的回路时,除产生不可逆的焦耳热外,还要在两接头处出现吸热或放出热量Q的现象。
第六章 压电功能材料
二、压电效应
压电效应产生的根源是晶体中离子电荷的位移, 当不存在应变时电荷在晶格位臵上分布是对称的, 所以其内部电场为零。 但当给晶体施加应力则电荷发生位移,如果电 荷分布不在保持对称就会出现净极化,并将伴随产 生一个电场,这个电场就表现为压电效应。
3
压电陶瓷
piezoelectric ceramics
24
PbZrO3-PbTiO3相图
立方顺电相
1、随Zr:Ti 变化,居里点几乎线 形地从235℃变到490℃ ,Tc线以 上为立方顺电相,无压电效应。 2、Zr:Ti=53:47附近有一准同 型相界线,富钛侧为四方铁电相 FT;富锆一侧为高温三方铁电相FR, 温度升高,这一相界线向富锆侧 倾斜,并与Tc线交于360℃(表明 相界附近居里温度Tc高),在相 界附近,晶胞参数发生突变。 3、在四方铁电相FT与三方铁电相 FR的相界附近具有很强的压电效 应,Kp, ε出现极大值,Qm出现极 小值。
四方铁电相 高温三方 铁电相 A0
反铁电 正交相
低温三方 铁电相
准同型相界:四方铁电相与三方铁电相的交界,并不 是一个明确的成分分界线,而是具有一定的成分范围, 在此区域内,陶瓷体内三方相和四方相共存。
25
PbZrO3-PbTiO3准同型相界的KP、ε、d、Pr
26
在相界附近的PZT瓷压电性能比BaTiO3瓷高得多。 由于相界处PZT瓷的Tc高(360℃),因而在200℃以内,KP和 ε都很稳定,是理想的压电材料。
9
三、压电性能
1、压电常数d33 压电常数是反映力学量(应力或应变)与电学量 (电位移或电场)间相互耦合的线性响应系数。 当沿压电陶瓷的极化方向(z轴)施加压应力T3时, 在电极面上产生电荷,则有以下关系式:
第六章铁电性能和压电性能_材料物理(1)
温度对电滞回线 的影响
BaTiO3的电 滞回线
2. 铁电陶瓷的结构、性能与应用
(1)结构
钙钛矿结构 钨青铜结构 铋层状结构 焦绿石结构 钛铁矿结构
• •
共同特点: 含氧八面体 自发极化的起因: 氧八面 体中心离子的相对位移
•
属位移型铁电体
(2)制备工艺
铁电陶瓷的制备工艺流程: 粉体合成-细化-成型-烧结-被覆电极-性能测试 粉体合成: 固态反应法(solid state reaction) 共沉淀法 (coprecipitation) 溶胶-凝胶法 (sol-gel process)
2. 铁电体的概念
铁电体是在一定温度范围内具有自发极化(必要条件) ,并且极化方向可随外加电场做可逆转动的晶体。
铁电体一定是极性晶体,但自发极化转动的晶体仅发生在某些特殊结 构晶体当中,在自发极化转向时,结构不发生大的畸变。
铁电体 (Ferroelectrics) :
Ps(必要条件) E Ps 重新定向
电光器件-利用电光效应,透明PLZT陶瓷(PLZT 9/65/35)
压电器件-利用压电和电致伸缩效应,PZT, PMN-PT
§6.2 压电性能
Piezoelectricity
一、压电效应 二、压电振子及其参数 三、压电陶瓷的预极化
四、压电材料及其应用
一、压电效应 1. 压电效应
1880年由居里兄弟(J. Curie and P. Curie)发现的。 晶体的压电效应是应力和应变等机械量与电场强度和 电位移(或极化强度)等电学量之间的耦合效应。
(a)
(b)
(c)
(d)
180畴翻转示意图 (a)成核,(b)和(c)纵向长大,(d) 横向长大
2016年材料物理lecture 4 (chapter 6电性能4磁性能1)
Typical current ~ 1,000,000 Amp. Once in 1-10 million years
15
History
司南
Introduction
Chinese as early as 121 AD knew that an iron rod which had been brought near one of these natural magnets would acquire and retain the magnetic property…and that such a rod when suspended from a string would align itself in a north-south direction.
T:两端温差; : 汤姆逊系数 电流与热流方向一致放热; 电流与热流方向相反吸热; 原因:高温端电子运动速度大于低温端,电子由
高温向低温端运动更快,出现正负静电荷,建立 温差电场;电子被温差电场加速或减速,能量传 递给晶格或从原子获得能量。
• 三种热效应系数之间的关系:
AB S ABT
• 热释电材料对温度非常敏感,可用来测量10-5~10-6 C这样微 小的温度变化。
• 热释电红外探测器:非接触式温度测量、红外光谱测量、 红外摄像、空间技术
• 热释电摄像管:安全防护与监视、医学热成像、监视热污 染、SARS
• 热释电材料: TGS及其衍生物、氧化物单晶、高分子压电材 料
• 我国利用ATGSAS晶体制成的红外摄像管温度响应率达到4 ~5μA/℃,温度分辨率小于0.2℃,信号灵敏度高,图像清 晰度和抗强光干扰能力强,滞后较小。
• 通常,晶体自发极化所产生的束缚电荷被空气中附集在晶体 外表面的自由电子所中和,其自发极化电矩不能显示出来。 当温度变化时,晶体结构中正、负电荷重心产生相对位移, 晶体自发极化值发生变化,在晶体表面就会产生电荷耗尽。
第六章铁电性能和压电性能_材料物理(1)
第二十二页,编辑于星期日:四点 五分。
复杂的电畴结构
第二十三页,编辑于星期日:四点 五分。
BaTiO3中的电畴结构
第二十四页,编辑于星期日:四点 五分。
弛豫铁电单晶中的电畴结构
第二十五页,编辑于星期日:四点 五分。
3. 观察方法
(1)电子显微技术 扫描电镜技术(SEM)
透射电镜技术(TEM)
器件的制备工艺 多层陶瓷技术,如多层陶瓷电容器的制备工艺
第四十三页,编辑于星期日:四点 五分。
(3)性能优点
✓ 高介电常数
making them useful as capacitor and energy storage materials
✓ 介电损耗较低 (0.1%-5%) ✓ 高电阻率 ( > 1013 -cm)
等,晶胞内不会产生电矩,自 发极化为0。
温度降低(小于
120°C), Ti4+离子热振
动能降低,热振动能特别低
的 Ti4+ 不 足 以 克 服 Ti4+ 和 O2- 离 子 间 的 电 场 作 用 , 就 有 可 能 向 某 一 个 O2离子靠近,发生自发 位 移 , 使 这 个 O2- 离 子 发生强烈的电子位移极化。
第十一页,编辑于星期日:四点 五分。
第十二页,编辑于星期日:四点 五分。
3. BaTiO3自发极化的微观机理
离子位移理论
居里温度 以上
正方结构BaTiO3中, Ti4+ 、O2-离子的位移情况
两 个 O2- 离 子 间 的 空 隙 大 于
Ti4+离子的直径,其在氧 八面体内有位移的余地, 温度较高时(大于 120°C), 离 子 热 振动 能 较 大 , 因 此 Ti4+ 离 子 接 近 周 围 6 个 O2- 离 子 的 几 率 相
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)具有临界特性 晶体在相变点附近所发生的各种性能反常变化称 为临界现象。
(a)
(b)
(c)
0.1m
0.1m
1.0m
多晶LiTaO3晶粒内箭尾型90电畴结构与曲流状180电畴结构
(a)
(b)
0.1m
0.2m
多晶LiTaO3晶粒内薄片状和箭尾型90电畴结构
(a)
(b)
0.4m
0.2m
多晶LiTaO3晶粒内90尖劈状畴与180曲流状畴
(a)
(b)
5. 电畴运动
在电场或机械应力场作用下,铁电材料中电畴的取向能 够发生改变,电畴取向改变 180 的称为 180 翻转,改变 90的称为90翻转。 一般认为电场既能引起 180翻转,也能引起90翻转,而 应力场只能引起 90翻转,也就是说180翻转与应力场无 关。 电畴翻转过程实际上也是新畴的成核和长大过程,主要经 历以下四个阶段: (1)新畴成核 (2)畴的纵向长大 成核 长大 (3)畴的横向扩张 (4)畴的合并
介 质
铁电体
一、铁电体 1. 自发极化
自发极化是铁电体的本质特征。在某温度范围内,当不 存在外加电场时,原晶胞中的正负电荷中心不相重合, 这样每一个晶胞具有一定的固有偶极矩,这种极化形式 就是自发极化。 产生原因:
在某些晶体中, E = 0 P,
如: 在钙钛矿结构中,自发极
化起因于[BO6]中中心离子的 位移 [BO6]氧八面体
(5)X射线形貌技术
(6)粉末沉积法 (7)紫外光电发射 (8)热电技术
采用电镜技术观察时 ,90畴经常呈现箭尾形(herringbone)、板条状 ( banded ) 、 层 状 ( lamellar ) 、 尖 劈 状 ( wedge-shaped ) 或 匕 首 状 ( dagger-shaped)的形貌,而 180 畴为不规则的水痕状( water-mark) 或曲流状(dagger-shaped)。
本质
晶体介质的极化
某些晶体在一定方向上施加机械应力发生形变,使介电 体内正负电荷中心相对位移而极化,表面产生数量相等、 符号相反的束缚电荷,束缚电荷密度与作用应力成正比 ──正压电效应。 正压电效应:
电荷与应力成比例,用介质电位移D和应力X表达如下:
D dX
式中D的单位为C/m2,X的单位为N/m2,d称为压电常数(C/N)。
(a)
(b)
(c)
(d)
180畴翻转示意图 (a)成核,(b)和(c)纵向长大,(d) 横向长大
新畴的成核与畴壁的运动与晶体的各种性质,如应力分 布、空间电荷、缺陷等有很大关系,在缺陷处容易形成 新畴。
BaTiO3 晶体的新畴
成核速率与外加电 场有关,即
n exp(a / E )
新畴向前生长的速 度v近似为 : v = (E-E0)
按极化反转时原子位移的维数分类: 一维、二维、三维
常见的铁电材料
有序-无序 型铁电体 自发极化同个别离子的有序化相联系
含有氢键:KH2PO4
位移型铁 电体
自发极化同一类离子的亚点阵相对于 另一类亚点阵的整体位移相联系
钙钛矿结构:BaTiO3
铁钛矿结构
二、BaTiO3自发极化的微观机理
1. BaTiO3的晶体结构
三、铁电畴 1. 概念
铁电材料中的电畴类似于磁性材料中的磁畴,是由许多 晶胞组成的具有相同自发极化方向的小区域。
铁电陶瓷中电畴结构示意图
2. 畴壁
(1)概念:两铁电畴之间的界壁称为畴壁
两电畴“首尾相连”
使体系的能量最低
畴壁示意图
(2)类型: 90°畴壁 两电畴的自发极化方向互成90°
° 较厚:50-100A
居里温 度以上
以中央四个O2-为参考,各离子的位移情况 自发极化包括两部分:1. 直接由于离子位移(39%)
2. 由于电子云的形变
钛铁矿结构
LiNbO3、LiTaO3
O
Ta
Li
(a)
(b)
(a)LiTaO3的六角晶胞,氧未画出
(b)其在c平面上的投影
c轴
(a)
(b)
LiTaO3晶体结构示意图,水平线代表氧平面 LiNbO3和LiTaO3晶体结构是
6. 电滞回线分析
O点 : 无电场 晶体总电矩为0
OA 段 :
施加电场
沿电场方向电 畴扩展、变大, 与电场反平行 方向电畴变小 电畴方向趋 于 电场方向
极化强度随外加 电场增加而增加
C 附近 :
电场继 续增大
极化强度饱和 外推至E =0时, 得到自发极化 强度Ps
电场继 续增大
P与E成线 性关系
电场 降低
100-120KV/cm for bulk and 500-800kV/cm for thin films
非线性电学性能 (hysteresis loop)
(4)应用
高介电容器材料-利用高介电常数特性
MLCC, BaTiO3 铁电薄膜存储器-利用极化反转特性 铁电薄膜:PZT, SrBi2Ta2O9 热电探测器-利用热释电效应, PT, Sr0.5Ba0.5Nb2O6陶瓷
(a)
(b)
A B C D F
0.1m (c) (d)
E
0.2m
A A ’ C D A 0.2m 0.2m
B
LiTaO3颗粒内裂纹扩展引起电畴翻转的TEM照片
电畴运动
电场/应力--极化反转 极化(poling)过程:电场 诱导自发极化定向排
列--压电陶瓷的应用基
础 电场诱导极化反转--铁 电存储/电光应用
按极化轴数目分类:
单轴铁电体(RS、KDP、LN)和多轴铁电体(BT) 按原型相有无对称中心分类: 压电性铁电体(KDP、RS)和非压电性铁电体(BT) 按铁电相变时原子运动特点分类: 有序-无序型相变的(RS)和位移型相变的(BT、PT、LN) 按居里-外斯常数C的大小分类:
I类(105k)、II类(103k) 、III类(10k)
离子位移理论
正方结构BaTiO3中, Ti4+ 、O2-离子的位移情况 两 个 O2- 离 子 间 的 空 隙 大于 Ti4+ 离子的直径, 其在氧八面体内有位移 的余地,温度较高时 (大于120°C),离子 热振动能较大,因此 Ti4+ 离 子 接 近 周 围 6 个 O2- 离 子 的 几 率 相 等 , 晶胞内不会产生电矩, 自发极化为0。 温度降低(小于 120°C), Ti4+离子 热振动能降低,热振 动能特别低的 Ti4+ 不 足以克服 Ti4+ 和 O2- 离 子间的电场作用,就 有 可 能 向 某 一 个 O2离子靠近,发生自发 位 移 , 使 这 个 O2- 离 子发生强烈的电子位 移极化。 晶体沿着这个 方向延长,晶 胞发生畸变, 晶体从立方结 构转变为四方 结构,晶胞中 出现了电矩, 即发生了自发 极化。
180°畴壁 两电畴的自发极化方向互成180°
° 较薄:5-20A
电畴结构
电畴壁结构
电畴壁两侧极化矢 量不连续
磁畴壁(Bloch壁)中磁
化矢量连续变化
复杂的电畴结构
BaTiO3中的电畴结构
弛豫铁电单晶中的电畴结构
3. 观察方法
(1)电子显微技术 扫描电镜技术(SEM) 透射电镜技术(TEM) (2)光学技术 (3)化学腐蚀 (4)液晶法 分辨率高 可直观观察电场下电 畴的变化
-----铁电体的最重要判据 -----铁电体具有许多独特性质的主要原因
热释电体 (Pyroelectrics):具有自发极化的晶体--极性晶体 铁电体是热释电体的一个亚族
铁电态下,晶体的极化与电场的关系:电滞回线,铁电态 的一个标志。
Ps-饱和极化强度
Pr-剩余极化强度(remanent polarization)
Ec-矫顽场强(corcive field)
~2KV/cm -~120KV/cm 按照Ec大小可将铁电体分为:
软铁电体-小Ec
硬铁电体-大Ec
电滞回线是铁电体的重要物理特征之一,也是判别铁电性的 一个重要判据。
3. 铁电体的分类
结晶化学分类法:
软铁电体
硬铁电体
含氢键的晶体(KDP、RS)和双氧化物晶体(BT、PT、LN)
电光器件-利用电光效应,透明PLZT陶瓷(PLZT 9/65/35)
压电器件-利用压电和电致伸缩效应,PZT, PMN-PT
§6.2 压电性能
Piezoelectricity
一、压电效应 二、压电振子及其参数 三、压电陶瓷的预极化
四、压电材料及其应用
一、压电效应 1. 压电效应
1880年由居里兄弟(J. Curie and P. Curie)发现的。 晶体的压电效应是应力和应变等机械量与电场强度和 电位移(或极化强度)等电学量之间的耦合效应。
第六章
铁电性能和压电性能
§6.1 铁电性能
§6.2 压电性能
§6.3 介电性能
§6.1 铁电性能
一、铁电体 二、钛酸钡自发极化的微观机理 三、铁电畴
四、铁电体的性能及其应用
线性介质 介质的各种极化机构,所讲极化都是介质在外加 电场中的性质。没有外加电场时,介质的极化强 度等于零;有外加电场时,介质的极化强度与外 加电场E 成正比。 非线性介质 介质的极化强度与外加电场的关系是非线性的。
E6 C6 C1 A C2 C3 C4 C5 C7 F D3 D2 D1 B E5 E4