第五章 微生物的代谢

合集下载

第五章 微生物的代谢

第五章 微生物的代谢

为混合酸发酵。
EMP
葡萄糖
乳酸、乙酸、甲酸 丙酮酸 乙醇 、CO2 、H2 琥珀酸
五 丙酮-丁醇发酵
——严格厌氧菌进行的唯一能大规模生产的发酵产 品。(丙酮、丁醇、乙醇混合物,其比例3:6:1)
——丙酮丁醇梭菌(Clostridium acetobutyricum
2丙酮酸 2乙酰-CoA
缩合
乙酰-乙酰 CoA
• 为细胞生命活动提供ATP 和 NADH • 是连接其它几个重要代谢途径的桥梁 • 为生物合成提供多种中间代谢物
2. HM途径(磷酸戊糖支路, 单磷酸己糖途径)
ATP 12NADPH+H+ 36ATP 35ATP
6C6
6C5
经过系列反应后合成己糖 6CO2
5C6
C6为己糖或己糖磷酸;C5为核酮糖-5-磷酸;打方框的为终产物; NADPH+H+必须先由转氢酶将其上的氢转到NAD+上并变成 NADPH+H+后,才能进入呼吸链产ATP;
NADH + H+ NAD+
•异型乳酸发酵途径:肠膜明串珠菌,短乳杆菌
PK/ HK
葡萄糖
乳酸 + 乙醇 + CO2 + 1ATP
•双岐发酵途径:双岐杆菌
PK/ HK 葡萄糖 乳酸 + 乙酸 + CO2 + 2.5ATP
三 丙酸发酵(丙酸细菌,厌氧菌)
葡萄糖
EMP
丙酮酸
丙酸
乳酸
四 混合酸发酵
由于代谢产物中含有多种有机酸,故将其称
生活在盐湖及海边的岩池等盐浓度很高环境
胞内积累高浓度的甘油从而使细胞的渗透压保持平衡

微生物学 第五章 微生物的代谢

微生物学 第五章 微生物的代谢

ED(%) — — — — — 71 100 — — 100 100 —
磷酸解酮酶途径
发酵类型
由于在各种发酵途径中均有还原性氢供体NADH+H+产生,但 产量并不多,若不及时将它们氧化再生,葡萄糖分解产能将会中断, 这样,微生物就以葡萄糖分解过程中形成的各种中间产物为氢(电 子)受体来接受NADH+H+和NADH+H+的氢(电子),于是产生 各种各样的发酵产物。
3. ED途径(Entner-Doundoroff)途径 (2-酮-3脱氧-6-磷酸葡糖酸 裂解途径)
4. 磷酸解酮酶途径
EMP途径
葡萄糖分子经转化成1,6—二
磷酸果糖后,在醛缩酶的催化下, 裂解成两个三碳化合物分子,即磷
酸二羟丙酮和3-磷酸甘油醛。 3-磷酸甘油醛被进一步氧化生 成2分子丙酮酸,
合成代谢(anabolism)
是指细胞利用简单的小分子物质合成复杂大分子的 过程,在这个过程中要消耗能量。
合成代谢所利用的小分子物质来源于分解代谢过程 中产生的中间产物或环境中的小分子营养物质。
能量与代谢的关系
分解代谢

物质代谢





能量代谢
合成代谢 耗能代谢
产能代谢
无论是分解代谢还是合成代谢,代谢途径都是由一系列连续的酶促反应构成的
2CH3CH2OH+2CO2+2ATP
酵母菌利用葡萄糖进行三种类型的发酵
当环境中存在亚硫酸氢钠时,由于乙醛和亚硫酸盐结合生成难 溶的磺化羟基乙醛而不能作为NADH2的受氢体,所以不能形成乙 醇,迫使磷酸二羟丙酮代替乙醛作为受氢体,生成α-磷酸甘油进一 步水解脱磷酸而生成甘油,称为酵母的二型发酵;

微生物学第五章微生物的代谢

微生物学第五章微生物的代谢
细胞膜透性的调节
通过改变细胞膜的通透性,控制代谢底物和产物的进出,从而调 节代谢过程。
微生物代谢的基因调控
01
原核生物的基因调 控
通过操纵子模型实现基因表达的 调控,包括正调控和负调控两种 方式。
02
真核生物的基因调 控
通过转录因子和顺式作用元件的 相互作用,实现基因表达的精确 调控。
03
基因表达的诱导和 阻遏
03 氮的转化代谢
微生物还可以通过氮的转化代谢将一种含氮化合 物转化成另一种含氮化合物,如硝酸盐还原成氨 的过程。
04Βιβλιοθήκη 微生物代谢的调节与控制代谢调节的方式与机制
酶活性的调节
通过改变酶的构象或修饰酶活性中心,从而调节代谢途径中关键 酶的活性。
代谢物浓度的调节
代谢物浓度的变化可以影响酶的活性,从而调节代谢速率。
用、液相色谱-质谱联用等。
核磁共振法
利用核磁共振技术对微生物代 谢产物进行结构和构象分析, 可以获得代谢产物的详细化学
信息。
生物信息学分析
利用生物信息学方法对微生物 代谢组学数据进行处理和分析, 包括代谢途径分析、代谢网络 构建、代谢物鉴定和代谢调控 研究等。
THANKS
感谢观看
微生物代谢产物的生物活性与应用
抗生素
由微生物代谢产生的具有抗菌活 性的化合物,用于治疗细菌感染。

微生物代谢产生的生物催化剂,广 泛应用于食品、医药、化工等领域。
激素
某些微生物代谢产物具有激素活性, 可用于调节动植物生长发育。
微生物代谢在环境保护和能源领域的应用
污水处理
利用微生物代谢降解污水中的有机污染物,净化水质。
02
微生物的能量代谢
能量代谢的基本过程

第五章 微生物的代谢

第五章 微生物的代谢

(三)半纤维素的分解 半纤维素也是植物细胞壁的重要组成成分,在植
物体内的含量很高,仅次于纤维素,半纤维素是由戊 糖(主要是木糖和阿拉伯糖)和己糖(主要是半乳糖 和甘露糖)缩合而成的聚合物,有些种类植物在组成 半纤维素的亚基中,还有糖醛酸(主要是半乳糖醛酸 和葡萄糖醛酸)。
半纤维素比纤维素容易分解,能够分解它的微生 物种类也比较多,例如细菌中的噬纤维菌,梭菌中的 某些种类,真菌中的曲霉、青霉、木霉等的某些种类。 半纤维素在相应酶的作用下,分解为相应的单糖。
•反应步骤简单,产能效率低.
• 此途径可与EMP途径、HMP途径和TCA循环相连 接,可互相协调以满足微生物对能量、还原力和不 同中间代谢物的需要。好氧时与TCA循环相连,厌 氧时进行乙醇发酵.
ED途径的总反应

• •
ATP
• • •
ATP
C6H12O6
ADP
KDPG
2ATP NADH2 NADPH2 2丙酮酸
HMP途径的重要意义
•为核苷酸和核酸的生物合成提供戊糖-磷酸。
•产生大量NADPH2,一方面为脂肪酸、固醇等物质的合成提 供还原力,另一方面可通在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可 以调剂戊糖供需关系。
•途径中的赤藓糖、景天庚酮糖等可用于芳香族氨基酸合成、 碱基合成、及多糖合成。
醛再氧化成有机酸,最后按脂肪酸β-氧化的方
式分解,为机体生长提供必要的能量与小分子 化合物。
(二)脱氨作用 脱氨基主要有氧化脱氨基(大肠杆菌等参与)、水解
脱氨基(酵母菌等参与)和还原脱氨基(大肠杆菌等参 与)三种方式。 1.氧化脱氨基 CH3CHNH2COOH+1/2O2→CH3COCOOH+NH3 2.水解脱氨基 RCHNH2COOH+H2O→RCH2OH+CO2+NH3 3.还原脱氨基 HOOCCH2CHNH2COOH→HOOCCH=CHCOOH+ NH3

10-12 第五章 微生物的代谢

10-12 第五章  微生物的代谢

1、生物氧化的形式:
包括脱氢或脱电子
①失电子:
Fe2+ → Fe3+ + e CH3-CHO
②化合物脱氢、递氢: CH3-CH2-OH
NAD NADH2
2、生物氧化的过程: 脱氢(或电子)、递氢(或电子)和受氢(或电子)三 个阶段
3、生物氧化的功能: 产能(ATP)、产还原力[H]和产小分子中间代谢物
德国: (Carl Neuberg)
目前甘油生产中使用的微生物 Dunaliella aslina(一种嗜盐藻类) 生活在盐湖及海边的岩池等盐浓度很高环境
胞内积累高浓度的甘油使细胞的渗透压保持平衡
由EMP途径中丙酮酸出发的发酵
②同型乳酸发酵:发酵产物只有乳酸
丙酮酸
NADH2
乳酸
同型乳酸发酵菌株有: 德氏乳杆菌(L.delbruckii)、嗜酸乳杆菌(L.acidophilus)、植物乳杆菌 (L.plantarum)、干酪乳杆菌(L.casei)、粪链球菌(Streptococcus faecalis)
(5)Stickland反应
氨基酸同时为碳源、氮源和能源 以一种氨基酸为H供体,而另一种氨基酸为H受体来实现 生物氧化产能的发酵类型。
3乙酸
丙氨酸
+
2甘氨酸
3NH3
CO2 ATP
Stickland反应特点:
部分氨基酸的氧化与另一些氨基酸的还原相偶联; 产能效率低,1ATP/1G。
各途经的相互关系
H2O
2-酮-3-脱氧-6-磷酸-葡萄糖酸
丙酮酸
~~醛缩酶
(KDPG)
有氧时与TCA循环连接 无氧时进行细菌乙醇发酵
葡萄糖只经过4步反应即可快速获得由EMP途径须经10步 才能获得的丙酮酸。

第五章 微生物的代谢

第五章 微生物的代谢

( 3)通过ED途径进行的发酵: 通过ED途径的发酵就是指细菌的酒精发酵。 酒精发酵有三个类型,即通过EMP途径的酵母 酒精发酵、通过HMP途径(异型乳酸发酵)的 细菌酒精发酵和通过ED途径的细菌酒精发酵。 ①酵母的“同型酒精发酵”:由酿酒酵母等通过 EMP途径进行。
葡萄糖十2ADP+2Pi——2乙醇十2CO2+2ATP
(一) 化能自养微生物:
化能自养微生物还原CO2 所需要的ATP和「H」 是通过氧化无机底物而获得的。产能的途径主 要是经过呼吸链的氧化磷酸化反应,因此,化 能自养菌一般都是好氧菌。 化能自养微生物产能效率、生长速率和生长得 率都很低。与异养微生物相比,其能量代谢主 要有3个特点:①无机底物的氧化直接与呼吸 链发生联系,这与异养微生物对葡萄糖等有机 底物的氧化要经过多条途径逐级脱氢明显不同; ②呼吸链的组分更为多样化,氢或电子可以从 任一组分直接进入呼吸链;③产能效率即P/ O比一般要低于化能异养微生物。
(2)硫酸盐呼吸(suifae respiration)
是严格厌氧的硫酸盐还原细菌(或反硫化细菌) 在无氧条件下获取能量的方式,其特点是底物 脱氢后,经呼吸链递氢,最终由末端氢受体硫 酸盐受氢,在递氢过程中与氧化磷酸化作用相 偶联而获得ATP。硫酸盐呼吸的最终还原产物 是H2S。能进行硫酸盐呼吸的严格厌氧菌有脱 硫弧菌,巨大脱硫弧菌和致黑脱硫肠状菌等。 在浸水或通气不良的土壤中,厌氧微生物的硫 酸盐呼吸及其有害产物对植物根系生长十分不 利(例如引起水稻秧苗的烂根等),故应设法 防止。
过程:脱氢(或电子);递氢(或电子)和受氢(或电
子) 结果:产能(ATP);产还原力(H)和产小分子中间代 谢物。
(一)底物脱氢:
主要有四条途径:EMP、HMP、ED途径和三羧酸循环

第五章 微生物代谢

第五章 微生物代谢

葡萄糖直接氧化途径图
Stickland反应
某些厌氧梭菌如生孢梭菌(Clostridium sporogenes) 等,可把一些氨基酸当作碳源、氮源和能源。这是以 一种氨基酸作氢供体,另一种氨基酸作为氢受体进行 生物氧化并获得能量的发酵产能方式。后将这种独特 的发酵类型,称为Stickland反应。
1、EMP途径
2、HMP途径
3、ED途径
4、WD途径(磷酸解酮酶途径)
5、葡萄糖的直接氧化作用
1、EMP途径(糖酵解)
2、HMP途径
3、ED途径
ED途径的特点:
•特征反应为2-酮-
3-脱氧-6-磷酸葡萄 糖酸裂解为丙酮酸 和3-磷酸甘油醛 •特征性酶是2-酮3-脱氧-6-磷酸葡萄 糖酸醛缩酶 •2分子的丙酮酸来 源不同 •1mol葡萄糖经途 径只产生1molATP
(二)、肽聚糖的合成
肽聚糖是绝大数原核生物细胞壁所含有的独特成 分;它在细菌的生命活动中有着重要的功能。它 是许多重要抗生素作用的物质基础。 根据反应部位的不同可分成三个合成阶段
(三)、 微生物次生代谢物的合成
1.概念
次生代谢物是指某些微生物生长到稳定期前后, 以结构简单、代谢 途径明确、产量较大的初生代谢 物作前体,通过复杂的次生代谢途径所合成的结构复 杂的化学物。
第 五 章
微生物的代谢
2学时
本章重点:
微生物的产能代谢:发酵、有氧呼吸、无氧呼 吸,酵母菌乙醇发酵,次级代谢初级代谢。
一、代谢调节 二、微生物产能代谢
三、耗能代谢
第一节 代 谢 概 论
新陈代谢(metabolism)简称代谢,是活细胞 内发生的各种分解代谢(catabolism)和合成 代谢(anabolism)的总和。 分解代谢酶系 复杂分子 简单分子 + ATP + [H] (有机物) 合成代谢酶系

5、微生物的代谢

5、微生物的代谢

(一)微生物的氧化
生物氧化作用:细胞内代谢物以氧化作用释放(产生)能量
的化学反应。氧化过程中能产生大量的能量,分段释放,并以 高能键形式贮藏在ATP分子内,供需时使用。
生物氧化的方式:
①和氧的直接化合: C6H12O6 + 6O2 → 6CO2 + 6H2O
②失去电子:
Fe2+ → Fe3+ + e –

EMP途径关键步骤
1、葡萄糖磷酸化→1,6二磷酸果糖(耗能) 2、1,6二磷酸果糖→2分子3-磷酸甘油醛 3、3-磷酸甘油醛→丙酮酸
总反应式(每氧化1分子葡萄糖净得2分子ATP)
葡 萄 糖 2Pi 2ADP 2NAD 2丙 酮 酸 2ATP 2NADH 2H 2H2 O
3、上述各种戊糖磷酸在无氧参与的情况下发生碳架重排 ,产生己糖磷酸和丙糖磷酸。
HMP途径: 葡萄糖经转化成6-磷酸葡萄糖 酸后,在6-磷酸葡萄糖酸脱氢 酶的催化下,裂解成5-磷酸戊 糖和CO2。 磷酸戊糖进一步代谢有两种结 局: ①磷酸戊糖经转酮—转醛酶系 催化,又生成磷酸己糖和磷酸 丙糖(3-磷酸甘油醛),磷酸 丙糖借EMP途径的一些酶,进 一步转化为丙酮酸。 称为不完全HMP途径。 ②由六个葡萄糖分子参加反应, 经一系列反应,最后回收五个 葡萄糖分子,消耗了1分子葡 萄糖(彻底氧化成CO2 和水), 称完全HMP途径。
TCA循环总式:C6H12O6 + 6O2 → 6H2O+ 6CO2 + 30ATP TCA 循环为合成代谢提供: 能量: ATP、GTP 还原力:NADH2 NADPH2 FADH2 小分子 C 架:乙酰 COA α-酮戊二酸 琥珀酰CoA 烯醇式草酰乙酸
TCA循环重要特点:

第五章微生物的代谢

第五章微生物的代谢
生物氧化与燃烧的比较
比较项目 反应步骤 条件 产能形式 能量利用率
燃烧 一步式快速反应
激烈 热、光

生物氧化 顺序严格的系列反应 由酶催化,条件温和
大部分为 ATP 高
生物氧化的过程
一般包括三个环节: ①底物脱氢(或脱电子)作用(该底物称作电
子供体或供氢体) ②氢(或电子)的传递(需中间传递体,如
第五章微生物的代谢和发酵
第一节 代谢概论 第二节 微生物分解代谢
第一节 代谢概论
第二节 微生物分解代谢
一、 生物氧化
二、 异养微生物的生物氧化
底物脱氢的四种途径 EMP途径 ED途径
有氧呼吸 无氧呼吸
三、 自养微生物的生物氧化
微生物产能代谢
四、 能量转换
HMP途径 磷酸酮解途径
第一节 代谢概论
新陈代谢:发生在活细胞中的各种分解代谢 (catabolism)和合成代谢(anabolism)的总和。
葡萄糖
ATP
葡糖-6-磷酸 ADP
(Embden-Meyerhof pathway) 果糖-6-磷酸
a
ATP
EMP途径意义:
果糖-1,6- 二磷酸 ADP 磷酸二羟丙酮 甘油醛-3-磷酸
NAD+
为细胞生命活动提 供ATP 和 NADH
1,3-二磷酸甘油酸 NADH+H+
底物水平磷酸化 3-磷酸甘油酸
CoA ↓ 丙酮酸脱氢酶 乙酰CoA, 进入TCA
2)HMP 途径(磷酸戊糖途径、旁路途径)
分为两个阶段:
1、3个分子6-磷酸葡萄糖在6磷酸葡萄糖脱氢酶和6-磷酸葡 萄糖酸脱氢酶等催化下经氧化 脱羧生成6个分子NADPH+H+,3 个分子CO2和3个分子5-磷酸核 酮糖

第五章微生物的代谢与发酵

第五章微生物的代谢与发酵

3)进行细菌酒精发酵
●酒精发酵途径:
酵母菌:葡萄糖→1,6-二磷酸果糖→3-磷酸甘油
醛、磷酸二羟丙酮→ →丙酮酸→乙醛
→2乙醇
细菌:葡萄糖→ 6-磷酸葡糖酸→KDPG →丙酮酸(3-磷
酸甘油醛→丙酮酸)→乙醛→2乙醇
●细菌酒精发酵
代谢速率高、转化率高、副产物少、发 酵温度较高;但pH较高、较易染菌、耐乙 醇能力较低。
Chap 5 微生物的新陈代谢
主要内容:
●微生物独特的能量代谢
●微生物独特的合成途径
●发酵与代谢调节
§1.微生物能量代谢
一、化能异养微生物的生物氧化和产能
●生物氧化的主要途径和类型 途径:脱氢、递氢和受氢 类型(受氢体不同):
----(好氧)呼吸
----无氧呼吸 ----发酵
(一)底物脱氢的生物学意义
1)TCA循环中4C化合物的补偿 2)乙酸为唯一C源微生物 的重要代谢途径
3)高效的琥珀酸形成途径
§3 微生物独特合成途径
一.自养微生物的CO2固定
●Calvin 循环 ●厌氧乙酰—COA途径 ●逆向TCA循环 ●羟基丙酸途径
●Calvin 循环(略)
1) 6CO2通过Calvin
---对卫生、环保、农业(肥力)的影响与利用
●反硝化作用: 微生物在厌氧呼吸中把硝酸盐或亚硝酸 还原为气态氮(氮气)的过程。
(注意:不同于硝酸盐异化还原)
●硝酸盐同化还原 硝酸盐为微生物吸收还原为氨态氮的过程。
Dentrification
The formation of gaseous nitrogen or gaseous nitrogen oxides from nitrate or nitrite by microorganisms.

第5章 微生物代谢

第5章 微生物代谢

第5章微生物代谢重点难点剖析1.代谢是生物体内所进行的全部生化反应。

包括分解代谢和合成代谢。

2.分解代谢实际上是物质在生物体内经过一系列连续的氧化还原反应,逐步分解井释放能量的过程,这个过程也称为生物氧化,是一个产能代谢过程。

能量代谢的中心任务,是生物体把外界环境中的多种形式的量初能源转换成对一切生命活动都能使用的通用能源A TP。

3.异养微生物生物氧化是利用有机物质进行的产能代谢的过程。

如糖类化合物的生物氧化过程总结为:糖酵解(slycolysis)的4种途径EMP途径HMP途径ED途径WD途径4.微生物糖酵解的4种途径。

(1)EMP途径(图5—1)。

EMP途径的总反应式为:C6H12O6+2NAD++2ADP+2Pi→2CH3COCOOH+2NADH+2H++2A TP+2H2OEMP途径生理功能:提供A TP和还原力NADH;为生物合成提供多种中间产物;连接其他代谢途径如脂肪酸的合成;通过逆反应进行糖原的异生。

‘(2)HMP途径(图5-2)。

HMP途径的总反应式为:6葡糖-6-磷酸+12NADP++6H20→5葡糖-6-磷酸+12NADPH+12H++6C02+PiHMP途径的生理功能:产生三碳、四碳、五碳、六碳和七碳糖的碳骨架等中间产物;产生还原力NADH+H+,为生物合成提供多种前体物质。

(3)ED途径(图5—3)。

ED途径总反应式为:C6H12O6+ADP+Pi+NADP++NAD+→2CH3COCOOH+A TP+NADH+NADPH+2H+ED途径的生理功能:是存在于某些缺乏完整EMP途径的微生物中的一种替代途径,产能效率低,为微生物所特有。

(4)WD途径(磷酸解酮酶途径)(图5-4)。

包括磷酸戊糖解酮酶途径(PK途径)和磷酸己糖解酮酶途径(HK途径)。

5.发酵作用及产能方式。

发酵的定义有下面列举的多种理解方式,但是从微生物代谢的角度来定义发酵,是下面的第⑤种:①生产酒精饮料和牛奶发酵产品的过程(通常的概念);②食品的变质和腐烂(通常的概念);③大规模的微生物工业化生产(工业上的定义);④厌氧条件下的能量释放过程(有一定的科学性);⑤是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物的过程。

第五章 微生物的代谢

第五章 微生物的代谢
2,3-丁二醇脱氢酶
2,3-丁二醇
鉴别肠道细菌的V.P.试验
——乙酰甲基甲醇试验
缩合
2丙酮酸 -CO2
鉴别原理
脱羧
乙酰乳酸
2,3-丁二醇
乙酰甲基甲醇
碱性条件
二乙酰
(与培养基中精氨酸的胍基结合)红色化合物
鉴别肠道细菌的产酸产气和 甲基红(M.R)试验
产酸产气试验: Escherichia(大肠杆菌属)与Shigella (志贺氏菌属)在利用葡萄糖进行发酵时,前者具有甲 酸氢解酶,可在产酸的同时产气,后者则因无此酶,不 具有产气的能力。
途径:ED
3-磷酸甘油醛 2H
2ATP
丙酮酸
丙酮酸
2CO2
乙醇
乙醛
2乙醇
细菌的乙醇发酵
同型乙醇发酵:产物中仅有乙醇一 种有机物分子的酒精发酵
异型乙醇发酵:除主产物乙醇外, 还存在有其它有机物分子的发酵
乳酸发酵
乳酸细菌能利用葡萄糖及其他相应的可发酵的糖产生 乳酸,称为乳酸发酵。 由于菌种不同,代谢途径不同,生成的产物有所不同, 将乳酸发酵又分为同型乳酸发酵、异型乳酸发酵和双 歧杆菌发酵。
进行磷酸酮解途径的微生物缺少醛缩酶,所以它不能够将 磷酸己糖裂解为2个三碳糖。
磷酸解酮酶途径有两种:

磷酸戊糖解酮酶途径(PK)途径

磷酸己糖解酮酶途径(HK)途径
没有EMP、HMP和ED途径的细菌通过PK、HK途径分解 葡萄糖。
磷酸戊糖解酮酶途径 葡萄糖
6-P-葡萄糖 6-P-葡萄糖酸
IMViC试验:
= 吲哚(I)、甲基红(M)、V.P.试验(Vi)柠檬酸 盐利用(C)共四项试验。用以将大肠杆菌与其形状 十分相近的肠杆菌属的细菌鉴别开来。

05 第五章 微生物代谢

05 第五章 微生物代谢
从微生物发酵生产的角度来看,EMP途径与乙醇、
乳酸、甘油、丙酮和丁醇等的发酵生产关系密切。
HMP途径
HMP途径的总反应式为: 6葡糖-6-磷酸+12NADP++6H2O→5葡糖-6-磷酸+12NADPH
+12Pi +12H++6CO2
HMP途径在微生物生命活动中有着极其重要的意义
,具体表现在:
① 供应合成原料:为核酸、核苷酸、NAD(P)+、FAD(FMN) 和CoA等的生物合成提供戊糖-磷酸;途径中的赤藓糖-4磷酸是合成芳香族、杂环族氨基酸(苯丙氨酸、酪氨酸、 色氨酸和组氨酸)的原料;
第一节 微生物产能代谢
一、化能异养作用
二、化能自养作用
三、光合作用
微生物产能代谢(fueling reactions) 微生物获得生物合成所需的前体代谢物、能量和还原力, 并提供微生物细胞生命活动所需要能量的代谢过程。
微生物产能代谢特点 产能代谢的多样性,微生物作为一个类群能够通过氧化有
机化合物、或氧化无机化合物、或通过俘获光能获得能量和还 原力。
化能异养作用、化能自养作用和光合作用
微生物产能代谢的本质
有机物
最初能源 日光
化能异养菌
光能营养菌 化能自养菌
通用能源(ATP)
还原态无机物
一、化能异养作用
异养微生物利用有机物通过分解代谢途径(即生物氧化) 进行产能代谢。 在化能异养微生物的分解代谢途径中,能源有机物可以在 有氧或厌氧条件下经脱氢(或电子)、递氢(或电子)和受氢 三个阶段合成ATP、产生还原力[H]和小分子中间代谢物。
2.无氧呼吸
无氧呼吸(anearair respiration),又称厌氧呼吸:是 指某些细菌在厌氧条件下,以含氧化合物替代自由氧作为最终 电子受体,仍使用呼吸链细胞色素系统传递电子(氢)的呼吸 作用。 特点: 无氧条件下,厌氧或兼性厌氧微生物的特殊呼吸作用;

【生物科技公司】第五章微生物的代谢

【生物科技公司】第五章微生物的代谢

(生物科技行业)第五章微生物的代谢第五章微生物的代谢一、代谢的概念1、代谢是细胞内发生的所有化学反应的总称,包括分解代谢和合成代谢,分解代谢产生能量,合成代谢消耗能量。

2、生物氧化:生物体内发生的一切氧化还原反应。

在生物氧化过程中释放的能量可被微生物直接利用,也可通过能量转换储存在高能化合物(如ATP)中,以便逐步被利用,还有部分能量以热的形式被释放到环境中。

生物氧化的功能为:产能(ATP)、产还原力[H]和产小分子中间代谢物。

3、异养微生物利用有机物,自养微生物则利用无机物,通过生物氧化来进行产能代谢。

二、异养微生物产能代谢发酵生物氧化有氧呼吸呼吸无氧呼吸1、发酵:有机物氧化释放的电子直接交给本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。

发酵过程中有机化合物只是部分地被氧化,因此,只释放出一小部分的能量。

发酵过程的氧化是与有机物的还原相偶联。

被还原的有机物来自于初始发酵的分解代谢,即不需要外界提供电子受体。

发酵的种类有很多,可发酵的底物有碳水化合物、有机酸、氨基酸等,其中以微生物发酵葡萄糖最为重要。

生物体内葡萄糖被降解成丙酮酸的过程称为糖酵解(glycolysis)。

糖酵解是发酵的基础,主要有四种途径:EMP途径、HMP途径、ED途径、磷酸解酮酶途径。

主要发酵类型(1)酵母菌乙醇发酵的三种类型一型发酵:GlucosePyrAlcohol二型发酵:当环境中存在NaHSO4,与乙醛结合,而不能受氢,不能形成乙醇。

磷酸二羟丙酮a-磷酸甘油甘油三型发酵:在碱性条件下,乙醛发生歧化反应产物:乙醇、乙酸和甘油。

(2)乳酸发酵同型乳酸发酵(EMP途径):葡萄糖丙酮酸乳酸异型乳酸发酵(PK或HK途径,肠膜状明串珠菌)葡萄糖乳酸+乙酸或乙醇(HK途径)戊糖乳酸+乙酸(PK途径)两歧双歧途径(PK+HK途径,两歧双歧途杆菌)葡萄糖乳酸+乙酸(Hk和PK途径)(3)氨基酸发酵产能(Stickland反应)在少数厌氧梭菌如Clostridiumsporogenes,能利用一些氨基酸同时当作碳源、氮源和能源,其机制是通过部分氨基酸的氧化和另一些氨基酸的还原向偶联,这种以一种氨基酸做氢供体和以另一种氨基酸做氢受体而发生的产能的独特发酵类型,称为Stickland反应。

05、微生物代谢

05、微生物代谢

不经 呼吸链
发酵
有氧呼吸、无氧呼吸和发酵的递氢与受氢
在递氢、受氢中,根据氢受体性质的不同,异养微生物的 生物氧化可分为有氧呼吸、无氧呼吸和发酵三类。
有氧呼吸、无氧呼吸、发酵的特点比较
生物氧化 递氢方式 的类型 末端氢受体 对O2的 要求 有氧 无氧 无氧 产能 效率 高 较低
有氧呼吸 完整呼吸链 外源性分子氧 递 氢
氧化磷酸化产能
有氧呼吸
无氧呼吸 有 机 物 氧 化 (化能异养型微生物) 底物磷酸化产能:发酵 无 机 物 氧 化:氧化磷酸化产能 (化能自养型微生物) 有氧呼吸 无氧呼吸
3、还原力[ H ]的来源
化能异养型微生物:有机物氧化脱氢产生
化能自养型微生物:无机物氧化后通过消耗ATP的 逆呼吸链电子传递产生
部分呼吸链 外源性无机氧 无氧呼吸 递 氢 化物(或有机物) 发酵
不经呼吸链, 内源性中间 直接受氢 代谢有机物
很低
只有 底物磷酸化
1、有氧呼吸(aerobic respiration)
有氧呼吸:底物脱氢后,经完整呼吸链传递,最终 被作为末端氢受体的外源性分子氧接受 产生水并释放能量的生物氧化过程。
(1)硝酸盐呼吸(反硝化作用)
硝酸盐呼吸:以NO3-作为末端氢受体的无氧呼吸。
末端氢受体: NO3末端氢受体的还原产物:(N02[H] 呼吸链 ATP N03N02-
N0
N20
N20
) N2
N0
N2 + H2O
进行硝酸盐呼吸的细菌:反硝化细菌(硝酸盐还原菌) 反硝化细菌属于兼氧菌,有氧时进行有氧呼吸, 无氧时进行硝酸盐呼吸,如:地衣芽孢杆菌。 硝酸盐还原 同化性硝酸盐还原:以N03- 作为氮源。不属于硝酸盐呼吸。

微生物第五章微生物的新陈代谢

微生物第五章微生物的新陈代谢

第五章微生物的新陈代谢一、名词解释新陈代谢:是推动生物一切生命活动的动力源和各种生命物质的“加工厂”,是活细胞中一切有序化学反应的总和。

生物氧化:发生在活细胞内的一系列产能性氧化反应。

呼吸:是一种最重要最普遍的生物氧化或产能过程。

呼吸链:指位于原核微生物的细胞膜或真核生物的线粒体膜上,由一系列氧化还原势呈梯度差的,链状排列的递氢体或递电子体所组成的连续反应体系。

无氧呼吸:指的是呼吸链末端的氢受体为外源无机氧化物(少数有机氧化物)的生物氧化。

发酵:在无氧等外源氢受体的条件下,底物脱氢后产生的还原力未经呼吸链传递而直接交给内源性中间代谢产物接受,以实现底物水平磷酸化产能的一类生物氧化反应。

同型酒精发酵:酵母在无氧条件下,通过EMP途径,即葡萄糖-丙酮酸-乙醛-乙醇的过程,称为同型酒精发酵。

异型酒精发酵:细菌通过HMP 途径进行,产生1分子乙醇和 1 分子乳酸,称为细菌异型酒精发酵。

Stickland 反应:某些专性厌氧细菌如梭状芽孢杆菌、生孢梭菌、肉毒梭菌、斯氏梭菌在厌氧条件下生长时,以一种氨基酸作为底物进行氧化脱氢(即供氢体),脱下的氢(还原力)以另外一种氨基酸作为氢受体进行还原脱氨,两者偶联进行,实现生物氧化产能的发酵类型称为Stickland 反应。

两用代谢途径:凡在分解代谢和合成代谢中均具有功能的代谢途径。

代谢回补顺序:是指能补充两用代谢途径中因合成代谢而消耗的中间代谢物的应。

乙醛酸循环:中间代谢物中存在乙醛酸的循环。

固氮酶:是一种复合蛋白,由固二氮酶和固二氮酶还原酶两种相互分离的蛋白构成。

异形胞:某些丝状蓝藻所特有地变态营养细胞, 是一种缺乏光合结构、通常比普通营养细胞大地厚壁特化细胞。

类菌体:根瘤菌进入宿主根部皮层细胞后,分化成膨大、形状各异、无繁殖能力,但具有很强固氮活性的细胞。

豆血红蛋白:豆科植物根瘤中发现的血红蛋白样红色蛋白质。

有抗氧化活性,可避免同类细菌中的固氮酶受到抑制,是共生固氮所必需的。

环境微生物第05章 微生物代谢

环境微生物第05章 微生物代谢

9
电子供体
电子受体
10
11
3、光合磷酸化:光引起叶绿素、菌绿素或菌紫素逐出 电子,通过电子传递产生ATP的过程叫光合磷酸化。
非循环式光合磷酸化:光照后,激发态叶绿素分子从H2O 得到电子传递给NADP+,经过电子传递链后产生ATP: 2H2O + 2NADP+ + 2ADP + 2Pi → 2NADPH + 2H+ + 2ATP + O2
环式光合磷酸化中电子循环流动,整个过程中只有ATP 的产生不伴随NADPH的生成,不产生O2。
12
二、化能异养微生物的生物氧化与产能代谢
产能(ATP) 生物氧化的功能: 产还原力[H] 产小分子中间代谢物
好氧呼吸 生物氧化的三种类型: 厌氧呼吸 发酵
13
1.好氧呼吸
以分子态的氧作为最终电子受体的生物氧化过程。 彻底氧化,放能最多。
7
ATP的生成方式有: 1、基质(底物)水平磷酸化:厌氧或兼性厌氧微生物在基 质氧化过程中,产生一个含有高能键的中间物,将高能键 转移到ADP,成为ATP,如1,3-二磷酸甘油酸和磷酸烯醇 式丙酮酸。 2、氧化磷酸化:是主要的能量来源。氧化磷酸化作用是将 生物氧化过程中释放出的自由能转移形成高能ATP的作用, 能量的转移通过电子传递链实现,ATP的生成基于与电子 传递相偶联的磷酸化作用。 氧化磷酸化的全过程可表示为: NADH + H+ +3ADP + 3Pi +1/2O2
29
HMP途径的重要意义
为核苷酸和核酸的生物合成提供戊糖-磷酸; 产生大量NADPH,一方面为脂肪酸、固醇等物质的合成提供还 原力,另方面可通过呼吸链产生大量的能量; 与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可以调 剂戊糖供需关系; 途径中的赤藓糖、景天庚酮糖等可用于芳香族氨基酸合成、碱 基合成、及多糖合成; 途径中存在3~7碳的糖,使具有该途径微生物的所能利用利用 的碳源谱更为更为广泛; 通过该途径可产生许多种重要的发酵产物。如核苷酸、若干氨 基酸、辅酶和乳酸(异型乳酸发酵)等; HMP途径在总的能量代谢中占一定比例,且与细胞代谢活动对 其中间产物的需要量相关。

南开大学微生物-第五章_代谢

南开大学微生物-第五章_代谢
糖酵解的主要途径: •EMP:为常见的糖酵解途径。 •HM:在单磷酸己糖基础上开始降解,EMP和HM途径密切相关。 •ED:该途径不依赖于EMP和HM途径而单独存在。 •PK:该途径的特征性酶为含磷酸戊糖解酮酶。
3、微生物无氧条件下发酵产能与发酵产物
乙醇
乳酸
EMP
HM
Glc
2ATP+2Pyr
ED
PK
加氢源
氨基酸 蛋白质 核苷酸 核酸 维生素等
Calvin循环、还原性TCA循环 断裂TCA循环、EMP、HMP等
第三节 微生物特有的代谢
一、微生物固氮
生物固氮:在常温常压下由生物固氮酶催化,将大气中 的N2还原为NH3 的生化过程。

固氮酶
N2 + NAD(P)H+ ATP
NH3 + NAD(P)H + ADP + Pi
蓝细菌有两个光合系统 光合系统1环式光合磷酸化产ATP 光合系统1和2进行非环式光合磷酸化产生ATP 、 NAD(P)H 光合系统2进行水光解释放氧。
5、嗜盐菌紫膜的光合磷酸化产生ATP
紫膜中视紫红质蛋白辅基视黄醛分子光诱导顺、反式变化
(膜外) H+
顺式 X=N+
Pro
反式 X=N+--Pro
X=N
丙酸 甲酸、乙酸、乳酸 丁二酸 丙酮、丁醇
酿酒酵母 乳酸细菌 丙酸杆菌
E.coli 产气肠杆菌 丙-丁酸菌
Ⅰ型发酵:Glc EMP 丙酮酸 脱羧 乙醛 H+ e-
乙醇+2ATP
Ⅱ型发酵:Glc
难溶黄化羟基乙醛
丙酮酸 乙醛·亚硫酸氢钠 P-二羟丙酮 脱磷 甘油+2ATP
H+ e-
Ⅲ型发酵:Glc
丙酮酸
第五章 微生物的代谢

微生物的代谢

微生物的代谢

第五章微生物的代谢代谢:细胞内发生各种化学反应的总称,主要由分解代谢和合成代谢两个过程组成。

分解代谢:是指将细胞内大分子物质降解为小分子物质,并在这个过程中产生能量;合成代谢:是指细胞利用简单的小分子物质合成复杂的大分子,在这个过程中要消耗能量,反应来源物质来源于分解代谢过程中产生的中间产物或环境中的小分子营养物质。

无论是分解代谢还是合成代谢,代谢途径都是由一系列连续的酶促反应构成,前一步反应的产物是后续反应的底物。

第一节微生物产能代谢在生物体内大分子有机物经过一系列连续的氧化还原反应,逐步分解并释放能量的过程,这是一个产能的过程,又称生物氧化。

一、异养微生物的生物氧化微生物细胞内发生的生物氧化反应分成发酵和呼吸两种类型,而呼吸又可分为有氧呼吸和无氧呼吸两种方式。

1、发酵A、发酵是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物,不需要外界提供电子体。

可发酵的底物有糖类、有机酸、氨基酸等,其中微生物发酵葡萄糖最为主要。

简单了解EMP途径、HM途径、ED途径、磷酸解酮酶途径。

B、乳酸发酵:许多菌能利用葡萄糖产生乳酸,这类细菌称为乳酸菌。

根据产物不同,乳酸发酵有3种类型:同型乳酸发酵、异型乳酸发酵和双歧乳酸发酵。

a、同型乳酸发酵:葡萄糖经过EMP途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH还原为乳酸,由于产物只有一种,故称同型乳酸发酵。

b、异型乳酸发酵:葡萄糖先经PK途径分解,发酵产物除乳酸以外还有一部分乙醇或乙酸。

c、双歧乳酸发酵:是两歧双歧杆菌发酵葡萄糖产生乳酸的一条途径,此反应中有两种磷酸解酮酶参加反应。

2、呼吸作用发酵中底物所具有的能量只有小部分被释放出来,并合成少量ATP,造成这种现象的原因有两个:一是底物的碳原子只被部分氧化,二是初始电子供体和最终电子受体的还原电势差不大。

呼吸作用:微生物在降解底物的过程中,将释放的电子交给NAD(P)+、FAD、或FMN等电子载体,再经电子传递系统传给外源电子受体,从而生成水或其他还原型产物并释放能量的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 微生物的代谢一、填空题1、微生物的4种糖酵解途径中, 是存在于大多数生物体内的一条主流代谢途径; 是存在于某些缺乏完整EMP 途径的微生物中的一种替代途径,为微生物所特有; 是产生4碳、5碳等中间产物,为生物合成提供多种前体物质的途径。

2、同型乳酸发酵是指葡萄糖经 途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH 还原为乳酸。

异型乳酸发酵经 、 和 途径分解葡萄糖。

代谢终产物除乳酸外,还有 。

3、微生物在糖酵解生成丙酮酸基础上进行的其他种类的发酵有丁二醇发酵、混合酸发酵、 发酵和 发酵等。

丁二醇发酵的主要产物是 , 发酵的主要产物是乳酸、乙酸、甲酸、乙醇。

4、产能代谢中,微生物通过 磷酸化和 磷酸化将某种物质氧化而释放的能量储存在ATP 等高能分子中;光合微生物则通过 磷酸化将光能转变成为化学能储存在ATP 中。

磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。

5、呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物降解的中间产物,而是交给 系统,逐步释放出能量后再交给 。

6、巴斯德效应是发生在很多微生物中的现象,当微生物从 转换到 下,糖代谢速率 ,这是因为 比发酵作用更加有效地获得能量。

7、无氧呼吸的最终电子受体不是氧,而是外源电子受体,像22322423、C O O 、S 、SO 、NO NO ----等无机化合物,或 等有机化合物。

8、化能自养微生物氧化 而获得能量和还原力。

能量的产生是通过 磷酸化形式,电子受体通常是O 2。

电子供体是 、 、 和 ,还原力的获得是逆呼吸链的方向进行传递, 能量。

9、微生物将空气中的N 2还原为NH 3的过程称为 。

该过程中根据微生物和其他生物之间相互的关系。

固氮体系可以分为 、 和 3种。

10、次级代谢是微生物生长至 或 ,以 为前体,合成一些对微生物自身生命活动无明确生理功能的物质的过程。

次级代谢产物大多是分子结构比较复杂的化合物,如 、 、 、 、 及 等多种类别。

二、选择题(4个答案选1)1、化能自养微生物的能量来源于( )。

(1)有机物 (2)还原态无机化合物 (3)氧化态无机化合物 (4)日光2、下列葡萄糖生成丙酮酸的糖酵解途径中,( )是最普遍的、存在于大多数生物体内的一条主流代谢途径。

(1)EMP途径(2)HEP途径(3)ED途径(4)WD途径3、下列葡萄糖生成丙酮酸的糖酵解途径中,()是存在于某些缺乏完整EMP 途径的(1)EMP途径(2)HEP途径(3)ED途径(4)WD途径4、酵母菌和运动发酵单胞菌乙醇发酵的区别是()。

(1)糖酵解途径不同(2)发酵底物不同(3)丙酮酸生成乙醛的机制不同(4)乙醛生成乙醇的机制不同5、由丙酮酸开始的其他发酵过程中,主要产物是丁酸、丁醇、异丙醇的发酵的是()。

(1)混合酸发酵(2)丙酸发酵(3)丁二醇发酵(4)丁酸发醇6、下列代谢方式中,能量获得最有效的方式是()。

(1)发酵(2)有氧呼吸(3)无氧呼吸(4)化能自养7、青霉素抑制金黄色葡萄球菌肽聚糖合成的()。

(1)细胞膜外的转糖基酶(2)细胞膜外的转肽酶(3)细胞质中的“Park”核苷酸合成(4)细胞膜中肽聚糖单体分子的合成8、下面对于好氧呼吸的描述()是正确的。

(1)电子供体和电子受体都是无机化合物(2)电了供体和电子受体都是有机化合物(3)电子供体是无机化合物,电子受体是有机化合物(4)电子供体是有机化合物,电子受体是无机化合物9、无氧呼吸中呼吸链末端的氢受体是()。

(1)还原型无机化合物(2)氧化型无机化合物(3)某些有机化合物(4)氧化型无机化合物和少数有机化合物10、硝化细菌是()。

(1)化能自养菌,氧化氨生成亚硝酸获得能量(2)化能自养菌,氧化亚硝酸生成硝酸获得能量(3)化能异养菌,以硝酸盐为最终的电子受体(4)化能异养菌,以亚硝酸盐为最终的电子受体三、是非题1、无氧呼吸和有氧呼吸一样也需要细胞色素等电子传递体,也能产生较多的能量用于命活动,但由于部分能量随电子转移传给最终电子受全,所以生成的能量不如有氧呼吸产生的多。

2、CO2是自养微生物的惟一碳源,异养微生物不能利用CO2作为辅助的碳源,3、由于微生物的固氮酶对氧气敏感,不可逆失活,所以固氮微生物一般都是厌氧或兼性厌氧菌。

4、光能营养微生物的光合磷酸化没有水的光解,不产生氧气。

5、与促进扩散相比,微生物通过主动运输吸收营养物质的优点是什么?6、反硝化作用是化能自养微生物以硝酸或亚硝酸盐为了电子受体进行的无氧呼吸。

7、底特水平磷酸化只存在于发酵过程中,不存在于呼吸作用过程中。

8、发酵作用的最终电子受体是有机化合物,呼吸作用的最终电子受体是无机化合物。

9、发酵作用是专性厌氧菌或兼性厌氧菌在无氧条件下的一种有机物生物氧化形式,其产能机制都是底物水平磷酸化反应。

10、延胡索酸呼吸中,玻珀酸是末端氢受体延胡索酸还原后生成的还原产物,不是一般的中间代谢产物。

四、名词解释1 发酵2呼吸作用3有氧呼吸4无氧呼吸5异型乳酸发酵6生物固氮7硝化细菌8光合细菌五、简答题1、比较自生和共生生物固氮体系及其微生物类群。

2、比较光能营养微生物中光合作用的类型。

3、简述化能自养微生物的生物氧化作用。

4、蓝细菌是一类放氧性光合光物,又是一类固氮菌,说明其固氮酶的抗氧保护机制。

六、论述题1、比较酵母菌和细菌的乙醇发酵。

2、试比较底物水平磷酸化、氧化磷酸化和光合磷酸化中ATP的产生。

3、什么是无氧呼吸?比较无氧呼吸和有氧呼吸产生能量的多少,并说明原因。

4、说明革兰低阳性细菌细胞肽聚糖合成过程以及青霉素的抑制机制。

5、说明次级代谢及其特点。

如何利用次级代谢的诱导调节机制及氮和磷调节机制来提高抗生素的产量?6、如何利用营养缺陷突变株进行赖氨酸发酵工业化生产?习题答案一、填空题1.EMP ED HMP 2.EMP PK HK HMP 乙醇或乙酸 3.丙酸发酵丁酸发酵 2,3—丁二醇混合酸 4.底物水平氧化光合底物水平5.电子传递最终电子受体 6.厌氧条件有氧条件降低好氧呼吸7.延胡索酸 8.有机物氧化磷酸化 H2 NH4+ H2S Fe2+消耗 9.生物固氮共生固氮体系自生固氮体系联介固氮体系 10.指数期后期稳定期初级代谢产物抗生素激素生物碱毒素色素维生素二、选择题1. (2) 2. (1) 3. (3) 4. (1) 5.(4) 6. (2) 7. (2) 8.(4) 9. (4) 10. (2)三、是非题1. + 2.- 3.- 4.- 5.+ 6.- 7.- 8.+ 9. + 1 0. +四、名词解释1 发酵:是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。

2 呼吸作用:指从葡萄糖或其他有机基质脱下的电子(氢)经过一系列载体最终传递给外源分子氧或其他氧化型化合物并产生较多ATP的生物氧化过程。

3 有氧呼吸:以分子氧作为最终电子受体的呼吸。

4 无氧呼吸:以氧以外的其他氧化型化合物作最终电子受体的呼吸。

5 异型乳酸发酵:是指发酵终生物中除了乳酸外还有一些乙醇(或乙酸)等产物的发酵。

6 生物固氮:微生物将氮还原为氨的过程称为生物固氮。

7 硝化细菌:能利用还原无机氮化合物进行自养生长的细菌称为硝化细菌。

8 光合细菌:以光为能源,利用CO2或有机碳化合物作为碳源,通过电子传递产生ATP的细菌。

五、简答题1.共生固氮体系:根瘤菌(Rhizobium)与豆科植物共生;弗兰克氏细菌(Frankia) 与非豆科植物共生;蓝细菌(cyanobacteria)与某些植物共生;蓝细菌与某些真菌共生自生固氮体系:好氧自生固氮菌(Azotobacter,Azotomonas,etc);厌氧自生固氮菌(Clostridium):兼性厌氧自生固氮菌(Bacillus,Klebsiella,etc);大多数光合细菌(蓝细菌,光合细菌)2①光合细菌,环式光合磷酸化;②绿硫细菌的非环式光合磷酸化;.③嗜盐细菌的光合磷酸化是一种只有嗜盐菌才有的,无叶绿素或细菌叶绿素参与的独特的光合作用。

是目前所知的最简单的光合磷酸化。

嗜盐细菌紫膜上的细菌视紫红质吸收光能后,在膜内外建立质子浓度差。

.非环式光合磷酸化是绿色植物、藻类和蓝细菌所共有的产氧型光合作用。

光能驱动下,电子从光反应中心I(PS 1)的叶绿素a出发,通过电子传递链,连同光反应中心Ⅱ(PSⅡ)水的光解生成的H’,生成还原力;光反应中心Ⅱ(PSⅡ)由水的光解产生氧气和电子,电子通过电子传递链,传给光反应中心PS I,期间生成ATP。

环式光合磷酸化为光合细菌所特有。

光能驱动下,电子从菌绿素分子出发,通过电子传递链的循环,又回到菌绿素,期间产生ATP,还原力来自环境中的无机化合物供氢,不产生氧气。

有些光合细菌虽只有一个光合系统,但也以非环式光合磷酸化的方式合成ATP,如绿硫细菌和绿色细菌,从光反应中心释放出的高能电子经铁硫蛋白、铁氧还蛋白、黄素蛋白,最后用于还原NAD’生成NADH。

反应中心的还原依靠外源电子供体如S2-、S2O32-等。

外源电子供体在氧化过程中放出电子,经电子传递系统传给失去了电子的光合色素,使其还原,同时偶联ATP的生成。

嗜盐细菌的光合磷酸化是一种只有嗜盐菌才有的,无叶绿素或细菌叶绿素参与的独特的光合作用。

是目前所知的最简单的光合磷酸化。

嗜盐细菌紫膜上的细菌视紫红质吸收光能后,在膜内外建立质子浓度差,再由它来推动ATP酶合成ATP。

3.化能自养微生物氧化无机物而获得能量和还原力。

能量的产生是通过电子传递链的氧化磷酸化形式,电子受体通常是O2,因此,化能自养菌一般为好氧菌。

电子供体是H2、NH4+、H2S和Fe2+,还原力的获得是逆呼吸链的方向进行传递,同时需要消耗能量。

(1)氨的氧化。

NH3和亚硝酸(NO2-)是作为能源的最普通的无机氮化合物,能被亚硝化细菌和硝化细菌氧化。

(2)硫的氧化。

硫杆菌能够利用一种或多种还原态或部分还原态的硫化合物(包括硫化物、元素硫、硫代硫酸盐、多硫酸盐和亚硫酸盐)作能源。

H2S首先被氧化成元素硫,随之被硫氧化酶和细胞色素系统氧化成亚硫酸盐,放出的电子在传递过程中可以偶联产生ATP。

(3)铁的氧化。

从亚铁到高铁的生物氧化,对少数细菌来说也是一种产能反应,但这个过程只有少量的能量被利用。

亚铁的氧化仅在嗜酸性的氧化亚铁硫杆菌(Thiobacillus ferrooxidans)中进行了较为详细的研究。

在低pH环境中这种细菌能利用亚铁氧化时放出的能量生长,在该菌的呼吸链中发现了一种含铜的铁硫菌蓝蛋白(rusticyanin),它与几种Cyt c和一种Cyta,氧化酶构成电子传递链。

(4)氢的氧化。

氢细菌能利用分子氢氧化产生的能量同化CO2,也能利用其他有机物生长。

相关文档
最新文档