随机事件与概率(1)

合集下载

(完整版)概率论第一章随机事件与概率

(完整版)概率论第一章随机事件与概率
P(A) = A中样本点的个数 / 样本点总数
解题思路
1、将事件定义为某个参数,如A,B,C; 2、确定总样本空间样本数与事件对应的样本数 技巧:可以采用概率的性质和事件的运算关系灵 活变换。
2. 样本点 ω—— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
1.1.3 随机事件
1. 随机事件 —— 某些样本点组成的集合, Ω的子集,常用A、B、C…表示.
• 重复排列:nr

选排列: Pnr
n! n(n 1)......(n r 1) (n r)!
组合

组合:
Cnr
n r
n! r!(n r)!
Pnr r!
注意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
§1.1 随机事件及其运算 §1.2 概率的定义及其确定方法 §1.3 概率的性质 §1.4 条件概率 §1.5 独立性
§1.1 随机事件及其运算
1.1.1 随机现象:自然界中的有两类现象 1. 必然现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
乘法原理

大学概率论随机事件与概率

大学概率论随机事件与概率

② A B AB
AB
AB
A
B
BA
四、事件的运算律
1.交换律、结合律:(略)
2.分配律:
① AUBI C AUBAUC ② A I B UC AB U AC
3.对偶律:
① A U B A I B (和的逆=逆的积) ② A I B A U B (积的逆=逆的和)
例2. 用A、B、C的运算关系表示下列各事件:
P( A) A的测度(长度,面积,体积) 的测度(长度,面积,体积)
例4.
如果在一个5万平方公里的海域里有表面积达40平
方公里的大陆架贮藏着石油,
若在海域里随意选取一点
钻探, 问钻到石油的概率是多少?
解:
由题意知, 问题归结为几何概率的计算,
设A={钻到石油},
则 P( A) 40 50000
①三个事件中至少一个发生:
A U B UC
②没有一个事件发生:
ABC A U B UC
③恰有一个事件发生:
ABC U ABC U ABC
④至多有两个事件发生:
(考虑其对立事件)
ABC A U B UC
⑤至少有两个事件发生:
(由对偶律)
ABC U ABC U ABC U ABC AB U BC UCA
考虑可能出现的点数;
2 1, 2, 3, 4, 5, 6
E3: 记录某网站一分钟内受到的点击次数;
3 0,1,2,L
E4: 任选一人,
记录他的身高(m)和体重(kg).
4 h, g 0 h 3, 0 g 400
注: ①样本空间是一个集合;
②对于一个随机试验而言,
例如:
掷两枚均匀的骰子一次,

随机事件的概率(1)(共27张PPT)

随机事件的概率(1)(共27张PPT)

0≤ ≤1.

(2)概率及其记法:对于给定的随机事件 A,如果随着试验次数的增
加,事件 A 发生的频率 fn(A)稳定在某个常数上,把这个常数记作 P(A),称
为事件 A 的概率,简称为 A 的概率.
一般来说,随机事件 A 在每次试验中是否发生是不能预知的,但是
在大量的重复试验后,随着试验次数的增加,事件 A 发生的频率会逐渐
录如下:
射击次数
100
120
150
100
150
160
150
击中飞碟数
81
95
123
82
119
127
121
击中飞碟的频率
(1)计算各次记录击中飞碟的频率;
(2)这个运动员击中飞碟的概率约为多少?
解:(1)射击次数 100,击中飞碟数是 81,故击中飞碟的频率是
81
=0.810,同理可求得题表中的频率依次是
(5)从分别标有号码 1,2,3,4,5 的 5 个号签中任取一个,得到 4 号签;
(6)导体通电后,发热;
(7)三角形的内角和为 360°;
(8)某电话机在 1 分钟内收到 4 次呼叫.
解:(1)(6)是必然事件;(3)(7)是不可能事件;(2)(4)(5)(8)是随机事件.
目录
退出
4.某人射击 10 次,击中靶心 8 次,则击中靶心的概率为 0.8.这种说法
件的是(
)
A.③
B.①
C.①④
D.④
解析:①是不可能事件,②是不可能事件,③是随机事件,④是必然事
件.
答案:D
目录
退出
2.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:

1随机事件和概率

1随机事件和概率

解 :令A={第一次取到次品},B={第二次取到次品}, 需求P(B│A).
(1)在缩减的样本空间中计算.因第一次已经取得了次品, 剩下的产品共19件其中3件次品,从而
P(B│A)=3/19 (2)在原样本空间中计算,由于
二 、乘法公式
设P(B)>0,则有 P(AB)=P(B)P(A│B) 同样,当P(A)>0时,有: P(AB)=P(A)P(B│A) 上述乘法公式可推广至任意有限个事件的情形:
三、样本空间
试验E的所有基本结果构成的集合称为样本空间, 记为S。 S中的元素即E的每个基本结果称为样本点,记为 ω,即S={ω}。 基本事件是样本空间的单点集。 复合事件是由多个样本点组成的集合。 必然事件包含一切样本点,它就是样本空间S。 不可能事件不含任何样本点,它就是空集φ。
四、事件间的关系及其运算 例1 : 从一批产品中任取8件,观察其中的正品件数, 则这一试验的样本空间为:
可列个事件A1 , A2 , … , An的积记为A1 ∩ A2 ∩ … ∩ An
或A1A2 … An ,也可简记为 在可列无穷的场合,用 件同时发生。” 。 表示事件“A1、A2 …诸事
4.互不相容事件
事件A与事件B不能同时发生,即AB=φ,则称A 和B是互不相容的或互斥的。 基本事件是两两互不相容的。 5.对立事件 若A,B互不相容,且它们的和事件为必然事件,即
例2: 设A,B,C为三个事件,试用A,B,C表
示下列事件: (1)A发生且B与C至少有一个发生; (2)A与B都发生而C不发生; (3)A,B,C恰有一个发生; (4)A,B,C中不多于一个发生; (5)A,B,C不都发生;
(6)A,B,C中至少有两个发生。
1.2 事件的概率

概率论-第一章-随机事件与概率

概率论-第一章-随机事件与概率

第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。

这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。

这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。

随机现象所呈现出的这种规律性,称为随机现象的统计规律性。

概率论与数理统计就是研究随机现象统计规律性的一门数学学科。

§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。

举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。

随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。

随机试验£的所有可能结果的集合称为£的样本空间,记作0。

样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。

上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。

二、随机事件试验£样本空间。

第一章事件与概率

第一章事件与概率

1
古典概型的定义
定义
称满足以下两个特点的随机现象的 数学模型为古典概型,如果 (1) 有限性:试验的样本空间只有有 限个样本点; (2) 等可能性:每个样本点作为基本 事件出现的可能性相同.
利用排列、组合知识来求概率的 模型通常都属于古典概型. 那么, 古典 概型为什么要通过数数来求概率呢?
Department of Mathematics, Tianjin University
内 容 提 要
1 2 3 4
随机事件的定义 事件之间的关系 事件的运算律 例 题
Department of Mathematics, Tianjin University
3
事件的运算律
以下设A,B,C…等都是同一随机试验中的随机事件. 交换律: AB=BA,A B=B A. 结合律: ABC=A(BC),A B C=A (B C).
2
事件之间的关系
以下设A,B,C…等都是同一随机试验中 的随机事件. 包含(于):若A发生,则B一定发生, 则称A包含于B,记为A B. 相等:若A与B相互包含,则称A与B相 等,记为A=B.
Department of Mathematics, Tianjin University
事件的交(积):若事件C发生,当且 仅当A与B同时发生,则称C为A与B的交 (积)事件,记为C=A B,或简记为C=AB.
注:符号“ ”等同于“至少”.
事件的逆(对立):由样本空间中所有 不属于A的样本点构成的集合表示的 事件称为A的逆(对立)事件,记为 A . 注:若A与B对立,则A与B互不相 容,反之不然.即A、B对立,则AB= , 且A B= .
Department of Mathematics, Tianjin University

随机事件的概率(1)

随机事件的概率(1)

随机事件的概率导学目标:1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.自主梳理1.事件的分类(1)一般地,我们把在条件S下,____________的事件,叫做相对于条件S的必然事件,简称____________.(2)在条件S下,____________的事件,叫做相对于条件S的不可能事件,简称____________.(3)在条件S下可能发生也可能不发生的事件,叫做________________________________,简称随机事件.事件一般用大写字母A,B,C…表示.2.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称____________________为事件A出现的频数,称事件A出现的比例________________为事件A出现的频率.(2)在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个________附近摆动,即随机事件A发生的频率具有________,这个常数叫事件A的概率.3.事件的关系与运算定义符号表示包含关系如果事件A________,则事件B________,这时称事件B包含事件A(或称事件A包含于事件B)______(或______)相等关系若B⊇A且______,那么称事件A与事件B相等______并事件(和事件) 若某事件发生________________________,则称此事件为事件A与事件B的并事件(或和事件)______(或______)交事件(积事件) 若某事件发生________________________,则称此事件为事件A与事件B的交事件(或积事件)________(或______)互斥事件若A∩B为________事件,那么称事件A与事件B互斥A∩B=____对立事件若A∩B为________事件,A∪B为________事件,那么称事件A与事件B互为对立事件B=______(或A=____)4.概率的几个基本性质(1)概率的取值范围:________.(2)必然事件的概率:P(E)=____.(3)不可能事件的概率:P(F)=____.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=________.(5)对立事件的概率若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=____,P(A)=________.自我检测1.下列说法正确的是()A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的2.如果把必然事件和不可能事件看做随机事件的极端情形,随机事件A的概率取值范围是() A.P(A)>0 B.P(A)≥0C.0<P(A)<1 D.0≤P(A)≤13.从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是()A.3个都是正品B.至少有1个是次品C.3个都是次品D.至少有1个是正品4.袋中装有白球3个,黑球4个,从中任取3个,①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为()A.①B.②C.③D.④5.关于互斥事件的理解,错误的是()A.若A发生,则B不发生;若B发生,则A不发生B.若A发生,则B不发生,若B发生,则A不发生,二者必具其一C.A发生,B不发生;B发生,A不发生;A、B都不发生D.若A、B又是对立事件,则A、B中有且只有一个发生探究点一随机事件的概念例1一个口袋内装有5个白球和3个黑球,从中任意取出一只球.(1)“取出的球是红球”是什么事件,它的概率是多少?(2)“取出的球是黑球”是什么事件,它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件,它的概率是多少?变式迁移1某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.探究点二随机事件的频率与概率例2某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了“频数分布直方图”如图,请回答:(1)该中学参加本次高中数学竞赛的学生有多少人?(2)如果90分以上(含90分)获奖,那么获奖的概率大约是多少?(结果保留分数)变式迁移2投篮次数n 8 10 15 20 30 40 50进球次数m 6 8 12 17 25 32 38进球频率m n(1)填写上表.(2)这位运动员投篮一次,进球的概率约是多少?探究点三 互斥事件与对立事件的概率例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.变式迁移3 一个箱子内有9张票,其号数分别为1,2,…,9,从中任取2张,其号数至少有一个为奇数的概率是多少?1.随机事件在相同条件下进行大量试验时,呈现规律性,且频率m n总是接近于常数P(A),称P(A)为事件A 的概率.2.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A 的对立事件A 的概率,然后利用P(A)=1-P(A )可得解.一、选择题1.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是( )①恰好有1件次品和恰好有两件次品;②至少有1件次品和全是次品;③至少有1件正品和至少有1件次品;④至少1件次品和全是正品.A .①②B .①③C .③④D .①④2.下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率m n就是事件A 发生的概率; ③百分率是频率,但不是概率;④频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是( )A .①②③④B .①④⑤C .①②③④⑤D .②③3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( )A .甲成立,乙一定成立;乙成立,甲不一定成立B .甲成立,乙不一定成立;乙成立,甲一定成立C .甲成立,乙一定成立;乙成立,甲一定成立D .甲成立,乙不一定成立;乙成立,甲不一定成立4.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )A .至多有1次中靶B .2次都中靶C .2次都不中靶D .只有1次中靶二、填空题5.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.6.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.三、解答题7.某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率.8.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?11.现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.。

概率论与数理统计 第一章 随机事件与概率

概率论与数理统计 第一章 随机事件与概率
S AB
推广:
(1)n个事件A1,A2, An至少有一个发生
所构成的事件,称为 A1, A2, An的和或并,
记为
n
A1 A2 An Ai
i1
当A1, A2, An互斥时
n
n
Ai Ai
i1
i1
(2)可列无限多个事件 A1, A2, 至少有一个
(1kn)的不同排列总数为:
n n n nk
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张 第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
2、组合: 从n个不同元素取 k个
(1kn)的不同组合总数为:
C
k n

Ank k!

n! (n k)!k!

Ai
i1
三.互不相容事件(互斥事件)
若A与B不能同时发生,即 AB 则称A与B
互不相容(或互斥)。S与 互斥。
S
A
B
推广:n个事件 A1,A2, An互斥
A1, A2, An 中任两个互斥,即,
i≠j, i, j=1,2,3 ,……n.
四.事件的和(并) 事件A与B至少有一个发生所构成的事件, 称为A与B的和(并)记为A∪B。当A与B 互斥时,A∪B =A+B。
六. 对立事件(逆事件) 由A不发生所构成的事件,称为A的对立事件
(逆事件)。记为 A
A
A
AA ,A A S,A A.
例1.掷一质地均匀的骰子,A=“出现奇数点”= {1,3,5},B=“出现偶数点”= {2,4,6},C=“出现4或6”={4,6}, D=“出现3或5”={3,5},E=“出现的点 数大于2”={3,4,5,6}, 求 A B,C D,AE,E.

随机事件与概率(学生版)

随机事件与概率(学生版)

概率1 随机事件与概率①有限样本空间与随机事件(1)我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示,我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为E试验的样本空间.用Ω表示样本空间,用ω表示样本点.如果一个随机试验有n个可能结果结果ω1 ,ω2 ,… ,ωn则称样本空间Ω= {ω1 ,ω2 ,… ,ωn}为有限样本空间.(2)样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件成为基本事件.随机事件一般用大写字母A ,B ,C ,…表示.②各种事件必然事件,不可能事件,随机事件.在12件瓷器中,有10件一级品,2件二级品,从中任取3件.(1)“3件都是二级品”是什么事件?(2)“3件都是一级品”是什么事件?(3)“至少有一件是一级品”是什么事件?解:(1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件.(2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品.③事件的关系和运算一般地,若事件A发生,则事件B一定发生,我们就称事件A包含于事件B,记作A⊆B;一般地,事件A与事件B至少有一个发生,我们称这个事件为事件A与事件B的并事件(或和事件),记作A∪B(或A+B).一般地,事件A与事件B同时发生,我们称这样一个事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).一般地,如果事件A与事件B不能同时发生,也就是A∩B是一个不可能事件,即A∩B=∅,则称事件A与事件B互斥(或互不相容).一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即A∪B=Ω且A∩B=∅,则称事件A与事件B互为对立,事件A的对立事件记为A̅.④古典概型(1) 古典概型的特点有限性:样本空间的样本点只有有限个;等可能性:每个样本点发生的可能性相等.(2) 古典概型事件A的概率P(A)=事件A的样本点个数样本空间Ω的样本点个数⑤概率的基本性质性质1 对任意事件A,都有P(A)≥0性质2 必然事件的概率为1,不可能事件的概率为0;性质3 若事件A与事件B互斥时,则P(A∪B)=P(A)+P(B).性质4 若事件A与事件B对立事件,则P(B)=1−P(A) ,P(A)=1−P(B)性质5 如果A⊆B那么P(A)≤P(B)性质6 设A ,B是一个随机试验中的两个事件,有P(A∪B)=P(A)+P(B)−P(A∩B)【题型一】对各种事件、事件的关系和运算的理解【典题1】从5位男生和2位女生共7位同学中任意选派3人,属必然事件的是()A.3位都是女生B.至少有1位是女生C.3位都不是女生D.至少有1位是男生【典题2】从装有十个红球和十个白球的罐子里任取2球,下列情况中是互斥而不对立的两个事件是() A.至少有一个红球;至少有一个白球B.恰有一个红球;都是白球C.至少有一个红球;都是白球D.至多有一个红球;都是红球【典题3】如果事件A,B互斥,记A ,B̅分别为事件A,B的对立事件,那么()A.A∪B是必然事件B.A⋃B̅是必然事件C. A与B̅一定互斥D. A与B̅一定不互斥【题型二】求古典概型【典题1】先后投掷两枚骰子,出现的点数记作 (m ,n),设 X=m+n.(1)求m=n 的概率;(2)试列举出X≤6的所有可能的结果;(3)求 X≤3 或X>6的概率.【典题2】任取三个整数,至少有一个数为偶数的概率为.【典题3】一个正方体,它的表面涂满了红色.在它的每个面上切两刀可得27个小立方块,从中任取两个,其中恰有1个一面涂有红色,1个两面涂有红色的概率为 .【典题4】 数学与文学有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读,数学中有回文数,如343、12521等,两位数的回文数有11、22、33、…、99共9个,则三位数的回文数中为偶数的概率是 .【题型二】概率的基本性质【典题1】有一个公用电话亭,里面有一部电话,在观察使用这部电话的人的流量时,设在某一时刻,有n 个人正在使用电话或等待使用的概率为P(n),且P(n)与时刻t 无关,统计得到P(n)={(12)n ⋅P(0) ,1≤n ≤60 ,n ≥7,那么在某一时刻,这个公用电话亭里一个人也没有的概率P(0)的值是 .【典题2】袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少? 巩固练习1(★) 将一根长为a 的铁丝随意截成三段,构成一个三角形,此事件是( ) A .必然事件 B .不可能事件 C .随机事件 D .不能判定2(★) 在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是( ) A .必然事件B .不可能事件C .随机事件D .以上选项均不正确3(★) 下列每对事件是互斥事件的个数是( )(1)将一枚均匀的硬币抛2次,记事件A :两次出现正面;事件B :只有一次出现正面 (2)某人射击一次,记事件A :中靶,事件B :射中9环(3)某人射击一次,记事件A :射中环数大于5;事件B :射中环数小于5. A .0个 B .1个 C .2个 D .3个4(★) 袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是( ) A .至少有一个白球;都是白球 B .两个白球;至少有一个红球 C .红球、白球各一个;都是白球 D .红球、白球各一个;至少有一个白球5(★) 设M 、N 为两个随机事件,如果M 、N 为互斥事件,那么( ) A .M ∪N 是必然事件 B .M ∪N 是必然事件 C .M 与N 一定为互斥事件 D .M 与N 一定不为互斥事件6(★) 已知一次试验,事件A 与事件B 不能同时发生且A ,B 至少有一个发生,又事件A 与事件C 不能同时发生.若P (B)0.6=,P (C)0.2=,则()(P A C = )A .0.6B .0.5C .0.4D .0.37(★) 先后抛掷两枚骰子,设出现的点数之和是8,7,6的概率依次为P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 3<P 2<P 1C .P 3=P 1<P 2D .P 3=P 1>P 28(★★) 从集合A ={-1,12,2}中随机选取一个数记为k ,从集合B ={12,32,2}中随机选取一个数记为a ,则a k >1的概率为( ) A .13B .23C .79D .599(★) [多选题]抛掷两枚质地均匀的骰子,有如下随机事件:A = “至少一枚点数为1”, B = “两枚骰子点数一奇一偶”, C = “两枚骰子点数之和为8”, D = “两枚骰子点数之和为偶数”.判断下列结论,正确的有( ) A .A B ⊆B .B ,D 为对立事件C .A ,C 为互斥事件D .A ,D 相互独立10(★) 掷一枚质地均匀的骰子,观察出现的点数,设“出现3点”、“出现6点”分别为事件A 、B ,已知P(A)=P(B)=16,则出现点数为3的倍数的概率为 .11(★) 如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅰ、Ⅰ 构成,射手命中Ⅰ、Ⅰ、Ⅰ的概率分别为0.25、0.20、0.35,则不命中靶的概率是 .12(★) 事件A ,B 互斥,它们都不发生的概率为25,且P(A)=2P(B),则P(A)= .13(★) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为 .14(★★) 若连掷两次骰子,分别得到的点数是m 、n ,将m 、n 作为点P 的坐标,则点P 落在区域|2||2|2x y -+-内的概率是 .15(★★) 如图所示,A 、B 是边长为1的小正方形组成的网格的两个顶点,在格点中任意放置点C ,恰好能使其构成△ABC 且面积为1的概率是 .16(★) 抛掷一枚均匀的骰子,事件A 表示“朝上一面的点数是偶数”,事件B 表示“朝上一面的点数不超过4 ”,求P(A ∪B).17(★★) 某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过9站的地铁票价如表:乘坐站数x0<x≤33<x≤66<x≤9票价(元)123现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过9站,且他们各自在每个站下车的可能性是相同的.(1)若甲、乙两人共付费2元,则甲、乙下车方案共有多少种?(2)若甲、乙两人共付费4元,求甲比乙先到达目的地的概率.。

概率论第一章随机事件与概率

概率论第一章随机事件与概率

n n P Ai P( Ai ) P( Ai Aj ) P( Ai Aj Ak ) i 1 i 1 n 1 ...... ( 1) P( A1 A2 ...... An )
配对模型(续)
P(Ai) =1/n, P(AiAj) =1/n(n1), P(AiAjAk) =1/n(n1)(n2), …… P(A1A2……An) =1/n! P(A1A2……An)=
从中有返回地任取n 个. 则此 n 个中有 m 个不合格品的概率为:
n M (N M ) m n N
m
n m
n M N M m N N
m
n m
条件: m n ,
即 m = 0, 1, 2, ……, n. NhomakorabeaA
事件运算的图示
AB
AB
AB
德莫根公式
A B A B;
n i 1
A B A B
n
Ai
n i 1
Ai ;
i 1
Ai
n i 1
Ai
记号
Ω φ AB AB=φ AB AB AB
概率论
样本空间, 必然事件 不可能事件 样本点 A发生必然导致B发生 A与B互不相容 A与B至少有一发生 A与B同时发生 A发生且B不发生 A不发生、对立事件
概率论
第一章 随机事件与概率
概率论起源: 合理分配赌金问题
有一笔赌金, 甲乙两个人竞赌, 输赢的 概率都一样,都是1/2, 谁先能够赢累计达到6 盘,就获得这笔赌金。 但是一个特别的原因, 赌博突然终止了, 那个时候甲赢了5局, 乙赢 了2局, 问这笔赌金应该如何分配?

概率论知识点

概率论知识点
。其中L为几何度量(长度、面积、体积)。
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
若事件、相互独立,则可得到与、与、与也都相互独立。
必然事件和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足P(ABC)=P(A)P(B)P(C)
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:

随机事件的概率(1)

随机事件的概率(1)

“掷一枚硬币,出现正面” ------可能发生也可能不发生
“在标准大气压下且温度低于0℃时,雪融化”
-------不可能发生
思考:
1、通观察上述事件,分析各事件有什么特点?
2、按事件发生的结果,事件可以如何来分类?
1、“结果”是否发生与“一定条件”有直接关系 2、有些事件的“结果”一定发生;有些事件 的“结果” 一定不发生;有些事件的“结果” 可能发生也可能不发生。 按事件结果发生与否来进行分类
例如: ⑤抛一枚硬币,正面朝上 ⑥某人射击一次,中靶.等等
; https:/// 棋牌赚钱

给他倒了一杯水,因为我刚在幼儿园里学了一首歌,词里说的是给妈妈倒水,可我妈还没回来呢,我就先给我爸倒了。我爸只说了一句,好儿子……就流泪了。从那次起,我知道他是爱我的。光头小男孩说。 ? 我给我奶奶耳朵上夹了一朵花,要是别人,她才不让呢,马上就得揪下来。 可我插的,她一直带着,见着人就说,看,这是我孙子打扮我呢……我知道她是爱我了……另一个女孩说。 ? 我大大地惊异了。讶然这些事的碎小和孩子铁的逻辑。更感动他们谈论里的郑重神气和结论的斩钉截铁。爱与被爱高度简化了,统一了。孩子在被他人需要时,感到了一个幼小 生命的意义。成人注视并强调了这种价值,他们就感悟到深深的爱意,在尝试给予的现时,他们懂得了什么是接受。爱是一面辽阔光滑的回音壁,微小的爱意反复回响着,折射着,变成巨大的轰鸣。当付出的爱被隆重接受并珍藏时,孩子终于强烈地感觉到了被爱的尊贵与神圣。 ? 被太 多的爱压得麻木,腾不出左手的孩子,只得用右手,完成给予和领悟爱的双重任务。 ? 天下的父母,如果你爱孩子,一定让他从力所能及的时候,开始爱你和同围的人。这绝非成人的自私,而是为孩子一世着想的远见。不要抱怨孩子天生无爱,爱与被爱是铁杵成针百年树人的本领,就 像走路一样,需反复

随机事件的概率计算(1)

随机事件的概率计算(1)

几何概型计算方法
样本空间
确定所有可能的基本事件 ,构成样本空间,通常是
一个区域或体积。
等可能性
几何概型中,每个基本事 件的发生也是等可能的。
概率计算
事件A发生的概率P(A)等于 事件A包含的度量(如长度 、面积、体积等)与样本 空间的度量之比,即P(A) = m(A)/m(Ω),其中m(A) 为事件A的度量,m(Ω)为
02
古典概型与几何概型
古典概型计算方法
01
样本空间
02
等可能性
确定所有可能的基本事件,构成样本 空间。
古典概型中,每个基本事件的发生是 等可能的。
03
概率计算
事件A发生的概率P(A)等于事件A包含 的基本事件个数与样本空间的基本事 件个数之比,即P(A) = m/n,其中m 为事件A包含的基本事件个数,n为样 本空间的基本事件个数。
条件概率的性质
条件概率满足概率的所有性质,如非负性、规范性、 可加性等。
事件独立性判断方法
1 2 3
事件独立性定义
如果事件A的发生与否对事件B的发生概率没有 影响,则称事件A与事件B相互独立。
事件独立性判断方法
通过比较P(AB)与P(A)P(B)是否相等来判断事件A 与事件B是否相互独立。如果P(AB) = P(A)P(B) ,则事件A与事件B相互独立。
对立关系
如果两个事件中必有一个发生,且只有一个发生,则称这 两个事件是对立的。
概率定义及性质
概率定义
在相同条件下,随机事件A发生的可能性大小的度量。
概率性质
非负性、规范性、可加性。其中,非负性指任何事件的概率都不能是负数;规 范性指样本空间的概率等于1;可加性指对于任意两个互斥事件A和B,有 P(A+B)=P(A)+P(B)。

概率1-1随机事件

概率1-1随机事件

在每次试验中必有 一个样本点出现且仅 有一个样本点出现 .
概率论
若试验是将一枚硬币抛掷两次,观察正面出现 的次数: 则样本空间 S 0,1, 2 由以上两个例子可见,样本空间的元素是由试验的 目的所确定的. 如果试验是测试某灯泡的寿命: 则样本点是一非负数,由于不能确知寿命的上界, 所以可以认为任一非负实数都是一个可能结果, 故 样本空间
事件叫做事件 A 与事件 B 的和或并,记作
A B或 A + B .
A A+B B A+B
A+A= A
概率论
A+B
• 如在掷骰子试验中, 观察掷出的点数 . • A表示点数大于3; • B表示出现偶数点. • 则A+B表示出现2 点、4点、5点或6 点。
A
B
概率论
推广
、 An 中至少有一个发 类似地 , 称事件 A1、 A2、
、 An 的和事件 . 记之为 生的事件为事件 A1、 A2、
A1 A2 An , 或 A1 +A2 + +An n
简记为 Ai . 或
i 1
n
A
i 1
i
中至少有一个发生的事件为 称事件 A1、 A2、
事件 A1、 A2、 的和事件 . 记之为 A1 A2 ,
E3:掷两粒色子,观察出现的点数之和。
概率论
E 4 : 记录电话交换台一分钟 内接到的呼唤次数 . E 5 : 在一批灯泡中任意抽取一支,测试它的寿命.
E6:测试灯泡的寿命是否超过3000小时。
上述试验具有下列共同的特点:
概率论
(1) 试验可以在相同的条件下重复进行——可重复 性; (2) 每次试验的可能结果不止一个, 并且能事先明确 试验的所有可能的结果——可观察性; (3) 进行一次试验之前不能确定哪一个结果会出 现——随机性. 定义:对随机现象进行的观察与试验统称为随机 试验.简称试验,通常用E表示随机试验.

高一数学(人教A版)随机事件与概率1

高一数学(人教A版)随机事件与概率1

(2)将一枚质地均匀的硬币连续抛掷两次,观察它落 地时正面朝上的次数,写出试验的样本空间.
用 x 表示落地时“正面朝上的次数”,则样本空间
={0,1,2}
E1:体育彩票摇奖时,将10个质地和大小完全相同,分别标
号0,1,2,…,9的球放入摇奖器中,经过充分搅拌后摇出 一个球,观察这个球的号码;
E1 的样本空间:{摇出0号球,摇出1号球,…,摇出9号球}.
m
m
{0,1, 2,3, 4,5, 6, 7,8,9}
E2 的样本空间:{正面朝上,反面朝上}.
{1, 0}
h
t
{h,t}
抛掷一枚质地均匀的骰子,观察它落地时朝上的面的 点数,写出试验的样本空间.
解:用 i 表示朝上面的
以表示为 {1, 2,3, 4,5, 6}.
E1 :体育彩票摇奖时,将10个质地和大小完全相同,分别
标号0,1,2,…,9的球放入摇奖器中,经过充分搅拌后 摇出一个球,观察这个球的号码;
E2 :抛掷一枚质地均匀的硬币,观察它落地时哪一面朝上;
E3 :在一批灯管中任意抽取一只,测试它的寿命.
我们把对随机现象的实现和对它的观察称为随 机试验(random experiment),简称试验,常用字母E表示.
(2)用集合表示下列事件:T =“电路是断路”;
B
解:T =“电路是断路”等价于 (x1, x2 , x3 ) , A
x1 0,或 x1 1,x2 x3 0 .所以
C
T {(0, 0, 0), (0,1, 0), (0, 0,1), (0,1,1), (1, 0, 0)} .
如图,抛掷一红一蓝两颗质地均匀的六面体骰子,记下骰 子朝上面的点数.
(1)试验可以在相同条件下重复进行; (2)试验的所有可能结果是明确可知的,并且不止一个;

概率论 第一章随机事件与概率

概率论 第一章随机事件与概率

27 January 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第29页
27 January 2020
华东师范大学
第一章 随机事件与概率
第一章 随机事件与概率
第28页
注意
抛一枚硬币三次 抛三枚硬币一次 Ω1={(正正正), (反正正), (正反正), (正正反),
(正反反), (反正反), (反反正), (反反反)} 此样本空间中的样本点等可能. Ω2={(三正), (二正一反), (二反一正), (三反)} 此样本空间中的样本点不等可能.
华东师范大学
第一章 随机事件与概率
第2页
1.1.1 随机现象
随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
特点:1. 结果不止一个; 2. 事先不知道哪一个会出现.
随机现象的统计规律性:随机现象的各种结果
会表现出一定的规律性,这种规律性称之为 统计规律性.
27 January 2020
27 January 2020
华东师范大学
第一章 随机事件与概率
第26页
1.2.3 确定概率的频率方法
随机试验可大量重复进行.
进行n次重复试验,记 n(A) 为事件A的频数,

n( A) fn ( A) n
为事件A的频率.
频率fn(A)会稳定于某一常数(稳定值).
用频率的稳定值作为该事件的概率.
常用大写字母 X、Y、Z …表示.
27 January 2020

概率论与数理统计随机事件与概率随机事件

概率论与数理统计随机事件与概率随机事件

概率论与数理统计第1章随机事件与概率第1讲随机事件第一讲随机事件随机现象随机现象的统计规律性随机试验如何研究随机现象的规律性?概率统计的研究对象概率统计的研究内容全概率统计的研究方法本讲内容01 随机试验与样本空间02 随机事件03 随机事件的关系与运算随机现象的规律性是通过大量试验呈现出来的,为了研究这种规律性,我们需要对随机现象进行调查、观察或试验.这类工作我们统称为“随机试验”,简称为“试验”,用E表示.随机试验具有下列三个特点:试验可以在相同的条件下重复进行;试验的所有结果明确可知,并且不止一个;每次试验只能出现一个结果,事先不能确定.随机试验具有下列三个特点:试验可以在相同的条件下重复进行;试验的所有结果明确可知,并且不止一个;每次试验只能出现一个结果,事先不能确定. 例1给微信好友发消息,观察对方是否回复;检验10件产品,记录其中的次品数;调查某收银台一天内使用移动支付的次数;研究某品牌电脑的使用寿命.随机试验E 所有可能的结果组成的集合,记为S 或Ω.E 1给微信好友发消息,观察对方是否回复.E 2检验10件产品,记录其中的次品数.1=S 2=S 样本空间 例2{0,1,2,,10}E 4研究某品牌电脑的使用寿命.E 3调查某收银台一天内使用移动支付的次数.3=S 4=S 注研究随机现象时, 第一步就是建立样本空间.{0,1,2,3,}{|0}≥t t本讲内容01 随机试验与样本空间02 随机事件03 随机事件的关系与运算随机事件样本空间的子集, 记为A ,B ,…基本事件仅由一个元素(样本点)组成的子集,每次试验必定生.发生且只可能发生一个的结果.复合事件由若干个基本事件组成的随机事件.每次试验必定不发生的事件,记为每次试验必定发生的事件,即样本空间S . 必然事件不可能事件∅=A =B =C =D 抛骰子例3.AS文氏图(Venn diagram)在一般情况下,事件的关系是怎样的呢?事件是样本空间的子集,因此,事件的关系和运算与01随机事件集合的关系和运算是完全相似的. 要学会利用概率论的语言来解释这些关系及其运算.这里需要强调的是,本讲内容01 随机试验与样本空间02 随机事件03 随机事件的关系与运算A=BSAB它表示事件A 发生,则事件B 一定发生.它表示:事件A 与事件B 的样本点完全相同.().⊂⊃A B B A 包含关系如果事件A 的样本点都在事件B 中,则称事件A 包含于事件B .抛一枚骰子中的随机试验中=A例4相等关系=B{2},A B⋃ 事件的和(并)考察某同学期末考试的成绩情况.=A 例5事件A 与事件B 的样本点合在一起构成的事件.它表示:“事件A 与事件B 至少有一个发生”.A B ⋃=BA ABS=B推广推广它表示英语、高数至少有一门及格.1=ni i A 至少有一个发生.表示12,,,n A A A 1∞=i i A 同时发生.表示12,,A A它表示英语、高数两门课都及格.A B AB⋂或 事件的积(交)表示事件A 与事件B 共有的样本点构成的事件.考察某同学期末考试的成绩情况.A = 例5它表示:“事件A 与事件B 同时发生”.AB =B=推广推广1=ni i A 12,,n A A A 表示同时发生.1∞=i i A 12,,A A 表示同时发生.A B- 事件的差由属于A 但不属于B 的样本点构成的事件.A =考察电视机的使用寿命t (:h) 例4它表示:“事件A 发生而事件B 不发生”.B =A B -=SBA -A B{t |t 3000}.>{t |t 10000}≥,{t |3000t 10000}<<,互不相容(互斥)若事件A ,B 不能同时发生.即考察电视机的使用寿命t (:h)A = 例5B =ABS则事件A 与B 互不相容. 对立事件(逆事件)"A∩B=Φ".则称事件A 与B 互不相容.对于事件A ,由所有不包含在A 中的样SAB A=本点所组成的事件称为A 的对立件,{t |t 3000}>,{t |t 10000}≥,记对应事件运算集合运算()=A B C ()=A B C 03随机事件的关系和运算运算规律BA ,=AB =A B .BA ()ABC ,()=A B C ().A B C ()().A CBC ()=A B C ()().A B A C (1)交换律:(2)结合律:(3)分配律:逆交和差=A B 1==ni i A 03随机事件的关系和运算运算顺序括号优先AB ,.A B =A B 1=ni i A , 1.=ni i A 1==ni i A(4)对偶律:(D.Morgan 律)CAB ABCABC A B C利用事件的关系和运算可表达复杂事件01随机事件的关系与运算例6设A 、B 、C 表示三个事件,利用A 、B 、C 表示下列(1)A 发生, B 与C 不发生.(2)A 与B 发生, C 不发生.(3)A 、B 、C 中至少有一个发生.(4)A 、B 、C 都发生.事件ABC =ABACBCC B A CB AC B A C B A C B A ——A ,B ,C 不都发生.=ABC ⋃⋃A B C03随机事件的关系和运算设A 、B 、C 表示三个事件,利用A 、B 、C 表示下列事件(5)A 、B 、C 都不发生.(6)A 、B 、C 中不多于一个发生.(7)A 、B 、C 中不多于两个个发生(8)A 、B 、C 中不至少有两个发生.D 如右图所示的电路中,设事件A 、B 、C 分别表示开关a 、b 、c 闭合,用A 、B 、C 表示事件“指示灯亮”及事件“指示灯不亮”. 例701排列及其逆序数解=D设abc=D ().A B C =D ,,则D 发生当且仅当A 及B ∪C 都发生A 发生当且仅当发生或 BC 发生=ABC =ABCABCABCABC A B C ABCABCABC设A ,B ,C 分别表示第1,2,3个产品为次品, 例8A B C AB BC CA用A ,B ,C 的运算可表示下列各事件(1)至少有一个次品(2)没有次品(3)恰有一个次品(4)恰有两个个次品()()()ABCABCABC ABCABCABC ABC ABC=(5)至多有两个次品(考虑其对立事件)ABC =第1讲随机事件这一讲我们学习了随机事件以及事件间的关系与运算,利用这些关系与运算,我们可以用简单事件去表示复杂事件,从而利用简单事件的概率得到复杂事件的概率.下一讲我们介绍一类简单概率模型——古典概型.学海无涯,祝你成功!概率论与数理统计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
事件 事件B “出现小于5的点”B 1,2, 3, 4
2020/10/14
14
样本空间的两个特殊子集
它包含了试验的所有可能的结果,所以在每
次试验中它总是发生,称为必然事件.
它不包含任何样本点,因此在每次试验中都 不发生称之为不可能事件.
注意: 虽然必然事件与不可能事件不是随机事件,
的两
为了 方便,我们把它们作为随机事件
水上在抛摄物氏体0一度定一下定落会;沸腾;必必定定发不生发现生象 现象
确 定 性 现 象
D. 明天的最高温度;
不 确 定 性 现 象(偶 然 现 象)
E. 新生婴儿的体重.
2020/10/14
6
我们将偶然现象称为随机现象。
从表面上看,随机现象的每一次观察结果 都是随机的,但多次观察某个随机现象,便可以 发现,在大量的偶然之中存在着必然的规律.
注: 样本空2间020是/10/古14 典概率的关键的概念,一定要理解。 12
例如 试验
E1 掷一枚硬币。 :{正,反}
E2 记录某商场一天内接待的顾客数。
:{0,1,2,3,4,• ••}
E3 从一批灯管中任取一只,测试其寿命。
:{T,T 0}
E4 射手射击,击不中再击,直至击中为止,观察
射击的情况。记1表示击中,0表示未击中。
(随机性) 2020/10/14
9
E 1:观察某储蓄所一天的营业额; E 2 掷一颗骰子,观察出现的点数; E 3 抛掷一枚硬币,观察出现的正反面;
E 4 观察某地一天的最高温度;
E 5 观察新生婴儿的体重.
2020/10/14
10
二、随机事件
(1) 在一次随机试验中,可能出现也可能不出现,而 在大量重复试验中具有统计规律性的事件,称为随机 事件(或偶然事件),简称为事件。
§1.1随机事件; §1.2随机事件的概率; §1.3古典概型与几何概型; §1.4条件概率*; §1.5事件的独立性* ;
5
作业: 1-1:8,9 1-2:2,4 1-3:5,6,9 1-4:6,8,10 1-5:2,4,5,8
概率论研究的对象
我们的生活常遇到这些现象.
A. 太阳从东方升起;
B. C.
A B(或记作B A) (2) 事件相等
若事件B包含事件A 且事件A包含事件B, 则称事件A与B相等, 记作A=B。
A B且B A
2020/10/14
A
B
17
(3) 和事件(并)
事件A与B至少有一个事件发生,即“A或B”,这 一事件称为事件A与B的和,记作A∪B或 A+B
B
A
A A B BA B
个端点,放在随机事件中加以讨论。
2020/10/14
15
四、 事件间的关系与运算 随机事件与集合的关系:
基本事件 { }独点集
复合事件 A、B、C…集合; 必然事件
不可能事件
2020/10/14
16
(1) 事件的包含关系
若事件A的发生必然导致事件B的发生,则称事 件B包含事件A,或称事件A包含于事件B,记作
等教育出版社
3推、荐统阅计学读与书计籍量:经见济学 “多绪米尼论克”.萨尔瓦多 等,
学出版社
关于教材配套光盘:作为习题集及解答使用 2
高 复旦大
如何学好“概率统计”课程 课前预习
课堂跟进
课后回顾+练习
3
概率论与数理统计课程结构图
Probabili ty
Statistic s
4
第一章 随机事件及其概率
A
2020/10/14
B
AB
20
(6) 对立事件或互逆事件
如果事件A与B满足
则称
A
B
, 且AB
,
事件A与事件B互为对立事件,事件A的对立事
件记作 A 。
一、随机试验
2020/10/14
8
从观察试验开始
对随机现象进行观察和所做的科学试验,
统称为随机试验。简称试验,一般记作E。
随机试验的特点:
1. 在相同条件下,可以重复进行试验;(重复性)
2. 每次试验的结果可能不止一个,并且事先能够 明确所有可能的结果;(结果可知性)
3. 在试验进行之前,不能确定那一种结果会出现。
:{1,01,001,0001,• ••}
2020/10/14
13
注意: (1) 仅含一个样本点的事件称为基本事件
随机试验: 掷一颗骰子,观察出现的点数.
基本事件:不能分解1成,其2他,事3件, 组,合6的 最简单的随机事件
(2)由若干个基本事件合成的事件,称为复合事件.
复合 事件A “出现奇数点” A 1, 3, 5
掷一颗骰子试验:事件A “出现奇数点”
(2)必然事件:在一次试验中必然发生的事件称为
必然事件,记作 .
掷一颗骰子试验:事件B “出现小于7的点”
(3)不可能事件:在一次试验中必然不发生的事
件称为不可能事件,记作 .

掷一颗骰子试验:事件C “出现8点”
2020/10/14
11
三、 样本空间
随机试验 E 每个可能的结果 ,称为随
随机现象有其偶然性一面,也有其必然 性一面,这种必然性表现在大量重复试验或 观察中随机现象所呈现出的固有规律性,称 为随机现象的统计规律性.
随机现象常常表现出这样或那样的统计规 律,这正是概率论所研究的对象.
概率论就是研2020/究10/1随4 机现象统计规律的一门数学学7 科。
§1.1 随机事件
2020/10/14
18
(4) 事件的积(交)
事件A与B同时发生,即“A且B”,这一事件称 为事件A与B的积,记作AB。(或记作 A∩B )
B
A
AB A AB B
AB
2020/10/14
19
(5)互斥事件或互不相容事件
若事件A与B不可能同时发生,即AB=Φ, 称事 件A与B互不相容(或称互斥)。
概率论与数理统计
在终极的分析下,一切知识都是历史 在抽象的意义下,一切科学都是数学 在理性的基础上,所有的判断都是统计学
1
教材:概率论与数理统计(经管类 吴赣昌 主编,)中,国人第民大三学版出版社
参考教材:
1、概率论与数理统计 浙江大学 盛骤 等主编, 高等教
育出版社
2、概率论与数理统计教程
魏宗舒等
机试验的样本点或基本事件,由所有的样本点组成的
集合,称为试验E 的样本空间,记作

随机试验: 对某种自然现象进行的一次观察(或观测)。
如:掷一颗骰子,观察出现的点数.
基本事件: 随机试验的每一个可能的结果
如:掷一颗骰子i 出i现的 ,
1,2,
样本空间: 所有基本事件的全体
如:掷一颗骰子,出现的点数全体. {1,2,3,4,5,6}
相关文档
最新文档